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Abstract

The problem of penalized maximum likelihood (PML) for an ex-
ploratory factor analysis (EFA) model is studied in this paper. An
EFA model is typically estimated using maximum likelihood and then
the estimated loading matrix is rotated to obtain a sparse represen-
tation. Penalized maximum likelihood simultaneously fits the EFA
model and produces a sparse loading matrix. To overcome some of
the computational drawbacks of PML, an approximation to PML is
proposed in this paper. It is further applied to an empirical dataset for
illustration. A simulation study shows that the approximation natu-
rally produces a sparse loading matrix and more accurately estimates
the factor loadings and the covariance matrix, in the sense of hav-
ing a lower mean squared error than factor rotations, under various
conditions.
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age
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1 Introduction

Exploratory factor analysis (EFA) is a multi-step method that explains the
associations among observed variables in terms of unobserved constructs
known as latent variables or factors. Maximum likelihood (ML, e.g., Jöreskog,
1967; Lawley, 1940) is commonly used to estimate the parameters of the EFA
model. The classical factor analysis model assumes that factors are orthogo-
nal, but then the estimated factor loading matrix is rotated using an oblique
or orthogonal rotation to produce a sparse or simple structure matrix. Some
commonly used rotation methods are the varimax rotation (Kaiser, 1958),
the quartimax rotation (Neuhaus & Wrigley, 1954), and the quartimin rota-
tion (Carroll, 1953). Browne (2001) provides a review on rotations for EFA.
For some recent developments, see Jennrich (2004, 2006).

It is often desirable that the rotated loading matrix is a sparse matrix
with a few large loadings and many small loadings. However, the small
loadings produced by common rotation methods are generally non-zero which
complicates the interpretation of the results. In order to produce a sparse
factor structure, researchers need to decide which loadings can be regarded
as zeros. In practice, researchers commonly discard loadings smaller than
0.3 or 0.32 (Hair, Black, Babin, & Anderson, 2010; Tabachnick & Fidell,
2001); and less often use inference tools (hypothesis testing and confidence
intervals) (G. Zhang, 2014) to decide which factor loadings are non-zero.
Both methods are useful tools for choosing an interpretable factor solution.
However, adopting a hard-thresholding approach in which loadings passing a
threshold value are considered to be significant requires a subjectively choice
of the threshold value and a minor change in the threshold value can possibly
lead to a large change in the loading matrix. The same applies to statistical
tests and confidence intervals that rely on significance levels and tend to over
reject when sample size is large. Such a large change is not embraced by Fan
and Li (2001), due to its instability in model prediction.

The main contribution of this paper is to introduce a soft-thresholding
approach for orthogonal EFA that continuously shrinks a coefficient towards
zero. As a result, if the estimated loading matrix itself consists of zero ele-
ments, the non-zero loadings can be regarded as “significant” loadings and
no subjective hard-thresholding needs to be applied. A continuous soft-
thresholding approach yields a continuous model in the parameter θ. That
is, a minor change in θ will not cause a dramatic change in model parameters
and model interpretation. As we will discuss later, the continuous thresh-
olding approach is achieved by introducing additional tuning parameters.
Consequently, the factor loading estimates are functions of the tuning pa-
rameters and can be plotted against the tuning parameters. The plot of the
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factor loadings against the tuning parameters is referred to as the solution
path. The solution path offers the opportunity to study and select among
many factor solutions. Creating the solution path is fully computational.
In general, methods such as information criteria and cross-validation can be
used to choose the optimal tuning parameter. In this way, choosing the op-
timal tuning parameter is viewed from a model selection perspective and is
data-driven. However, the most interpretable factor solution still needs to
be picked up by the researcher and cannot be automated.

Similarly to the method discussed above, variable selection aims to detect
zero regression coefficients. Tibshirani (1996) proposed the least absolute
shrinkage and selection operator (LASSO) for the linear regression model; it
simultaneously performs model estimation and variable selection. The idea
of LASSO has been generalized to other types of penalties. See Tibshirani
(2011) for a review on the variants of the LASSO. In addition to the linear
regression problem, some studies also consider penalized maximum likelihood
(PML) estimation in generalized linear models (e.g., Fan & Li, 2001; Zou,
2006) and areas outside of the regression analysis. A field that is closely
related with the current work is sparse principal component analysis (PCA).
A rotated PCA solution produces typically small but still nonzero loadings,
which makes the interpretation of the principal components difficult. Similar
to the above mentioned EFA loadings, an ad hoc but problematic way is
to hard-threshold the component loadings. Various alternative methods to
the subjective hard-thresholding have been proposed in order to produce a
sparse loading matrix. See among others Johnstone and Lu (2012), Shen
and Huang (2008), and Witten, Tibshirani, and Hastie (2009). The reader is
directed to Trendafilov (2014) for a review on sparse PCA. In particular, the
LASSO-type penalty has been applied by Zou, Hastie, and Tibshirani (2006)
and Trendafilov and Adachi (2015) to produce a sparse loading matrix.

Although penalized estimation has been extensively used and developed
in linear regression, generalized linear models, and in principal component
analysis, studies on penalized EFA are still under developed. Choi, Zou, and
Oehlert (2010) introduced a sparse EFA by incorporating a LASSO penalty in
the log-likelihood function. The same problem was also studied in Ning and
Georgiou (2011) in which a perturbed approximation is used to handle the
LASSO penalty. Hirose and Konishi (2012) proposed a variable selection pro-
cedure via weighted group LASSO. To reduce bias introduced by the LASSO,
Hirose and Yamamoto (2014, 2015) considered the minimax concave penalty
with plus algorithm (C.-H. Zhang, 2010). Recently, Trendafilov, Fontanella,
and Adachi (2017) proposed to penalize the reparametrized loading matrix.
An EM-type algorithm is proposed by Choi et al. (2010) to produce exact
solutions. However, using the EM algorithm to produce a PML estimator
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can be computationally intensive, especially when the number of observed
variables is large. To improve the computationally efficiency, we propose
an approximated penalized maximum likelihood (APML), motivated by Zou
and Li (2008), which yields approximated solutions. As we will discuss later,
APML overcomes some disadvantages of the EM-type algorithm and natu-
rally produces a sparse loading matrix.

The rest of the paper is organized as follows. First, we review PML with
the EM algorithm for orthogonal EFA. Second, APML is introduced. After
that, some practical issues are discussed, followed by an empirical example.
A simulation study is conducted to study the performance of the proposed
APML method.

2 Penalized Maximum Likelihood

Let us consider the linear factor analysis model given by

y = Λf + ε ,

where y is a p× 1 vector of observed variables, Λ is a p×m loading matrix
with the (i, j)th element λij, f is an m × 1 vector of factors, ε ∼ N (0,Ψ),
and Ψ is a p× p diagonal matrix with diagonal elements ψi for i = 1, 2, ..., p.
The common factor f is assumed to be normally distributed with mean 0
and correlation matrix Φ. Hence, y ∼ N (0,Σ) where Σ = ΛΦΛT + Ψ. If
f follows an orthogonal structure then Φ is equal to the identity matrix I.
The ML estimator minimizes the fit function given by

n

2
log |Σ (θ) |+ n

2
tr
[
SΣ (θ)−1

]
,

where θ contains all parameters in Λ and Ψ, n is the sample size, and S is
the sample covariance matrix. In the orthogonal EFA, θ is a p(m + 1) × 1
vector. Note that not all elements in θ are free parameters, due to rotational
indeterminacy. As we will explain later, PML removes such indeterminacy.
For the purpose of presentation and being consistent with PML, θ is used
for EFA without penalization.

