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Abstract Numerical algorithms for the l0-norm regularized non-smooth non-convex
minimization problems have recently became a topic of great interest within signal
processing, compressive sensing, statistics, and machine learning. Nevertheless, the l0-
norm makes the problem combinatorial and generally computationally intractable. In this
paper, we construct a new surrogate function to approximate l0-norm regularization, and
subsequently make the discrete optimization problem continuous and smooth. Then we
use the well-known spectral gradient algorithm to solve the resulting smooth optimization
problem. Experiments are provided which illustrate that this method is very promising.
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1. Introduction

The focus of this paper is on the following structured minimization:

min
x∈Rn

f(x) :=
1

2
∥Ax− b∥22 + µ∥x∥0, (1.1)

where ∥x∥0 = card(x) =
∑n

i=1 1(xi ̸= 0) denotes the cardinality or the number
of nonzero components in x. The true x is often sparse in the sense that many of
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its components are zeros. The function f : Rn → R is continuously differentiable
(may be non-convex) and bounded below, and the parameter µ > 0 is used to
trade off both terms for minimization. Given its structure, problem (1.1) covers
a wide range of apparently related formulations in different scientific fields, such
as signal/image processing, compressive sensing, statistics, machine learning, and
so on.

To solve (1.1), a convex relaxation which can be solved efficiently is the so-
called l1-regularized least squares:

min
x∈Rn

f(x) :=
1

2
∥Ax− b∥22 + µ∥x∥1, (1.2)

where ∥x∥1 is the sum of the absolute values of each component in x. The
compressive sensing theory based on the fact that most signals are compressible,
was led by Candès et al. [2, 3], Donoho [7]. It has been shown that under some
reasonable conditions, problems (1.1) and (1.2) share the common solution with
high probability [6]. For this reason, numerous algorithms to solve problem (1.2)
have been proposed, analyzed, and tested in the last decade. For instance, by
using an operator splitting technique, Hale, Yin and Zhang derive the iterative
shrinkage/thresholding fixed-point continuation algorithm [11]. A closely related
method is the fixed-point continuation and active set [16, 17], which solves a
smooth subproblem to determine the magnitudes of the nonzero components of x
based on an active set. Another closely related method is the sparse reconstruction
algorithm [14], which involves minimizing a non-smooth convex problem with
separable structures.

Unlike all the methods mentioned above, in this paper, we proposed a novel
approximated function method to solve (1.1). More preciously, we construct an
approximated smooth function to replace the discrete l0-norm in (1.1) which
based on a small parameter β. We also show that the proposed smooth function
trends to the l0-norm as β → ∞. Moreover, we use the well-known spectral
gradient method to solve the resulting smooth minimization, and incorporate
a non-monotone line search technique to accelerate its convergence. Finally,
we do numerical experiments to recover a large sparse signal from its limited
measurement, which illustrate that the constructed function works well, and
furthermore indicate that the proposed algorithm is encouraging.

The rest of the paper is organized as follows. In section 2, we recall some
existing surrogate functions to the l0-norm and construct our new surrogate
function immediately. In section 3, we describe the spectral gradient method for
unconstrained optimization problem, and then list the full steps of our algorithm.
Furthermore, to illustrate the feasibility and efficiency of the proposed method, we
report the numerical experiments in section 4. Finally, the conclusion is drawn in
the last section.
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2. Motivation and Surrogate Function

This section is devoted to stating our motivations, reviewing some existing
surrogate functions to l0-norm, and constructing a new function. In the mean time,
some nice properties of the surrogate functions are also presented.

2.1. Motivation and ℓp-norm function (0 < p < 1)

Instead of the ℓ0-norm regularized problem (1.1), another very natural
improvement is to apply the ℓp-norm (0 < p < 1) regularization [10], that is, to
solve the following problem

min
x∈Rn

f(x) :=
1

2
∥Ax− b∥22 + µ∥x∥pp, , (2.1)

where ∥x∥p is the so-called ℓp quasi-norm of Rn, defined by

∥x∥p =
( n∑

i=1

|xi|p
)1/p

.

One can observe that as p ↓ 0, (2.1) approaches the ℓ0 problem (1.1). On the
other hand, as p ↑ 1, (1.2) approaches the ℓ1-norm problem (1.2). In other words,
problem (2.1) is an intermediate between (1.1) and (1.2). Nevertheless, as the
ℓp-norm regularization is nonconvex, nonsmooth, and non-Lipschitz, the use of
the standard ℓ1-norm minimization problems’ solvers are generally precluded. As
shown in [9, 4] that finding the global minimizer of (2.1) is strongly Np-hard,
but finding a local optimal solution of the problem could be done in polynomial
time, and furthermore the lower bounds for the absolute value of nonzero entries
in each local optimal solution can be established theoretically [5]. The curve of the
ℓ0-norm and the curves of ℓp-norm with different values of p are plotted in Figure
1.

It can be seen from Figure 1 that, as p decreases, the curve of ℓp-norm trends
to the one of ℓ0. Hence, it is reasonable to think that the smaller p may yield the
more sparse solutions. However, the ℓp norm is non-differentiable at original point,
which makes it is challenging to minimize. The important observation motivates
us to construct an surrogate function which is continuous and differentiable and
approximate the ℓ0-norm to produce sparse solutions.

