
 Open access  Journal Article  DOI:10.1137/0731007

Approximated convex envelope of a function — Source link 

Bernard Brighi, Michel Chipot

Published on: 01 Feb 1994 - SIAM Journal on Numerical Analysis (Society for Industrial and Applied Mathematics)

Topics: Proper convex function, Convex analysis, Pseudoconvex function, Effective domain and Subderivative

Related papers:

 Direct Methods in the Calculus of Variations

 Numerical analysis of oscillations in nonconvex problems

 Numerical analysis of oscillations in multiple well problems

 Numerical approximation of the solution of variational problem with a double well potential

 Fine phase mixtures as minimizers of energy

Share this paper:    

View more about this paper here: https://typeset.io/papers/approximated-convex-envelope-of-a-function-
2pusfsughj

https://typeset.io/
https://www.doi.org/10.1137/0731007
https://typeset.io/papers/approximated-convex-envelope-of-a-function-2pusfsughj
https://typeset.io/authors/bernard-brighi-4ubbf5sddf
https://typeset.io/authors/michel-chipot-3qtuihj4us
https://typeset.io/journals/siam-journal-on-numerical-analysis-g0w7fct8
https://typeset.io/topics/proper-convex-function-32rjvrve
https://typeset.io/topics/convex-analysis-cnhtojjl
https://typeset.io/topics/pseudoconvex-function-15ehrvqx
https://typeset.io/topics/effective-domain-19wf7qqe
https://typeset.io/topics/subderivative-2sbiy5fd
https://typeset.io/papers/direct-methods-in-the-calculus-of-variations-4hxdqs46wk
https://typeset.io/papers/numerical-analysis-of-oscillations-in-nonconvex-problems-19jvs4a50e
https://typeset.io/papers/numerical-analysis-of-oscillations-in-multiple-well-problems-k3a7c37wwz
https://typeset.io/papers/numerical-approximation-of-the-solution-of-variational-1t2xxrgwf8
https://typeset.io/papers/fine-phase-mixtures-as-minimizers-of-energy-2wtqikza52
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/approximated-convex-envelope-of-a-function-2pusfsughj
https://twitter.com/intent/tweet?text=Approximated%20convex%20envelope%20of%20a%20function&url=https://typeset.io/papers/approximated-convex-envelope-of-a-function-2pusfsughj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/approximated-convex-envelope-of-a-function-2pusfsughj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/approximated-convex-envelope-of-a-function-2pusfsughj
https://typeset.io/papers/approximated-convex-envelope-of-a-function-2pusfsughj


Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 1994

Approximated convex envelope of a function

Brighi, B ; Chipot, M

Abstract: The goal of this paper is to introduce the approximated convex envelope of a function and
to estimate how it differs from its convex envelope. Such a problem arises in various physical situations
where the function considered is some energy that has to be minimized.This study is a first step toward
understanding how to approximate the quasi-convex envelope of a function. The importance of this issue
is due to the various applications that are encountered, in particular, in the field of material science.
©1994 (Copyright) Society for Industrial and Applied Mathematics

DOI: https://doi.org/10.1137/0731007

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-22621
Journal Article

Originally published at:
Brighi, B; Chipot, M (1994). Approximated convex envelope of a function. SIAM Journal on Numerical
Analysis, 31(1):128-148.
DOI: https://doi.org/10.1137/0731007



SIAM J. NUMER. ANAL.
Vol. 31, No. 1, pp. 128-148, February 1994

(1994 Society for Industrial and Applied Mathematics
007

APPROXIMATED CONVEX ENVELOPE OF A FUNCTION*

BERNARD BRIGHI AND MICHEL CHIPOT

Abstract. The goal of this paper is to introduce the approximated convex envelope of a function
and to estimate how it differs from its convex envelope. Such a problem arises in various physical
situations where the function considered is some energy that has to be minimized.

This study is a first step toward understanding how to approximate the quasi-convex envelope
of a function. The importance of this issue is due to the various applications that are encountered,
in particular, in the field of material science.
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1. Introduction. In many physical problems--for instance in material sci-
ence--one is lead to minimize nonconvex energies. The typical case is when a material
has several natural states. Then one way to model the situation is to introduce an
energy density with several minima, each of which is an account for this preferred
state. Of course, such an energy with several "wells" is not convex. The energy level
corresponding to a linear boundary deformation is the so-called quasi-convexification
of the energy density--a mathematical concept introduced by C.B. Morrey (see [9]).
This is an extremely useful quantity from both the theoretical point of view and the
practical one. One of our goals is to analyze how accurate a finite element method is
to approximate it (see [1]). A first step toward this is to understand the scalar case
(i.e., in mechanics the deformation is a vector but here we analyze the case where our
unknown is a scalar (see [9])). Then in this case the quasi-convexification is simply
the convexification of the energy density, i.e., the largest convex function bounding
this density from below. In this paper we would like to investigate how it can be
approximated by a Pl-finite element method. One could think to use our analysis to
compute the convex envelope of some domains--for instance, the epigraph of the con-
vexification of a function is the closed convex envelope of the epigraph of this function.
We did not pursue this analysis here, however.

