

Delft University of Technology

Approximated and User Steerable tSNE for Progressive Visual Analytics

Pezzotti, Nicola; Lelieveldt, Boudewijn P.F.; van der Maaten, Laurens; Höllt, Thomas; Eisemann, Elmar;
Vilanova, Anna
DOI
10.1109/TVCG.2016.2570755
Publication date
2016
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Visualization and Computer Graphics

Citation (APA)
Pezzotti, N., Lelieveldt, B. P. F., van der Maaten, L., Höllt, T., Eisemann, E., & Vilanova, A. (2016).
Approximated and User Steerable tSNE for Progressive Visual Analytics. IEEE Transactions on
Visualization and Computer Graphics, 23(7), 1739-1752. https://doi.org/10.1109/TVCG.2016.2570755

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 1

Approximated and User Steerable tSNE for
Progressive Visual Analytics

Nicola Pezzotti, Boudewijn P.F. Lelieveldt, Laurens van der Maaten,

Thomas Höllt, Elmar Eisemann, and Anna Vilanova

Abstract—Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as

well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D

embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited

technique for the visualization of high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow

initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE),

which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a

density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local

refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world

research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis.

Index Terms—High Dimensional Data, Dimensionality Reduction, Progressive Visual Analytics, Approximate Computation

✦

1 INTRODUCTION

V ISUAL analysis of high dimensional data is a chal-
lenging process. Direct visualizations such as parallel

coordinates [1] or scatterplot matrices [2] work well for a
few dimensions but do not scale to hundreds or thousands
of dimensions. Typically indirect visualization is used for
these cases. First the dimensionality of the data is reduced,
usually to two or three dimensions, then the remaining
dimensions are used to lay out the data for visual inspection,
for example in a two dimensional scatterplot.

Dimensionality reduction techniques have been an active
field of research in the last years, resulting in a number of
viable techniques [3]. A variant of tSNE [4], the Barnes Hut
SNE [5] has been accepted as the state of the art for non-
linear dimensionality reduction applied to visual analysis
of high-dimensional space in several application areas, such
as life sciences [6], [7], [8], [9]. tSNE produces 2D and 3D
embeddings that are meant to preserve local structure in
the high-dimensional data. The analyst inspects the embed-
dings with the goal to identify clusters or patterns that are
used to generate new hypothesis on the data, however, the
computational complexity of this technique does not allow
direct employment in interactive systems. This limitation
makes the analytic process a time consuming task that can
take hours, or even days, to adjust the parameters and
generate the right embedding to be analyzed.

• N. Pezzotti, T. Höllt, E. Eisemann, and A. Vilanova are with the Computer
Graphics and Visualization group, Delft University of Technology, Delft,
the Netherlands.

• B. P.F. Lelieveldt and L. van der Maaten are with the Pattern Recognition
and Bioinformatics group, Delft University of Technology, Delft, the
Netherlands.

• B. P.F. Lelieveldt is with the Division of Image Processing, Department of
Radiology, Leiden University Medical Center, Leiden, the Netherlands.

Manuscript received August 4, 2015; revised -, -.

Recently Stolper et al. [10], as well as Mühlbacher et
al. [11] introduced Progressive Visual Analytics. The idea
of Progressive Visual Analytics is to provide the user with
meaningful intermediate results, in case computation of the
final result is too costly. Based on these intermediate results
the user can start with the analysis process. Mühlbacher et
al. also provide a set of requirements, which an algorithm
needs to fulfill in order to be suitable for Progressive Vi-
sual Analytics. Based on these requirements they analyze
a series of different algorithms, commonly deployed in
visual analytics systems and conclude that, for example,
tSNE fulfills all requirements. The reason being that the
minimization in tSNE builds up on the iterative gradient
descent technique [4] and can therefore be used directly for
a per-iteration visualization, as well as interaction with the
intermediate results. However, Mühlbacher et al. ignore the
fact that the distances in the high-dimensional space need
to be precomputed to start the minimization process. In fact
this initialization process is dominating the overall perfor-
mance of tSNE. Even with a per-iteration visualization of
the intermediate results [10], [11], [12], [13] the initialization
time will force the user to wait minutes, or even hours,
before the first intermediate result can be generated on a
state-of-the-art desktop computer. Every modification of the
data, for example, the addition of data-points or a change in
the high-dimensional space, will force the user to wait for
the full reinitialization of the algorithm.

In this work, we present A-tSNE, a novel approach
to adapt the complete tSNE pipeline, including a distance
computation for the Progressive Visual Analytics paradigm.
Instead of precomputing precise distances, we propose to
approximate the distances using Approximated K-Nearest
Neighborhood queries. This allows us to start the compu-
tation of the iterative minimization nearly instantly after
loading the data. Based on the intermediate results of the
tSNE, the user can now start the interpretation process of the

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 2

data immediately. Further, we modified the gradient descent
of tSNE such that it allows for the incorporation of updated
data during the iterative process. This change allows us to
continuously refine the approximated neighborhoods in the
background, triggering updates of the embedding without
restarting the optimization. Eventually, this process arrives
at the precise solution. Furthermore, we allow the user to
steer the level of approximation by selecting points of inter-
est, such as clusters, which appear in the very early stages
of the optimization and enable an interactive exploration of
the high-dimensional data.

Our contributions are as follows:

1) We present A-tSNE, a twofold evolution of the tSNE
algorithm, which

a) minimizes initialization time and as such
enables immediate inspection of preliminary
computation results.

b) allows for interactive modification, removal
or addition of high-dimensional data, with-
out disrupting the visual analysis process.

2) Using a set of standard benchmark data sets, we
show large computational performance improve-
ments of A-tSNE compared to the state of the art
while maintaining high precision.

3) We developed an interactive system for the visual
analysis of high dimensional data, allowing the user
to inspect and steer the level of approximation.
Finally, we illustrate the benefits of exploratory pos-
sibilities in a real-world research scenario and for
the real-time analysis of high-dimensional streams.

2 RELATED WORK

The tSNE [4] algorithm builds the foundation of this work.
As described above, tSNE is used for visualization of high-
dimensional data in a wide field of applications, from life
sciences to the analysis of deep-learning algorithms [6], [7],
[8], [9], [14], [15], [16]. tSNE is a non-linear dimensionality-
reduction algorithm that aims at preserving local structures
in the embedding, whilst showing global information, such
as the presence of clusters at several scales. Most of the user
tasks associated with the visualization of high-dimensional
data embeddings are based on identifying relationships
between data points. Typical tasks comprises the identi-
fication of visual clusters and their verification based on
detail visualization of the high-dimensional data, e.g., using
parallel coordinate plots. For a complete description of such
tasks we refer to Brehmer et al. [17].

tSNE’s computational and memory complexity is
O(N2), where N is the number of data-points, which con-
strains the application of the technique. An evolution of the
algorithm, called Barnes-Hut-SNE (BH-SNE) [5], reduces the
computational complexity to O(N log(N)) and the memory
complexity to O(N). This approach was also developed in
parallel by Yang et al. [18]. However, despite the increased
performance, it still cannot be used to interactively explore
the data in a desktop environment.

Interactive performance is at the center of the latest
developments in Visual Analytics. New analytical tools and
algorithms, which are able to trade accuracy for speed and

offer the possibility to interactively refine results [19], [20],
are needed to deal with the scalability issues of existing
analytics algorithms like tSNE. Mühlbacher et al. [11] de-
fined different strategies to increase the user involvement in
existing algorithms. They provide an in-depth analysis on
how the interconnection between the visualization and the
analytic modules can be achieved. Stolper et al. [10] defined
the term Progressive Visual Analytics, describing techniques
that allow the analyst to directly interact with the analytics
process. Visualization of intermediate results is used to help
the user, for example, to find optimal parameter settings or
filter the data [10]. For the design of our Progressive Visual
Analytics approach, we used the guidelines presented by
Stolper et al. [10], see section 4. Many algorithms are not
suited right away for Progressive Visual Analytics since the
production of intermediate results is computationally too
intensive or they do not generate useful intermediate results
at all. tSNE is an example of such an algorithm because of
its initialization process.

To overcome this problem, we propose to compute an
approximation of tSNE’s initialization stage, followed by a
user steerable [21] refinement of the level of approximation.
To compute the conditional probabilities needed by BH-
SNE, a K-Nearest Neighborhood (KNN) search must be
evaluated for each point in the high-dimensional space.
Under these conditions, a traditional algorithm and data
structure, such as a KD-Tree [22], will not perform well. In
the BH-SNE [5] algorithm, a Vantage-Point Tree [23] is used
for the KNN search, but it is slow to query. In this work, we
propose to use an approximated computation of the KNN
in the initialization stage to start the analysis as soon as
possible. The level of approximation is then refined on the
fly during the analytics process.

