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Abstract—Recently, it has been shown that a quantize-map- the network model and our main result. In Section Ill, we
and-forward scheme approximately achieves (within a consht  summarize the construction of the nested lattice enserhble.
number of bits) the Gaussian relay network capacity for arbtrary Section IV, we describe the network operation. In particula

topologies [1]. This was established using Gaussian codeiks for . . .
transmission and random mappings at the relays. In this pape W€ specify how we use the nested lattice codes of Section IlI

we show that the same approximation result can be establisge for encoding at the source, quantization, mapping and {rans
by using lattices for transmission and quantization along vith mission at the relay nodes, and decoding at the destination

structured mappings at the relays. node. In Section V, we analyse the performance achieved by
the scheme. The detailed proofs can be found in [10].

I. INTRODUCTION

Characterizing the capacity of relay networks has been a 1. MAIN RESULT

Iong-staqding open question in network information th_eory We consider a Gaussian relay network where a source node
The seminal work of Cover and El-Gamal [2] has established, 1 ts to communicate to a destination nadevith the help

the basic achievability schemes for relay channels. Mog;N relay nodes, denoted/. The signal received by node
recently there has been extension of these techniqueggeer lar. ’ '

X = Yie{s,d, N} is given b
networks (see [3] and references therein). In [1], motiyate { bisg 4
by a deterministic model of wireless communication, it was yi = ZHijxj +z;
shown that the quantize-map-and-forward scheme achieves i

within a constant number of bits from the informationynhere H;; is the N; x M, channel matrix from nodej

theoretic cutset upper bound. This constant is universal éBmprising M; transmit antennas to nodé comprising
the sense that it is independent of the channel gains azn’ld receive antennas. Each element Ht] represents the
the operating SNR, though it could depend on the netwogkmplex channel gain from a transmitting antenna of node
topology (like the number of nodes). j to a receiving antenna of node The noisez; is complex

In the quantize-map-and-forward scheme analyzed in [Hicularly-symmetric Gaussian vect6A/(0, 021) and is i.i.d.
each relay node first quantizes its received signal at th&enofor different nodes. The transmitted signals are subject to
level, then randomly maps it to a Gaussian codeword agg average power constraifit
transmits it. A natural question that we address in this pepe  The following theorem is the main result of this paper.
whether lattice codes retain the approximate optimalithef  Thegrem 2.1:Using nested lattice codes for transmission

above scheme. This is motivated in part since lattice codgsy quantization along with structured mappings at theysela
along with lattice decoding could enable computationallye can achieve all rates

tractable encoding and decoding methods. For exampledatti

codes were used for linear function computation over mieitip R < minI(Xo; Yoe|Xae) — Z N

access networks [4] and for communication over multiple- ieN

access relay networks (with orthogonal broadcast) in [6p T betweens and d, where(2 is a source-destination cut of the

main result of this paper is to show that the quantize-map-ametwork andXq = {X;, i € Q} are i.i.d.CN (0, (P/M;)I).

forward scheme using nested lattice codes for transmissidn It has been shown in [1] that the restriction to i.i.d. Gaassi

quantization, still achieves the Gaussian relay netwoplaciy input distributions is WithinZieN,d N; bits/s/Hz of the cut-set

within a constant. This result is summarized in Theorem 2.apper bound. Therefore the rate achieved using latticescode

The use of structured codes allows to specify a structurgdthe above theorem is withig } -, - , N; bits/s/Hz to the

mapping between the quantization and transmission codsbooutset upper bound of the network.

at each relay. The nested lattice codebooks consideredsin th For simplicity of presentation, in the rest of the paper we

paper are based on the random construction in [6], where theyncentrate on a layered network where every node has a

are shown to achieve the capacity of the AWGN channel. single transmit and receive antenna. More precisely, theasi
This paper is organized as follows: In Section Il, we stateceived by nodé in layerl,0 < I < l4, denotedi € N, is



given by in (3) mapsx € R™ to the Voronoi regionV of the lattice.
Yi= Z hijxj + i More generally, it is possible to define a mod or quantization
) JENI-1 - operation with respect to any fundamental region of thécktt
where h;; is the real scalar channel coefficient from node | particular, when we consider the integer lattiée in the

in layer! —1, to nodei. s € Ny, d € Nj,. The analysis can sequel, or more generally its multiplgsZ" where p is a
be extended to non-layered networks by following the timesysitive integer, we will assume that