Consider n > 0 as an integer and as a bounded domain of ]R’ assumed to be
polygonal for the simplicity of the numerical analysis. Let

be a function bounded from below by an affine function, so that there exists

(I.I) g.n_R affine such that g_<o.

Let us denote by o** the convex envelope of o, i.e., the function

o** -sup(" lRn lR" convex and

*Received by the editors March 20, 1992; accepted for publication (in revised form) March 1,
1993.
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By (1.1) we see that ** is finite. Moreover, we have

(.2) w , **() Inf
1 /nvew’(a)- (a + Vv(x)) dx.

In the above formula and below, we denote by Wl,(t) the space of Lipschitz func-
tions defined in t with values in JR; see [11]. W0’() is the subspace of functions
of Wl,(t) vanishing on 0, the boundary of . Itl is the measure of t. It is well
known that the right-hand side of (1.2) does not depend on t; see, for instance, [9].

Then let {Th: h > 0} be a family of regular triangulation of (see [14]), that is
to say, satisfying

(1.3) Vh > 0

VK E Th, K is a n-simplex,

max (hg)- h,
KETh

PK
(v > 0),

where hK is the diameter of the n-simplex K and PK is its roundness (i.e., the largest
diameter of the balls that could fit in K).

IfP (K) is the space of polynomials of degree 1 on K, we set

Vh {v" Ft ]R continuous’ Vlg P (K) VK Th and v 0 on

and, for a ]Rn,

(1.4) p*(a)--- Inf
1 /a’EY2 -[

(a + Vv(x)) dx.

One clearly has

We would like to derive estimates of o* -** here. Previous results of this type were
obtained in the context of hyperelasticity for ordered materials (see [4]-[8]). However,
in all these papers the functional * did not emerge clearly. We will call it the
approximated convex envelope of . o* depends, of course, on , but for simplicity
we will drop this dependence, 12 being fixed. In physical situations, is some energy
that one tries to minimize.

Remark 1.1. For all a ]Rn, and for all affine functions g:][{n __. ]R, one has
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Therefore,

(1.5)

2. A general convergence theorem. We will need the following lemma.
LEMMA 2.1. Let v E Wl,(12) and Vh be its interpolate on the triangulation Th.

Then there exists a constant c >_ 1 depending on n and such that

(where I/l 2 f12 +... +2n for fl e ]Rn and Ioo,o is the usual norm on L(O)).
Proof. Let x e Q and K e Th such that x K. Denote by.(el,...,en) the

canonical basis of lRn and by/ the convex hull of 0, el,..., en; K is the reference
unit n-simplex of ]Rn.

By (1.3) there exists a one-to-one affine map FK defined on/ by the following:

1 [’(, FK(I) BK + bK, where BK is an n n invertible matrix, bK ]pn,

and such that FK(I?() K.
Now, denote by and f3, respectively, the diameter and the roundness of/. By

the definition of/, one has

Vj=l,...,n, j,$j/ such thatf3ej=j-$j.

Hence

and thus

IBKpeI IBK- BKI IFK(.)- FK(,:)I _< hK,

hK(2.2) Vj 1,..., n, IBKe[ <

Reversing the roles of K and/ we obtain

h
(2.3) Vj- 1,... ,n, IBel <_

Pg

Then it is clear that Vh o FK is an affine and coincides with v o FK on the vertices
of/. Let

One has/ lR’ and

Vj- 1,...,n, I1 I(vh o FK)(e) (Vh o FK)(O)I

I(v o Fg)(ej) (v o FK)(0)I

[IVVlIoo,K]FK(ej)- FK(0)I
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and thus by (2.2) we obtain

(2.4) Vj 1,..., n,
hK

From the equality

we deduce - V(Vh o FK)(&)- VVh(x).BK,

(2.5) Vj 1,..., n,
Vh
Oxj

(x) --/. Blej,

where "." denotes the usual scalar product in ]Rn. Hence by (2.3)-(2.5)

Vj= l,...,n, <_ il[Bcle:il <_ nl/2h___g h

Squaring and adding these inequalities we obtain, by (1.2),

IW’h( )l <_

which completes the proof. I-I
Let us now recall that a function v 12 t is said to be piecewise affine if v is

continuous and if there exist disjoint open subsets 1,..., 12s of 12 such that

(i) 6
(ii)

(iii)

i=1

Vv is constant on every i,

-0f \ fi has measure 0;
i=l

see [9, Chap. 2, 2.1, p. 27] and [10, Chap. 10, 1.2, p. 276].
THEOREM 2.1. Assume that o is a Borel function, bounded on bounded subsets

of ]Rn. One has
lim qo* (c) qo** (c) V c E IRa.
h---O

Proof. Let e > 0. We know that, if Aff0(; lR) denotes the set of piecewise affine
functions from into lR vanishing on 0, one has

** (a) Inf
1 /flIfl

o(, + Vv(x)) dx, ( e ]R"

(see [9, Chap. 5, 5.1, (23), p. 206]).
Hence, there exists v E Affo(f; JR) such that

(2.6) _< / Vv (x)) dx <_
2
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Since v is piecewise affine, there exists disjoint open subsets ft,..., tl of Ft such that

i--1 i--1

and v is affine on every t.