Other dimensionality-reduction algorithms implement
approximation and steerability to increase performance as
well. For example MDSteer [24] works on a subset of
the data and allows the user to control the insertion of
points by selecting areas in the reduced space. Yang et
al. [25] present a dimensionality-reduction technique using
a dissimilarity matrix as input. By means of a divide-
and-conquer approach, the computational complexity of
the algorithm can be reduced. Multiple other techniques
provide steerability by means of guiding the dimensionality
reduction via user input. Joja et al. [26] and Paulovich et
al. [27] let the user place a small number of control points.
In other work, Paulovich et al. [28], propose the use of a
non-linear dimensionality-reduction algorithm on a small
number of automatically-selected control points. For these
techniques the position of the data points is finally obtained
by linear-interpolation schemes that make use of the control
points. However, they all limit the non-linear dimensionality
reduction to a subset of the dataset limiting the insights that
can be obtained from the data. In this work, we provide a
way to directly use the complete data allowing the analyst
to immediately start the analysis on all data points.

Ingram and Munzner’s Q-SNE [29] is based on a similar
idea as our approach, using Approximated KNN queries
for the computation of the high-dimensional similarities.
However, they use the APQ algorithm [29] that is designed
to exploit the sparse structure of high-dimensional spaces
obtained from document collections, limiting its application

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 3

to such a context. A-tSNE improves Q-SNE in the direction
of providing a fast but approximated algorithm for the
analysis of traditional dense high-dimensional spaces. For
this reason it can be used right away in contexts where
BH-SNE is applied and Q-SNE would not be applicable. A
further distinction is that A-tSNE incorporates the principles
of the Progressive Visual Analytics by means of providing
a visualization of the level of approximation, the ability to
refine the approximation based on user input, and allow-
ing the manipulation of the high-dimensional data without
waiting for the recomputation of the exact similarities.

Density-based visualization of the tSNE embedding has
been used in several works [5], [6], [9], however, they
employ slow-to-compute offline techniques. In our work,
we integrate real-time Kernel Density Estimation (KDE)
as described by Lampe and Hauser [30]. The interaction
with the embedding is important to allow the analyst to
explore the high-dimensional data. Selection operations in
the embedding and the visualization of the data in a coor-
dinated multiple-view system are necessary to enable this
exploration. The iVisClassifier system [31] is an example of
such a solution. In our work, we take a similar approach,
providing a coordinated multiple-view framework for the
visualization of a selection in the embedding.

3 TSNE

In this section, we provide a short introduction to tSNE [4],
which is necessary to explain our contribution. tSNE inter-
prets the overall distances between data-points in the high-
dimensional space as a symmetric joint-probability distribu-
tion P . Likewise a joint-probability distribution Q is com-
puted, that describes the similarity in the low-dimensional
space. The goal is to achieve a representation, referred to as
embedding, in the low dimensional space where Q faithfully
represents P . This is achieved by optimizing the positions
in the low-dimensional space to minimize the cost function
C given by the Kullback-Leibler (KL) divergence between
the joint-probability distributions P and Q:

C(P,Q) = KL(P ||Q) =
N
∑

i=1

N
∑

j=1,j 6=i

pij ln

(

pij
qij

)

(1)

Given two data points xi and xj in the dataset X =
{x1...xN}, the probability pij models the similarity of these
points in the high-dimensional space. To this extent, for
each point a Gaussian kernel, Pi, is chosen whose variance
σi is defined according to the local density in the high-
dimensional space and then pij is described as follows:

pij =
pi|j + pj|i

2N
, (2)

where pj|i =
exp(−(||xi − xj ||

2)/(2σ2
i))

∑N
k 6=i exp(−(||xi − xk||2)/(2σ2

i))
(3)

pj|i can be seen as a relative measure of similarity based
on the local neighborhood of a data-point xi. The perplexity
value µ is a user-defined parameter that describes the ef-
fective number of neighbors considered for each data-point.
The value of σi is chosen such that for fixed µ and each i:

µ = 2−
∑N

j pj|i log2
pj|i (4)

A Student’s t-Distribution with one degree of freedom
is used to compute the joint-probability distribution in the
low-dimensional space Q, where the positions of the data-
points should be optimized. Given two low-dimensional
points yi and yj , the probability qij that describes their
similarity is given by:

qij =
(

(1 + ||yi − yj ||
2)Z

)−1
(5)

with Z =
N
∑

k=1

N
∑

l 6=k

(1 + ||yk − yl||
2)−1 (6)

The gradient of the Kullback-Leibler divergence between
P and Q is used to minimize C (see Eq. 1). It indicates the
change in position of the low-dimensional points for each
step of the gradient descent and is given by:

δC

δyi
= 4

N
∑

i=1

(F attr
i − F

rep
i) (7)

= 4
N
∑

i=1

(
N
∑

j 6=i

pijqijZ(yi − yj)−
N
∑

j 6=i

q2ijZ(yi − yj)) (8)

The gradient descent can be seen as a N-body simula-
tion [32], where each data-point exerts an attractive and a
repulsive force on all the other points (F attr

i and F
rep
i).

3.1 Barnes-Hut-SNE

In the original tSNE, the force is computed using a brute-
force approach, resulting in computational and memory
complexity of O(N2). Barnes-Hut-SNE (BH-SNE) [5] is an
evolution of the tSNE algorithm that introduces two differ-
ent approximations to reduce the computational complexity
to O(N log(N)) and the memory complexity to O(N).

The first approximation is based on the observation
that the probability pij is infinitesimal if xi and xj are
dissimilar. Therefore, the similarities of a data-point xi can
be computed taking into account only the points that belong
to the set of nearest neighbors Ni. The cardinality of Ni can
be set to K = ⌊3µ⌋, where µ is the user-selected perplexity
and ⌊·⌋ describes a rounding to the next-lower integer.
Without compromising the quality of the embedding [5], we
can adopt a sparse approximation of the high-dimensional
similarities. Eq. 3 can now be written as follows:

pj|i =

exp(−(||xi−xj ||
2)/(2σ2

i))∑
k∈Ni

exp(−(||xi−xk||2)/(2σ2

i))
if j ∈ Ni

0 otherwise
(9)

The computation of the K-Nearest Neighbors is per-
formed using a Vantage-Point Tree (VP-Tree) [23]. A VP-
Tree is data structure that computes KNN queries in a
high-dimensional metric space, in O(log(N)) time. It is a
binary tree that stores for each non leaf-node a hyper-sphere
centered on a data-point. The left children of each node
will contain the points that reside inside the hyper-sphere,
whereas the right one will contain the points outside it.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 4

(a) Progressive Visual Analytics workflow for tSNE.

(b) Progressive Visual Analytics workflow for A-tSNE.

Fig. 1. Comparison between the traditional and our tSNE workflow.
The eye icon marks modules which produce output for visualization,
whereas the hand icon marks modules that allow manipulation by the
user. The increased performance of the similarity computation allows the
user to seamlessly manipulate the input data. The level of approximation
can be visualized and the user can steer the refinement process to
interesting regions.

The second approximation makes use of the formulation
of the gradient presented in Eq. 7. As described above tSNE
can be seen as an N-body simulation and thus the Barnes-
Hut algorithm [33] can be used to reduce the computational
complexity to O(N log(N)). For further details, we refer to
van der Maaten [5].

4 A-TSNE IN PROGRESSIVE VISUAL ANALYTICS

In this work, we introduce Approximated-tSNE (A-tSNE),
an evolution of the BH-SNE algorithm, using approximated
computations of high-dimensional similarities to generate
meaningful intermediate results. The level of approximation
can be defined by the user to allow control on the trade
off between speed and quality. The level of approximation
can be refined by the analyst in interesting regions of
the embedding, making A-tSNE a computational steerable
algorithm [21]. tSNE is well suited for the application in
Progressive Visual Analytics: after the initialization of the
algorithm, the intermediate results generated during the
iterative optimization process can be interpreted by the
analyst while they change over time, as shown in previous
work [11], [12]. Fig. 1a shows a typical Progressive Visual
Analytics workflow for tSNE.

Algorithms that can be used in a Progressive Visual An-
alytics system often have a computational module, e.g. the
initialization of the technique, that cannot be implemented
in an iterative way, creating a speed bump [10] in the user
analysis. tSNE is a good example for such an algorithm. It
consists of two computational modules that are serialized.
In the first part of the algorithm, similarities between high-
dimensional points are calculated. In the second module, a

minimization of the cost function (Eq. 1) is computed by
means of a gradient descent. The first module, depicted in
light grey in Fig. 1a, is slow to compute and does not create
any meaningful intermediate results.