expansion argument of [1], to multicast traffic with mulépl
destination nodes as well as to multiple multicast where-mul
tiple source nodes multicast to a group of destination nodewhere [x|, denotes component-wise rounding to the nearest
smaller integer multiple op. In other words, the mod opera-
tion with respect tg Z™ maps the poink € R™ to the region
Consider a latticeA (or more precisely, a sequence op[0,1)".
lattices A indexed by the lattice dimension) with V The above construction yields a random ensemble of nested
denoting the Voronoi region ol\. Let us define the secondlattice codes that has the following desired properties:

moment per dimension of as e There is a bijection between
o?(A) = l% / x| 2dx 7 —p 2" N[0, 1) p T ANGA[0, 1) pTTANY.
n v

The last observation follows simply from the fact that both
whereV denotes the volume af and let then x n full-rank G [0,1)” and V are fundamental regions of the lattice

generator matrix ofA be denoted byGa, i.e., A = GAZ". e "they both tileR™. SinceC C Z?, the above bijection
We assume that (or more precisely, the sequence of latticegsgtricted toC yields
A™) is both Roger's and Poltyrev good. The existence of | N . A "o It
such lattices has been shown in [7], where the reader dai”? €= 1N[0,1)" < ANGA[0,1)" & ANV < A
also find the precise definitions of Roger’s and Poltyrev good hat A* . he bilecti 5 (4)b
This fixed latticeA will serve as the coarse lattice for all ou Oth t atA g P Anv. _T e lections a ove can be
nested lattice constructions. expllpltly sp_ecmed in both .dlrect|ons and we will make use

The fine latticeA; is constructed using Loeliger's type-A©f this fact in the next section. _ n
construction [8]. Letk, n, p be integers such that < n and The .random codebook\* has the following statistical
p is prime. The fine lattice is constructed using the foIIowinQrOpert'eS:

x mod pZ" =x— [x],

IIl. CONSTRUCTION OF THENESTEDLATTICE ENSEMBLE

Let 1A
steps. eletiep F:V X ,
« Draw ann x k matrix G such that each of its entries P(A™(i) = ) = ANV
is i.i.d according to the uniform distribution ovét, =
{0,1,---,19_1}- OLet)\l,/\gep_lAﬂV, Vi # 4,
i iy oy 1 1
o Form the linear code P(A* (i) = A, A*(j) = Xo) = IANVE =—. (5
C={cic=G w,weZk} (1) p p

In other words, the construction in this section yields an
ensemble of nested lattice codes such that each codeword
of the random codeboolk* is uniformly distributed over

where “” denotes modulo-p multiplication.
o Lift C to R™ to form

A =pTlc+z. p~ ANV and the codewords of* are pairwise independent.
« Ay = GA A} is the desired fine lattice. Note that sincd hese two properties suffice to prove the random codingtresul
Z™ C A}, we haveA C A;. of this paper.

« Draw v uniformly overp~tANV and translate the lattice

. . IV. ENCODING, MAPPING AND DECODING
A1 by v. The nested lattice codebook consists of all ) ]
points of the translated fine lattice inside the Voronoi The above construction yields a random ensemble of nested

region of the coarse lattice, lattice pairsA C A; with coding rate,

AM=(v+A) modA=(v+A)nY. (2 R= Llog|A"]
n

In the above equation, we defigre mod A as the quantization

error ofx € R™ with respect to the latticd., i.e., which can be tuned by choosing the precise magnitudes of

k and p. In this ensemble, the coarse lattice is fixed

x mod A =x — Qa(x), (3) and the fine latticeA; is randomized. It has been shown

in [9] that with high probability, a nested latticé\;, A)

in this ensemble is such that botky and A are Roger’s
Qa(x) = argmin|[x — A||. and Poltyrev-good. For quantization, we fix one such good

AEA member of the ensemble and use it at all the relay nodes.
Note that the quantization and mod operations with respectRor transmission, we draw a random nested lattice codebook
a lattice can be defined in different ways. The mod operatiftom this ensemble, independently at each relay. The mgppin

where the lattice quantize&p, (x) : R™ — A is given by



between the quantization and transmission codebooks ht efige lattice A({?. The dithersu; are independent for different

relay is specified below. nodes.