Set
C sup 1o(3)

(where c is the constant defined in Lemma 2.1) and

U
l<i<s

F is a compact set of ]Rn of measure zero. Then there exists an open set O such
that

FcO and IO1<_ 4C"
Next, set

ho d(F,Ft \ 0),
where d denotes the distance function. Since \O is closed and F is compact, one
has h0 > 0. Then, consider h such that 0 < h < h0, and let us denote by V,h the
interpolate ofv on Th. Since v is affine on every ., the functions ve,h and ve coincide
on \ Oe. Indeed, the n-simplices that intersect Fe are contained in Oe. Therefore,

o(o + VV,h(X)) dx p(o + Vve(x)) dx

p(o + VV,h(X)) dx nn (a + Vv(x)) dx

o(( + VV,h (x)) dx (a + Vv(x)) dx

<210,1c, (by (2.1) and the definition of Ce)

 la12
Combining this with (2.6) we obtain

**(a) _< - (( / VV,h(X))dx

which gives

This concludes the proof.
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Remark 2.1. The above arguments extend to the vectorial case, i.e., for

M,xn -,JR,

where Mmn denotes the set of m n matrices, if the convex envelope is replaced by
the quasi-convex envelope. We refer the reader to [1] for details.

3. Geometric properties of o**. First, let us recall some classical definitions
about convex sets.

Let C be a convex set of lRN.
We denote by aft(C) the affine hull of C, that is to say, the smallest affine subspace

of ]pN containing C. The integer dimC dim(aft(C)) is the dimension of C.
A supporting hyperplane to C is a hyperplane dividing the space into two closed

half-spaces, one containing C and a point of C on its boundary. If C is not N-
dimensional, so that aft(C) ]pN, we can always extend aft(C) into a supporting
hyperplane containing C itself. Such a supporting hyperplane is hardly of interest, so
we will only consider proper supporting hyperplanes to C, i.e., hyperplanes that do
not contain C itself.

An extreme point of C is a point x E C such that there is no way to express x
as a convex combination x y + (1 )z with y, z E C and 0 < < 1, unless we
choose y z x.

An exposed point of C is a point x C through which passes a supporting
hyperplane to C, which contains x and no other point of C.

An exposed point is an extreme point, but the converse is false.
An extreme half-line is a half-line D included in C, such that for all closed line

segments [y, z] C C verifying ]y, z[NO 0, one has [y, z] c D.
We call relative interior of the convex set C, which we denote by ri(C), the set

of all points which are interior to C for the topology of aft(C).
O

If dimC N, then ri(C) C. The set C \ ri(C) is called a relative boundary
of C.

Finally, for a set A c lRN, we denote by co(A) the convex hull of A.
Let us now recall some classical results.
PROPOSITION 3.1. Let C be a convex set of ]Rg and x a point of the relative

boundary of C; then there exists a proper supporting hyperplane toC containing x.

Proof. See [15, Part III, 11, Thm. 11.6, p. 100].
PROPOSITION 3.2. Let C be a closed convex set of lR

g
containing no lines, and

let S be the set of all extreme points and extreme half-lines of C. Then C co(S).
Proof. See [15, Part IV, 18, Thm. 18.5, p. 100].
PROPOSITION 3.3 (Straszewicz’s theorem). Let C be a closed convex set of ]RN.

The set of exposed points of C is a dense subset of the set of extreme points of C.
Proof. See [15, Part IV, 18, Thm. 18.6, p. 166].
Next, recall that the epigraph of a function f" lR --. lR is the set defined by

ep/(f) {(x, y) e ]Rn x JR" y > f(x)}.

We know that

(3.1)

where 5-5(A) is the closed convex hull of A (see [10, Chap. I, 3.2, Prop. 3.2, p. 15]).
So, ep/(**) is a closed convex set of ]R lR.
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We are now going to give a simple, necessary (and clearly not sufficient) condition
in order for a point ((,/) E lRn lR to be an extreme point of epi(**).

PROPOSITION 3.4. Assume that the unction is continuous. Let (,/) ]Rn

lR. If c, 1 is an extreme point of epi ** then

(3.2) **() ().