In the current study, the PML estimator minimizes

n

2
log |Σ (θ) |+ n

2
tr
[
SΣ (θ)−1

]
+ n

p∑
i=1

m∑
j=1

P (|λij|;β,w) , (1)

where P is a scalar-valued function, β is a scalar/vector of tuning parameters,
and w is a vector of possible weights on the factor loadings. Some typical
examples of the penalty term with equal weights are
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• LASSO (Tibshirani, 1996): P (|λij|;β,w) = β|λij|, where β = β > 0;

• Smoothly clipped absolute deviation (SCAD, Fan & Li, 2001):

P (|λij|;β,w) =

|λij |∫
0

I (x ≤ β1) +
max (β1β2 − x, 0) I (x > β1)

β1β2 − β1
dx,

where β = (β1, β2) with β1 > 0 and β2 > 2;

• Minimax concave penalty with plus algorithm (MCP, C.-H. Zhang,
2010):

P (|λij|;β,w) = β1

|λij |∫
0

max

(
1− x

β1β2
, 0

)
dx,

where β = (β1, β2) > 0.

Fan and Li (2001) proposed that a good penalty term should at least satisfy
three properties: unbiasedness (the estimator should be nearly unbiased for
parameters with large values), sparsity (the estimator automatically shrinks
small estimated parameters to zero), and continuity (the estimator contin-
uous shrinks parameters to zero). Although the LASSO penalty does not
satisfy all three properties (Fan & Li, 2001), it is still widely used for its
simplicity and computationally efficiency. In contrast, the SCAD and the
MCP penalties possess the above three properties and often improve the
performance of the LASSO penalty. The price to pay is an additional tuning
parameter.

2.1 Consequences of a Penalty Term

2.1.1 Shrinkage

Inclusion of the penalty term shrinks the ML estimators λ
(MLE)
ij towards zero.

For example, PML with the LASSO penalty is equivalent to

min
θ

{n
2

log |Σ (θ) |+ n

2
tr
[
SΣ (θ)−1

]}
, s.t.

∑p
i=1

∑m
j=1 |λij|∑p

i=1

∑m
j=1 |λ

(MLE)
ij |

≤ t,

for some t > 0 (R., Presnell, & Turlach, 2000), the sum of estimated fac-
tor loadings should not be too large. For the SCAD and the MCP penalty,
the sum of nonlinear functions of the estimated factor loadings should not
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be too large. Thus, the ordinary ML fit function is minimized subject to a
constrain on the factor loadings, which makes the LASSO estimator biased.
As shown by Fan and Li (2001) and C.-H. Zhang (2010), the nonlinear func-
tions in the SCAD and the MCP penalty neutralize the bias introduced by
the LASSO penalty for the large parameters. Browne and Du Toit (1992)
proposed an automated estimation method to incorporate constraints on the
parameters. To be more specific, the constraints proposed in Browne and
Du Toit (1992) are of the type c (θ) = 0 or c (θ) > 0, where c (θ) is a con-
tinuously differentiable function and the Gauss-Newton method (see, e.g.,
Björck, 1996) is used to minimize the fit function under constraints. A fun-
damental difference between PML and the method in Browne and Du Toit
(1992) is that constraints in PML are often non-differentiable, whereas con-
strains in Browne and Du Toit (1992) are continuously differentiable. For
example, |λij| involved in the LASSO, SCAD, and MCP is not differentiable
and, consequently, the Gauss-Newton method is not applicable.

2.1.2 Sparsity

For all aforementioned penalty terms, the coefficient of a parameter θ may be
shrunk to zero. Thus, sparsity and estimation are conducted simultaneously.
Furthermore, if a column in the loading matrix consists only of zero load-
ings, no variance is explained by the corresponding factor and the number of
factors are reduced.

2.1.3 Indeterminacy

A non-differentiable penalty term removes rotation indeterminacy. Take the
LASSO penalty as an example. The PML estimator with the LASSO penalty
minimizes

n

2
log |Σ (θ) |+ n

2
tr
[
SΣ (θ)−1

]
+ nβ

p∑
i=1

m∑
j=1

|λij| . (2)

Orthogonal rotation imposes m(m−1)/2 equality constrains and keeps ΛΛT

invariant because of the quadratic terms in the cross-product. However, most
non-singular and orthogonal transformations change the value of

∑p
i=1

∑m
j=1 |λij|.

Subsequently, PML is rotation-free but still produces a sparse loading ma-
trix. However, a PML estimator is still invariant in terms of permutations
of columns and changes of the sign of the entire column.

6



2.1.4 Solution path

Fit function (1) is minimized for a fixed β. Take the fit function (2) as an
example. The PML estimator of θ, θ̂, depends on the tuning parameter β.
A larger β typically yields a smaller θ̂. Varying β potentially changes the
value of θ̂i, the ith element in θ̂, for all i. θ̂i can then be understood as θ̂i(β),
a function of β. Thus, all θ̂i can be plotted against β to reflect the change in
the values of θ̂i as we change β. Such a plot is referred to as a solution path.
As we shall illustrate in Section 5.1.2, the solution path allows us to identify
the position of zero loadings and to extract all possible loading structures
suggested by the data. Various penalty terms produce their own solution
paths. Examples of a simple linear regression model can be found in Zou
(2006).

2.2 EM Algorithm

Choi et al. (2010) proposed an EM-type algorithm to minimize Equation (2)
in the spirit of Rubin and Thayer (1982). A similar EM-type algorithm is
implemented in Hirose and Yamamoto (2014, 2015) for the MCP penalty and
oblique EFA. See also Garcia, Ibrahim, and Zhu (2010) for a more general
algorithm that incorporates missing data in regression models. The reader is
directed to the above cited works for a detailed explanation of the EM-type
algorithm.

In our experience, the EM-type has several limitations. First, the algo-
rithm is a combination of an EM algorithm and a penalized least squares
minimization problem. Hence, the solution path as a function of tuning
parameters is inefficiently constructed. In the linear regression model with
the LASSO penalty, for example, the solution path can be constructed at the
same computational cost of ordinary least squares (Efron, Hastie, Johnstone,
& Tibshirani, 2004). Second, the solution path is not necessarily smooth. For
example, Figure 1(a) depicts solution paths for some factor loadings with the
LASSO penalty using the EM algorithm. It is seen that the solution path is
not smooth where several jumps occur for large loadings.

3 Approximate PML Estimator

3.1 Penalized Least Squares

To overcome the above mentioned limitations, approximated penalized max-
imum likelihood (APML) can be efficiently deployed using the technique
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Figure 1: Solution path of some factor loadings of the EM algorithm and
the approximated penalized maximum likelihood (APML) with the LASSO
penalty.

introduced in Zou and Li (2008), which applies to a general penalized like-
lihood problem. If the ML estimator θ̂ is close to θ, the first two terms of
Equation (1) can be Taylor-expanded as

n

2
log |Σ (θ) |+ n

2
tr
[
SΣ (θ)−1

]
≈F

(
θ̂
)

+
1

2

(
θ − θ̂

)T ∂2F (θ̂)
∂θ∂θT

(
θ − θ̂

)
,

(3)

where the notation F (θ) is used to denote the left-hand side of Equation (3).
Hence, fit function (1) after replacing its first two terms by their quadratic
approximation is approximated by a penalized weighted least squares fit func-
tion

1

2

(
θ − θ̂

)T ∂2F (θ̂)
∂θ∂θT

(
θ − θ̂

)
+ n

p∑
i=1

m∑
j=1

P (|λij|;β,w) . (4)

Many efficient algorithms have been proposed for penalized ordinary least
squares. Hence, rewriting the fit function (4) as an ordinary least squares
problem can help to efficiently minimize it. Note that the Hessian matrix,
evaluated at the ML estimates θ̂, no longer involves unknown parameters. It
can be diagonalized as follows:

∂2F
(
θ̂
)

∂θ∂θT
= nP TDP ,
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where P is an orthogonal matrix and D is a diagonal matrix with non-
negative elements. Define ỹ = D1/2P θ̂ and X̃ = D1/2P . The ordinary
least squares function to be minimized is

1

2

(
ỹ − X̃θ

)T (
ỹ − X̃θ

)
+ P (|Λ|;β,w) . (5)

3.2 Algorithms

The algorithm used to minimize the fit function (5) depends on the form of
its penalty term. For commonly used penalty terms, efficient algorithms ex-
ist. For the LASSO penalty, the fit function (5) can be efficiently minimized
using least angle regression (Efron et al., 2004) or coordinate descent (Fried-
man, Hastie, Höfling, & Tibshirani, 2007; Friedman, Hastie, & Tibshirani,
2010). For the MCP penalty, the fit function (5) can be solved efficiently by
the plus algorithm (C.-H. Zhang, 2010) or by the coordinate descent algo-
rithms (Brehenv & Huang, 2011; Mazumder, Friedman, & Hastie, 2011). For
more details on the algorithms we refer the reader to the above-mentioned
references.

