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Abstract—Recently, it has been shown that a quantize-map-
and-forward scheme approximately achieves (within a constant
number of bits) the Gaussian relay network capacity for arbitrary
topologies [1]. This was established using Gaussian codebooks for
transmission and random mappings at the relays. In this paper,
we show that the same approximation result can be established
by using lattices for transmission and quantization along with
structured mappings at the relays.

I. I NTRODUCTION

Characterizing the capacity of relay networks has been a
long-standing open question in network information theory.
The seminal work of Cover and El-Gamal [2] has established
the basic achievability schemes for relay channels. More
recently there has been extension of these techniques to larger
networks (see [3] and references therein). In [1], motivated
by a deterministic model of wireless communication, it was
shown that the quantize-map-and-forward scheme achieves
within a constant number of bits from the information-
theoretic cutset upper bound. This constant is universal in
the sense that it is independent of the channel gains and
the operating SNR, though it could depend on the network
topology (like the number of nodes).

In the quantize-map-and-forward scheme analyzed in [1],
each relay node first quantizes its received signal at the noise
level, then randomly maps it to a Gaussian codeword and
transmits it. A natural question that we address in this paper is
whether lattice codes retain the approximate optimality ofthe
above scheme. This is motivated in part since lattice codes
along with lattice decoding could enable computationally
tractable encoding and decoding methods. For example lattice
codes were used for linear function computation over multiple-
access networks [4] and for communication over multiple-
access relay networks (with orthogonal broadcast) in [5]. The
main result of this paper is to show that the quantize-map-and-
forward scheme using nested lattice codes for transmissionand
quantization, still achieves the Gaussian relay network capacity
within a constant. This result is summarized in Theorem 2.1.
The use of structured codes allows to specify a structured
mapping between the quantization and transmission codebooks
at each relay. The nested lattice codebooks considered in this
paper are based on the random construction in [6], where they
are shown to achieve the capacity of the AWGN channel.

This paper is organized as follows: In Section II, we state

the network model and our main result. In Section III, we
summarize the construction of the nested lattice ensemble.In
Section IV, we describe the network operation. In particular,
we specify how we use the nested lattice codes of Section III
for encoding at the source, quantization, mapping and trans-
mission at the relay nodes, and decoding at the destination
node. In Section V, we analyse the performance achieved by
the scheme. The detailed proofs can be found in [10].

II. M AIN RESULT

We consider a Gaussian relay network where a source node
s wants to communicate to a destination noded, with the help
of N relay nodes, denotedN . The signal received by node
i ∈ {s, d,N} is given by

yi =
∑

j 6=i

Hijxj + zi

where Hij is the Ni × Mj channel matrix from nodej
comprising Mj transmit antennas to nodei comprising
Ni receive antennas. Each element ofHij represents the
complex channel gain from a transmitting antenna of node
j to a receiving antenna of nodei. The noisezi is complex
circularly-symmetric Gaussian vectorCN (0, σ2I) and is i.i.d.
for different nodes. The transmitted signalsxj are subject to
an average power constraintP .

The following theorem is the main result of this paper.
Theorem 2.1:Using nested lattice codes for transmission

and quantization along with structured mappings at the relays,
we can achieve all rates

R ≤ min
Ω

I(XΩ; YΩc |XΩc) −
∑

i∈N

Ni

betweens and d, whereΩ is a source-destination cut of the
network andXΩ = {Xi, i ∈ Ω} are i.i.d.CN (0, (P/Mi)I).