Proof. Since is continuous, by Proposition 3.3, it is sufficient to show that (3.2)
holds for the exposed points.

So, let ((,) be an exposed point of ep/(**). It is clear that (a,/) is a point of
the (topological) boundary of the set ep/(**), so that we have

**().

Now, assume that

(3.3) **(a) < (a).
Since ((, V** (()) is an exposed point of ep/(a**), there exists a supporting hyperplane
H of ep/(v**) that contains (a, o**(c)) and such that

(3.4) H ep/(o**) ((c, o**(c))}.
Thus there exists an affine function g tn -- ]R such that

H ((x, g(x))" x e ]R"}
and

(3.) _< **, () **().
On the other hand, using the continuity of g, o, and o**, and (3.3), it is easy to

see that there exists e > 0 such that

**() () < () ()
(3.6) Vx e(c, e), 2

() () > () ()
2

whereB(c,e)-(xRn Ix-cI_<e}. Set

} inf (V**(z) g(z)).

Using (3.5) we see that v/>_ 0.
Then, denote by the function max(o**, g + }). We have

(3.7) is convex and _**.

If x e B(c, e), then, using (3.6), we have

g(x) + l <_ g(x) + o**(z) g(z) (for z such that Iz l e)

()-()< g() + 2

<_ a() + v() a()

v().
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Since ** _< o, we get

(3.8) w B(., ), () _< v().

If x (a,), then choose z such that Iz- a and z ]x,a[, i.e., z
/kx + (1 )a, (0, 1), implying that

Using (3.5) we obtain

1
(0..**(1 >_ (1- (1- 1(11

1
:(v**() a(z) + a())

_> a() + ,
and thus

(3.9) Vx B(a, e), () v**() < v().

Then (3.8) and (3.9) show that _< T, and by (3.7) and the fact that ** is the
greatest convex functions lying below o, we get **, which also reads

Vx E ]Rn, a() + _< **().

In particular,
v**(-) a(-) <_ v**(-) with y _> O.

Thus, 0. Therefore, since {z e lRn" Iz-al e} is compact and since T**-g
is continuous, there exists zo such that

[zo cl- e and o**(z0) g(zo).

Then both points (a, **(a)) # (z0, **(z0)) belong to H n ep/(**), which con-
tradicts (3.4). El

The next lemma will be used in the proof of Proposition 3.5 below.
LEMMA 3.1. Let ]Rn -- ]R be a convex function, al,..., ak E ][n, and suppose

there exist A,...,Ak > 0 such that +... + Ak 1 and

(3.10) Aa )(a).
i=l i=l

Then, is a]fine on co{al,..., ak}.
kProof. Set a -]i= Aia. We know that one can find an affine function g such

that

(3.11) g _< , g(a) (a).
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Then
g(ai) (ai) Vi 1, k.

Indeed, if this is not the case we would have

k k

g(a) Z )ig(ai) < )i(ai) (a),
i--1 i--1

which is impossible. But then for any

k k

y Ziai ti >_ O Z ti --1,
i-1 i-1

one has
k k

i=1 i=1

and thus by (3.11) and g agree on co{al,...,ak}.
Now, denote by Jt the set defined by

,4 (a e ]Rn" o(a) ** (a)}.

We now have the following.
PROPOSITION 3.5. Suppose that is continuous and that ep/(o**) does not con-

tain any line or any extreme half-line. Let a E ]Rn. Then, either a j[ or there
exists a ak A such that

(3.12) (2 e ?’i(co{al,...,ak)) and o** is ane on co{al,...,ak}.

Proof. Assume a A. Since ep/(o**) does not contain any line or extreme half-
line and is a closed convex set, one can apply Proposition 3.2 and claim that (a, ** (a))
is in the convex hull of the extreme points of ep/(**). Hence, by Proposition 3.4,
there exist a1,..., ak 4 such that

k

(c, ** (a)) Ai(ai, (ai))
i----1

with

Ai >0,
k

ZAi-1 (and k>2 since aA).
i--1

Hence
k

a-" Aiai and ( ri(co{al,... ,ak}).
i--1

Moreover,

Then, applying Lemma 3.1, we obtain that ** is affine on co{a,..., ak}.
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In order to be in a position to apply Proposition 3.5, we can impose some growth
condition on . indeed, we have the following.

PROPOSITION 3.6. If satisfies

(3.13) lim +oo,

then ep/(**) does not contain any half-line on its boundary.
Proof. The property (3.13) implies that is bounded from below. So, without

loss of generality, we can assume _> 0. Next, suppose that the boundary of ep/(**)
contains a half-line. Then, there exists a half-line D C lR’ such that ** restricted to
D is affine.

Let a E J[ be the origin of D. Replacing by

where Q is some orthogonal matrix, one can suppose that D [0, +oe) x {0} x...x {0},
and that a 0 E 4.

