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Abstract

We present a novel clustering algorithm for polygonal meshes which approximates a Centroidal Voronoi Diagram

construction. The clustering provides an efficient way to construct uniform tessellations, and therefore leads to

uniform coarsening of polygonal meshes, when the output triangulation has many fewer elements than the input

mesh. The mesh topology is also simplified by the clustering algorithm. Based on a mathematical framework, our

algorithm is easy to implement, and has low memory requirements. We demonstrate the efficiency of the proposed

scheme by processing several reference meshes having up to 1 million triangles and very high genus within a few

minutes on a low-end computer.

1. Introduction

3D meshes are used in a vast majority of 3D applications
such as Computer Aided Design, Medical Imaging, Virtual
Reality and Video Games. 3D models are constructed by
designers, or can be generated automatically from real ob-
jects using 3D scanners. Nowadays, the models can have
up to several million or even billion elements (vertices) and
sometimes need a preprocessing step to match a given ap-
plication requirements. The processing step sometimes con-
sists in reducing the complexity of the mesh (in terms of
number of elements, topology or smoothness) to accelerate
rendering or transmission, increasing its elements aspect ra-
tio (for accurate finite elements analysis), or remeshing (to
meet a given connectivity constraint). As a consequence, au-
tomatic or semi-automatic geometry processing becomes in-
creasingly important for interactions between various appli-
cations. We propose in this paper a novel surface mesh coars-
ening algorithm, which resamples the surface to a uniform
mesh with many fewer elements than the original mesh. Our
approach is based on a clustering of the original mesh cells,
mimicking a Centroidal Voronoi Diagram (CVD) construc-
tion, which is theoretically the optimal strategy for resam-
pling [DFG99]. The complexity of our algorithm (in terms
of calculations and memory requirements) is low, allowing
the processing of large meshes, as shown in the results sec-
tion, where processing meshes with up to 1 million triangles
takes only few minutes on a low-end desktop computer.

2. Previous Work

Coarsening a mesh consists in resampling the original sur-
face with a lower number of vertices. The number of existing
approaches for mesh resampling is very high. For simplicity,
we can split the existing approaches in three categories: re-
finement, decimation, or direct approaches, which will be
described more precisely, due to promising recent advances.

Refinement approaches [EDD∗95, DHI92, LSS∗98], ap-
proximate the original surface with a coarse mesh which is
iteratively refined until a given precision is reached.

Decimation approaches, such as [GH97, Hop96, MTT97,
RB93, VP04] also process the mesh iteratively, constructing
several resolution levels. For a given mesh, several resolu-
tion levels are constructed by means of elementary simplifi-
cations (edge collapse or face merge, as an example), until
the approximation error reaches a user-defined maximum. A
survey of coarsening approaches is made in [HG97].

In opposition to the first two categories, direct approaches
(or remeshing approaches) compute a mesh with a given
number of elements or approximation error budget in a sin-
gle resolution way. Some approaches remesh the original
surface in a global parametric space [AMD02, AdVDI03,
ACSD∗03, GGH02] They provide good results, but are
limited in practice by the parametrization step, involving
heavy calculations and numerical instability. To overcome
these problems, some approaches [SAG03,SG03] were pro-
posed, involving local parametrization and optimization of
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the remeshed model. Other works [LRM∗98, Tur92] dis-
tribute new vertices directly on the original surface mesh,
to build a new tessellation which can be further optimized.

In [PC03] and [SSG03] the authors propose to remesh the
model using geodesic distances: the new vertices are created
using geodesic front propagation. Note that the vertices dis-
tribution can also be adapted to local curvature.

Note that remeshing approaches allow the construction
of meshes with as many vertices as wanted. Indeed, mesh
coarsening is not the main goal of remeshing approaches,
as they permit other improvement (in terms of triangles as-
pect ratio) and shape adapted remeshing (e.g. adaption of the
sampling according to the local curvature).

In [NT03], Nooruddin and Turk propose to simplify the
mesh topology by a volumetric approach: the mesh is con-
verted to a volumetric representation (voxels) which topol-
ogy is simplified by means of morphological operations. Af-
terwards, the volume is re-converted to a polygonal model
which is further simplified.