We extend the Progressive Visual Analytics paradigm by
introducing approximated computation rather than aiming
at exact computations, in the modules that are not suited
for a per-iteration visualization. Fig. 1b shows the analytical
workflow for A-tSNE. While the generation and the inspec-
tion of the intermediate results is not changed, we introduce
a refinement module, depicted in red in Fig. 1b, which
can be used to refine the level of the approximation in the
embedding in a concurrent way. Furthermore, the increased
performance of the initialization module and the ability to
update the high-dimensional similarities during the gradi-
ent descent minimization, allows the analyst to manipulate
the high-dimensional data without waiting for the reinitial-
ization of the algorithm. We follow the guideline proposed
by Stolper et al. [10], focusing on providing increasingly
meaningful partial results during the minimization process
(purple modules in Fig. 1). Furthermore, we impose the
following requirements to the modules that compute the
approximated similarities (grey and red modules in Fig. 1):

1) The performance gain due to the approximation
must be high enough to enable interaction.

2) The amount of degradation caused by the approx-
imation must be controllable. A small increase of
approximation must not lead to large degradation
of the results.

3) The approximation quality can be measured and
visualized to avoid misleading the user.

4) The approximation can be refined during the evolu-
tion. The refinement can be steered by the user.

In the following Sections 4.1 to 4.4, we describe the A-
tSNE algorithm in detail using the MNIST [34] dataset for
illustration. The dataset consists of 60k labeled gray scale
images of handwritten digits (compare Fig. 2a). Each image
is represented as a 784 dimensional vector, corresponding to
the gray values of the pixels in the image.

4.1 A-tSNE

A-tSNE improves the BH-SNE algorithm, by using fast
and Approximated KNN computations to build the ap-
proximated high-dimensional joint-probability distribution
PA, instead of the exact distribution P . The cost function
C(PA, QA) is then minimized in order to obtain the ap-
proximated embedding described by QA.

The similarity between points can be computed using
the set of approximated neighbors NA

i , instead of the exact
neighborhood Ni (see Eq. 9). We define the precision of the
KNN algorithm as ρ. ρ describes the average percentage of
points in the approximated neighborhood NA

i that belongs
to the exact neighborhood Ni:

ρ =
N
∑

i=1

ρi
N

ρk =
|NA

k ∩Nk|

|Nk|
, (10)

where | · | indicates the cardinality of the neighborhood.
The cardinality of Nk is indirectly specified by the user

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 5

(a) (b) BH-SNE - Time: 3191.8 s (c) ρ = 0.34 - Time: 30.1 s (d) ρ = 0.23 - Time: 20.4 s (e) ρ = 0.07 - Time: 13.0 s

Fig. 2. Embeddings of the MNIST dataset using different approximation levels. Each point represents an image of a handwritten digit, few
examples are shown in (a). Points are colored according to the classification of the image. It can be seen that a reasonable approximation as in (c)
and (d) produces nearly identical results, compared to the original BH-SNE (b) two orders of magnitude faster. Even very low precision (e) produces
clearly distinguishable clusters, even though the embedding visually differs from (b)-(d). Extensive tests on the quality of the results are provided in
Sec. 4.4.

as explained in Sec. 3.1, as three times the value of the
perplexity parameter µ. ρ is an input parameter that can
be defined by the user. The larger the value of ρ the more
similar will PA be to P and in turn the more similar the
approximated embedding will be to the exact one.

To better understand the effect of the approximated
queries, it is useful to interpret the BH-SNE algorithm as
a force-directed layout algorithm [35], which acts on an
undirected graph created by the KNN relationships. A data
point xi is repelled by all other data-points but to a subset
of the data-points given by its neighborhood relationships,
where attraction forces are created by a set of springs which
connect xi with all the points in Ni.

When specifying a lower precision ρ, resulting in a
coarser approximation, some springs that connect points,
which are close in the high-dimensional space will be miss-
ing and instead distant points will be connected. This will
result in a false repulsion between the points missing a
connecting spring. Using PA reduces the quality of the
embedding but improves its computation time by several
orders of magnitude. However, reasonable results can be
achieved even with low precision, because each data point
is usually connected to a large number of springs and, there-
fore, the overall structure can be preserved. This observation
holds for local as well as global structures. Intuitively, even
if two points are no longer connected, they might share a
common neighbor, which indirectly connects both.

Fig. 2 shows the embeddings generated using differ-
ent precision values ρ for the computation of the high-
dimension similarities. We use the whole MNIST dataset as
the input and we color each data-point accordingly to the
digit it represents for validation purposes. Fig. 2b shows
the embedding generated with the exact neighborhood,
whereas Fig. 2c shows the embedding generated with a
precision of ρ = 0.34. It can be seen that similar structures
are preserved using approximated neighborhoods. Fig. 2e
shows the embedding generated with ρ = 0.07. Even
though the embedding visually differs from the exact em-
bedding, depicted in Fig. 2b, the overall clustering of the
data is preserved rather well, whilst the time needed for the
computation of the similarities is greatly reduced. Where the
original algorithm needs 3191 seconds for the initialization
using a precision of ρ = 0.34 we can achieve a speedup of

two orders of magnitude, resulting in a computation time
of 30 seconds. By using a precision of ρ = 0.07, it is further
reduced to 13 seconds.

4.2 Approximated KNN

We achieve different levels of precision by means of differ-
ent parameterizations of an approximated KNN algorithm
called Forest of Randomized Kd-Trees. In this section, we de-
scribe this technique and how its parameters can be mapped
to the precision ρ.

When the dimensionality of the data is high, there are
no exact KNN algorithms performing better than linear
search [36]. Therefore, the development of approximated
KNN algorithms is needed to deal with high-dimensional
spaces. A survey on existing algorithms, including an exten-
sive set of experiments, can be found in the work of Muja et
al. [37]. In this work, we use a space partitioning technique
called Forest of Randomized KD-Trees [38] to compute the
approximated neighborhoods. This technique has proven
to be fast and effective in querying of high-dimensional
spaces [36]. A KD-Tree [22] is a binary tree used to partition
a k-dimensional space. Each node in the tree is a k − 1
dimensional hyper-plane, orthogonal to one of the initial
k-dimensions, that splits the space into two half spaces. The
recursive splitting creates a hierarchical partition of the k-
dimensional space.

In a Forest of Randomized KD-Trees, a number T of KD-
Trees are generated. The splitting hyper-planes are selected
by splitting along a randomly selected dimension among the
V dimensions characterized by the highest variance. A KNN
search is computed on all T KD-Trees, while a maximum
number of leaves L are visited. A priority-queue, ordered
by increasing distances to the closest splitting hyper-plane,
is used to decide which nodes must be visited first across the
forest. The process is stopped when the necessary number
of leaves have been evaluated. The parameterization of the
Forest of Randomized KD-Trees can overburden the typical
end user. To hide this complexity, we integrate the work
by Muja et al. [36] and expose only the single precision
parameter ρ to the user. The parameters (T ,V,L) used for
the creation and querying of the Forest of Randomized KD-
Trees are then generated automatically, as described by Muja
et al. [36].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 6

4.3 Steerability

A-tSNE is computationally steerable [21], in the sense that
the user can define the level of approximation to specific,
interesting areas. In this section, we present the changes we
made to the BH-SNE algorithm to allow for the refining of
the approximation.

The refinement that we propose is done by computing
the exact neighborhood for one point at a time. This process
leads to a mix of exact and approximated neighborhoods.
For each updated neighborhood, a Gaussian distribution Pi

is computed and the sparse joint-probability distribution
PA must be updated accordingly. This update, however,
is not straightforward. First, the symmetrization of PA in
Eq. 2 requires to combine Gaussian distributions enforced
by different data-points and, second, the sparse nature of
the distribution PA renders fast updates challenging.

We solve these issues by observing that a direct com-
putation of PA can be avoided and the distribution can
be indirectly obtained using the Gaussian distributions en-
forced by the K-Nearest Neighbors. Eq. 2 can be split into
two components which correspond only to the Gaussian
distributions Pi and Pj :

pij =
pj|i
2N

+
pi|j
2N

. (11)

Using this formulation, we only need to store one Gaussian
distribution per point. Therefore, points can be handled in-
dividually without any performance loss. This allows us to
execute the refinement of the high-dimensional similarities
in parallel to the gradient descent, and serves as the base
for the manipulation of the high-dimensional data. Further-
more, we are not constrained to updating the neighborhood
of a data-point just once. The analyst can request different
levels of approximation for a given area before starting the
computation of the exact high-dimensional similarities. For
each data-point we store ρi as the requested precision for
the neighborhood Ni.

A change in a neighborhood, however, yields a change
in the cost function C , see Eq. 1, which we are minimizing.
To avoid the risk of getting stuck in a local minimum during
the gradient descent, we introduce an optimization strategy
called Selective Exaggeration with Exponential Decay.

Our strategy is inspired by the optimization strategy
called Early Exaggeration presented by van der Maaten et
al. [4]. The idea of Early Exaggeration is that, by exaggerating
the attractive forces, see Eq. 7, by a factor τ during the first
Iτ iterations of the gradient descent, local minima can be
avoided. Using the Selective Exaggeration with Exponential
Decay, we apply an exaggeration τ to the attractive forces
acting on a data-point xi when it is refined. The exagger-
ation is then smoothly removed on a per-point basis using
an exponential decay of the exaggeration factor. This can
be interpreted as a localized reinitialization of the gradient
descent triggered by user interaction with the embedding.