Source: The source hag*® messages, where is prime and Map and Forward: Let us scale the coarse lattidesuch

k < n. The messages are represented as lehgtbetors over that its second moment?(AT) = (1 — €;(A))P. Let Gyr

the finite field Z, and mapped to a random nested latticdenote the generator matrix of the scaled coarse lattice. Th

codebookA* following the construction in Section Ill. In the quantized signaf; at relayi is mapped to the transmitted

construction, the coarse latticeis scaled such that its secondsignalx; by the following mapping,

momento?(AT) = (1 — e (A)) P, whereA” now denotes the —1 1. n n

scaled veréion)of t(he Iatti(cﬁ) )to satisfy the power constraint. @ Garpy” (Gipr (Gla i mod Z7) mOdf nZ")

e1(A) — 0 asn increases and choosing it carefully we can +v; mod A*, (9)

ensure that every codeword &f satisfies the power constraintyhere(; is ann x n random matrix with its entries uniformly

P. The information transmission rate is given by and independently distributed i 1,...,p, — 1 andv; is a

1 i random vector uniformly distributed over ' A7 N V7T, where

R = —logp". VT is the Voronoi region oA”. G; andv; are independent for

different relay nodes. We index th&- codewords ofA¢, as

yg’“”, ki € {1,...,e"}. The corresponding sequence that

the codeworqcrz(ki) is mapped to in (9) is denoted bgéki) _
Proposition 4.1: The above mapping has the following

Let us denote by{", w € {1,...,e"%} the random transmit

codewords corresponding to each messagef the source
node.

Relays: The relay node receives the signat;. The signaly; X
is first quantized by using a nested lattice codebook that HYQPerties:

been generated by the construction in Section IIl. It is show * Ateach relayi, the transmitted sequencese A7, where

in [9] that this construction yields nested lattices whaeefine A is a nested lattice codebook. _
lattice is Roger’'s good with high probability # > (logn)2. « The mapping induces a pairwise independentand uniform
(The coarse lattice is both Roger's and Poltyrev good by distribution OVerPfllﬁ\T n V'. Formally, each quan-
construction.) We fix one such good nested lat(ia&, A?) tization codewordy(*) € A, is mapped uniformly
and use the corresponding codebagg = A mod A% at at random to the sep, 'A” N V. Two codewords

all the relay nodes for quantization. Therefore our quartitn yg’““,yg’“i) € Af such thatk; # ki are mapped

codebook is not random but fixed and moreover same for all independently.

relay nodes. We assume that the nested Ia(tA‘c%, A®) has « The mapping induces an independent distribution across
been generated by using the following parameters: Let the relays.

The proposition says that the quantization codebooks &t eac

_ 12
D, = mpx _ ; [his | P (6) relay are independently mapped to a random nested lattice
JENI—1 : .
. . . . codebook from the ensemble constructed in Section IIl. The
The coarse latticd @ is a scaled version of the lattide such

proof is based on the bijection given in (4): There is on@#e-
0?(A9) = 2u(Ds + 0?) (7) correspondence between the codebdgkand its underlying
. : : finite field codeboolc?. The mapping, (G4 ¥: mod Z")
2 T AQ Y1
for a constanty > 0. Recall thgto is the noise variance. takes the codeworg; € A%, to its corresponding codeword
We denote the generator matrix of the scaled coarse lattice ., . oty

0 IN"C%. This codeword inC% is then mapped to a random
A“ by G e . The parameterk, andp, are chosen such thatf. ite-field codebook P 0
k. = (logn)? andp, is the prime number such tHat inite-field codebookC; = {e':¢'=Gi-c ceC?). We

" " then form the nested lattice codebodK corresponding to

that

k nR. 1 o?(A9) C; following again the construction of Section Ill. The second
P, = e, where R, = —log . (8) .
7 2 o2 property follows by observing that the random matixmaps
Note that sinceR, is independent ofn, p, = eiaff;f)z, every nonzero vectat € C< uniformly at random to another

i.e, pp — oo asn — oo. It can be shown that with thefinite field vector inZy. The third property follows from the

choice in (8) forR,, the second moment of% is such that independence of thé;’s andv;’s for different nodes.
02(A?) — o2 whenn increases. (This is a consequence of 1N€ Mapping in (9) can be simplified to the form,
the fact that both’\({2 and A9 are Roger's good.) Therefore, x; = Gar Gy chle yi+v; mod AT,

we are effectively quantizing at the noise level.