We can also mention out-of-core approaches for coarsen-
ing [ILGS03,WK03], used for large models which do not fit
entirely inside the computer RAM.

3. Our Approach

In this paper, we propose an algorithm for mesh coarsen-
ing, which produces uniform triangulations. We only deal
with triangular input meshes, but the extension to the polyg-
onal case is straightforward. Our approach can be applied to
manifold meshes with any genus and any number of holes.
The first step is a clustering of the mesh cells (triangles) into
an approximation of a Centroidal Voronoi Diagram (CVD),
which is the main contribution of this paper. The cluster-
ing is based on an energy minimization step and a validity
checking step.

The second step consists in replacing each cluster by a
single vertex, and constructing the triangulation according to
the clusters adjacency relations. We assume that the subsam-
pling factor of the coarsening is high i.e. the ratio between
the number of original vertices and the number of vertices of
the resulting mesh is high. In this paper, we display results
with meshes which number of vertices is at least divided by
20. Those high subsampling ratios enable us to formalize a
new clustering approach, noticing that even if the input sur-
face is a discrete set (the union of several polygons), it can
be seen as a continuous space, as the input polygons will be
small compared to the output ones. Note that our approach
simultaneously simplifies the mesh geometry and its topol-
ogy, and thus can be seen as a topological and geometric
filter.

4. Technical Background

In this section, we make an overview of Centroidal Voronoi
Diagrams (CVD) in terms of energy minimization. Supple-
mentary details can be found in [DFG99].

4.1. Voronoi Diagrams

Given an open set Ω of Ra, and n different sites (or seeds)
zi;i=0,1,...,n−1, the Voronoi Diagram can be defined as n dis-
tinct regions Vi such that:

Vi = {w ∈ Ω|d(w, zi)< d(w, z j) j = 0,1, . . . ,n− 1, j 6= i}
(1)

where d is a function of distance. These diagrams are well
known in the literature. The dual of a Voronoi Diagram is a
Delaunay triangulation, which has the property that the out-
circle of every triangle does not contain any other site.

4.2. Centroidal Voronoi Diagrams

A Centroidal Voronoi Diagram is a Voronoi Diagram where
each Voronoi site zi is also the mass centroid of its Voronoi
Region:

zi =

∫
Vi

x.ρ(x)dx∫
Vi

ρ(x)dx
(2)

where ρ(x) is a density function of Vi

Moreover, Centroidal Voronoi Diagrams minimize the
Energy given as:

E =
n−1

∑
i=0

∫
Vi

ρ(x)‖x− zi‖
2
dx (3)

Constructing a Centroidal Voronoi Diagram (CVD) can
be done using K-means clustering and Lloyd’s relaxation
method [Llo82], as an example. CVDs have intrinsic prop-
erties which make them optimal for a wide range of appli-
cations [DFG99] because they optimize the compactness of
the created Voronoi Regions (see equation 3.

We present here a novel approach to approximate a Cen-
troidal Voronoi Diagram, based on the global minimization
of the energy term E defined in equation 3, but which com-
putation involves only local queries, and is therefore very
fast.

5. Our clustering algorithm

5.1. Simplifying the energy term

Our augorithm is based on the construction of a clustering
which minimizes equation 3. We want to construct a CVD
on a discrete set: a polygonal mesh M. We first consider that
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this mesh M is planar (all vertices are coplanar). Now we re-
strict the boundaries of each Voronoi Region Vi to be a sub-
set of the edges of M. As a consequence, a Voronoi region
is the union of several mesh cells (triangles or polygons) C j .
Note that with such restriction, the regions Vi are no more
Voronoi regions in the strict sense, which is the first approx-
imation we make: each region Vi is the union of several cells
C j , and a cell C j is a part of one and only one region Vi.
Constructing such diagram comes now as a clustering prob-
lem: we want to merge the cells C j of the mesh M into n

clusters (which look like Voronoi regions) Vi, each cluster
having only 1 connected component.