4.4 Performance and Accuracy Benchmarking

In this section, we present a detailed performance analysis
of A-tSNE compared to BH-SNE using several standard
benchmark datsets. All performance measurements were
obtained using a DELL Precision T3600 workstation with

a 6-core Intel Xeon E5 1650 CPU @ 3.2GHz, 32GB RAM and
a NVIDIA GTX 680. We apply the same preprocessing steps
as presented by van der Maaten [5], without applying a pre-
liminary dimensionality-reduction by means of a Principal
Component Analysis. We use the MNIST dataset [34] (60k
data-points, 784 dimensions), the NORB dataset [39] (24300
data-points, 9216 dimensions), the CIFAR-10 dataset [40]
(50k points, 1024 dimensions) and the TIMIT dataset [41]
(1M data-points, 39 dimensions). Throughout the experi-
ments we used a parameter setup similar to the one used
to benchmark the BH-SNE [5] and a fixed perplexity value
of µ = 30. First, we evaluate the performance of A-tSNE
in relation to the parameters (T ,V,L) used in the Forest of
Randomized KD-Trees, as described in Section 4.2, using three
different configurations: T = 4 L = 1024, T = 2 L = 512
and T = 1 L = 1. For all configurations we set V to 5 as
suggested by Muja et al. [36].

The left chart in Fig. 3 shows the comparison of compu-
tation times (in logarithmic scale) of the high-dimensional
similarities on the MNIST dataset obtained by our technique
and by the BH-SNE algorithm. The right chart in Fig. 3
depicts the precision ρ of the neighborhoods. The precision
is given by Eq. 10 and it is computed using the exact
and the approximated neighborhoods. Generally, our ap-
proach generates a good embedding very efficiently for any
given dataset we tested. Fig. 2(b-e) show the embeddings
generated using the described parameter settings for the
MNIST dataset after 1000 iterations. It can be seen that we
achieve visually comparable results more than two orders of
magnitude faster compared to the BH-SNE implementation.

Fig. 3 shows how the precision decreases when increas-
ing the data size for a fixed parameter setting. The number
of leaves (corresponding to data points) to visit, included in
the parameter setting, is fixed independently of the data
size. When the data size increases the same number of
leaves, corresponding to a smaller fraction of the overall
data, is visited, causing the lower precision. In general,
we can see that with a small reduction in precision, the
computation time can be greatly reduced.

Finally, we analyze the error introduced by the approx-
imation of the similarities in the high-dimensional space
using the NORB, MNIST and TIMIT datasets. For the results
of the CIFAR-10 dataset we refer to the supplemental mate-

0 10 20 30

10
2

10
4

10
6

Data size N in k

T
im

e
in

m
s

Computation Time

0 10 20 30

0.2

0.4

0.6

0.8

1

Data size N in k

ρ

Precision

T = 4 L = 1024 T = 2 L = 512

T = 1 L = 1 BH-SNE

Fig. 3. Computation time for the high-dimensional similarities using
the MNIST dataset, with BH-SNE and A-tSNE with different parameters
(left) and precision with different parameter settings (right).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 7

0 1 000 2 000

1

1.2

1.4

1.6

Iteration

R
at

io

NORB (24k)

0 1 000 2 000

Iteration

MNIST (60k)

0 1 000 2 000

Iteration

TIMIT (1M)

T = 4 L = 1024 T = 2 L = 512

T = 1 L = 1

Fig. 4. Approximated to exact cost ratio on different datasets of
increasing size. When the size of the data increases, the ratio of the
approximated cost divided by the exact cost is reduced given the same
set of parameters.

rial, as they are very similar to the results obtained on the
MNIST dataset. The cost function C(P,Q) is the most direct
indication of the quality of the embedding and we compare
minimizing of the cost function C(P,QA) to C(P,Q). QA is
the joint-probability distribution that describes similarities
in the approximated embedding obtained by the minimiza-
tion of C(PA, QA). Fig. 4 shows the C(P,QA)/C(P,Q)
ratio. Smaller values indicate less error, with a value of
1 meaning that no approximation error is present. The
Early Exaggeration of the attractive forces (see Sec. 4.3) is
responsible for the peak in the ratio that is visible during the
first 250 iterations. By exaggerating the attractive forces the
approximation error is increased. The absolute value of the
cost (not depicted in Fig. 4) decreases with every iteration.

The usage of a Forest of Randomized KD-Trees with
T = 1 L = 1 generates an embedding with a large error.
This configuration is an upper bound of the error and a
lower bound in computation time; by visiting only one leaf
during the traversal of the forest composed by just one
tree, the approximated KNN algorithm becomes a greedy
algorithm. We can also note that with increased data sizes
the approximation error decreases. For the TIMIT dataset
we observe that the approximation errors generated using
T = 2 L = 512 and T = 4 L = 1024, are similar or better,
than the exact one. By increasing the number of points, the
effect of the false repulsive forces (Sec. 4.1) is compensated
by the increasing number of attractive forces among data-
points. The results clearly show that we can rapidly provide
very accurate embeddings allowing immediate interaction,
without misleading the user. With a large number of data
points we effectively generate tSNE embeddings as demon-
strated by the reduced approximation error.

5 INTERACTIVE ANALYSIS SYSTEM

Using A-tSNE, the data analysis is started without waiting
for the exact computation of the similarities in the high-
dimensional space. This operation is the main bottle neck
for interactivity, e.g., when data is modified or tSNE pa-
rameters are changed by the user. However, the embedding
is created based on approximated information. Our system
supports three different strategies for the refinement of the
approximation, leading to the generation of different and
more precise, embeddings.

To steer the refinement, the user must be aware of the er-
ror in the embedding. Therefore, we present a visualization
that shows the level of approximation.

We also take advantage of the steerability of A-tSNE
(Sec. 4.3) to allow for direct manipulation of the high-
dimensional data, for example, by adding and removing
data-points or by changing the dimensions used to represent
the data. Finally, we implemented these techniques in a
coordinated multiple-views framework that allows for the
direct inspection of the data in the embedding.

5.1 User Steerable Refinement

The refinement process used to steer the computation of an
A-tSNE embedding works on a per-point basis, see Sec. 4.3.
A naive strategy to refine the embedding, is to progressively
update the neighborhoods of all the points in X , while the
gradient descent optimization is computed. However, when
computational resources are scarce, it makes sense to steer
the refinement process to increase precision ρ in areas of
the embedding that the analyst finds interesting, e.g., based
on initial visual clusters appearing in the embedding. We
propose three different strategies that are used to select the
data points to be refined: user selection, breadth-first search
and density-based refinement. These strategies are presented
in the following sections.

5.1.1 User Selection

The user selects a subset of points for immediate refinement,
by brushing in the embedding. This strategy is less effective
when just a few points are selected for refinement, as
the forces exerted on its neighbors are still approximated,
which can lead to an unfaithful description of the high-
dimensional data.

5.1.2 Breadth-First Search

If only a few points are selected for refinement, we extend
the process to include their neighborhoods. We use a
breadth-first visit on the graph created by the KNN relation-
ships to extend the refinement. When a point is refined, its
neighbors are queued for refinement. We also implemented
this strategy using a priority queue, where, e.g., points can
be prioritized by their euclidean distance to already refined
points. This allows better control on the expansion of the
refined area at the cost of slower computations introduced
by the priority queue.

5.1.3 Density-Based Refinement

When the user is more interested in gaining a global
overview of the exact embedding, a density-based refine-
ment strategy is used instead of a local refinement. This
strategy is based on the observation that points in the less
dense areas of the high-dimensional space, are responsible
for the creation of the global relationship in a tSNE embed-
ding [4]. The data-points are refined with an order given
by the density in the high-dimensional space, where low-
density points are refined first. An indication of this density
is the variance σi of the Gaussian distribution, as explained
in Sec. 3. This strategy works within a user-defined selection
or on the whole dataset.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 8

(a) (b) (c) (d)

Fig. 5. A-tSNE embedding of the MNIST dataset. (a) uses a point-based visualization with an alpha value of 0.25, the points colored in orange
correspond to the digit ’2’. (b,c) uses the real-time density-based visualization as described in Sec. 5.2.1. By changing the bandwidth of the
kernel density esitmation, clusters at different scales are visible. (d) shows the outliers in the data-points representing the digit ’2’ by means of a
combination of the density-based and the point-based visualization. All figures show the average image of the selected clusters.

5.2 Visualization and Interaction

The visualization of the tSNE embedding provides an
overview on the high-dimensional data and should be com-
bined with the ability to inspect the data on demand. In
our system, the user selects data points by brushing in a
point- or density-based representation of the embedding,
the overview. We provide specific visualizations of the high-
dimensional space using linked views, adaptive to the data
at hand. Additionally, we use a magic lens or a full-view
overlay to indicate the approximation level. A detailed de-
scription of such solutions is given in the following sections.