The quantized signal is given by Effectively, it takes the quantization codebodk,, expands

it by multiplying with a random matrix with large entries (of
yi= QA? (yi +u;) mod A® the order ofp,) and then folds it to the Voronoi region of” .

. . L Since the entries of/; are potentially very large, even if two
where u; is a random dither known at the destination node ’ P y very larg

. _ ) ; codewords are close iA},, they are mapped independently
off? Q
and uniformly distributed over the Voronoi regi of the to the codewords of the transmit codebook. Note that the

IMore precisely, one should take. to be the largest prime number suchcomp!ex'ty of the mapplng 1S p0|ynom'a| _m]’ while randqm
that p,. < e"fr/k_ Whenn is large, the difference becomes negligible. ~ mapping of the form in [1] has exponential complexityrin



Destination: Given its received signal,, together with the exist an error because is not the unique message V.
knowledge of all codebooks, mappings, dithers and chanfdlis probability can be upper bounded by concentrating on
gains, the decoder performs a consistency check to recother pair-wise error probabilities, i.e.,
the transm&tgd.m_essage. For e:?\ch relagnd quantization P, < e P — )
codewordy,""’, it first forms the signals

P
S,Z(ki) _ ygki) —u; mod AC. (10) whereP(w — w’) is given by
w' (K (K, ~
Note that fori € A P (3{k§}ieN st(x("), ya 70, x" Yiew) € Ae)
yi =yi—u; mod AQ < Z P ((ng,),}’d, {ygki)’xgki)}ieN) c jé)
= Qyo (yi +u;) —u; mod A® Kokl
= (y; — (yi+u;) mod A?) mod A We can condition on the event that the correct message

produces indice$k; }, and since this is a generic index, we can
carry out the entire calculation conditioned on this anchthe
average over it. The summation over tNeindicesky, ..., ky
whereu = (y; +u;) mod A?. u/ is indq?pendent of; and above can be rearranged to yield

gsegrEg]o)Tm over the Voronoi region oAy (Crypto Lemma, Z Z P((ng ),yd,{ygki),xgki)}i)eAe Sk = ki ic J\/é)
The decoder then checks the ¥gtof messages for which

there exists some indicés, such that . L .
k) (o) where(2 is a source-destination cut of the network, K=

(%, ya, {71, %" Yien) € A {5, Nq} where N, is a subset of the relaying nodgé. The

whereA. denotes consistency and denotes the set of relays first summation runs over all possible source-destinatids c
¢ y Y ‘O of the network, or equivalently over all subset$, of the

We define consistency as follo)\/vs:(klj)or a given set of mdlc?glaying nodes\V’. Following [1], the rearrangement of the

W (ki .
{kiYien we say(x” ya, {3, %" }iew) € Ac if summation above can be interpreted as introducing a notion
||(5,l(kvv> _ Z hijx(.kj)) mod A®|2 < no?, ~ (12) of distinguishability. The relay nodes i are the ones that

JEN, 1 ! can distinguish betweemw and w’ becauseygki) + yg’”),
when the relay nodes ift¢ cannot distinguish between and

JENI—1

Q K ieNg
ki #k; P

for all i € NV, 1 <1 < l; where for convenience of notation

" ) ’ / (k) (ki) i i
we have denoteat!”) — x*) i ¢ A, andyy — ygkz)’i e w l:.)eca.usgri” =y, . The source qode is ngturally in the
N . We choose J distinguishability sef2 and the destination node is§if. Thus,
¢ o2 = (1 + ¢) 202 we sum over all possible cases for the distinguishabilityse

Now, let us examine the probability denoted By For
for a constant > 0 that can be taken arbitrarily small. We cara given set of{k!}ien such thatk, = k;, i € N§ and
interpret the consistency check as follows. For each layer k! #£ k;, i € N, the consistency condition in (12) takes two
1,...,13 — 1 the decoders picks a set of potential (quantizedjfferent forms depending on whethee N or i € Q°. For
received sequence@ﬁki)}ia\@ and the transmit sequencesodesi € 2¢, the condition is equivalent to
corresponding to thermxl(.ki)}ie/\/[. It checks for each layer k) (K
I, whether the inputs and outputs are consistent, i.e., venethl > hitg? = x
the examined input$x§’“)}Z-E,\/F1 of the layer! could have (13)
generated the examined outpl{tﬁgk”}ieM. Note that the whereQ;_; = QNAN;_; and we denote this event b¥,. For
termination conditions are known, i.ex, is known for the nodesi € N, the condition yields
message being tested, apg is the observed sequence at the , _ /
destina%ion. Thgerefore, ef?ectively the decoder gheckethér (o= > hz'jXE-kJ)— > hijxgkj))mOd A°|? <na?

