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We propose the use of nonlinear least squares optimization to approximate the passband ripple characteristics of traditional
Chebyshev lowpass 	lters with fractional order steps in the stopband. MATLAB simulations of (1 + �), (2 + �), and (3 + �) order
lowpass 	lters with fractional steps from �= 0.1 to �= 0.9 are given as examples. SPICE simulations of 1.2, 1.5, and 1.8 order lowpass
	lters using approximated fractional order capacitors in a Tow-�omas biquad circuit validate the implementation of these 	lter
circuits.

1. Introduction

Fractional calculus, the branch of mathematics concerning
di�erentiations and integrations to noninteger order, has
been steadily migrating from the theoretical realms of math-
ematicians into many applied and interdisciplinary branches
of engineering [1]. From the import of these concepts into
electronics for analog signal processing emerged the 	eld of
fractional order 	lter design. �is import into 	lter design
has yielded much recent progress in theory [2–6], noise
analysis [7], stability analysis [8], implementation [9–13],
and applications [14, 15]. �ese 	lter circuits have all been
designed using the fractional Laplacian operator, ��, because
the algebraic design of transfer functions is much simpler
than solving the di�cult time domain representations of
fractional derivatives.One de	nition of a fractional derivative
of order � is given by the Caputo derivative [16] as

�
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�
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where Γ(⋅) is the gamma function and � − 1 ≤ � ≤ �.
�e Caputo de	nition of a fractional derivative is o�en used
over other approaches because the initial conditions for this
de	nition take the same form as the more familiar integer
order di�erential equations. Applying the Laplace transform

to the fractional derivative of (1) with lower terminal � = 0
yields

L {�0��� � (�)} = ��� (�) − �−1∑
�=0

��−�−1�(�) (0) , (2)

where �� is also referred to as the fractional Laplacian
operator. With zero initial conditions (2) can be simpli	ed to

L {�0��� � (�)} = ��� (�) . (3)

�erefore it becomes possible to de	ne a general frac-
tance device with impedance proportional to �� [17], where
the traditional circuit elements are special cases of the general
device when the order is −1, 0, and 1 for a capacitor, resistor,
and inductor, respectively. �e expressions of the voltage
across a traditional capacitor are de	ned by integer order
integration of the current through it. �is element can be
expanded to the fractional domain using noninteger order
integration which results in the time domain expression for
the voltage across the fractional order capacitor given by
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where 0 ≤ � ≤ 1 is the fractional orders of the capacitor, �(�)
is the current through the element, � is the capacitance with

units F/s1−�, and (s) is a unit of time not to be mistaken with
the Laplacian operator. Note that we will refer to the units of
these devices as (F) for simplicity.

By applying the Laplace transform to (4) with zero initial
conditions the impedance of this fractional order element
is given as ���(�) = 1/���. Using this element in electrical
circuits increases the range of responses that can be realized,
expanding them from the narrow integer subset to the
more general fractional domain. While these devices are not
yet commercially available, recent research regarding their
manufacture and production shows very promising results
[18–20]. �erefore, it is becoming increasingly important to
develop the theory behind using these fractional elements so
that when they are available their unique characteristics can
be fully taken advantage of.

In traditional 	lter design, ideal 	lters are approximated
using methods that include Butterworth, Chebyshev, Elliptic,
and Bessel 	lters. �ese 	lters attempt to approximate the
ideal frequency response given by

�(�) = {1, � < ��,0, elsewhere, (5)

for a lowpass 	lter that passes all frequencies below the
cuto� frequency (��) with no attenuation and removes all
frequencies above. A necessary condition for physically real-
izable 	lters though is to satisfy the Paley-Wiener criterion
[21] which requires a nonzero magnitude response. Hence,
ideal 	lters are not physically realizable because they have
a magnitude of zero in a certain frequency range. However,
in [21] it was suggested that ideal 	lters when viewed from
the fractional order perspective might not require satisfying
the Paley-Wiener criterion to be physically realizable. If
fractional order 	lters do not require satisfying the Paley-
Wiener criterion it marks another signi	cant di�erent over
their integer order counterparts; which requires further
investigation to determine conclusively.