Then there exists A > 0 such that

V/ (/1,0,..., 0) e D, one has o**(/)= /1 + o(0).

By (3.13) there exists b > 0 such that

,p(/) > ( + 1)lb’l.

Thus, in particular, if/- (1,...,/n) satisfies fll

_
b, we will have I/ 1 _> b, and so

Therefore,

V/l_>b (-t- 1)(fl- b) _< (-t- 1)/1 _< o(),

and
V fl _< b (A + 1)(/1 -b) _< 0 _< o(/).

So we have
V/ e ]Rn (A + 1)(/ b) _< (/).

Since the function on the left-hand side of the above inequality is affine, we deduce

(-t- 1)(/1- b) _< **(/).

In particular,
V/D (A + 1)(l- b) <_ A/ + (0),

l1 _< (0) + (A + 1)b.

This is impossible since the right-hand side is constant. Consequently, epi(**) cannot
contain a half-line on its boundary. [1
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Remark 3.1. The assumption (3.13) is just a sufficient condition in order for the
boundary of ep/(**) to not contain a half-line. Indeed, consider a function whose
graph is a branch of a hyperbola. For instance,

(/) V/1 + 2.

Then, in this case,

**=, lim
(/)

=1

and the graph of ** does not contain any half-line.

4. Estimate of* **.
THEOREM 4.1. Let lR" - lR be a nonnegative function bounded on bounded

subsets of lRn. Let ( e lR, such that ( e co(C-: ((0})). Then

**(()- 0 and *(() <_ Ch:/2,

where C is a constant depending on , , and (.

Proof. See [3, 2]. [-1

Remark 4.1. We do not know if the estimate (4.1) is sharp. One can find in [4]
the idea of the proof of Theorem 4.1 in the case where ( Aw: + (1 A)w2, with
0 < A < 1 and (w:) (w2) 0 ("two well problem").

Let us recall that jt {a e lRn: o(a) o**(a)}.
THEOREM 4.2. Assume that o is bounded on bounded subsets of IRn, and let

( E lRn. Suppose there exists a:,..., ak 4 such that

(4.2) ( e ri(co{a:,...,ak}) and ** is a.One on co{a:,...,ak}.

Then
0 <_ o*(a)- o**(c0 <_ Ch:/2,

where C is a constant depending on , o, and .
Proof. Let H be a supporting hyperplane to ep/(**) containing (c, **(a)); see

Proposition 3.1.
Let g: lR’ t be the affine function such that H {(x, g(x)) x e lR}, and

(4.3) g(c0=o**(c0 and g_<o**.

From (4.2) we deduce that

k

( E )iai
i-1

with Ai > 0

and
k

**(c0 E )i**(ai).
i--1

Now, suppose there exists/ {1,... ,k} such that g(al) < **(al). Then, since At > 0,
one has

k k

g(o) E Aig(ai) <E )i**(ai)- **(c)= g(c);
i--1 i----1
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hence a contradiction. Consequently, (4.3) implies that g and 99** coincide at c, al,...,

ak, and thus on the whole set CO(hi,..., ak}.
Next, set 99 g. Clearly, one has

and (ai)--0 Vi--1,...,k.

Then, using Theorem 4.1, we obtain

(4.4) *() _< Chl/2.

But thanks to Remark 1.1 we can write

(v a)i, (.)

and thus, since g(a)- 99"*(c), (4.4) becomes

99*()- 99"*(c)

_
CA12

and the proof is complete. [:]

The condition (4.2) is a technical assumption. Thanks to Propositions 3.5 and
3.6 it can be relaxed. Indeed, we have the following.

COROLLARY 4.1. Suppose 99 is continuous and ep/(99**) does not contain any line
or extreme half-line. Then for all ( E ]R’t one has

0 _< 99*(c)- 99"*(a) _< Ch/2,

where C is a constant depending on [2, 99, and .
This is, in particular, the case when

Proof. This follows from Theorem 4.2 and Propositions 3.5 and 3.6. E]

Remark 4.2. The interesting feature of the second part of the corollary lies in the
fact that our hypotheses concern 99 only (compare to Theorem 4.2).

5. The one-dimensional case. In this part, we are going to specify n 1.
Our results are then more precise. They will also focus on the difficulties when trying
to extend Corollary 4.1. First, let us prove two lemmas.

LEMMA 5.1. Let 99 ]R -- let be a continuous function. Let a ]R be such that
99"*(a) 99(a). If there exists b e [-o, +c] such that

99"*(x) < 99(x) V x e (a, b) (or (b, a)),

then 99** is a.One on (a, b).
Proof This is well known. See also [2], [12], and [13].
LEMMA 5.2. Let let ]R be a nonnegative function, bounded on bounded

subsets of lit. Let Wl, w2 let be such that

o.
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Let a E [wl, w2]; then

(5.1)
C

**(.) o nd CF(") <- h,

where C is a constant depending on and
Proof. Suppose gt (yl, y2) and define

u min((w2 a)(x yl), (0)1 O0(X Y2))"
The triangulation Th of ft is now a subdivision

X0 < Xl < < Xp with xo Yl, Xp Y2, and Ixi Xi--ll (__ h.