For other penalties without exact algorithms, Zou and Li (2008) proposed
Taylor-expanding the likelihood function and applying a local linear approx-
imation to the penalty term, in which the penalty term is approximated by

P (|λij|;β,w) ≈ P (|λij,0|;β,w) + P ′ (|λij,0|;β,w) (|λij| − |λij,0|) ,

where P ′ () is the first-order derivative of P (). Consequently, the fit function
is approximated by a weighted penalized least squares:

1

2

(
θ − θ̂

)T ∂2F (θ̂)
∂θ∂θT

(
θ − θ̂

)
+ n

p∑
i=1

m∑
j=1

P ′ (|λij,0|;β,w) |λij| ,

which can be further refined to

1

2

(
ỹ − X̃θ

)T (
ỹ − X̃θ

)
+ n

p∑
i=1

m∑
j=1

P ′ (|λij,0|;β,w) |λij| , (6)

by decomposing the Hessian matrix. For example, the SCAD penalty term
can be approximated by

P ′ (|λij,0|;β,w) |λij| = β1

[
I (|λij,0| ≤ β1) +

max (β1β2 − x, 0) I (|λij,0| > β1)

β1β2 − β1

]
|λij|

(Fan & Li, 2001). The fit function (6) is essentially the fit function of an
adaptive LASSO (Zou, 2006). The adaptive LASSO can be solved efficiently
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by the algorithm in Zou (2006) or coordinate descent. For alternatives of
Zou and Li (2008), see Fan and Li (2001) and Hunter and Li (2005) for local
quadratic approximations.

In the current study, the above mentioned coordinate descent algorithm
is used to minimize the fit functions (5) and (6), where the parameters in
θ are estimated one at a time until the change in the parameter estimates
is sufficiently small. Let X̃k and X̃−k be kth column of X̃ and X̃ ex-

cluding the kth column, respectively. After t iterations, θ
(t+1)
k is updated

conditional on θ
(t)
−k, where θk is the kth element in θ, θ

(t+1)
k is the value

of θk after t + 1 iterations, θ−k is the vector by excluding θk from θ, and

θ
(t)
−k =

(
θ
(t+1)
1 , · · · , θ(t+1)

k−1 , θ
(t)
k+1, · · · , θ

(t)
q

)
if θ is a vector of size q × 1. Fol-

lowing Mazumder et al. (2011), θ
(t+1)
k can be updated in closed forms. If

the LASSO or the SCAD penalty is used, the solution of the fit function (5)
satisfies

θ
(t+1)
k =

{
sgn

(
z(t)
) (∣∣z(t)∣∣− β1wk

X̃T
k X̃k

)
, if β1wk

X̃T
k X̃k

<
∣∣z(t)∣∣ ,

0, otherwise.

where sgn (·) returns the sign of the enclosed value,

z(t) =

(
ỹ − X̃−kθ(t)−k

)T
X̃k

X̃T
k X̃k

,

and wk = 1 if the penalty is the LASSO and

wk = I
(
|λ̂ij| ≤ β1

)
+

max (β1β2 − x, 0) I
(
|λ̂ij| > β1

)
β1β2 − β1

if the penalty is the SCAD. If the MCP penalty is used, the solution of the
fit function (5) is

θ
(t+1)
k =


sgn

(
z(t)
)( |z(t)|− β1

X̃T
k

X̃k

1−1/β2

)
, if β1

X̃T
k X̃k

<
∣∣z(t)∣∣ < β1β2

X̃T
k X̃k

,

z(t), if
∣∣z(t)∣∣ ≥ β1β2

X̃T
k X̃k

,

0, otherwise.

At the t + 1th iteration, all parameters are cycled through, one at a time,
such that θ(t) is updated to θ(t+1). As suggested by Mazumder et al. (2011),
we start with the largest β1 and gradually decrease the β1 value. By doing
so, the solution with a larger β1 is used as the starting value for a smaller β1.

10



Compared to the solution path produced by the EM algorithm, the so-
lution path of APML with the LASSO penalty is piecewise linear and no
jumps appear in it (Figure 1b).

4 Practical Considerations

4.1 Tuning Parameters

The tuning parameter β is critical in penalization. A larger tuning parameter
typically produces a sparser loading matrix and a larger bias, whereas a
smaller tuning parameter yields a denser loading matrix and a lower bias.
The effect of the tuning parameter is studied in Section 5.1. A grid search
can be implemented to select the tuning parameter β. If β is a scalar β, as
in the LASSO penalty, then a large number of β’s, say 100 or 200, is selected.
If β is a vector β = (β1, β2) as in the MCP penalty, then a small number
of β2’s is selected and, for every β2, a large number of β1s is selected. The
optimal tuning parameter can be selected via AIC or BIC. Based on Zou,
Hastie, and Tibshirani (2007), Hirose and Yamamoto (2015) introduced the
AIC and BIC type criteria

AIC = −2
{
−n

2

[
log |Σ(θ̂)|+ tr

(
Σ(θ̂)−1S

)]}
+ 2 (d+ p) ,

BIC = −2
{
−n

2

[
log |Σ(θ̂)|+ tr

(
Σ(θ̂)−1S

)]}
+ (log n) (d+ p) ,

where d is the number of degrees of freedom. An alternative measure is
the mean squared error (MSE) computed using the raw covariance residuals
given by

MSE =
∑
i

∑
j

(σ̂ij − sij)2 ,

where σ̂ij is the (i, j)th element of Σ(θ̂) and sij is the (i, j)th element of the
sample covariance matrix. The tuning parameter with the smallest MSE is
selected. Finally, following Choi et al. (2010), the chosen tuning parameter
minimizes the Kullback-Leibler (K-L) divergence

KL =
1

2
log |Σ

(
θ̂
)
|+ 1

2
tr

[
SΣ

(
θ̂
)−1]

− 1

2
log |S| − p

2
.

The selection methods discussed above rely on a numerical criterion and
therefore are analytical methods and fully data-driven. The tuning parame-
ter controls the sparsity of the loading matrix. A larger β generally shrinks
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the factor loadings more and leads to more zero loadings. However, an analyt-
ical selection method is not guaranteed to produce an interpretable solution.
Furthermore, researchers often want to incorporate their prior knowledge
into the analysis. Simply relying on the analytical selection criteria may fail
to meet such a need. In this case, a non-analytical subjective selection can
be based on the solution path. An entire solution path contains different
loading matrices produced by APML, from a more dense to a more sparse
model. Since the proposed method produces all loading structures from the
sequence of β, it is possible to extract all unique loadings structures. The
loading structure with the best interpretability can then be selected sub-
jectively. If the estimates of the factor loadings are also of interest, the
LARS-OLS hybrid (Efron et al., 2004) or the relaxed LASSO (Meinshausen,
2007) may be used to reduce the bias created by penalization based on the
selected loading structure.

Further, EFA is often applied to large data sets with large loadings ma-
trices. The routinely used estimation-rotation approach is likely to produce
small loadings, regardless whether rotation is done towards a target struc-
ture. The most convenient way is perhaps to rely on hypotheses tests or
confidence intervals. However, inferential tools are not flawless as the choice
of the significance level may yield a dramatic change in the loading matrix.
In such a case, APML serves as an alternative either in a data-driven or in
a subjective way. In the data-driven manner, the optimal tuning parame-
ter can be selected by the analytical criteria. In the subjective manner, the
unique loading structures are much fewer than 200 even though 200 tuning
parameters are examined, which makes APML still user-friendly. The most
interpretable loading structure can be chosen from the extracted unique load-
ing structures.