5.2.1 Density-Based Visualization

The visualization of the embedding, using simple points,
is affected by visual clutter when the number of points
increases. Density-based [42] visualizations are commonly
used to show a tSNE embedding [5], [6], [7], [9] because
of their ability to visualize features at different scales. We
apply real-time kernel density estimation (KDE) [30] for the
creation of an interactive density-based visualization of the
embedding. We use changes in the color hue to visualize
selections, for example to highlight data points that are
selected to be analyzed in other views of the coordinated
multiple-view framework. The KDE is computed by assign-
ing a value for each pixel p using the kernel density estimator
f(p, h) as follows:

f(p, h) =
1

N

N
∑

i=1

G(||p− yi||, h). (12)

G(d, h) is a zero mean Gaussian distribution with stan-
dard deviation h, which can be interactively chosen by the
user in order to reveal clusters at different scales. Addition-
ally, we introduce a transfer function, mapping f(p, h) to a
color, in order to highlight user-defined selections. Areas
with a large percentage of selected points are visualized
with a different transfer function, and selection outliers
are shown as points. To achieve this goal, we introduce a
new kernel density estimator s(p, h), which illustrates the
density of the user selection in a pixel p. Given a set of
selected data-points S we use:

s(p, h) =
1

f(p, h)

1

|S|

∑

yi∈S

G(||p− yi||, h) (13)

If s(p, h) is higher than a threshold Sthresh, a trans-
fer function based on a different hue and with a higher
luminance is used. We found empirically that a value
Sthresh = 0.5 performs satisfactorily without compromising
the quality of the visualization. We also use a point-based vi-
sualization of isolated selected data-points and, unselected
data-points in selected regions. Finally, the user can adjust
the opacity of the points and the density-based visualization
to the needs of the analysis.

An example of different visualizations of the embedding
is presented in Fig. 5, using the MNIST dataset. The analyst
can change the bandwidth h, the transfer function, and the
opacity interactively in order to show clusters at different
scales and outliers in the selection. Fig. 5b shows the selec-
tion of a high-level cluster. If a different bandwith is chosen,
as in Fig. 5c, clusters at a different level appear. Finally, if
the labels are used to make a selection in the embedding, as
in Fig. 5d, it is possible to see the distribution of the outliers
in the density-based visualization.

5.2.2 Visualization of the Approximation

The complexity of high-dimensional structures, also known
as intrinsic dimensionality, usually does not allow for an exact
representation of the data in 2D. For this reason, it is of
crucial importance to integrate the visualization of the em-
bedding with tools that allow to assess its quality. Such an
assessment is challenging and several interactive techniques
have been developed in recent years [43]. In this work, we
are not concerned with the quality of the embedding itself,
but rather with the level of approximation introduced by A-
tSNE. This information is provided to the user to focus the
attention on specific areas of the embedding for a quality
analysis, performed with a separate tool.

We enhance our density-based visualization to show the
precision ρi. Note that ρi is different for every data-point
and changes during the refinement process, as described
in Sec. 4.3. For each pixel p we assign a value given by
the function a(p, h) that represents the approximation value
given the bandwidth h:

a(p, h) =
1

f(p, h)

1
∑N

i=1 ρi

N
∑

i=1

ρiG(||p− yi||, h)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 9

(a) Magic Lens (b) Full View Mode

Fig. 6. Visualization of the approximation in the embedding by means
of a magic lens (a) and the full view mode (b).

a(p, h) is the precision ρi weighted kernel-density di-
vided by the kernel-density estimator f(p, h). The value
a(p, h) is between zero and one and is used directly for
encoding the approximation in the visualization.

The value of the function a(p, h) is visualized in two
different ways. First, we introduce a Magic Lens [44] that
shows the approximation with a minimal conceal of the
data. We use a circular lens that can be overlayed on the
density-based visualization and a(p, h) is used to define the
transparency α of every pixel in the lens. To better highlight
the refined areas, we use α = 1 − a(p, h)k, where k is a
user selected parameter, to compute α. We provide a default
value of k = 2.

Fig. 6a shows the lens over a cluster that is already
refined and, therefore, is visible through the lens. The green
tone indicates the area where similarities are still approx-
imated. Contours in approximated areas are preserved to
indicate the structure of the embedding. We color the areas
without points in green to put more emphasis on refined
areas. In addition to the Magic Lens, we provide the pos-
sibility to map approximation to the complete view. This
view is especially useful when one of the global refinement
strategies is selected as it shows an overview on the re-
finement process. However it also diminishes the ability to
distinguish high-density areas.

Fig. 6b shows the approximation in the embedding using
this approach. It is possible to see that two clusters are
already refined, relying on exact neighborhood relation-
ships. The user selected a Breadth-first search refinement
strategy, therefore, the refinement is spreading through the
embedding, leading to some areas in the top-right corner
having the original color. However the perception of clusters
is reduced by removing the color information inside the
contours.

5.3 Data Manipulation

In Sec. 4.3, we show that we are able to update high-
dimensional similarities between data-points during the
gradient-descent minimization. In this section, we take ad-
vantage of this possibility, introducing different operations
that are used to manipulate the original data-points in their
high-dimensional feature space. The embedding does not
need to be recomputed but evolves dynamically as the data

changes. At the center of an interactive exploration of data is
the ability to add or remove data on demand, use different
representations of the same dataset or adapt to any changes
in the data [19]. For example, the addition and the removal
of data points are two fundamental operations that enable
us to monitor a high-dimensional stream in real-time.

5.3.1 Inserting Points

For a point xa, which we want to add to the embedding,
its neighborhood Na needs to be computed. We compute
the neighborhood with the approximated KNN algorithm,
as described in Sec 4.2. Finally, we check whether xa belongs
to the KNN of each point in X . We define dMax

i as the
maximum distance between a point xi and the points in
its neighborhood Ni. The update of the neighborhoods is
written as follows:

∀xi ∈ X if ||xa − xi|| < dMax
i

then xa ∈ Ni and xj 6∈ Ni : ||xi − xj || = dMax
i

(14)

We cache dMax
i , leading to a complexity for this update

of O(N). A priority queue is used to efficiently update dMax
i

after the insertion of xa in a given neighborhood Ni. It is
important to observe that the insertion of xa in Ni will
not reduce the estimated precision ρi. The initial position
in the embedding ya is given by the average position of its
neighbors Na weighted by their similarity pj|i : xj ∈ Ni.
The new point xa is then added in the Forest of Randomized
KD-Trees. This operation is performed in O(log(N)) .

5.3.2 Deleting Points

Removing a point xr ∈ X is performed by deleting xr

from the KNN of every point xi ∈ X . This operation
has a computational complexity of O(N). By removing
xr from a neighborhood Ni we reduce the number of xi

neighbors to K − 1 and a new neighbor must be found
to maintain the precision level. However, the new point in
the neighborhood is the most dissimilar of the points in
Ni thus its attractive force is rather small and we propose
to ignore the contribution of the missing point, decreasing
the estimated precision ρi by 1/K . To avoid degeneracies,
when the size of the neighborhood Ni goes below a given
threshold, e.g., K/2, the neighborhood is updated using
approximated computations. The Forest of Randomized KD-
Trees is updated in O(log(N)).

5.3.3 Data Modification

The insertion and deletion of data points enables a new
way of analyzing data changes, for example, changes in
time. New data points are added to the embedding when
ready and old ones are removed in real-time. However, data
that are already present in the embedding can change over
time and must be updated accordingly. We handle changes
in the value of a single high-dimensional data-point by a
combination of removal and addition operations. A different
modification of the data is performed not by changing the
values of single data points, but by changing the dimensions
of the data itself. Examples of this operation are the addition
or the removal of dimensions to inspect the influence of a
given dimension in the generation of visual clusters. With

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 10

such a modification, all the data points in X change their
position in the high-dimensional space. Therefore, all the
neighborhoods must be reconsidered and it is more con-
venient to compute a new approximated joint-probability
distribution PA. When the distribution PA is changed, the
function that is to be minimized by the gradient descent
also change, see Eq. 1. To avoid local minima, we apply the
Selective Exaggeration with Exponential Decay, see Sec. 4.3, to
all the data points. After such an operation, the user expects
to see major changes in the embedding, where the extent of
such modifications gives information about the differences
of the new representation to the old one.

5.4 Visual Analysis Tool

We implemented A-tSNE as a module in an integrated,
interactive, multi-view system for the analysis of high-
dimensional data. Fig. 7 shows a screenshot of the system
and its different views. The interface is divided into two
main areas. At the top, three different views are used to
show the intermediate embeddings (7a), the data (7b) and
the state of refinement processes (7c), respectively. Controls
are at the bottom of the interface: (7d) for the generation of
intermediate embeddings, (7e) visualization of the embed-
ding, (7f) data manipulation and (7g) refinement.