It has been shown in [1] that the restriction to i.i.d. Gaussian
input distributions is within

∑
i∈N ,d Ni bits/s/Hz of the cut-set

upper bound. Therefore the rate achieved using lattice codes
in the above theorem is within2

∑
i∈N ,d Ni bits/s/Hz to the

cutset upper bound of the network.
For simplicity of presentation, in the rest of the paper we

concentrate on a layered network where every node has a
single transmit and receive antenna. More precisely, the signal
received by nodei in layer l, 0 ≤ l ≤ ld, denotedi ∈ Nl, is



given by
yi =

∑

j∈Nl−1

hijxj + zi

wherehij is the real scalar channel coefficient from nodej
in layer l − 1, to nodei. s ∈ N0, d ∈ Nld . The analysis can
be extended to non-layered networks by following the time-
expansion argument of [1], to multicast traffic with multiple
destination nodes as well as to multiple multicast where mul-
tiple source nodes multicast to a group of destination nodes.

III. C ONSTRUCTION OF THENESTEDLATTICE ENSEMBLE

Consider a latticeΛ (or more precisely, a sequence of
lattices Λ(n) indexed by the lattice dimensionn) with V
denoting the Voronoi region ofΛ. Let us define the second
moment per dimension ofΛ as

σ2(Λ) =
1

n

1

V

∫

V

‖x‖2dx

whereV denotes the volume ofV and let then× n full-rank
generator matrix ofΛ be denoted byGΛ, i.e., Λ = GΛZ

n.
We assume thatΛ (or more precisely, the sequence of lattices
Λ(n)) is both Roger’s and Poltyrev good. The existence of
such lattices has been shown in [7], where the reader can
also find the precise definitions of Roger’s and Poltyrev good.
This fixed latticeΛ will serve as the coarse lattice for all our
nested lattice constructions.

The fine latticeΛ1 is constructed using Loeliger’s type-A
construction [8]. Letk, n, p be integers such thatk ≤ n and
p is prime. The fine lattice is constructed using the following
steps.

• Draw an n × k matrix G such that each of its entries
is i.i.d according to the uniform distribution overZp =
{0, 1, . . . , p − 1}.

• Form the linear code

C = {c : c = G ·w,w ∈ Z
k
p}, (1)

where “·” denotes modulo-p multiplication.
• Lift C to R

n to form

Λ′
1 = p−1C + Z

n.

• Λ1 = GΛ Λ′
1 is the desired fine lattice. Note that since

Z
n ⊆ Λ′

1, we haveΛ ⊆ Λ1.
• Draw v uniformly overp−1Λ∩V and translate the lattice

Λ1 by v. The nested lattice codebook consists of all
points of the translated fine lattice inside the Voronoi
region of the coarse lattice,

Λ∗ = (v + Λ1) mod Λ = (v + Λ1) ∩ V . (2)

In the above equation, we definex mod Λ as the quantization
error of x ∈ R

n with respect to the latticeΛ, i.e.,

x mod Λ = x − QΛ(x), (3)

where the lattice quantizerQΛ(x) : R
n → Λ is given by

QΛ(x) = argmin
λ∈Λ

‖x− λ‖.

Note that the quantization and mod operations with respect to
a lattice can be defined in different ways. The mod operation

in (3) mapsx ∈ R
n to the Voronoi regionV of the lattice.

More generally, it is possible to define a mod or quantization
operation with respect to any fundamental region of the lattice.
In particular, when we consider the integer latticeZ

n in the
sequel, or more generally its multiplesp Z

n where p is a
positive integer, we will assume that

x mod p Z
n = x − ⌊x⌋p

where⌊x⌋p denotes component-wise rounding to the nearest
smaller integer multiple ofp. In other words, the mod opera-
tion with respect top Z

n maps the pointx ∈ R
n to the region

p [0, 1)n.
The above construction yields a random ensemble of nested

lattice codes that has the following desired properties:

• There is a bijection between

Z
n
p ↔ p−1

Z
n ∩ [0, 1)n ↔ p−1Λ ∩ GΛ [0, 1)n ↔ p−1Λ ∩ V .

The last observation follows simply from the fact that both
GΛ [0, 1)n and V are fundamental regions of the latticeΛ,
i.e., they both tileR

n. Since C ⊆ Z
n
p , the above bijection

restricted toC yields,

C ↔ p−1C = Λ′
1∩[0, 1)n ↔ Λ1∩GΛ [0, 1)n ↔ Λ1∩V ↔ Λ∗.