2.2. Existing surrogate functions

First we replace the cardinality term in (1.1) with a continuous and smooth
surrogate penalty function ω(y), which makes the discrete optimization problem
become continuous and smooth. The suitable surrogate function must range from
0 to 1 with the property that w(0) = 0 and w(y) = 1 when y is away from 0. Now,
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Figure 1. Comparing curves of ℓ0-norm to ℓp-norm with p = 1/2, 1/5, and 1/100.

we recall three well-known choices of the surrogate function which are designed
in this literature.
1. Truncated lγ penalty given by

ω(β;α, γ) =

{
(|β|/α)r if|β| ≤ α
1 otherwise (2.2)

for γ > 0 and α > 0. Typically, γ = 0.5, 1, 2 can be considered. The magnitude of
a controls the sharpness of the approximation.
2. The “weight elimination” penalty (A.S. Weigend, D.E. Rmelhart, and B.A.

Huberman 1991) [15] in artificial neural network (ANN) provides another smooth
approximation ω(x) = tanh(α · |x|)γ with γ = −2. The constant α > 0 can adjust
the precision of the approximation.
3. The hyperbolic tangent penalty

ω(x) = tanh(α · |x|)γ ,

for α ≥ 0 and γ ≥ 0. When γ = 2, ω(x) is smooth. Its shape is similar to the
”weight elimination” penalty, and with a faster progression in its approximation to
l0. It can be seen that a larger α provides a sharper discrimination between 0 and
values that are close to 0.
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2.3. A new surrogate function

The suitable surrogate function should satisfy at least the following properties.
Firstly, the surrogate function should be continuous and smooth. Secondly, its
values should be ranged from 0 to 1 with the property that ω(0) = 0 and ω(y) = 1
when y is away from 0. Now, we develop the following function

ω(y) = ln
eβ|y|γ + 1

β|y|γ + 1
,

where the constants β > 0 and γ > 0 is fixed. When γ = 2, the function reduces
to

ω(y) = ln
eβy2 + 1

βy2 + 1
, (2.3)

Clearly, it is continuous and smooth, as graphically shown at the right plot in
Figure 2.

Figure 2 shows the curve of ℓ0 function and the surrogate function (2.3) with
different choices of β. As can be seen from the right plot, the curve approximates
the ℓ0 as the value of β increase. In other words, a bigger β may cause a higher
precision of its approximation. In our experiments, we show that a small β can
produce higher quality re-solutions.

3. Algorithm

In this section, based on the surrogate function as described in the previous
section, we discuss the construction of our algorithm. Before stating the steps of
our method, we first give a brief description of the well-known spectral gradient
method for the following unconstrained optimization

min
x∈Rn

f(x), (3.4)

where f : Rn → R is a continuously differentiable function. The spectral gradient
method was originated by Barzilai and Borwein [1], and its iterative form is
defined by

xk+1 = xk − αk∇f(xk), (3.5)

where ∇f(xk) is the gradient of f at xk and one of the choices of the scalar λk is
given by

λk =
∥sk−1∥22

yrk−1 · sk−1
. (3.6)
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Figure 2. Top: the plot of l0 function; Bottom: the plot of the surrogate function ω(y) in (2.3) with
β = 1, 10, 100.

where sk−1 = xk − xk−1, and yk−1 = ∇f(xk)−∇f(xk−1) . The spectral
gradient method is also named two-points method, Barziali-Borwein gradient
method, and is received much attention in past years (see e.g., [12, 13, 8].
Given an initial point x0, our algorithm generates a sequence xk by

xk+1 = xk + αkdk, k = 0, 1, 2 (3.7)
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where dk is a descent direction of f at xk, and αk is a steplength determined by a
line search. In our algorithm, the search direction currently is defined by

dk = −λk∇f(xk). (3.8)

It is easy to see that dTk∇f(xk) < 0 provided by λk > 0, which shows that dk is
a descent direction at current point. Along the search direction, in our algorithm,
the steplength αk is determined by the nonmonotone line search

f(xk + αkdk) ≤ max
0≤j≤m(k)

f(xk−j) + δαk∇f(xk)
T dk (3.9)

where δ ∈ (0, 1).
Based on the spectral gradient, we pay our attention to constructing our

algorithm. Now we replace ∥x∥0 in (1.1) with the surrogate function ω(x), then
we get the continuous and smooth function f(x) as

f(x) :=
1

2
∥Ax− b∥22 + µ

n∑
i=1

ω(xi).

It is easy to compute that the gradient at x is:

∇f(x) = AT · (Ax− b) + µ

n∑
i=1

ω′(xi),

where
w′(xi) =

2βexi(e− 1)

(βex2
i + 1)(βx2

i + 1)
.