4.2 Starting Point of the Solution Path

The ML estimator θ̂ in Equation (3) is not uniquely defined because of
rotation indeterminacy. Hence, different choices of θ̂ yield different ỹ and X̃,
and further influence the solution path. A natural starting point would be the
ML estimator after some commonly used rotation. Starting from a rotated
solution can be understood as the APML continuously shrinking non-zero
loadings to zero loadings without setting a cut-off value. Thus, the proposed
approach is similar to a three-stage approach. In the first two stages, the
factor loadings are estimated and then rotated similarly to the classical EFA
and then the zero loadings are determined in the third stage using APML.
The APML stage refines the classical ML estimates and determines the zero
loading positions without the use of a hard-thresholding. It should be noted
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that model fit after penalization does not remain the same, which makes the
proposed method different from the classical factor analysis approach.

4.3 Correlation Structure

So far we have focused on analyzing the covariance matrix. However, it
is straightforward to apply APML to a correlation matrix. Factorizing a
correlation matrix is essentially the same as factorizing a covariance with S
replaced by the correlation matrix R. In the case of a covariance matrix,
error variances are also contained in θ but not penalized. In the case of
a correlation matrix, θ contains only unknown elements in Λ. The EM
algorithms for PML in Choi et al. (2010) and Hirose and Yamamoto (2014,
2015) are applicable to the covariance matrix.

Two possible approaches emerge when factorizing a covariance matrix:
(1) factorize the covariance matrix directly and (2) factorize the correlation
matrix, select the optimal tuning parameter, and then rescale the results
back to the covariance structure using the estimated sample variances. The
ML factor analysis enjoys the invariant property, in the sense that factoriz-
ing a covariance matrix is essentially equivalent to factorizing a correlation
matrix except the scale. However, APML factor analysis no longer keeps
the invariant property. If a covariance matrix is directly factorized, θ con-
tains the factor loadings and the error variances. The covariance matrix is
decomposed to ΛΛT + Ψ. Λ is penalized but Ψ is freely estimated. Pe-
nalized factor loadings and unpenalized error variances lead to a penalized
estimator of the variance of every observed variable. That is, the variance
estimator λ̂Ti λ̂i+ ψ̂i is not guaranteed to be the same as the sample variance,
where λi is the ith row of the loading matrix. Consequently, the diagonal

elements of Σ
(
θ̂
)

do not need to be the same as the diagonal elements of

S due to penalization. In contrast, if a correlation matrix is factorized, Σ is
decomposed into ΛΛT + I − diag

(
ΛΛT

)
, where I is an identity matrix and

diag () denotes the diagonal matrix whose diagonal elements are those of the
enclosed matrix. Since the diagonal elements of the estimated correlation
matrix need to be 1, the error variances cannot be freely estimated. Rather,
they are determined by 1 − λ̂Ti λ̂i to maintain the correlation scale. Thus,
the variance estimator of the second approach is the same as the variance
estimator of the ML factor analysis. Because of the difference in treating the
variance components, the above two approaches may produce solutions with
different number of zero loadings and parameter estimates.
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5 Empirical Example

In this section, APML is applied to a subset of the classic Holzinger and
Swineford (1939) dataset. This dataset has been widely used in, for exam-
ple, Browne (2001), Du Toit, Du Toit, and Hawkins (2001), and Jöreskog
and Sörbom (1993). Browne (2001) conducted EFA to the full dataset and
Du Toit et al. (2001) conducted EFA to a subset. Following Du Toit et al.
(2001) and Jöreskog and Sörbom (1993), a subset that consists of nine psy-
chological tests of 145 students from Grant-White School is used here. Tests
included in the study are visual perception (VIS PERC), cubes (CUBE),
lozenges (LOZENGE), paragraph comprehension (PAR), sentence comple-
tion (SEN), word meaning (WORD), speeded addition (ADD), speeded count-
ing of dots (COUNT), and speeded discrimination between straight and
curved capitals (S-C CAPS). In the present study, we focus on orthogonal
EFA.

For the APML the following penalty terms will be used: (1) LASSO,
(2) SCAD, and (3) MCP. The SCAD is approximated using local linear
approximation and therefore is an adaptive LASSO (Zou, 2006) with weights
depending on the starting points and the tuning parameters. For all the
penalty terms, 200 values of β or β1 are used. For the SCAD penalty, β2 = 3.7
is used as recommended in Fan and Li (2001). For the MCP penalty, β2 is
set to 1.1, 2, 5, 10, and 50. For every penalty term, the analytical selection
methods used are (1) AIC, (2) BIC, (3) MSE and (4) KL. The number of
factors is three in the current study.

5.1 Covariance Structure

5.1.1 Analytical selection

We first fit a model with the varimax rotation. The first panel in Table 1 re-
ports the nonzero loadings from the varimax rotation hard-thresholded with
a cut-off value of the standardized loadings of 0.3. Here, hard-thresholding
refers to setting all |λ̂ij| < 0.3 to zero, where λ̂ij is the standardized factor
loading estimate. The varimax solution without hard-thresholding is used as
the starting point for APML. The left panel of Table 2 shows the number of
zero loadings identified by analytical selection methods when the covariance
matrix is analyzed. As shown in Table 2, the MCP tends to yield a sparser
model than the other penalties. However, all penalty terms produce fewer
zeros than the varimax solution with hard-thresholding. In the second panel
in Table 1 we report the nonzero loadings by the MCP with BIC for illustra-
tion. Jöreskog and Sörbom (1993) fitted a confirmatory factor model to this
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dataset with the nonzero factor loading positions similar to the first panel
in Table 1) and all factors allowed to be correlated. The three factors were
labeled as “Visual Perception”, “Verbal Ability”, and “Speed” (Jöreskog &
Sörbom, 1993). The varimax solution suggests the same loading structure
but with orthogonal factors. The structure suggested by the MCP solution
with BIC allows for cross loadings to account for the correlations among fac-
tors. It is easy to notice that many nonzero loadings above the threshold
value 0.3 in the MCP solution are shrunk to zero in the hard-thresholded
varimax solution.

We also performed the APML using the geomin orthogonal rotation
(Bernaards & Jennrich, 2005). The loading matrix after hard-thresholding
standardized loadings smaller than 0.3 is reported in the third panel of Table
1. The geomin rotation suggests a different loading structure from the vari-
max rotation. The first factor appears to be a general factor. If the geomin
solution without hard-thresholding is used as the starting point of APML, it
may produce loading structures of different sparsity (Table 2). The loading
matrix produced by the MCP penalty with BIC is shown in the fourth panel
of Table 1. The results shown in the second and the fourth panels of Table
1 produced a general factor, but the solution in the second panel found in
addition to the general factor, a factor closely related to the observed indi-
cators of “Visual Perception” whereas the solution in the fourth panel found
a factor closely related to the indicators of “Verbal Ability”.

5.1.2 Solution path based selection

One advantage of PML and APML is the solution path that contains all
loading structures suggested by the data. Thus, the covariance matrix is
analyzed 200 times corresponding to the 200 values of β. Consequently,
200 estimates arise for every factor loading. As mentioned previously, the
solution path is referred to the plot of the 200 estimates for each factor
loading against the 200 β values. Figures 2(a) and (c) give the solution path
of the LASSO for the nine factor loadings plotted together when the varimax
and the geomin rotations are used as starting points respectively. As we can
see from these figures, the estimated factor loadings tend to zero and more
factor loadings are estimated as zeros as β increases. The loading structure
suggested by the LASSO at any value of the tuning parameter β can be
extracted from Figures 2(a) and (c). For example, from Figure 2(a) and at
the value of β = 0.5, there are ten non-zero factor loadings. If we decrease
β, the path from f1 to “ADD” (magenta and solid) is added to the model
first. If we increase β instead, the path from f1 to “CUBE” (grey and solid)
will be removed. The solution path when a geomin rotation is used is given
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Table 2: Number of zero factor loadings, APML on the covariance/correlation
matrix under combinations of penalty terms and analytical selection methods
for the Holzinger and Swineford (1939) dataset.