In this workwe use a nonlinear least squares optimization
routine to determine the coe�cients of a fractional order
transfer function required to approximate the passband
ripple characteristics of traditional Chebyshev lowpass 	lters.
MATLAB simulations of (1 + �), (2 + �), and (3 + �) order
lowpass 	lters with fractional steps from � = 0.1 to � = 0.9
designed using this process are given as examples. SPICE
simulations of 1.2, 1.5, and 1.8 order lowpass 	lters using
approximated fractional order capacitors in a Tow-�omas
biquad circuit validate the implementation of these 	lter
circuits.

1.1. Approximated Chebyshev Response. Fractional order low-
pass 	lters with order (1 + �) have previously been designed
in [9, 22] using the transfer function given by

�1+�LP (�) = �0�1�1+� + �2�� + 1 (6)

and realized using various topologies including a Tow-
�omas biquad [9], fractional RL	C� circuits, and 	eld

programmable analog arrays (FPAAs) [22]. In [22] the coe�-
cients of (6) were selected to approximate the �at passband
response of the Butterworth 	lters. �ese coe�cients were
selected using a numerical search that compared the pass-
band of the fractional 	lter to the Butterworth approximation
over the frequency range � = 0.01 rad/s to 1 rad/s and
returned the coe�cients that yielded the lowest error over this
region.

A similar method can be applied to determine the
coe�cients of (6) required to approximate the ripple char-
acteristics in the passband of the Chebyshev approximation.
Here a nonlinear least squares 	tting is used that attempts to
solve the problem

min

����|� (�, �)| − ������ (�)��������22
= min


�∑
�=1
(����� (�, ��)���� − ������ (��)����)2

s.t. � > 0.1,
(7)

where � is the vector of 	lter coe�cients, |�(�)| is the
magnitude response using (6) calculated using �, |��(��)|
is the normalized �th order Chebyshev magnitude response,|�(�, ��)| and |��(��)| are the magnitude responses of (6)
and �th order Chebyshev approximation at frequency ��,
and � is the total number of data points in the collected
magnitude response.�is routine aims to 	nd the coe�cients
that minimize the error between the magnitude response of
(6) and the Chebyshev approximation. �e constraint (� >0.1) is added for this problem because negative coe�cients
are not physically possible and to return values will be
easily realized in hardware. �is is not the 	rst application
of optimization routines in the 	eld of fractional 	lters.
Previously, optimization routines have been employed in [23]
to generate approximations of 1/(� + 1)� for simulation and
further realization for audio applications.

Applying the nonlinear least squares 	tting over the
frequency range � = 1 × 10−5 rad/s to 1 rad/s using (6) and
the second order Chebyshev 	lter designed with a ripple of
3 dB with transfer function

�2 (�) = 0.5012
�2 + 0.6449� + 0.7079 (8)

yields the coe�cients given in Table 1 for orders � = 0.2,0.5, and 0.8. �e 3 dB ripple was selected over smaller ripple
magnitudes to highlight the di�erence in ripple size using
the fractional order response over the integer order response.
�e coe�cients were determined in MATLAB using the
lsqcurve
t function to implement the NLSF described by (7).
�is function uses the trust-region-re�ective algorithm [24]
with termination tolerances of the function value and the
solution set to 10−6.

�e magnitude responses using these coe�cients, as well
as those determined for orders � = 0.1 to 0.9 in steps of0.1, are given in Figure 1(a) as dashed lines. For comparison,
themagnitude responses of 	rst and second order Chebyshev
lowpass 	lters with 3 dB ripples are also given. From these
responses attenuations with fractional steps between the 	rst
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Table 1: Coe�cient values for (1 + �), (2 + �), and (3 + �) fractional order transfer functions to approximate Chebyshev passband response.