We can now rewrite E by introducing the mesh cells Ci:

E =
n−1

∑
i=0

(

∑
C j∈Vi

∫
C j

ρ(x)‖x− zi‖
2
dx

)

(4)

we now choose ρ(x) to be uniform. As a consequence,∫
C j

ρ(x)dx = area(C j). Here comes our second approxima-
tion on E: we approximate each cell C j by a single point : its

centroid γj =

∫
C j

xdx∫
C j

dx
with a weight ρ j = area(C j). Equation

4 now becomes :

E =
n−1

∑
i=0

(

∑
C j∈Vi

ρ j‖γj − zi‖
2

)

(5)

As our goal is to build the CVD, we have to find where to
place the Voronoi Sites zi of each region Vi. We know that
for a given CVD, each site zi equals to the centroid of Vi.
With our assumptions, the centroid γi of each cluster Vi can
be easily computed as:

γi =
∑C j∈Vi

ρ jγj

∑C j∈Vi
ρ j

(6)

We now substitute zi in equation 5 by γi, to obtain a new
Energy F :

F =
n−1

∑
i=0

(

∑
C j∈Vi

ρ j‖γj − γi‖
2

)

(7)

At this point, F only depends on the chosen clustering of
the original mesh, which is very interesting, as we no more
need to explicitly compute the position of the Voronoi sites.
We only face a global variance minimization problem for
each region Vi, which we solve in the following section.

5.2. Energy minimization

By combining equations 7 and 6 we obtain:

F =
n−1

∑
i=0





 ∑
C j∈Vi

ρ j‖γj‖
2 −

∥

∥

∥∑C j∈Vi
ρ jγj

∥

∥

∥

2

∑C j∈Vi
ρ j






(8)
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Figure 1: The three cases of energy computation for a given

edge:(a) initial configuration (Cm ∈ Vk, Cn ∈ Vl); (b) Vk

grows (Cm ∈ Vk and Cn ∈ Vk); (c) Vl grows (Cm ∈ Vl and

Cn ∈Vl .

We propose to minimize this energy term with an iterative
algorithm that updates the clusters according to boundary
tests. As the boundaries of the regions Vi is a subset of the
mesh edges, a local test for each edge e between two differ-
ent clusters is processed. Let us assume that a given edge e

is on the boundary between two clusters Vk and Vl . The edge
e has two adjacent cells Cm and Cn belonging respectively to
Vk and Vl . We have to compute the value of F for three cases:

• Finit (the initial configuration) : Cm belongs to Vk and Cn

belongs to Vl .
• F1 (Vk grows and Vl shrinks) : both Cm and Cn belong to

Vk.
• F2 (Vk shrinks and Vl grows): both Cm and Cn belong to

Vl .

Afterwards, the case resulting in the smallest energy F is
chosen, and the clusters configuration is updated. By looping
in the boundary edge set (the set of edges between two dif-
ferent clusters), we iteratively minimize F . As F is always
positive and each local modification reduces F, the conver-
gence of the algorithm is guaranteed.

Figure 1 shows the three computed energies for an edge
between Cells Cm and Cn, belonging respectively to the re-
gions Vk and Vl .

5.3. Efficient implementation

For a fast and efficient implementation, a few number of
variables must be kept in memory. Indeed, each time we pro-
cess the energy test, we use for each Cluster Vi the values
∑C j∈Vi

ρ j‖γj‖
2, ∑C j∈Vi

ρ j and ∑C j∈Vi
ρ jγj which are stored

in three different arrays, respectively SGamma2, SRho and
SGamma. The values of these arrays are updated iteratively,
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as the clusters configuration changes. But for each test, as
the envisaged clustering modification is local, only two of
these three arrays are actually needed : let us assume that
we want to perform the energy test on a given edge e, with
two adjacent cells Cm and Cn, belonging respectively to the
clusters Vk and Vl . The evolution of the energy F will only
depend on the contributions of Vk and Vl to F which sum to:

L1 = ∑
C j∈(Vk

⋃
Vl)

ρ j‖γj‖
2−

∥

∥

∥∑C j∈Vk
ρ jγj

∥

∥

∥

2

∑C j∈Vk
ρ j

−

∥

∥

∥∑C j∈Vl
ρ jγj

∥

∥

∥

2

∑C j∈Vl
ρ j

(9)