The data subject to the analysis are visualized in the
Data View (7b). Selections in the embeddings are reflected in
the Data View with strategies that depend on the data type.
We implemented multiple widgets that are used to support
the analysis process of different data types. These widgets
include a heatmap view, a 3D volume view (7b bottom)
and an image view (7b top row). If necessary multiple and
different views are combined for the analysis.

The Refinement-Status View (7c) is used to give an
overview of the progress of the refinements started by the
user. The user can steer the evolution of the embedding
by refining areas with strategies as described in Sec. 5.1.
A refinement process is identified by the snapshot of the
embedding when the user started the refinement, a user-
defined description, and a progress bar that shows the
percentage of the refined data-points over the selected ones.

5.5 Implementation

We implemented the system using a combination of C++
and Qt, as well as OpenGL with custom shaders in GLSL
for the visualization of the embedding. Where possible,
we used parallel computations with OpenMP. The approx-
imated neighborhoods are computed using the FLANN li-
brary [36], which implements KNN algorithms. The density-
based visualization is computed on the GPU using OpenGL
and GLSL shaders. A precomputed floating-point texture is
generated using a Gaussian kernel. A geometry shader is
used to generate a quad for each point that is colored using
the precomputed texture, the KDE is obtained by drawing
into a Frame Buffer Object using an additive blending [30].

6 CASE STUDY I: EXPLORATORY ANALYSIS OF

GENE EXPRESSION IN THE MOUSE BRAIN

In this section, we demonstrate the advantages of using A-
tSNE in our visual analysis tool for the visual analysis of

Fig. 7. Screenshot of our integrated system using multiple linked
views for interaction. The system comprises an embedding viewer (a),
a data viewer (b) and a refinement viewer (c). Controls on the gradient
descent (d), the density-based visualization (e), the data-manipulation
(f) and the refinements (g) are at the bottom of the interface.

high-dimensional data. To this extent, we present a case
study, based on the work by Mahfouz et al. [8], who use
tSNE to explore the Allen Mouse Brain dataset [45]. The
dataset is composed by 61164 voxels obtained by slicing the
mouse brain in 68 slices. Each voxel is a 4345-dimensional
vector, containing the genetic expression at the correspond-
ing spatial position. tSNE is computed using the voxels
as data-points and the expression of the genes as high-
dimensional space. Mahfouz et al. discuss the hypothe-
sis that genetic information can be used to differentiate
anatomical structures in the brain. Some regions in the brain,
e.g. the Cerebellum, are known to have a highly different
genetic footprint compared to the rest of the brain. They
demonstrate that tSNE is effective in separating different
anatomical structures, e.g. white and grey matter, only based
on the genetic footprint.

Fig. 8 depicts the typical analytic workflow using our
visual analysis tool. The first goal during the analysis is to
validate the input data. The acquisition process may not be
perfect, data can be incomplete or noisy, therefore, it must
be re-acquired or preprocessed before interesting results can
be generated. Driven by the need to validate the data as
soon as possible, the user selects a reasonably low value
for the desired precision, e.g. ρ = 0.2, that will be used to
estimate the parameters of the KNN algorithm. With such
a parameterization, A-tSNE computes the high-dimensional
similarities in ≈ 51 seconds while 3 hours and 50 minutes
are required by BH-SNE.

The user then analyzes the intermediate embeddings,
produced by A-tSNE, in order to validate the input data.
After ≈ 170 seconds several clusters become visible in the
embedding as depicted in Fig. 8a. The clusters are stable
for several iterations indicating that they are not an artifact
of the minimization process. The user can validate this by
selecting the clusters in the embedding and can inspect them
in more detail, for example, by highlighting their spatial
positions in the feature view, see Fig 8a. Points or clusters are
selected by brushing in the embedding. During a brushing
operation the generation of intermediate embeddings is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 11

Fig. 8. Analysis of the gene expression in the mouse brain using A-tSNE. The first embedding (a) is generated in ≈ 51 seconds while 3 hours
and 50 minutes are required by BH-SNE. The analyst inspects a cluster and finds that it corresponds to a slice in the data. The cluster does not
disappear after the neighborhoods are refined, as shown by the lens in (b). A change in the high-dimensional data reveals that genetic information
can be used to differentiate anatomical regions. (c) shows the final embedding based on a small number of Principal Components where three
clusters are highlighted and (d) shows the corresponding regions in the brain.

stopped to make sure the user does not accidentally brush
areas as they change. Selected points are then highlighted
by a change of hue, in this case from blue to orange. Further
inspection using the Data View in our interactive system,
shows that each cluster corresponds to a slice in the dataset.
Fig. 8a shows a cluster, highlighted in orange, and the
corresponding slice in the volume.

To make sure the clusters are not an artifact introduced
by the approximated similarities, the user refines the se-
lected data-points while the embedding evolves. Fig. 8b
shows the embedding after the refinement is complete. Note
that the global structure of the embedding does not change
during the refinement. Changes are constrained to the se-
lected cluster, giving to the user a sense of stability in the
information provided as requested by the Progressive Visual
Analytics paradigm. The user can inspect the degree of
approximation in the embedding using the interactive lens.
The lens is less transparent over approximated areas of the
embedding and transparent on the areas that contain no ap-
proximation. After the refinement of the high-dimensional
similarities of the selected data points, the clusters do not
disappear, which indicates that clustering is indeed driven
by the data, rather than by the approximation.

Therefore, the user stops the computation of the fully
refined embedding. Further analysis performed by domain
experts on the raw data reveals that missing values in the
input data cause the formation of small clusters in the
embedding. Mahfouz et al. removed this effect by using
the first 10 components, extracted by a Principal Compo-
nent Analysis of the raw data, as the high-dimensional
space. In the traditional analytical workflow, after the
high-dimensional data are changed, a new tSNE embed-
ding is computed from scratch. However, in our system
the user directly changes the high-dimensional space and
the current embedding evolves accordingly. Given that the
gradient descent is minimizing a different function, the
user expects structural changes that can be considerably
large, see Sec. 5.3.3. The extent of these changes provides
information about the modification in the high-dimensional
space. If the embedding is stable, the new high-dimensional
representation preserves relationships between data points,
while an abrupt change means that new relationships are
encoded in the data. In the traditional workflow without A-

tSNE, any continuity and the encoded information are lost.
Approximately 200 seconds after the change in the high-
dimensional data, a stable embedding is obtained. Fig. 8c
shows the final embedding, where three different clusters
are highlighted. Fig. 8d depicts the selected voxels in the
brain, note how the anatomical structures are now revealed.
It is possible to see how the clusters that were present in the
first intermediate results disappear, showing that the cluster
fragmentation is removed.

Voxels that belong to the same anatomical structure are
close together in the embedding. A-tSNE is able to separate
anatomical structures based on the gene expression of the
4345 genes. In their work, Mahfouz et al. [8] present embed-
dings created using 2, 3, 5, 10, and 20 principal components
as the high-dimensional space. Identifying the right number
of components is a time consuming task and the adoption of
our analytic workflow helps the user in finding a good com-
promise by interactively analyzing the resulting embedding
generated changing the number of components.

7 CASE STUDY II: REAL-TIME MONITORING OF

HIGH-DIMENSIONAL STREAMS

Improved computation time and the ability to modify data
are the key for applying tSNE in new application scenarios,
such as the real-time monitoring of high-dimensional data
streams. The original tSNE algorithm fails in providing a
solution for such applications. The computation of a tSNE
map imposes a time constraint that cannot be ignored, when
the rate in which new data is generated is higher than the
time required for the computation of a tSNE map.

As proof of concept, we selected a dataset for physical
activity monitoring [46] that comprises readings of three
Inertial Measurement Units (IMU) and a heart rate monitor
applied to 9 different subjects. Every IMU generates 17
readings every 10 ms, while the heart rate monitor generates
one reading every 100 ms. Taking all sensors into account,
we have a stream of data consisting of 52 readings, where a
new data point is generated every 100 ms for each subject.
Every subject also has a device to label the physical activity.
We use the labeling of every reading to validate the insights
obtained by the analysis of the embeddings.