Let Uh be the interpolate of u on Th. Clearly, Uh and u coincide, except maybe on
some interval (xk, Xk+l), and ifu (x) on (xk, Xk+l) we have

lal,*(a) < (a + Uh(X)) dx (a + Uh(X)) dx < (a + fl)h.

This concludes the proof of the lemma, since

1 flx+’ Uh(X)dx
Xk-t-1 Xk xk

1 t/+1 u’(x)dx e (wl , w2 ).
Xk-t-1 Xk xk

Remark 5.1. Lemma 5.2 improves, in the one-dimensional case, the estimate (4.1).
Moreover, (5.1) is sharp. Indeed, assume

f (0, 1) and 1 -1, w2 1.

Let h > 0 and N* be such that h 1/(2/+ 1). Consider the subdivision of ft
defined by

k
0_<k<2/+l.xk=21+l,

If Uh ( Y,t, one has

2/+1

(5.2) (Uh(X)) dx E 21 + 1
(ak) hE (ak),

k--1 k--1

where

Moreover,
u,() k= 1,...,2/+ 1.

2/+1

(.a) f0 ui() o.
k--1

Suppose that {1,... ,2/+ 1} can be split into two subsets, I1 and I2, such that

(5.4)
( 1 1)Vk11, ak -1

21+1’ 1+21+1
1

,1+Vk E I2,
_

1
21+1 21
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Set ni =card/i, 1, 2. One clearly has n + n2 21 + 1 and In1 -n21 >_ 1.
If n2 nl _> 1,

2/-{-1

Zak-- Eak + Zak
k=l kEI1 kE12

> n -1
21+1 +n 1

21+1

n2 nl 1 _> 0,

which implies that z.,k=l ak > 0 and contradicts (5.3). If n n2 _> 1, a similar
argument would lead to the same contradiction. Thus, the splitting (5.4) is not possible
and there must exist some k0 e {1,..., 21 / 1} for which

1 1
lak --11> 21+1

and lako + l] > 21+1"

Let us then consider, for s > 0,

s" l:t --+ IR+ defined by

One has os(ako) >_ hs and, by (5.2),

Os(U(X)) dx

_
h1+s Vh e V2.

This shows that the estimate (5.1) cannot be improved, in general, by a stronger power
of h on the right-hand side.

As above, set

Av {a e lR" (a) o**(a)}.
The following theorem is the main result of this section.
THEOREM 5.1. Suppose that is continuous. If ( E co(4), then

Co <_ <_

where C is a constant depending on and
Proof. If a E A, the result is clear by taking v 0 in (1.4). So, assume

e co(4) \ 4, and more precisely c e (hi, a2), where hi, a2 ,4 satisfy

Va e (a, a:), <

By Lemma 5.1, ** is affine on [al, a2]. Let us denote by g the affine function, which
agrees with ** on [al, a2]. One has o** _> g and, if we set o- g, we have _> 0
together with (al) (a2) 0. We can then apply Lemma 5.2 to get
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Now, taking Remark 1.1 into account, we deduce

7 (-) (v a)i*() vi*() a().

which gives, by (5.5) and since g(a) **(a),

This concludes the proof. D
COROLLARY 5.1. Suppose that is continuous and verifies

(5.6) lira
()

C
0 _< vi*(.) v**(.) _<.

lal

where C is a constant depending on o and (.

Proof. From (5.6) we see that o is bounded from below. We can then assume

o _> 0. Next, by Theorem 5.1, it is enough to prove that co(d[) ]R. So, suppose
co(.4) let. By replacing, if necessary, o by ’/ -- o(-), one can assume

al---supd[ < -t-oo and co(.4)C (-oo, al].

Therefore,

V > al, o**() < 0() and sinceA is closed, o** (a) o(a).

Applying Lemma 5.1, we deduce that o** is affine on [a, +o), that is to say

V >_ al, 0"*() A(- a) + 9(al) for some A >_ 0.

Now (5.6) implies that there exists a2 _> 0 such that

V/ _> a2, o(/) >_ (A + 1)/.

Then

V/ _< a2

V/ > a

(A + 1)(f-a2) _< 0 _< () and

(A + 1)(- a2) <_ (A + 1) _< 0().

V/ e IR, (, + 1)(/ a2) <_ o(/) = V/ e ], (A + 1)(- a2) <_ **().

In particular, we have

V_>al (A + 1)( a2) _< A( al) -F 9(al), i.e.,

_< ( + 1)a2 %al q- (al).
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This is impossible, since the right-hand side of the above inequality is constant. There-
fore, co(dt) lR, and the proof is complete.