Order � �0 �1 �2 �3 �4 �5 �6 | �|min

1 + �
0.2 0.7495 0.5095 0.1 — — — — 16.5∘
0.5 0.7135 1.215 0.1 — — — — 13.1∘
0.8 0.7107 1.5281 0.5092 — — — — 11.9∘

2 + �
0.2 1.061 2.246 0.1 2.1 0.2577 — — 12.2∘
0.5 1.013 3.652 0.1 2.912 0.2608 — — 10.5∘
0.8 1.002 4.252 1.210 3.481 0.1 — — 10.0∘

3 + �
0.2 0.7339 3.735 0.1 2.464 2.920 0.1 0.1 10.1∘
0.5 0.7146 5.734 0.1 2.878 3.907 0.1 0.3466 9.6∘
0.8 0.7087 6.256 1.246 6.592 0.1 1.894 0.1906 9.2∘

and second order Chebyshev responses, with −20 dB/decade
and −40 dB/decade attenuations, respectively, are visible
above frequencies of 10 rad/s. In the inset highlighting the
responses around 1 rad/s the increase in ripple size for
increasing order is visible reaching values of −2.5867 dB,−0.8854 dB, and 0.0356 dB for � = 0.2, 0.5, and 0.8,
respectively. �erefore, using this method 	lter responses of
order (1 + �) with both fractional-step attenuation in the
stopband and fractional ripple characteristics can be created.

�is method can also be applied to create higher order
	lters with fractional characteristics in both stopband and
passband. �e fractional transfer function for a (2 + �) 	lter
response, developed by combining (6) and a bilinear transfer
function, is given below:

�2+�LP (�) = �0�1�2+� + �2�1+� + �3s + �4�� + 1 . (9)

Applying (7) from � = 1 × 10−5 rad/s to 1 rad/s using (9) and
the third order Chebyshev 	lter designedwith a ripple of 3 dB
given by the transfer function

�3 (�) = 0.2506
�3 + 0.5972�2 + 0.9283� + 0.2506 (10)

yields the parameters given in Table 1 for orders � = 0.2, 0.5,
and 0.8. �e magnitude responses using these parameters,
as well as those determined for orders � = 0.1 to 0.9
in steps of 0.1, are given in Figure 1(b) as dashed lines.
For comparison the magnitude responses of second and
third order Chebyshev lowpass 	lters with 3 dB ripples are
also given. Again, fractional steps between the integer order
magnitude responses are visible above frequencies of 10 rad/s.
Similar to the (1 + �) 	lter, the size of the ripples in the
passband increases with the fractional order (�).

�is method is further applied to create a (3 + �) 	lter
response, developed by combining (6) and a biquadratic
transfer function, with transfer function given by

�3+�LP (�)
= �0�1�3+� + �2�2+� + �3�2 + �4�1+� + �5s + �6�� + 1 .

(11)

Applying (7) from � = 1×10−5 rad/s to 1 rad/s using (11) and
the fourth order Chebyshev 	lter designed with a ripple of3 dB given by the transfer function

�4 (�) = 0.1253
�4 + 0.5816�3 + 1.1691�2 + 0.4048� + 0.1770

(12)

yields the parameters given in Table 1 for orders � = 0.2, 0.5,
and 0.8. �e magnitude responses using these parameters, as
well as those determined for orders � = 0.1 to 0.9 in steps of0.1, are given in Figure 1(c) as dashed lines. For comparison
themagnitude responses of third and fourth orderChebyshev
lowpass 	lters with 3 dB ripples are given.

While these 	lters exhibit fractional characteristics in
theirmagnitude response, in the next sectionwe analyze their
stability to ensure that these fractional transfer functions are
physically realizable.

1.2. Stability. Analyzing the stability of fractional 	lters
requires conversion of the �-domain transfer functions to
the !-plane de	ned in [25]. �is transforms the transfer
function from fractional order to integer order to be analyzed
using traditional integer order analysis methods.�e process
for this analysis can be done using the following steps.

(1) Convert the fractional transfer function to the !-
plane using the transformations � = !� and � = �/"
[25].

(2) Select � and" for the desired � value.

(3) Solve the transformed transfer function for all poles
in the W-plane and if any of the absolute pole angles,| �|, are less than #/2" rad/s then the system is
unstable; otherwise if all | �| > #/2" then the system
is stable.