) +2z; —u)) mod AC||? < no?
JEU -1

there exists a plausible set of input and output sequences at JEQ_, JEQ -1 (14)
each relay that under the messaggield the observatiory,. e e .

Given (11), note that the definition of consistency in (12) i :\/eereQFl = °NN;-1 and we denote this event ;. We
closely related to weak typicality. Indeed, it is a variafit o "p— P ({A;,i € Q°), {Bi,i € No})

the weak typicality condition for Gaussian vectors. Theref

effectively our decoder is a typicality decoder. =P (A0 € Q°) P(Biyi € Na | Aiji € Q).

V. ERRORANALYSIS Note that due to Proposition 4.3:7(.kf),x§kj),j € {s,N}in
An error occurs if the transmitted messagds not in the ©€XPressions (13) and (14) are a set of independent random
list, i.e., w ¢ W or whenw' # w is also in the lispi. It variables, uniformly distributed over. 'AT N VT, Due to the
o ' . . . NUAR . . L.
is easy to show that the correct messages in the list with dithering in (10,5 in (14) is uniformly distributed over
high probability. We concentrate on the probability thagréh the Voronoi regionVlQ of the quantization lattice poirﬁgki).



We will first bound the probability? (4;,7 € Q°) by con- When each of the indice§k;}icn,, is chosen uniformly
ditioning on the event defined in the following lemma. at random,ygki) in (14) is a random variable uniformly
Lemma 5.1:Let us defineg; to be the following event, distributed overV?. This is due to the dithering over the
_ , k) (k) 0 Voronoi regionV? of the fine lattice and the mod operation
{316{/\/7 d}, Ik, ks hij (x5 —x; ) +zi—u) ¢V } with respect to the coarse latti®é? in (10). Moreover, by the
J Crypto Lemma,

~ (k! j K,
Vi = Yl(kl) - Z hijxgkj) - Z hqxﬁ- 7 mod AQ
JEQE JEQ 1

We haveP(&;) — 0.

When &, is true, we declare this as an error. This adds a

?/eamnlrigmg(t)enrdniligonit:ge gﬁ?}i‘n&g;?;ﬁ;%?g”gﬁo%;rz ?;O\fs also uniformly distributed ovey? and is independent of

get rid of the mod operation W.rA? in (13). Given&s, the Z hijx‘g.kj) 4 Z hijx;.kj).
condition A4; is equivalent to jear | e

A= ICY by =) 42— w2 <no?).

JEQ—1

This is due to the fact thagtgki) is independent of this term,
which is due to the fact the indek and the ditheru; are
chosen independently of everything else. Therefore (16) is
upper bounded by

Therefore, we have

P(A:,iec Qe
P(Asi € Q| €5) = P(Ai € 0°| &) < LARTED)

]P)(gf) Z P(BZ,Z 6./\/'Q|Ai,l'€ QC)
We upperbound the last probability above in the following K} ieNa
lemma. — NalnR, H ]P(”WHQ < nag)
Lemma 5.2: iENG
Pl Y hiG™ =) 42— w? <no?, vie o) < eolnallos(arayetron () (17
JEQ—1 where the last inequality follows from the below lemfa.

< e~ (I(Xa;HXa+Zge)—1Q°|(1-+log(14¢))—on (1)) Lemma 5.3:Let v be uniformly distributed oved?. We
- ’ have,
whereX;, i € 2 are i.i.d Gaussian random variabl&g0, P), 2a)
Zo- are ii.d Gaussian random variabla§0, o) and H is P(H”HQ < nag) < e‘%(‘@ﬂ‘(”iag )—1—%(1)).
the channel transfer matrix from nodes{into nodes inQ°. o _

The proof of the lemma involves two main steps. Recall Combining the results of Lemma 5.2 and (17), an consid-
thatx ¥ <5 j € Q are discrete random variables indeper?—ri”g the summation over all possible source-destinatigs ¢

J ’ ) ’

dently andjuniformly distributed over-'AT N V7. We first proves the main result of this paper stated in Theorem 2.1.
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