We would like to investigate now what can be said about

when co(.A) ://: ]R and a co(.A). So, suppose co(.A,) JR. As we have seen in
the proof of Corollary 5.1, we can assume that co(.A,) c (-oe, all with al E d[, and
that there exists A E ]R such that

(5.7) V/ _> al, **() ,( al) + (fl(al).

In the case where (5.6) fails, we must have

liminf
(/) < +oo.

/-+oo /

More precisely, we have the following.
PROPOSITION 5.1. Suppose that o is continuous and co(dt) c (-oo, al] with

a dt. Then

(5.8) liminf
(/) o**(/)

inf
o(/) o**(/)

0 VA > 0.

Proof. Recalling that o > **, if (5.8) fails, then for some A > 0 large enough
and e > 0 one has

V/_> A o(/)- o** (/) _> e/ _> e(/- A);

and since o(/)- o**(/) _> e(/- A) is obvious for/ < A, we see that

o(/)- ** (/) _> e(/- A)

or
V/ e lR, o(/) _> ** (/) + e(/ A).

Since the function in the right-hand side of the above inequality is convex, one has

which gives
V/ lR, e(/- A) _< 0

and a contradiction.
In the case where we can control o- T**, it is still possible to get an estimate

of o* -** in terms of a power of h. We will consider the case where there exists
C1, C2 > 0, and p [0, 1) such that

(5.9) V/ _> al,

Remark 5.2. Of course, it is not always possible to get an estimate like in (5.9)
as we see immediately by considering such that

W(/) ln(/)’ / > 1.
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Having some control over **, we can prove the following.
THEOREM 5.2. Suppose that is continuous and such that co(4) C (-cx),al]

with al E 4, and that (5.9) holds. Let a > al. Then

0 <_ o*(a)- o**(a) <_ Ch-p

for some constant C depending on fl, C1, C2, p, and a.

Proof. Replacing, if necessary, by

one can suppose that ( 0, and thus al < 0.
Set (yl, y2) and o- g, where g is the affine function that coincides with

o** on [al, /oc); see (5.7). One has _> 0 and (al) 0.
Let u be defined on by

U(X) al (X Yl Vx e (Yl, Y2 hi,

0,

u is affine on [y2 h, y2).

Then, denote by Uh the interpolate of u on. Uh V2 and

Vx (y, y2 2h),

Vx (Y2 2h, y2),

?(X) al,

al <_ Uh(X) <_ h

Hence, by (5.9), we obtain

(u(x)) dx (u(x)) dx
y.-2h

<_ 2h CI h +_
Cahl-p.

Hence, taking Remark 1.1 into account,

(p* (0) g(O) * (0)

_
Ch1-p.

The proof is complete, since g(0)
Remark 5.3. If (5.6) or (5.9) fail, we would like to show now that, in general,

we cannot hope for an estimate of *(c) -**(a) when co(4) in terms of h8.

Indeed, consider the function :]R -- ]R defined by (see Remark 5.2)

( + 1)2

v(5) +
ln( / e2)

if <_0,

1 4e2+ if /_>0.
8
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It is clear that
f(f-bl) 2 if _<-1,

0 if _>-1.

qa does not satisfy (5.6) and (5.9). Moreover co(A) A (-,-1]. It is also ey
to see that is C on R, and that

(+ 1) if 0,

’ (fl) ln( + e2) 1
(ln(fl + e2))2

if E 0.

Let fl (0, 1), N*, and h > 0 be such that h 1/1. Denote by the subdivision
of defined by

k
x=, Okl.

If Uh V2, then oneh

1

k----1

where
Vx e (x_,x),

It then follows that

k= 1,...,/.

(5.10) *(0) h. infZ (bk)
bEP

k’-I

where P {b E ]R; bl -b.-.-b bl 0}. Since o() -, -boo when [fl[ -- -boo, the
infimum in (5.10) is achieved for some point a E P. Because function o is C on JR,
there exists a Lagrange multiplier A A(/) such that

(5.11) ’(ak) A Vk 1,...,1.

It is clear that a 0. Thus the fact that a P implies that some of the ak’s are
positive and some negative. Consequently, (5.11) shows that ’- 1 ({}) must contain
at least two points. But, we see that o is increasing from -oo to 1/4 on (-oo, 0) and
decreasing from 1/4 to 0 on (0, -boo). So, necessarily, A (0, 1/4) and

’-I({A(/)}) (z(1),z2(1)} with 1 <: z(1) <: 0 < z2(/).

Then, let us remark that since o is increasing on (-1, +oo), one has

(5.12) (z2) > o(z).

Next, denote by j the number of ak that are equal to z (thus, -j ak are equal to
z2). One has j -j(l) and 1 <: j <_ l- 1. Hence (5.10) becomes

* (0) h(jfl(Zl) -b (1- j)(z2))

_> (zl) by (5..12).