Moreover, in the three envisaged cases, Vk

⋃
Vl will re-

main constant. Then, we can omit to compute the first term
of L1 as it will be the same in the three cases, and the test
will only consist in calculating :

L2 =−

∥

∥

∥∑C j∈Vk
ρ jγj

∥

∥

∥

2

∑C j∈Vk
ρ j

−

∥

∥

∥∑C j∈Vl ρ jγj

∥

∥

∥

2

∑C j∈Vl
ρ j

(10)

for each of the three cases. We are left with an equation
which does not contains, ∑C j∈Vi

ρ j‖γj‖
2 anymore. Finally,

for fast computation, we only need two arrays: SGamma and
SRho which are updated as the clustering evolves through
time.

5.4. Initialization

Section 5.2 gives a way to update a given cluster configura-
tion, but we have to build a configuration to start with. In-
stead of using another graph partitioning for initialization,
me slightly modify our algorithm. We now assume that the
number of clusters n is chosen. We randomly pick n differ-
ent cells C j in M. Each picked cell is then given one dis-
tinct cluster. All other cells do not belong to any cluster,
which is equivalent to associating them to the null cluster.
The mesh is now partitioned into n+ 1 clusters : n clusters,
each containing one cell, and the null cluster containing all
the other cells. As an example, for a triangular mesh, the
boundary edge set contains 3n edges, assuming that all the
picked cells are isolated. The loop over the boundary edge
set can now start. For each boundary edge e with two adja-
cent cells Cm and Cn, we perform a test before computing
the three energy cases defined in section 5.2: if one of the
two cells belongs to the null cluster, it is automatically given
to the other cell’s cluster, without any energy computation.
The given algorithm is able to compute a clustering of M

from end to end.

5.5. Validity of the clustering

We add an additional constraint to our clustering algorithm:
we want each cluster to be a 1-connected set of cells, to
make the further triangulation construction easier. As a con-
sequence, when the energy minimization step is finished, we

have to check whether this constraint is respected. We ex-
perimentally observed that the clusters hardly ever fall into
several disconnected parts. In the few encountered cases, we
solved this issue as follows : for each cluster with several
distinct components, we find the component with the highest
area and leave it unchanged. Smaller components are asso-
ciated to the null cluster defined in section 5.4. Afterwards,
we restart the energy minimization algorithm. The number
of disconnected clusters is then drastically reduced, and we
can repeat this step until there is no disconnected cluster.
There is no guarantee that the clustering will be valid af-
ter a given number of iterations, but experimentaly, after a
maximum of five loops, the clustering was valid. Further in-
vestigations will address the theoretical conditions for such
validity.

5.6. 2D examples : sampling a square

Figure 2 shows two examples of clustering with our scheme
on planar triangulations. We built two different meshes, both
with 20k vertices. For each mesh, the vertices coordinates
are randomly chosen, but with different distributions. The
vertices of the upper triangulation are uniformly distributed
on the square, while the vertices of the lower triangulation
are concentrated on the lower side of the square. On the left
side is displayed the initial triangles pick (random cells), the
right side shows the final clustering, which clusters are sep-
arated by black-painted edges. We can clearly see that the
clustering is uniform on the first example, but the second
configuration contains more clusters on the lower part of the
square. As a consequence, our clustering is affected by the
original mesh sampling, but this effect remains quite low ex-
perimentally.

5.7. Extension to the 3D case

In all above equations, all the vertices of the original mesh
are coplanar. As we aim at coarsening 3D meshes, we have
to extend this framework to the 3D case. The exact extension
should involve the computation of geodesic distances on the
mesh, as made in [PC03] and [SSG03]. But this would pre-
vent us from using the simplifications that lead us to equation
10. As a consequence, we approximate the geodesic distance
with the Euclidian distance and we can adjust our approch
by processing three coordinates instead of two. This approx-
imation introduces some error which is small in flat regions
but increases with the local curvature. One interesting fea-
ture of such approximation is that it processes a filtering of
the geometry in regions which contains relatively high fre-
quency details that cannot be represented efficiently with a
coarse mesh.