Covariance Correlation
Penalty Rotation AIC BIC MSE KL AIC BIC MSE KL
LASSO Varimax 4 7 3 3 7 9 7 7

Geomin 5 7 3 3 6 10 6 6
SCAD Varimax 4 7 3 3 5 8 3 3

Geomin 6 7 3 3 7 10 3 3
MCP Varimax 10 10 3 3 10 10 8 8

Geomin 11 11 3 3 11 11 7 8
- Varimax 17
- Geomin 13

in Figure 2(c) and it is similar to that from a varimax rotation.
By scanning through all the 200 β values, 200 loading matrices suggested

by the LASSO can be extracted. However, the unique patterns of the loading
matrices in this example is only 26, if the rotation is the Varimax, which is
far less than 200. For example, all β values between 0.4 and 0.5 produce
the same loading structure, although the values of the nonzero loadings are
different. Further, all unique patterns can be automatically extracted from
the entire solution path. The loading structure with the best interpretability
can then be chosen.

5.2 Correlation Structure

5.2.1 Analytical selection

The right panel of Table 2 presents the number of zero loadings identified
by analytical selection methods if the correlation matrix is factorized and
penalized instead. Similar to the case where a covariance matrix is factorized,
the MCP tends to yield a sparser model than the other two penalties. It
is also seen that factorizing a correlation matrix often produces a different
loading structure than when factorizing a covariance matrix.

5.2.2 Solution path based selection

The solution paths of the LASSO are given in Figures 2(b) and (d) when the
varimax and the geomin rotations are used as starting points respectively.
It is seen that the solution paths are different from the ones based on the
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(d) Geomin with correlation structure

Figure 2: The LASSO solution path of factor loadings of the Holzinger and
Swineford (1939) dataset. The solid, dashed, and dot-dashed lines are the
indicators of f1, f2, and f3, respectively. The black, grey, blue, cyan, green,
orange, magenta, red, and pinks lines correspond to visual perception (VIS
PERC), cubes (CUBE), lozenges (LOZENGE), paragraph comprehension
(PAR), sentence completion (SEN), word meaning (WORD), speeded addi-
tion (ADD), speeded counting of dots (COUNT), and speeded discrimination
straight and curved capitals (S-C CAPS), respectively.
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covariance matrix, especially the sequence of zero loadings.

6 Simulation Study

In this section, a simulation study is conducted to study the performance
of APML and shed some light on the choice of penalty terms and selection
criteria. The APML solution is compared with the PML solution and the
commonly used rotation methods such as the varimax, the geomin, and their
pairwise rotation solutions. For the rotation methods, standardized loadings
less than 0.3 in absolute value are considered zero. For factor rotations see
Jennrich (2007) and the references therein. The main purpose of the simu-
lation is to illustrate that the proposed method produces reasonable factor
solutions, rather than showing that it uniformly dominates the traditional
approach.

6.1 Simulation Design

Two EFA models are considered in the simulation, one without cross loadings
and one with a cross loading.

6.1.1 Model 1

An EFA model with nine indicators and three factors is considered, where

Λ1 =

 0.8 0.8 0.8
0.8 0.8 0.8

0.8 0.8 0.8

T

.

The matrix Ψ1 is set such that Λ1Λ
T
1 +Ψ1 is a correlation matrix. In the case

of factorizing a covariance structure, the correlation matrix is scaled to a co-
variance matrix with diagonal elements (3.50, 3.51, 4.90, 3.98, 3.81, 3.87, 4.66, 3.29, 3.39).
A factor rotation is expected to recover the perfect simple structure.

6.1.2 Model 2

Model 2 also has nine indicators and three factors where

Λ2 =

 0.8 0.8 0.8 0.3
0.8 0.8 0.8

0.8 0.8 0.8

T

.
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The matrix Ψ2 is set such that Λ2Λ
T
2 + Ψ2 is a correlation matrix. In the

case of factorizing a covariance structure the correlation matrix is scaled to a
covariance matrix with the same diagonal elements as Model 1. The rotation
solutions hard-thresholded at 0.3 are expected to mistakenly shrink the cross
loading from 0.3 to zero.

6.2 Simulation Specifics

Normally distributed data were simulated from a three-factor model with
nine observed variables. Sample sizes n = 100 and 200, which are commonly
encountered in empirical studies, are used. For each simulation condition we
generated 1000 data sets. APML used the unpenalized ML solution, with
varimax or geomin rotation employed as the starting point, which avoided
inadmissible solutions.

The methods compared here can produce four types of outcomes: (1)
truly zero loadings are correctly identified as zero; (2) truly zero loadings
are falsely identified as non-zero; (3) truly non-zero loadings are correctly
identified as non-zero; and (4) truly non-zero loadings are falsely identified
as zero. A good method is expected to produce a good deal of first and third
outcomes and yield none or few of the fourth outcome.

The statistics to be reported are: the empirical percentage recovery of
the correct loading structure,

1

R

R∑
i=1

I(the loading structure is correctly recovered at ith replication) ,

the empirical percentage of correctly identifying a truly zero loading as zero

1

R

R∑
i=1

number of correctly identified zeros at ith replication

number of zero elements in the true loading matrix
,

and the empirical percentage of falsely identifying a truly non-zero loading
as zero

1

R

R∑
i=1

number of falsely identified zeros at ith replication

number of non-zero elements in the true loading matrix
,

where R is the number of admissible replications.
Since a sparse loading matrix may be biased the average mean squared

error (AMSE) is used to compare APML with PML under different penalty
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terms and analytical selection criteria. The AMSE is defined as

AMSE =
1

R

R∑
i=1

1

q

q∑
j=1

(
θ̂
(i)
j − θj

)2
,

where q is the number of parameters and θ̂
(i)
j is the estimate of θj at the

ith replication. The AMSE of factor loadings and the covariance (or correla-
tion) matrix Σ are computed. For the comparison with the standard factor
rotations solutions with and without hard-thresholding are considered. The
cut-off value of 0.3 is applied for the rotated solutions with hard-thresholding.

6.3 Penalty Terms Included in the Study

Three penalty terms are considered in the simulation study (LASSO, SCAD,
and MCP). For all penalty terms, the varimax and geomin solution were used
as starting points. The SCAD is approximated using local linear approxima-
tion. For all penalty terms, 200 values of β1 (or β if there is only one tuning
parameter) are used. For the SCAD, β2 is set to 3.7, as recommended by Fan
and Li (2001). For the MCP, five values of β2 are used: 1.1, 2, 5, 10, and 50.
Note that the same settings are applied in the above empirical example. The
β1 values are chosen such that the models suggested by PML and APML
may have less than three factors and less than nine indicators (some of the
items might have zero loadings on all factors).

For each penalty term, different analytical selection criteria are applied. If
a covariance matrix is directly factorized, AIC, BIC, MSE, and KL are used to
select the tuning parameters. As mentioned previously, an alternative is, for
example, to construct the solution path for the correlation matrix, use AIC to
select the tuning parameter, extract the estimates from the solution path, and
rescale the extracted estimates to the covariance scale. The above approach
is referred to as AICR in the present study, which stands for AIC followed by
rescaling. Likewise, we can introduce the acronyms BICR, MSER, and KLR.
Thus, eight selection criteria will be used for a covariance matrix, namely,
AIC, BIC, MSE, KL, AICR, BICR, MSER, and KLR. If a correlation matrix
is factorized, four analytical criteria are used (AIC, BIC, MSE, and KL).
In the case of factorizing a covariance matrix with rescaling, the optimal
tuning parameter is chosen from a correlation structure. Hence, factorizing
a correlation matrix produces the same loading structure as factorizing a
covariance matrix but a different AMSE.
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6.4 Simulation Results

Due to space limitation, only selected results are discussed here. More results
can be found in the supplementary materials. In particular, BIC and BICR
outperform the other selection criteria in the sense of greater sparsity and
lower AMSE. Therefore, attention is mostly paid to BIC and BICR, unless
otherwise stated. The syntax is based on the R package Rcpp (Eddelbuettel,
2013; Eddelbuettel & François, 2011) and will be made public in the future.