We analyze the stream of a subject by keeping the
readings of the previous M minutes in the embedding

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 12

Fig. 9. A-tSNE used for the real-time analysis of high-dimensional streams. The embeddings are generated using the readings of the last 10
minutes. As new readings arrive they are inserted in the embedding and they are highlighted using a point-based visualization. (a) shows the initial
embedding, the color of the data-points indicates that the subject is lying down. The embedding evolves as in (b), a new cluster indicates readings
of a different activity. This insight is confirmed by a change in the color of the data-points that indicates a new type of label activity. (c) shows an
evolution of the embedding presented in (a) where new readings are generated from a miscalibrated sensor and, therefore, are clustered together.
By removing the features corresponding to the miscalibrated sensor the embedding evolves as in (d). The cluster that identifies miscalibrated
readings is removed.

with a fixed approximation level. When a new reading is
generated, we add it to the embedding using the technique
described in Sec. 5.3. Similarly, when a reading is older
then M minutes, we remove it from the embedding. In
the test presented in this section, M = 10 is set leading
to an embedding composed, in average, by 6000 data-points
that is updated every 100 ms. We add a point-based visu-
alization to our density-based visualization, which shows
the last points inserted in the embedding. The new points
are colored according to the classification of the activity
made by the subject and they will fade out in F seconds.
By showing the new data-points the analyst can identify
where new points are added, providing at the same time an
overview of the embedding in the last M minutes and the
trend of the last F seconds.

Fig. 9a shows an embedding obtained from subject 105,
where the color of the data-points, green in this specific case,
indicates that the subject is lying down. The embedding is
composed of a single big cluster that represent the lying
down activity. The cluster is divided in four different sub-
clusters that identify different readings of the sensors. The
readings of the last 30 seconds belong to a single sub-
cluster and can be seen as points on the right side of the
embedding. The embedding evolves based on new readings
from the sensors, after few seconds the new data-points start
to be placed further away from the original cluster, leading
to the creation of a new cluster, as depicted in Fig. 9b.
After a few seconds the subject changes the classification
of his activity from lying down to an unclassified activity,
whose corresponding data-points are colored in purple. It is
interesting to note that, simply by looking at the embedding,
it is possible to predict a change in the labeled activity
before the subject is able to record the change on his labeling
device. It can be seen by the fact that few data-points labeled
as a lying down activity, hence colored in green, are in the
same cluster as the ones identified as unclassified activity. In
this particular case, we can guess that the subject sat up
before changing the labeled activity.

Finally, we simulated a miscalibration in an inertial
measurement unit. Differently from a faulty sensor (not
generating any readings), a miscalibrated one generates
readings affected by a constant offset that is different for
every dimension. We simulate the miscalibration by enforc-
ing a random offset to the readings generated by one of the
IMUs. A miscalibrated sensor generates readings that are
different from the normal one and, therefore, they should

be clustered together as faulty readings. Fig. 9c shows the
evolution of the embedding presented in Fig. 9a where the
miscalibrated readings are grouped by A-tSNE. After the
inspection of the readings generated from the IMUs, the
analyst can identify that something is wrong with one of
the sensors. At this point the sensor may be replaced or, in
case this is not possible, the readings from the miscalibrated
sensor can be excluded by removing the corresponding
dimensions from the high-dimensional space, as presented
in Sec. 5.3.3. Such an update requires a few seconds in
which the embedding is updated in order to encode the new
relationship in the high-dimensional space. Fig. 9d shows
how the previous embedding evolves when the readings
generated by the miscalibrated sensor are removed from
the high-dimensional space. It is possible to see that the
readings affected by the miscalibration are now close to
the cluster that represents the lying down activity. However,
differently from the test case presented in Sec. 6, the global
structure of the embedding is preserved, still showing four
different clusters. Liu et al. [47] demonstrate that, when
dealing with real-time data, the response time of the algo-
rithm is of great importance to the user. In the presented case
study, we reach real-time performance for a limited data size
for the sliding window of 6000 points. However, it should
be noted that when the sampling rate or the window size of
the stream is much larger, A-tSNE also will not be able to
handle the data in real-time in all cases.

8 DISCUSSION AND CONCLUSIONS

Motivated by the need of interactivity in Visual Analytics,
we present Approximated-tSNE. A-tSNE enables the rapid
generation of approximate tSNE embeddings. We use fast
approximated KNN queries for the computation of the
high-dimensional similarities. Our algorithm is designed to
be used within the Progressive Visual Analytics context,
allowing the user to have a quick preview of the data.
Insight obtained using approximated embeddings can be
validated by refining the approximation in interesting areas
with different strategies. Therefore, we present different vi-
sualization techniques for the level of approximation, which
are used to guide the user during the refinement process in
Sec. 4.3. It should be noted, that the level of approximation is
only an indicator for how well the approximated embedding
represents the exact embedding. It cannot, however, be used
to judge the quality of the embedding itself, as even an exact

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 13

embedding might not represent the original data perfectly.
The quality of the embedding itself can be analyzed, e.g. by
inspecting the preservation of k-nearest-neighborhoods [43].
The full precision of BH-SNE can always be reached by
setting the precision parameter accordingly, or refining the
data. Therefore, A-tSNE can effectively replace BH-SNE for
the analysis of dense high-dimensional data. However, A-
tSNE cannot outperform algorithms such as Q-SNE in the
analysis of sparse high-dimensional data.

The refinement of the approximation itself is a stable
process. As demonstrated in Sec. 4.4 and Fig. 2, PA is
close to P if a reasonable parameterization is chosen. As
a result gradually refining PA will lead to small changes
in the embedding, only. In addition, we present three dif-
ferent operations for the direct manipulation of the high-
dimensional data. Addition and removal of data-points are
mainly aimed at the inspection of high-dimensional streams.
Data modification is used to visualize different models of the
same data. Different from the refinement process, changing
the model might lead to drastic changes in PA (as it would
in P) and as such might also create a very different embed-
ding. We chose to start the optimization with the embedding
created before changing the model. As a result points in the
embedding might move drastically during the optimization
process. While this might be confusing and less adequate
for Progressive Visual Analytics, the amount of movement
is related directly to the strength of the changes and as such
is a very good indicator of the influence of the parts of the
data that were modified on the whole embedding.

We presented two case studies to show the effective-
ness of A-tSNE. Case Study I shows a typical analysis of
a static dataset. In such a setting it is crucial to allow an
interactive feedback loop, between modeling the data (i.e.,
finding the right number of dimensions for the PCA before
embedding) and visualizing the data. Even though, we do
not achieve real-time performance, we are able to drastically
cut computation times, i.e., from four hours to less than a
minute, allowing such interactive exploration of the data.
Case Study II shows an example for the monitoring and
analysis of streaming data. Here it is crucial to achieve real-
time performance. We use efficient addition and removal
of data points (see Sec. 5.3) to visualize a temporal sliding
window of the data. As discussed in Sec. 7 even the large
increase in performance provided by A-tSNE does not allow
real-time analysis of large data. This work has inspired
our contribution on the hierarchical exploration of large
high-dimensional data [48]. We believe that this example
illustrates as well, that real-time feedback can be important
for data analysis. In the future we want to explore the appli-
cation of A-tSNE in other research scenarios. In particular,
we are interested in investigating the application of A-tSNE
in the analysis of heterogeneous data and different high-
dimensional streams, such as climate readings.

REFERENCES

[1] A. Inselberg and B. Dimsdale, “Parallel coordinates,” in Human-
Machine Interactive Systems. Springer, 1991, pp. 199–233.

[2] J. A. Hartigan, “Printer graphics for clustering.” in Journal of
Statistical Computing and Simulation, 1975, pp. 187–213.

[3] L. van der Maaten, E. O. Postma, and H. J. van den Herik,
“Dimensionality reduction: A comparative review,” pp. 66–71,
2008.

[4] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[5] L. van der Maaten, “Accelerating t-sne using tree-based algo-
rithms,” Journal of Machine Learning Research, vol. 15, pp. 3221–
3245, 2014.

[6] E.-a. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H.
Levine, S. C. Bendall, D. K. Shenfeld, S. Krishnaswamy, G. P.
Nolan, and D. Pe’er, “viSNE enables visualization of high di-
mensional single-cell data and reveals phenotypic heterogeneity
of leukemia,” Nature biotechnology, vol. 31, no. 6, pp. 545–552, 2013.

[7] B. Becher, A. Schlitzer, J. Chen, F. Mair, H. R. Sumatoh, K. W. W.
Teng, D. Low, C. Ruedl, P. Riccardi-Castagnoli, and M. Poidinger,
“High-dimensional analysis of the murine myeloid cell system,”
Nature immunology, vol. 15, no. 12, pp. 1181–1189, 2014.

[8] A. Mahfouz, M. van de Giessen, L. van der Maaten, S. Huisman,
M. Reinders, M. J. Hawrylycz, and B. P. Lelieveldt, “Visualizing
the spatial gene expression organization in the brain through non-
linear similarity embeddings,” Methods, vol. 73, pp. 79–89, 2015.

[9] K. Shekhar, P. Brodin, M. M. Davis, and A. K. Chakraborty, “Auto-
matic classification of cellular expression by nonlinear stochastic
embedding (ACCENSE),” Proceedings of the National Academy of
Sciences, vol. 111, no. 1, pp. 202–207, 2014.

[10] C. Stolper, A. Perer, and D. Gotz, “Progressive visual analytics:
User-driven visual exploration of in-progress analytics,” Visualiza-
tion and Computer Graphics, IEEE Transactions on, vol. 20, no. 12, pp.
1653–1662, Dec 2014.