Applying this process to the denominators of (6), (9), and (11)
yields the characteristic equations in the!-plane given by

0 = �1!�+� + �2!� + 1, (13)

0 = �1!2�+� + �2!�+� + �3!� + �4!� + 1, (14)

0 = �1!3�+� + �2!2�+� + �3!2� + �4!�+�
+ �5!� + �6!� + 1. (15)
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Figure 1: Simulated magnitude responses of (a) (1 + �), (b) (2 + �), and (c) (3 + �) lowpass fractional order 	lter circuits for � = 0.1 to 0.9
in steps of 0.1 with coe�cients selected to approximate Chebyshev passband response using nonlinear least squares 	tting.

�e roots of (13)–(15) for � = 0.1, 0.5, and 0.9 were
calculated with � = 1, 5, and 9, respectively, when " = 10.
�e minimum root angles, | �|min, for each case are given
in Table 1. �e angles for each case are greater than the
minimum required angle, | �| > #/2" = 9∘, con	rming that
each 	lter using the coe�cients in Table 1 is stable and can be
physically realized.

2. Circuit Realization

�e fractional order transfer function (6) can be realized
by the Tow-�omas biquad, given in Figure 2, when �2 is
replaced with a fractional order capacitor with impedance��2 = 1/���2 and 0 ≤ � ≤ 1. �is topology was previously
employed in [9] to realize fractional order 	lter circuits with
�at passband characteristics and fractional attenuations in the
stopband. �e transfer function of the fractional order Tow-
�omas biquad at the noninverting lowpass output is given
by

$o (�)$in (�) =
%3%5/%4%6�1+�%2%3�1�2 + �� (%2%3�2/%1) + 1 . (16)

R1

R2

R3

R4

R5

R6

C1

C2

Vo

Vin

+

+
+ −

−

−

Figure 2: Tow-�omas biquad topology.

Comparing the coe�cients of (16) to (6) yields the
following relationships:

�0 = %3%5%4%6 , (17)

�1 = %2%3�1�2, (18)

�2 = %2%3�2%1 . (19)
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Table 2: Component values to realize (16) when � = 0.2, 0.5, and0.8.
Component

Values for FLPF of order

1.2 1.5 1.8
�1 (F) 0.159 &
�2 (F) 173.9 & 12.6 & 0.915 &
%1 (Ω) 5095 12.147 k 3.001 k
%2 (Ω) 679.8 1702.5 2150.1
%3 (Ω) 749.5 713.5 710.7
%4, %5, %6 (Ω) 1000

Using (17) to (19) we have 3 design equations and 8 variables
yielding 5 degrees of freedom in our selection of the com-
ponent values required to realize the desired �0, �1, and �2
values for the approximated fractional Chebyshevmagnitude
response. �erefore, setting �1 = �2 = 1 F and %4 = %5 =%6 = 1Ω the design equations for the remaining components
become

�0 = %3, (20)

�1 = %2%3, (21)

�2 = %2%3%1 . (22)

Solving equations (20) to (22) with the (1 + �) coe�cients
from Table 1 for %1, %2, and %3 yields the component values
in Table 2 to realize the approximated fractional Chebyshev
magnitude response, magnitude scaled by a factor of 1000
and frequency shi�ed to 1 kHz.

2.1. SPICE Simulations. Although there has been much
progress towards realizing fractional order capacitors [18–
20] there are currently no commercial devices using these
processes available to implement these circuits, though their
increasing progress towards commercialization highlights
the need to research their use in electronic circuits to take
advantage of their unique characteristics when they do
become available. Until commercial devices with the desired
characteristics become available integer order approxima-
tions must be used to realize fractional circuits. �ere are
many methods to create an approximation of �� which
include continued fraction expansions (CFEs) as well as
rational approximationmethods [26].�esemethods present
a large array of approximations with the accuracy and
approximated frequency band increasing as the order of
the approximation increases. Here, a CFE method [27] was
selected to model the fractional order capacitors for SPICE
simulations. Collecting eight terms of the CFE yields a 4th
order approximation of the fractional capacitor that can be
physically realized using the RC ladder network in Figure 3.