6.4.1 Sparsity of factorizing a covariance matrix

The percentages of recovering the correct loading structure are given in Table
3. APML starting from varimax and geomin produces a similar pattern, so
only the results with varimax rotation as the starting point are included in
Table 3. The two loading structures studied show some similarities. Columns
4 and 6 of Table 3 show the results when the covariance matrix is directly
factorized. If the penalty term is the LASSO or the MCP then PML and
APML produce a similar recovery percentage. However, the LASSO rarely
recovers the correct loading structure. If the penalty term is the SCAD,
PML achieves a higher percentage recovery than APML. Columns 5-7 give
the results when the correlation matrix is factorized and rescaled to the
covariance scale. For APML, the percentage recovery is higher for all penalty
terms but for PML this is not always true. The two loading structures also
show some discrepancies. The standard rotations with hard-thresholding at
0.3 work satisfactorily and outperform all the APML solutions when Λ = Λ1

but this is not the case for Λ = Λ2. For example, under the geomin rotation
and for n = 200, the percentage recovery is 40.20%, whereas for APML with
the MCP penalty and BICR the corresponding number is 79.50% (Table 3).

Table 4 shows that all the penalty terms have a high percentage of iden-
tifying a truly zero factor loading as zero. The corresponding percentages
for the standard rotation methods with hard-thresholding at 0.3 are close to
100%. However, the falsely zero recovery rate is found to be higher for the
standard rotation methods than for the PML and APML when Λ = Λ2 (Ta-
ble 5). This is mostly due to the small cross loading in Λ2. When Λ = Λ1,
all methods produce a zero falsely zero recovery rate. Therefore, PML and
APML tend to overfit the model by including more non-zero factor load-
ings than the true data generation process. However, results in Hirose and
Yamamoto (2015) do not suggest that over-fitting tendency.

As mentioned previously, the solution path which is a function of the
tuning parameter contains all the possible path diagrams. Although the an-
alytical selection fails to distinguish the correct loading structure, the correct
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Table 3: Percentage of recovering the correct loading structure, covariance
matrix is factorized. APML uses the varimax rotation as a starting point.

Λ = Λ1 Λ = Λ2

n Penalty Method BIC BICR BIC BICR
100 LASSO PML 2.40 0.00 1.40 0.00

APML 0.70 46.70 0.30 36.40
SCAD PML 77.50 32.40 60.30 24.40

APML 0.50 69.00 0.20 52.60
MCP PML 56.90 62.60 55.50 50.80

APML 50.20 80.60 49.50 56.00
- Varimax 99.90 25.00
- Geomin 99.50 41.60

200 LASSO PML 3.60 0.00 3.30 0.00
APML 1.50 58.10 0.70 47.30

SCAD PML 86.90 78.30 81.10 54.00
APML 1.40 87.10 1.00 75.10

MCP PML 70.90 82.50 72.50 73.20
APML 66.30 91.70 68.10 79.50

- Varimax 100.00 17.40
- Geomin 100.00 40.20

Note: APML with different starting points produce similar results. The
rotations do not rely on the selection criterion. The pairwise rotation with
varimax or geomin as the analytical criterion produces similar results to the
varimax or geomin rotation, respectively.

loading structure may still be contained in the solution path. Table 6 shows
that both PML and APML have high rates of producing the correct loading
structure at some step in the solution path for both Λ = Λ1 and Λ2. Rescal-
ing generally produces a similar result to factorizing a covariance matrix in
this regard. Thus, the selection of the tuning parameter is crucial in finding
the correct loading structure.

6.4.2 Sparsity of factorizing a correlation matrix

If a correlation matrix is factorized, the percentage recovery of the correct
loading structure using BIC is the same when using BICR and factorizing a
covariance matrix. Hence, Tables 3, 4, 5, and 6 already reveal the sparsity
of factorizing a correlation matrix. Thus, conclusions are not restated here.
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Table 4: Percentage of correctly setting a truly zero factor loading as zero in
the estimated loading matrix, covariance matrix is factorized. APML using
varimax rotation as the starting point.

Λ = Λ1 Λ = Λ2

n Penalty Method BIC BICR BIC BICR
100 LASSO PML 71.06 29.39 68.42 27.70

APML 63.35 94.73 60.51 92.88
SCAD PML 98.18 93.01 97.00 90.92

APML 63.07 97.44 61.55 96.14
MCP PML 96.81 96.64 96.56 94.82

APML 95.90 98.20 95.75 96.29
- Varimax 99.99 99.99
- Geomin 99.97 99.94

200 LASSO PML 74.52 30.28 72.47 29.07
APML 68.88 96.29 65.79 94.52

SCAD PML 99.07 98.59 98.54 95.79
APML 68.56 99.13 66.94 98.12

MCP PML 98.11 98.68 98.07 97.27
APML 97.72 99.41 97.72 98.36

- Varimax 100.00 100.00
- Geomin 100.00 100.00

Note: APML with different starting points produce similar results. The
rotations do not rely on the selection criterion. The pairwise rotation with
varimax or geomin as the analytical criterion produces similar results to the
varimax or geomin rotation, respectively.

6.4.3 Estimation accuracy of factorizing a covariance matrix

Similar conclusions can be drawn from n = 100 and n = 200. Thus, only
the AMSE for the factor loadings and the covariance matrix when n = 100
are shown in Table 7. The AMSE of factor loading and AMSE of covariance
matrix share similar patterns. Rows 7, 8, 15, and 16 show that different
rotations tend to produce a similar AMSE when Λ = Λ1, but different
AMSE values when Λ = Λ2. Nevertheless, APML starting from different
rotations often yields a similar AMSE. Columns 3, 4, 7, and 8 show that,
when the covariance matrix is directly factorized, PML and APML produce a
similar AMSE if the penalty term is the LASSO or MCP, but PML produces
a lower AMSE than APML if the penalty term is the SCAD. When rescaling
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Table 5: Percentage of falsely setting a nonzero factor loading as zero, co-
variance matrix is factorized and Λ = Λ2. APML uses the marimax rotation
as the starting point.

n = 100 n = 200
Penalty Method BIC BICR BIC BICR
LASSO PML 0.04 0.03 0.00 0.00

APML 0.04 0.42 0.00 0.00
SCAD PML 0.71 0.19 0.02 0.00

APML 0.02 0.70 0.00 0.02
MCP PML 0.60 0.49 0.05 0.04

APML 0.41 0.74 0.04 0.01
- Varimax 7.50 8.26
- Geomin 5.83 5.98

Note: APML with different starting points produces similar results. The
rotations do not rely on the selection criterion. The pairwise rotation with
varimax or geomin as the analytical criterion produces similar results to the
varimax or geomin rotation, respectively.

is employed, APML tends to produce a lower AMSE than PML for LASSO
but PML and APML often produce a similar AMSE for SCAD and MCP
(Columns 5, 6, 9, and 10 of Table 7). Compared to the rotated solutions,
both PML and APML produce a higher AMSE than the rotations with hard-
thresholding when Λ = Λ1, but a proper choice of the penalty term and
the analytical selection method produces a lower AMSE than the rotations
without hard-thresholding. When Λ = Λ2, PML with the SCAD penalty,
PML with the MCP penalty, and APML with BICR tend to produce a lower
AMSE than the rotations, regardless of hard-thresholding.