(4)
Note that Λ∗ ⊆ p−1Λ ∩ V . The bijections above can be
explicitly specified in both directions and we will make use
of this fact in the next section.

The random codebookΛ∗ has the following statistical
properties:
• Let λ ∈ p−1Λ ∩ V ,

P(Λ∗(i) = λ) =
1

|p−1Λ ∩ V|
=

1

pn
.

• Let λ1, λ2 ∈ p−1Λ ∩ V , ∀i 6= j,

P(Λ∗(i) = λ1, Λ
∗(j) = λ2) =

1

|p−1Λ ∩ V|2
=

1

p2n
. (5)

In other words, the construction in this section yields an
ensemble of nested lattice codes such that each codeword
of the random codebookΛ∗ is uniformly distributed over
p−1Λ∩V and the codewords ofΛ∗ are pairwise independent.
These two properties suffice to prove the random coding result
of this paper.

IV. ENCODING, MAPPING AND DECODING

The above construction yields a random ensemble of nested
lattice pairsΛ ⊆ Λ1 with coding rate,

R =
1

n
log |Λ∗|

which can be tuned by choosing the precise magnitudes of
k and p. In this ensemble, the coarse latticeΛ is fixed
and the fine latticeΛ1 is randomized. It has been shown
in [9] that with high probability, a nested lattice(Λ1, Λ)
in this ensemble is such that bothΛ1 and Λ are Roger’s
and Poltyrev-good. For quantization, we fix one such good
member of the ensemble and use it at all the relay nodes.
For transmission, we draw a random nested lattice codebook
from this ensemble, independently at each relay. The mapping



between the quantization and transmission codebooks at each
relay is specified below.
Source: The source haspk messages, wherep is prime and
k ≤ n. The messages are represented as length-k vectors over
the finite field Zp and mapped to a random nested lattice
codebookΛ∗ following the construction in Section III. In the
construction, the coarse latticeΛ is scaled such that its second
momentσ2(ΛT ) = (1− ǫ1(Λ))P , whereΛT now denotes the
scaled version of the latticeΛ to satisfy the power constraint.
ǫ1(Λ) → 0 as n increases and choosing it carefully we can
ensure that every codeword ofΛ∗ satisfies the power constraint
P . The information transmission rate is given by

R =
1

n
log pk.

Let us denote byx(w)
s , w ∈ {1, . . . , enR} the random transmit

codewords corresponding to each messagew of the source
node.
Relays:The relay nodei receives the signalyi. The signalyi

is first quantized by using a nested lattice codebook that has
been generated by the construction in Section III. It is shown
in [9] that this construction yields nested lattices where the fine
lattice is Roger’s good with high probability ifk ≥ (log n)2.
(The coarse lattice is both Roger’s and Poltyrev good by
construction.) We fix one such good nested lattice(ΛQ

1 , ΛQ)
and use the corresponding codebookΛ∗

Q = ΛQ
1 mod ΛQ at

all the relay nodes for quantization. Therefore our quantization
codebook is not random but fixed and moreover same for all
relay nodes. We assume that the nested lattice(ΛQ

1 , ΛQ) has
been generated by using the following parameters: Let

Ds = max
i

∑

j∈Nl−1

|hij |
2 P. (6)

The coarse latticeΛQ is a scaled version of the latticeΛ such
that

σ2(ΛQ) = 2µ(Ds + σ2) (7)

for a constantµ > 0. Recall thatσ2 is the noise variance.
We denote the generator matrix of the scaled coarse lattice
ΛQ by GΛQ . The parameterskr andpr are chosen such that
kr = (log n)2 andpr is the prime number such that1

pk
r = enRr , where Rr =

1

2
log

σ2(ΛQ)

σ2
. (8)

Note that sinceRr is independent ofn, pr = e
nRr

(log n)2 ,
i.e, pr → ∞ as n → ∞. It can be shown that with the
choice in (8) forRr, the second moment ofΛQ

1 is such that
σ2(ΛQ

1 ) → σ2 when n increases. (This is a consequence of
the fact that bothΛQ

1 and ΛQ are Roger’s good.) Therefore,
we are effectively quantizing at the noise level.