146 BERNARD BRIGHI AND MICHEL CHIPOT

Therefore, Theorem 1.1 implies that liml-+o (ZI (/)) 0, which leads to

(5.13) lim Zl (l) -1.

By (5.11) we have now lim_+o A(1)--0, and then

(5.14) lim z2(/) +oc.

Consequently, from (5.13) and (5.14)we obtain

l-j(1) -Zl(/) 1
j() z() ()

when --
and also

Hence

j() z(l)
Z2(/) Zl

when - +oc.

*(0) (Zl(/)) ""
j()

v(())

J() J() v(z())>
j()

since _> 0

v(z())
when --, +c.

1
(5.15) *(0) > when --en(())

But z2 <_ (l- j)z2 -jzl <_ l, thus In(z2(/)) <_ ln(/), and then (5.15) implies

1
vi*(0) > 2 ln(})

for h small enough. This proves that we cannot hope for an estimate of *(0) in
terms of Ch8.

Remark 5.4. The previous example allows us to show that, when ep/(**) contains
a line or an extreme half-line, the estimate of Corollary 4.1 is not possible in general.

Indeed, consider (0, 1)2 split into triangles of diameters h; see Fig. 1.
Consider the function of lR2 defined by

(Z, Z) V(Z),

where is the function of the preceding remark.
One clearly has

**(0, 0)=0.
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On the other hand,

FIG. 1.

*(0, O) Inf
1 /f (Vv(x, y)) dxdy

Inf
1

> Inf
1

xx (x, y)dxdy,

where D denotes the doted region of the figure. Now on D, the function

x v(x, y)

is a piecewise affine function, vanishing at the endpoints x 0, x 1. Moreover,
the mesh size associated to this function, i.e., the size of the intervals where v(., y) is
affine, is of the order of magnitude h. So, by the previous remark,

p (x, y) dxdy >_
ln()’JD

and thus
C

7 (0, 0) ** (0, 0) 7,* (0, 0) > ln(-)’
which prevents Corollary 4.1 from holding.

One can argue the same way when ep/(**) contains an extreme half-line.

REFERENCES

[1] B. BRIGHI, Sur quelques problmes de Calcul des Variations et l’approximation de leur fonc-
tionnelle relaxde, Ph.D. thesis, University of Metz, France, 1991.



148 BERNARD BRIGHI AND MICHEL CHIPOT

[2] B. BRIGHI AND M. CHIPOT, Approximation in nonconvex problems, in Progress in Partial
Differential Equations: Calculus ofVariations, Applications, C. Bandle, J. Bemelmans, M.
Chipot, M. Griiter, and J. Saint Jean Paulin, eds., Pitman Res. Notes Math. Ser. 267,
Longman Scientific & Technical, London, 1992.

[3] M. CHIPOT, Numerical analysis of oscillations in nonconvex problems, Numer. Math., 59
(1991), pp. 747-767.

[4] --------, Numerical analysis of oscillations in two well problems, in Progress in Partial Differen-
tial Equations: The Metz Surveys, M. Chipot and j. Saint Jean Paulin, eds., Pitman Res.
Notes Math. Ser. 249, Longman Scientific & Technical, London, 1991.

[5] M. CHIPOT AND C. COLLINS, Numerical approximation in variational problems with potential
wells, SIAM J. Numer. Anal., 29 (1992), pp. 1002-1019.

[6] M. CHIPOT, C. COLLINS, AND D. KINDERLEHRER, Numerical analysis of oscillations in multiple
well problems, in preparation.

[7] C. COLLINS, Computation and analysis of twinning in crystalline solids, Ph.D. thesis, University
of Minnesota, Minneapolis, MN, 1990.

[8] C. COLLINS, D. KiNDERLEHRER, AND M. LUSKIN, Numerical approximation of the solution

of a variational problem with a double well potential, SIAM J. Numer. Anal., 28 (1991),
pp. 321-332.

[9] B. DACOIOGNA, Direct Methods in the Calculus of Variations, Applied Math. Sciences 78,
Springer-Verlag, New York, 1989.

[10] I. EKELAND AND 1. TEMAM, Analyse convexe et problmes variationnels, Dunod, Paris, 1974.
[11] D. GILBAR; AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, Berlin, 1985.
[12] P. MARCELLINI, Alcune osservazioni sull’esistenza del minimo di integrali del calcolo delle

variazioni senza ipotesi di convessith, Rend. Mat., 13 (1980), pp. 171-281.
[13] E. MASCOLO AND R. SCHIANCHI, Existence theorems in the Calculus of Variations, J. Differ-

ential Equations, 67 (1987), pp. 185-198.
[14] P. A. RAVIART AND J. M. THOMAS, Introduction d l’analyse numdrique des dquations aux

dgrivdes partielles, Masson, Paris, 1988.
[15] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.