6. Building up the triangulation

Similarly to Voronoi Diagrams which are dual to Delaunay
triangulations, we can build a triangulation by dualization of
the constructed diagram.
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Figure 2: Results on a planar triangulation. Top : uniform

triangulation, Bottom : non uniform triangulation. Left : ini-

tial state (randomly picked triangles); right : final clustering.

6.1. Mesh vertices

Dualizing the diagram implies the creation of a vertex for
each cluster of the diagram. An easy way to compute the
coordinates of a given vertex Vei corresponding to a given
cluster Vi is to take the centroid γi of the cluster, defined in
equation 6, which is already computed during the clustering
step. But for convex parts, the centroid of a given cluster is
inside the 3D object and outside for concave parts. To elim-
inate this effect, for each cluster Ci, we set its vertex coordi-
nates to the coordinates of the original mesh vertex which is
the closest to the centroid γi.

6.2. Triangulation

Once the mesh geometry (vertices coordinates) is created,
the construction of its connectivity is straightforward, simi-
larly to Delaunay triangulations, where a triangle is created
for each point where three Voronoi regions meet. The three
triangle vertices are indeed the three Voronoi seeds. We can
easily imitate this scheme by looping over the original mesh
vertices, and create one triangle for each vertex lying on the
boundary of three different clusters. Again, in analogy with
a Delaunay Triangulation Construction (DTC), degenerate
situations sometimes arise. For DTC, ambiguous cases ex-
ist when four different Voronoi seeds are isocyclic, implying
that four Voronoi regions meet at one single point. As we
operate on the discrete set of the original mesh cells, these
cases happen more frequently than in the continuous case
of DTC. But resolving these degenerate cases is easy, as for
a vertex lying on the boundary of four different clusters, we

Figure 3: Construction of the triangulation and degenerate

cases. Left: Diagram; right : associated triangulation. one

of the two marked original mesh vertices is adjacent to four

different clusters, resulting in the creation of two triangles

instead of one.

create two triangles instead of one. More generally, if n clus-
ters meet at one single vertex, then we create n− 2 triangles
(in practice, the highest encountered value for n was 5). Fig-
ure 6.2 shows an example of triangulation (right) constructed
from the result of our clustering algorithm (left). One of the
two tagged vertices is adjacent to three different clusters, re-
sulting in the creation of a single triangle, while the other
vertex is adjacent to four clusters. In this case, two triangles
are created. We can clearly see that this degenerate encoun-
tered case does not penalize the constructed mesh quality.

6.3. Topology simplification

As we use a clustering approach for mesh coarsening, the
resulting mesh can be topologically simpler than the origi-
nal mesh. This happens when a given handle or hole is small
compared to the resampling step. Moreover, flattening hap-
pens in relatively thin connected regions of the mesh. This
results in a triangulation which may not be manifold. To
solve this problem, we do not create the triangles appearing
twice, and we flip some edges of the triangulation.

7. Results

Figure 4 shows a result obtained on a sphere with 160k faces,
resampled to a mesh with 500 vertices. The left image shows
the processed clustering of the original mesh. This original
mesh is very irregular : a vertex on the center of the pic-
ture has its valence equal to 150. Despite this degenerated
situation, the clustering remains regular and the resulting tri-
angulation on the right is very uniform.

We have tried our approach on a large set of reference
meshes having up to several hundred thousands of vertices.
Figure 5 shows the results obtained when coarsening the
Stanford Bunny to a mesh with 300 vertices. Figure 6 shows
several coarsened versions of the original Happy Buddha
model. The number of vertices for these models is respec-
tively (from left to right) 2k, 5k, 10k and 15k. Clearly, the
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Figure 4: Sampling a triangulated sphere : the proposed ap-

proach constructs uniform clusters (left), resulting in a very

uniform coarsened sphere (right).

constructed meshes have uniform sampling. The topology
of the model was also filtered by our scheme as expected, as
the original model has genus 104 and the coarsened models
have their genus reduced bellow 10.

Figure 7 shows the coarsened models of the Dragon, Golf
Club, Hip, Phone and David. These output meshes have re-
spectively 20k, 5k, 20k, 2k and 20k vertices.