[11] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit,
“Opening the black box: Strategies for increased user involvement
in existing algorithm implementations,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 20, no. 12, pp. 1643–1652, Dec
2014.

[12] J. Choo, H. Kim, C. Lee, and H. Park, “PIVE: A per-iteration visu-
alization environment for supporting real-time interactions with
computational methods,” Visual Analytics Science and Technology
(VAST), 2014 IEEE Symposium on, 2014.

[13] P. Bruneau, P. Pinheiro, B. Broeksema, and B. Otjacques, “Cluster
sculptor, an interactive visual clustering system,” Neurocomputing,
vol. 150, pp. 627–644, 2015.

[14] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov
et al., “DeViSE: A deep visual-semantic embedding model,” in
Advances in Neural Information Processing Systems, 2013, pp. 2121–
2129.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmenta-
tion,” in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on. IEEE, 2014, pp. 580–587.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, Feb. 2015.

[17] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner, “Visual-
izing dimensionally-reduced data: Interviews with analysts and
a characterization of task sequences,” in Proceedings of the Fifth
Workshop on Beyond Time and Errors: Novel Evaluation Methods for
Visualization. ACM, 2014, pp. 1–8.

[18] Z. Yang, J. Peltonen, and S. Kaski, “Scalable optimization of
neighbor embedding for visualization,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), 2013, pp.
127–135.

[19] J.-D. Fekete, “Visual analytics infrastructures: From data manage-
ment to exploration,” Computer, vol. 46, no. 7, pp. 22–29, July 2013.

[20] D. Fisher, I. Popov, S. Drucker, and m. Schraefel, “Trust me, i’m
partially right: Incremental visualization lets analysts explore large
datasets faster,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’12, 2012, pp. 1673–1682.

[21] J. D. Mulder, J. J. van Wijk, and R. van Liere, “A survey of
computational steering environments,” Future generation computer
systems, vol. 15, no. 1, pp. 119–129, 1999.

[22] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm
for finding best matches in logarithmic expected time,” ACM
Transactions on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209–
226, 1977.

[23] P. N. Yianilos, “Data structures and algorithms for nearest neigh-
bor search in general metric spaces,” in Proceedings of the fourth

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, MONTH - 14

annual ACM-SIAM Symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 1993, pp. 311–321.

[24] M. Williams and T. Munzner, “Steerable, progressive multidimen-
sional scaling,” in Information Visualization, 2004. INFOVIS 2004.
IEEE Symposium on. IEEE, 2004, pp. 57–64.

[25] T. Yang, J. Liu, L. McMillan, and W. Wang, “A fast approximation
to multidimensional scaling,” in Proceedings of the ECCV Workshop
on Computation Intensive Methods for Computer Vision (CIMCV),
2006, pp. 354–359.

[26] P. Joia, F. Paulovich, D. Coimbra, J. Cuminato, and L. Nonato, “Lo-
cal affine multidimensional projection,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 17, no. 12, pp. 2563–2571, 2011.

[27] F. V. Paulovich, C. T. Silva, and L. G. Nonato, “Two-phase map-
ping for projecting massive data sets,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 16, no. 6, pp. 1281–1290, 2010.

[28] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz,
“Least square projection: A fast high-precision multidimensional
projection technique and its application to document mapping,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 3, pp. 564–575, 2008.

[29] S. Ingram and T. Munzner, “Dimensionality reduction for docu-
ments with nearest neighbor queries,” Neurocomputing, vol. 150,
pp. 557–569, 2015.

[30] O. Lampe and H. Hauser, “Interactive visualization of streaming
data with kernel density estimation,” in Pacific Visualization Sym-
posium (PacificVis), 2011 IEEE, 2011, pp. 171–178.

[31] J. Choo, H. Lee, J. Kihm, and H. Park, “iVisClassifier: An interac-
tive visual analytics system for classification based on supervised
dimension reduction,” in Visual Analytics Science and Technology
(VAST), 2010 IEEE Symposium on. IEEE, 2010, pp. 27–34.

[32] S. J. Aarseth, Gravitational N-Body Simulations. Cambridge Uni-
versity Press, 2003, cambridge Books Online.

[33] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” Nature, vol. 324, no. 4, pp. 446–449, 1986.

[34] Y. LeCun, C. Cortes, and C. J. Burges. (1999) The
mnist database of handwritten digits. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[35] T. M. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Software: Practice and experience, vol. 21,
no. 11, pp. 1129–1164, 1991.

[36] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in International Confer-
ence on Computer Vision Theory and Application VISSAPP’09), 2009,
pp. 331–340.

[37] M. Muja and D. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 36, no. 11, pp. 2227–2240, Nov 2014.

[38] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, 2008, pp. 1–8.

[39] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for
generic object recognition with invariance to pose and lighting,” in
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, vol. 2. IEEE,
2004, pp. 97–104.

[40] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” Computer Science Department, University of
Toronto, Tech. Rep, 2009.

[41] F. Sha and L. K. Saul, “Large margin gaussian mixture modeling
for phonetic classification and recognition,” in Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, vol. 1. IEEE, 2006, pp. I–I.

[42] B. W. Silverman, Density estimation for statistics and data analysis.
CRC press, 1986, vol. 26.

[43] R. M. Martins, D. B. Coimbra, R. Minghim, and A. Telea, “Visual
analysis of dimensionality reduction quality for parameterized
projections,” Computers & Graphics, vol. 41, pp. 26–42, 2014.

[44] C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann,
“A survey on interactive lenses in visualization,” EuroVis State-of-
the-Art Reports, pp. 43–62, 2014.

[45] E. S. Lein, M. J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger,
A. Bernard, A. F. Boe, M. S. Boguski, K. S. Brockway, E. J. Byrnes
et al., “Genome-wide atlas of gene expression in the adult mouse
brain,” Nature, vol. 445, no. 7124, pp. 168–176, 2007.

[46] A. Reiss and D. Stricker, “Creating and benchmarking a new
dataset for physical activity monitoring,” in Proceedings of the 5th

International Conference on PErvasive Technologies Related to Assistive
Environments. ACM, 2012.

[47] Z. Liu and J. Heer, “The effects of interactive latency on ex-
ploratory visual analysis,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 20, no. 12, pp. 2122–2131, 2014.

[48] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova,
“Hierarchical stochastic neighbor embedding,” Computer Graphics
Forum (Proc. EuroVis), 2016.

Nicola Pezzotti received the Laurea Magistrale
in Ingegneria Informatica (MSc) from the Uni-
versity of Brescia, Italy, in 2011. Previously he
worked as a research fellow at University of
Brescia and as a research and development en-
gineer in Open Technologies Srl. He is a PhD
student at Delft University of Technology in the
Computer Graphics and Visualization group. His
research interests include visualization, visual
analytics and machine learning. He is a member
of IEEE.

Boudewijn Lelieveldt received a PhD in med-
ical image analysis from the Leiden University
in 1999. He is heading the Division of Image
Processing (www.lkeb.nl) at the Leiden Univer-
sity Medical Center, and hold a Medical Delta
professor chair of Biomedical Imaging at Leiden
University and Delft University of Technology.
His research interest includes dimensionality re-
duction methods, with application in complex
biomedical datasets. He is a member of IEEE.

Laurens van der Maaten is an Assistant Pro-
fessor in computer vision and machine learning
at Delft University of Technology, The Nether-
lands. Previously, he worked as a postdoctoral
researcher at University of California, San Diego,
as a PhD student at Tilburg University, and as a
visiting PhD student at the University of Toronto.
His research interests include deep learning, de-
formable template models, dimensionality reduc-
tion, data visualization, classifier regularization,
and tracking.

Thomas Höllt received the Diplom (MSc) from
the University of Koblenz-Landau, Germany, in
2008, and the PhD in computer science from the
King Abdullah University of Science and Tech-
nology, Saudi Arabia, in 2013. He is a Post-
doctoral fellow at Delft University of Technol-
ogy. His research interests include visualization,
computer graphics and GPGPU. He is a member
of IEEE and Eurographics.

Elmar Eisemann is a professor at Delft Uni-
versity of Technology, heading the Computer
Graphics and Visualization group. Before, he
was an associate professor at Telecom Paris-
Tech and senior researcher in the Cluster of Ex-
cellence at MPII/Saarland University. His inter-
ests include real-time and perceptual rendering,
alternative representations, shadow algorithms,
global illumination, and GPU acceleration tech-
niques. In 2011, he was honored with the Euro-
graphics Young Researcher Award.

Anna Vilanova is associate professor at the
Delft University of Technology in the Computer
Graphics and Visualization group. Before, she
was assistant professor at the Eindhoven Uni-
versity of Technology. She is leading a research
group in the subject of multivalued image anal-
ysis and visualization. Her research interests in-
clude visual analytics, medical visualization, vol-
ume visualization, multivalued visualization, and
medical image analysis.