To end this section, we list the iterative scheme of the Approximated Function
Based Spectral Gradient Algorithm (referred to AFSG) as follows:

Algorithm 3.1 (AFSG)

Initialization: Choose x0 and constant µ > 0. Constants α̃ > 0, ρ ∈ (0, 1),
δ ∈ (0, 1), h ∈ (0, 1] and positive integer m̃. Set k = 0.
Step 1. Stop if ∥dk∥2 = 0. Otherwise, continue.
Step 2. Compute dk via (3.8).
Step 3. Compute αk via (3.9).
Step 4. Let xk+1 = xk + αkdk.
Step 5. Let k = k + 1. Go to Step 1.

Remark 3.1
To ensure λk is bounded from 0 and subsequently ensures that dk is a descent
direction per-iteration, the λk is forced as

λk = min{λ(max),max{λk, λ(min)}},

where 0 < λ(min) ≪ λ(max) < +∞ are fixed scalars.
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We clearly see that our proposed algorithm is essentially the standard
spectral gradient method for smooth unconstrained minimization. Hence, it global
convergence can be followed directly in optimization literature. To end this
section, we list the convergence theorem of the proposed algorithm. Its proof can
be found in Theorem 2.1 in [13].

Theorem 3.1
Let f be continuously differently and xk be generated by algorithm AFSG, then
∇f(xk) for some k, or limk→∞ ∇f(xk) = 0.

4. Numerical experiments

In this section, we present numerical results to illustrate the feasibility and
efficiency of the proposed method. We use our method to solve l0-regularized
least squares, which mainly appear in compressive sensing. All experiments are
performed under Windows 7 and Matlab 7.11 (R2010b) running on a Lenovo
laptop with an Intel Atom CPU at 2.2 GHz and 2GB of memory.

Test on l0-regularized least squares. Let x̄ be a sparse or a nearly sparse original
signal, A ∈ Rm×n (m ≪ n) be a linear operator, ε ∈ Rm be a zero-mean Gaussian
white noise, and b ∈ Rm be an observation that satisfies the relationship

b = Ax̄+ ε.

We measure the quality of restoration x∗ through the relative error to the original
signal x̄; that is,

RelErr =
∥x∗ − x̄∥2

∥x̄∥2
.

In this test, we use a random matrix A with independent identically distributed
Gaussian entries. The ε is the additive Gaussian noise of zero mean and standard
deviation σ. Given the storage limitations of the PC, we test a small size signal
with n = 211, m = 29. The original signal contains randomly p = 26 nonzero
elements. We also choose the noise level σ = 10−3. The proposed algorithm starts
at zero point and terminates when the relative change of two successive points are
sufficiently small, i.e.,

∥xk − xk−1∥2
∥xk−1∥2

< tol.

In this experiment, we take tol = 10−4, λ(min) = 10−20, and λ(max) = 1020. In
the line search, we choose ᾱ = 1, ρ = 0.5, δ = 10−4, and m = 5. The original
signal, the limited measurement, and the reconstructed signal are given in Figure
3.

Comparing the right plot with the left one in Figure 3, we see that the original
sparse signal is restored almost completely in sense of RelErr is 0.84%. All the
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Figure 3. Top: original signal with length 4096 and 64 positive non-zero elements; Middle: the
noisy measurement with length 512; Bottom: recovered signal by AFSG (red circle) versus original
signal (blue peaks).
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blue peaks are encircled by the red circles, which illustrates that the original signal
has been found successfully. Overall, this experiment shows that the proposed
method performs very well and provides an efficient approach to the recovery of
large sparse non-negative signal.

4.1. Test on AFSG and NBBL1

In this subsection, we compare AFSG with the solver NBBL1 [18] with
respect to relative errors and running time. Parameters’ values are set just
the same to the previous. The Matlab package of NBBL1 is obtained at
URL: http://maths.henu.edu.cn/szdw/teachers/xyh.htm. We
repeatedly run each code with different combinations of (n,m, k), and record the
computing time (Time) and relative errors (RelErr) in Table I.

Table I. Test results of AFSG and NBBL1 with different combinations of (n,m, k).

AFSG NBBL1
n m k Time RelErr Time RelErr

8192 1938 256 32.4074 2.38e-2 71.2432 2.44e-2
4096 819 128 10.6549 2.35e-2 20.0149 2.24e-2
2048 409 64 2.4336 2.15e-2 5.2416 2.14e-2
1024 204 32 0.6864 1.18e-2 0.9672 2.87e-2

From table I we can see that the running time required by AFSG is less than
the one by NBBL1, which shows that AFSG is the faster. Meanwhile, the relative
errors obtained by AFSG is also smaller than the ones by NBBL1. In sum, the
performance comparisons verified that the proposed algorithm AFSG is superior
to NBBL1 in recovering a large and sparse signal.

5. Conclusions

In this paper, we proposed a new method to solve the l0-norm regularized
non-smooth non-convex minimization problems. Different from some existing
algorithms, the proposed method makes the discrete optimization problem
continuous and smooth by using an approximated function. The theoretical
guarantee of the replacement ℓ0-norm by a smooth function to yield sparse
solutions is not analyzed in this paper. However, the numerical experiments
illustrate that the approach is promising. Finally, we hope that this novel method
even its modifications can further be used in some other fields, including statistics,
machine learning, and image processing.
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