Figure 8 shows the results of our approach on the Max
Planck model (top). This model is interesting, as there is a
’V’ shape connectivity watermark on the nose. Clearly, the
effect of this watermark on the results is not visually percep-
tible, and the constructed mesh remains regular in this region
(bottom).

Table 1 shows results obtained for all the models pre-
sented in this paper. The first column is the number of ver-
tices of the original mesh. The second one is the number
of vertices of the coarsened mesh. We computed two dif-
ferent objective criteria to measure the quality of the output
meshes. One is based on the angles of the resulting trian-
gles (the minimal angle ∠min, the average minimal angle
∠av, and the percentage of angles which are less than 30
degrees ∠ < 30o) and the second one is based on the tri-
angles shape (minimal quality Qmin, average quality Qav,
which ranges between 0 and 1, as defined in [FB97]). Both
criteria show that our algorithm outputs meshes with high
quality, which are suitable for finite elements analysis, as an
example. The table also shows the Hausdorff distance (in
percentage of the mesh bounding box diagonal) between the
original model and the coarsened one, measured with the
Metro tool [CRS98]. For the large input models, the Haus-
dorff distance remains below 1% and is therefore negligi-
ble, except for coarsened models with very few vertices (the
Happy Buddha with 2000 and 5000 vertices). The process-
ing times were measured on a 450Mhz PC with 512 MB
RAM and show that our algorithm can run at interactive rates
on high-end computers. Note that the proposed approach
aims at creating uniform triangulations, so state of the art ap-
proximation algorithms may produce better meshes in terms
of approximation quality.

Figure 5: Processing the Stanford Bunny. Top : approxi-

mated Centroidal Voronoi Diagram. Bottom: triangulation.

8. Conclusion and perspectives

We proposed in this paper a fast an efficient algorithm for
uniform mesh coarsening, which can be used for large mod-
els. Objective criteria show that the output meshes have good
properties. The strength of our approach is that it removes
handles that are small compared to the resampling step (and
can then be considered as topological noise), and is therefore
insensitive to meshes with degenerated topologies. Many ap-
plications can derive from our mesh construction. As an ex-
ample, it can be used as a base domain for multiresolution
remeshing, in spirit with [PC03]. Further work will address
the processing of meshes with sharp features, and prelim-
inary studies showed that our clustering approach can be
improved in order to have an anisotropic and/or curvature-
adapted behavior. This would lead us to new approaches
of polygonal remeshing for large meshes, which elements
would be locally adapted to the original surface.
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Model #v #v2 ∠min ∠av ∠< 30o Qmin Qav time Hausdorff dist.
(original) (coarsened) (deg) (deg) (%) (s) (% of BBox diag.)

Buddha 543k 2k 23.0 50.4 0.05 0.39 0.88 275 1.83
Buddha 543k 5k 20.3 50.0 0.03 0.37 0.88 226 1.11
Buddha 543k 10k 8.8 49.3 0.09 0.15 0.87 349 0.86
Buddha 543k 15k 15.6 48.4 0.22 0.29 0.85 439 0.84

Hip 530k 20k 26.1 49.3 0.01 0.44 0.87 595 0.26
David 507k 20k 14.6 48.5 0.10 0.22 0.86 337 0.18

Dragon 437k 20k 12.2 47.6 0.25 0.25 0.84 230 0.89
Golf Club 209k 5k 24.2 50.7 0.02 0.40 0.88 86 0.63

Phone 83k 2k 32.6 50.9 0 0.57 0.89 25 1.37
Sphere 79k 500 37.2 52.9 0 0.59 0.91 49 0.2
Bunny 70k 300 35.5 50.8 0 0.62 0.89 28 4.40

MaxPlanck 23k 1500 16.9 47.3 0.24 0.29 0.84 7 1.68

Table 1: Results obtained on a 450Mhz PC for several reference meshes.

Figure 6: Several coarsened versions of the Happy Buddha model, with respectively 2k, 5k, 10k and 15k vertices.
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Figure 7: Results on a set of reference meshes.
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