For both loading structures, rescaling does not have a strong effect for
PML with the SCAD penalty, PML with the MCP penalty, and APML with
the MCP penalty. In contrast, rescaling tends to produce a lower AMSE than
non-rescaling for LASSO. Considering all combinations of the penalty term,
numerical algorithm, and analytical selection criterion, PML with SCAD and
BIC or BICR, PML with MCP and BIC or BICR, and APML with MCP and
BIC or BICR often produce a similar AMSE that is lower than the AMSE
value produced by the other combinations (including those selection criteria
that are not presented here).
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Table 6: Percentage of containing the correct loading structure in the solution
path. APML uses the varimax rotation as starting point.

Λ = Λ1 Λ = Λ2

n Method LASSO SCAD MCP LASSO SCAD MCP
Factorizing a covariance matrix

100 PML 90.60 100.00 100.00 86.30 93.30 96.40
APML 100.00 98.70 100.00 93.30 89.80 95.80

200 PML 99.90 100.00 100.00 99.50 99.50 99.90
APML 100.00 100.00 100.00 99.60 99.10 99.90

Factorizing a correlation matrix
100 PML 95.40 100.00 99.20 85.60 92.30 93.60

APML 100.00 100.00 100.00 91.40 90.20 92.40
200 PML 100.00 100.00 100.00 99.10 99.60 99.60

APML 100.00 100.00 100.00 99.40 99.50 99.50

Note: APML with different starting points produces similar results.

6.4.4 Estimation accuracy of factorizing a correlation matrix

Similar conclusions can be drawn from n = 100 and n = 200. Thus, Table
8 only shows the AMSE of factor loadings and the AMSE of the correlation
matrix when n = 100 and when the correlation matrix is factorized. Similar
conclusions can be drawn regarding the AMSE of factor loading and AMSE
of correlation matrix. If the penalty term is the LASSO, APML generally
produces a lower AMSE than PML. For the SCAD, PML tends to produces
a slightly lower AMSE than APML, whereas, for the MCP, PML tends to
produces a slightly higher AMSE than APML.

For the SCAD and MCP, PML and APML always yield a lower AMSE
than the rotations without hard-thresholding across all loading structures.
Compared to the rotations with hard-thresholding, PML and APML gener-
ally produce a lower AMSE if Λ = Λ2, except PML with LASSO. If Λ = Λ1,
PML and APML always produce a higher AMSE than the rotations with
hard-thresholding. Across all combinations of the penalty term, numerical
algorithm, and selection criterion, the SCAD with BIC and MCP with BIC
are generally preferred to the other combinations (including those selection
criteria that are not presented here), no matter whether PML or APML is
used.
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6.4.5 Elapsed time

The computational efficiency of PML and APML is compared. As an illus-
tration, the median elapsed time of PML for one replication with 200 tuning
parameter is 0.34 seconds when the penalty term is the LASSO, Λ = Λ1,
n = 100, and a covariance matrix is directly factorized. In contrast, the
median elapsed time of APML for one replication is 0.03 seconds under the
same condition. See Figure 8 in the supplementary material for the elapsed
time of other settings.

7 Discussion

In this paper, an approximation method for PML is introduced to conduct
EFA. Penalization naturally produces a sparse loading matrix by choosing an
appropriate penalty term. The shrinkage process is continuous and therefore
no subjective decision has to be made on the cut-off values. Hence, small
loadings in the estimation-rotation procedure are well avoided. As an ap-
proximation to PML, APML inherits the sparsity of PML and constructs
a solution path more efficiently. Our simulation results also suggest that
APML may produce a higher percentage of recovery of the correct loading
structure than PML with proper penalty terms and selection criteria.

In the simulation study APML with analytical selection criteria shows a
lower percentage recovery of the true loading structure and a lower percent-
age of false recovery of a non-zero loading as zero but a higher percentage
recovery of the truly zero loadings. Although analytical selection criteria
do not always recover the loading structure, the correct loading matrix is
frequently contained in the solution path of the APML. The entire solution
path of APML contains the trajectory of all loadings as a function of the
tuning parameter. All the loading structures identified by PML or APML
can be seen from the solution path. A subjective choice of the optimal tun-
ing parameter is made by looking at the number of non-zero loadings and
the interpretability of the retrieved loading matrix. Model selection based
on the solution path has been demonstrated using a subset of the Holzinger
and Swineford (1939) dataset. Similarly to varying the value of the tun-
ing parameter, it is also possible to vary the cut-off value of 0.3 to produce
a solution path of loadings. Consequently, sparsity of the loading matrix
varies for different choices of the cut-off value and the model with a good
interpretability may be preferred. Alternatively, inference tools (hypothesis
testing and confidence intervals) can be used to select statistically signifi-
cant loadings. However, truncating loadings that are less than a prefixed
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value and statistical testing are both hard-threshold methods leading to a
discontinuous loading selection procedure.

In addition, our simulation results show that both the PML and APML
estimators frequently produce a lower AMSE than the rotation solutions
without hard-thresholding for factor loadings and the covariance/correlation
matrix. APML often produces a similar AMSE to PML and even outper-
forms PML sometimes. In the case of factorizing a covariance matrix, rescal-
ing helps to improve the estimation accuracy of the LASSO. The correlation
scale restricts all factor loadings on the same scale, whereas the factor load-
ings are less bounded in the covariance scale and the larger factor loadings
are suspected to dominate the small ones. Thus, it is a good choice to work
with a correlation matrix even though a covariance matrix is available. If the
covariance scale is preferred, the APML estimator from the correlation anal-
ysis can be rescaled back to the estimator corresponding to the covariance
matrix. Considering all the combinations of the penalty terms and analytical
selection criteria, the MCP with BIC for a correlation matrix is often a rea-
sonable choice for loading structure recovery and accurate estimation. If a
covariance matrix is directly factorized, the SCAD with BIC is a reasonable
choice. The above discussion reflects the fact that penalizing a covariance
matrix is radically different from penalizing a correlation matrix. Thus, it
is important to choose the scale before the analysis. Further, APML with
the varimax rotation is likely to produce a different solution to APML with
the geomin rotation. This reflects the different natures of factor rotation
methods. Different rotations are performed to meet different criteria. The
non-differentiable penalty terms make the APML solutions not equivalent.
Hence, APML should be interpreted as the continuous thresholding condi-
tional on the rotation method. The researchers therefore need to carefully
choose the rotation method as if they were conducting the traditional EFA.

EFA involves two major decisions mainly selecting the number of factors
and the rotation method. The current study focuses on the latter. The
number of factors is not fixed but the maximum number of factors is fixed to
be the true number in the current study. This reflects that PML and APML
can be used to select the number of factors. Since PML and APML produce
zero loadings, they are able to shrink the entire column of loadings to zero and
the number of non-zero columns is the number of factors retained. Hence,
we can start from the maximum number of factors (as long as the model is
identified) and then fit the model using PML or APML. The retained sparse
loading matrix indicates both the number of factors and the important links
suggested by the penalty term. Selecting the number of factors using PML or
APML is a non-eigenvalue-based approach and can be viewed from a model
selection perspective. It will be investigated in a future project.
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Equation (4) indicates that the APML estimator relies on the properties
of the ML estimator. The effect of choosing a different starting point can
also be seen from the empirical example. The solution path starts from
the ML estimator and shrinks some of the “unimportant” loadings to zero.
Hence, further studies are needed to provide guidelines for selecting a suitable
starting point. The present study focuses on the orthogonal EFA. It is natural
to extend APML to an oblique EFA and that will be investigated in the
future. Moreover, since APML naturally factorizes a correlation matrix, it
can be also applied to ordinal data using a polychoric correlation matrix. It
deserves a future study to investigate the performance of APML with ordinal
data.
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Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation mod-
eling with the SIMPLIS command language. Linconwood, IL: Scientific
Software International.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor
analysis. Psychometrika, 23 , 187-240.