�e component values required for the 4th order approx-
imation of the fractional capacitances with values of 173.9 &F,12.6 &F, and 0.915 &F and orders 0.2, 0.5, and 0.8, respectively,
using the RC ladder network in Figure 3, shi�ed to a center
frequency of 1 kHz, are given in Table 3.

Table 3: Component values to realize 4th order approximations of
fractional capacitors with values of 173.9 &F, 12.6 &F, and 0.915 &F
and orders 0.2, 0.5, and 0.8, respectively. �e center frequency is1 kHz.

Component

Values

�2 = 173.9 &F �2 = 12.6 &F �2 = 0.915 &F
� = 0.2 � = 0.5 � = 0.8

%� (Ω) 431.8 111.2 18.4
%� (Ω) 285.2 251.7 92.8
%� (Ω) 241.4 378.7 236.2
%� (Ω) 337.2 888.9 981.6
%� (Ω) 1020.2 7369.7 53.1 k
�� (F) 53.5 n 83.7 n 301.3 n
�� (F) 375.5 n 295.6 n 585.2 n
�� (F) 1.114 & 536.5 n 635.3 n
�� (F) 2.804 & 693.7 n 273.0 n

Ra

Rb

Rc

Rd

Re

Cb

Cc

Cd

Ce

≈

1

s�C

Figure 3: RC ladder structure to realize a 4th order integer
approximation of a fractional order capacitor.
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fractional order capacitor (dashed) compared to the ideal (solid)
with capacitance of 12.6 &F and order 0.5 a�er scaling to a center
frequency of 1 kHz.

�emagnitude and phase of the ideal (solid line) and 4th
order approximated (dashed) fractional order capacitor with
capacitance 12.6 &F and order � = 0.5, shi�ed to a center
frequency of 1 kHz, are presented in Figure 4. From this 	gure
we observe that the approximation is very good over almost4 decades, from 200Hz to 70 kHz, for the magnitude and
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Figure 5: (a) Fractional Tow-�omas biquad realized using approximated fractional capacitor and (b) SPICE simulatedmagnitude responses
of (1 + �) lowpass fractional order 	lter circuits for � = 0.2, 0.5, and 0.8 using component values from Tables 2 and 3.

almost 2 decades, from 200Hz to 6 kHz, for the phase. In
these regions, the deviation of the approximation from ideal
does not exceed 1.23 dB and 0.23∘ for the magnitude and
phase, respectively.

Using the component values in Tables 2 and 3, the approx-
imated fractional Tow-�omas biquad, shown in Figure 5(a),
was simulated in LTSPICE IV using LT1037 op amps to
realize responses of order (1 + �) = 1.2, 1.5, and 1.8.
�e SPICE simulated magnitude responses (dashed lines)
compared to the ideal responses (solid lines) are shown in
Figure 5(b).

�e SPICE simulated magnitude responses show
very good agreement with the MATLAB simulated ideal
responses. �e deviations above 20 kHz can be attributed
to the approximations of the fractional order capacitors
which show signi	cant error from their ideal behaviour
above this frequency. �ese simulations verify that the
fractional Tow-�omas circuit can be used to realize the
approximated fractional Chebyshev lowpass 	lter responses
using approximated fractional order capacitors and that
the correct selection of coe�cients in the fractional order
transfer function can yield ripples in the passband of the
magnitude response.

3. Conclusion

We have proposed a new method using a nonlinear least
squares optimization to determine the coe�cients of frac-
tional order transfer functions of order (1+�), (2+�), and (3+�) that will approximate the passband ripple characteristics of
Chebyshev lowpass 	lters.�ese 	lter circuits were veri	ed in
simulation using approximated fractional order capacitors in
a Tow-�omas biquad circuit. �is work has the potential to
be applied to 	lters of any order and to also approximate the
other traditional 	lter approximations using fractional order
circuits that give a greater degree of control of the magnitude
characteristics.
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