Lawley, D. N. (1940). The estimation of factor loadings by the method of
maximum likelihood. Proceedings of the Royal Society of Edinburgh,
60 , 64-82.

Mazumder, R., Friedman, J. H., & Hastie, T. (2011). SparseNet: Coordinate
descent with nonconvex penalties. Journal of the American Statistical
Association, 106 , 1125-1138.

Meinshausen, N. (2007). Relaxed lasso. Computational Statistics and Data
Analysis , 52 , 374-393.

Neuhaus, J. O., & Wrigley, C. (1954). The quartimax method: An an-
alytical approach to orthogonal simple structure. British Journal of
Mathematical and Statistical Psychology , 7 , 81-91.

31



Ning, L., & Georgiou, T. T. (2011, December). Sparse factor analysis via
likelihood and l1-regularization. In Decision and Control and Euro-
pean Control Conference (CDC-ECC), 2011 50th IEEE Conference on
decision and control and european control conference (p. 5188-5192).

R., O. M., Presnell, B., & Turlach, B. A. (2000). On the LASSO and its
dual. Journal of Computational and Graphical Statistics , 9 , 319-337.

Rubin, D., & Thayer, D. (1982). EM algorithms for ML factor analysis.
Psychometrika, 47 , 69-76.

Shen, H., & Huang, J. (2008). Sparse principal component analysis via
regularized low rank matrix approximation. Journal of Multivariate
Analysis , 99 , 1015-1034.

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics.
Boston, MA: Allyn and Bacon.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
58 , 267-288.

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a
retrospective. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 73 , 273-282.

Trendafilov, N. T. (2014). From simple structure to sparse components: a
review. Computational Statistics , 29 , 431-454.

Trendafilov, N. T., & Adachi, K. (2015). Sparse versus simple structure
loadings. Psychometrika, 80 , 776-790.

Trendafilov, N. T., Fontanella, S., & Adachi, K. (2017). Sparse exploratory
factor analysis. Psychometrika, 82 , 778–794.

Witten, D. M., Tibshirani, R., & Hastie, T. (2009). A penalized matrix
decomposition, with applications to sparse principal components and
canonical correlation analysis. Biostatistics , 10 , 515-534.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax
concave penalty. The Annals of Statistics , 38 , 894-942.

Zhang, G. (2014). Estimating standard errors in exploratory factor analysis.
Multivariate Behavioral Research, 49 , 339–353.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101 , 1418-1429.

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component
analysis. Journal of Computational and Graphical Statistics , 15 , 265–
286.

Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom”
of the lasso. The Annals of Statistics , 35 , 1849-2311.

Zou, H., & Li, R. (2008). One-step sparse estimates in nonconcave penalized
likelihood models. The Annals of Statistics , 36 , 1509-1533.

32



T
ab

le
7:

A
ve

ra
ge

m
ea

n
sq

u
ar

ed
er

ro
r

(A
M

S
E

)
of

fa
ct

or
lo

ad
in

g
an

d
co

va
ri

an
ce

m
at

ri
x
,
co

va
ri

an
ce

m
at

ri
x

is
fa

ct
or

iz
ed

,
sa

m
p
le

si
ze

is
10

0.

Λ
=

Λ
1

Λ
=

Λ
2

B
IC

B
IC

R
B

IC
B

IC
R

P
en

al
ty

M
et

h
o
d

V
ar

im
ax

G
eo

m
in

V
ar

im
ax

G
eo

m
in

V
ar

im
ax

G
eo

m
in

V
ar

im
ax

G
eo

m
in

A
M

S
E

of
fa

ct
or

lo
ad

in
g

m
u
lt

ip
li
ed

b
y

10
0

L
A

S
S
O

P
M

L
3.

43
2.

44
3.

34
2.

49
A

P
M

L
3.

23
3.

23
1.

68
1.

69
3.

14
3.

17
1.

86
1.

83
S
C

A
D

P
M

L
1.

19
1.

24
1.

40
1.

45
A

P
M

L
3.

21
3.

22
1.

49
1.

50
3.

12
3.

14
1.

68
1.

67
M

C
P

P
M

L
1.

40
1.

31
1.

54
1.

54
A

P
M

L
1.

49
1.

49
1.

24
1.

25
1.

58
1.

57
1.

42
1.

43
-

R
ot

.
2.

43
2.

46
2.

43
2.

46
2.

61
2.

50
2.

61
2.

50
-

R
ot

.-
H

ar
d

1.
09

1.
10

1.
09

1.
10

1.
93

1.
77

1.
93

1.
77

A
M

S
E

of
co

va
ri

an
ce

m
at

ri
x

m
u
lt

ip
li
ed

b
y

10
0

L
A

S
S
O

P
M

L
23

.3
4

15
.9

4
23

.1
2

16
.1

5
A

P
M

L
22

.4
0

22
.3

4
10

.1
1

10
.1

4
21

.9
5

22
.1

5
11

.2
6

11
.1

5
S
C

A
D

P
M

L
8.

51
8.

82
9.

74
10

.0
2

A
P

M
L

21
.6

2
21

.7
3

9.
45

9.
47

21
.3

8
21

.5
0

10
.6

8
10

.6
3

M
C

P
P

M
L

9.
55

9.
09

10
.3

8
10

.3
2

A
P

M
L

9.
93

9.
92

8.
58

8.
59

10
.4

6
10

.4
5

9.
83

9.
87

-
R

ot
.

17
.4

5
17

.4
5

17
.4

5
17

.4
5

17
.5

2
17

.5
2

17
.5

2
17

.5
2

-
R

ot
.-

H
ar

d
8.

02
8.

07
8.

02
8.

07
12

.4
3

11
.6

8
12

.4
3

11
.6

8

N
ot

e:
R

ot
.

=
R

ot
at

io
n

w
it

h
ou

t
h
ar

d
-t

h
re

sh
ol

d
in

g.
R

ot
.-

H
ar

d
=

R
ot

at
io

n
w

it
h

h
ar

d
-t

h
re

sh
ol

d
in

g.
P

M
L

d
o
es

n
ot

d
ep

en
d

on
ro

ta
ti

on
s,

w
h
er

ea
s

th
e

st
ar

ti
n
g

p
oi

n
ts

of
A

P
M

L
d
ep

en
d

on
ro

ta
ti

on
s.

V
ar

im
ax

an
d

ge
om

in
ro

ta
ti

on
s

ar
e

ap
p
li
ed

to
C

ol
u
m

n
s

3,
5,

7,
9,

an
d

C
ol

u
m

n
s

4,
6,

8,
10

,
re

sp
ec

ti
ve

ly
,

if
n
ee

d
ed

.

33



Table 8: Average mean squared error (AMSE) of factor loading and correla-
tion matrix, correlation matrix is factorized, sample size is 100.

Λ = Λ1 Λ = Λ2

Penalty Method Varimax Geomin Varimax Geomin
AMSE of factor loading multiplied by 100

LASSO PML 4.55 4.68
APML 2.39 2.40 2.92 2.82

SCAD PML 1.36 2.05
APML 1.91 1.92 2.49 2.45

MCP PML 1.59 2.30
APML 1.40 1.41 1.96 1.98

- Rot. 4.54 4.63 4.99 4.71
- Rot.-Hard 1.02 1.04 3.52 3.05

AMSE of correlation matrix multiplied by 100
LASSO PML 7.00 7.04

APML 2.47 2.49 3.31 3.23
SCAD PML 1.49 2.54

APML 1.83 1.85 2.77 2.73
MCP PML 1.74 2.69

APML 1.31 1.32 2.28 2.31
- Rot. 8.10 8.10 8.00 8.00
- Rot.-Hard 0.94 0.98 4.61 3.94

Note: Rot. = Rotation without hard-thresholding. Rot.-Hard = Rotation
with hard-thresholding. PML does not depend on rotations, whereas the
starting points of APML depends on rotations. Varimax and geomin
rotations are applied to Columns 3, 5, and Columns 4, 6, respectively, if
needed.
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