The quantized signal is given by

ŷi = QΛQ
1
(yi + ui) mod ΛQ

whereui is a random dither known at the destination node
and uniformly distributed over the Voronoi regionVQ

1 of the

1More precisely, one should takepr to be the largest prime number such
that pr ≤ e

nRr/k. Whenn is large, the difference becomes negligible.

fine latticeΛQ
1 . The dithersui are independent for different

nodes.
Map and Forward: Let us scale the coarse latticeΛ such

that its second momentσ2(ΛT ) = (1 − ǫ1(Λ))P . Let GΛT

denote the generator matrix of the scaled coarse lattice. The
quantized signal̂yi at relay i is mapped to the transmitted
signalxi by the following mapping,

xi = GΛT p−1
r

(
Gi pr

(
G−1

ΛQ ŷi mod Z
n
)

mod prZ
n
)

+ vi mod ΛT , (9)

whereGi is ann×n random matrix with its entries uniformly
and independently distributed in0, 1, . . . , pr − 1 and vi is a
random vector uniformly distributed overp−1

r ΛT ∩VT , where
VT is the Voronoi region ofΛT . Gi andvi are independent for
different relay nodes. We index theenRr codewords ofΛ∗

Q as

ŷ
(ki)
i , ki ∈ {1, . . . , enRr}. The corresponding sequence that

the codeword̂y(ki)
i is mapped to in (9) is denoted byx(ki)

i .
Proposition 4.1:The above mapping has the following

properties:
• At each relayi, the transmitted sequencesxi ∈ Λ∗

i , where
Λ∗

i is a nested lattice codebook.
• The mapping induces a pairwise independent and uniform

distribution over p−1
r ΛT ∩ VT . Formally, each quan-

tization codewordŷ
(ki)
i ∈ Λ∗

Q is mapped uniformly
at random to the setp−1

r ΛT ∩ VT . Two codewords
ŷ

(ki)
i , ŷ

(k′

i)
i ∈ Λ∗

Q such that ki 6= k′
i are mapped

independently.
• The mapping induces an independent distribution across

the relays.
The proposition says that the quantization codebooks at each

relay are independently mapped to a random nested lattice
codebook from the ensemble constructed in Section III. The
proof is based on the bijection given in (4): There is one-to-one
correspondence between the codebookΛ∗

Q and its underlying
finite field codebookCQ. The mappingpr (G−1

ΛQ ŷi mod Z
n)

takes the codeword̂yi ∈ Λ∗
Q to its corresponding codeword

in CQ. This codeword inCQ is then mapped to a random
finite-field codebookCi =

{
c
′ : c

′ = Gi · c, c ∈ CQ
}

. We
then form the nested lattice codebookΛ∗

i corresponding to
Ci following again the construction of Section III. The second
property follows by observing that the random matrixGi maps
every nonzero vectorc ∈ CQ uniformly at random to another
finite field vector inZ

n
p . The third property follows from the

independence of theGi’s andvi’s for different nodesi.
The mapping in (9) can be simplified to the form,

xi = GΛT Gi G−1
ΛQ ŷi + vi mod ΛT .

Effectively, it takes the quantization codebookΛ∗
Q, expands

it by multiplying with a random matrix with large entries (of
the order ofpr) and then folds it to the Voronoi region ofΛT .
Since the entries ofGi are potentially very large, even if two
codewords are close inΛ∗

Q, they are mapped independently
to the codewords of the transmit codebook. Note that the
complexity of the mapping is polynomial inn, while random
mapping of the form in [1] has exponential complexity inn.



Destination: Given its received signalyd, together with the
knowledge of all codebooks, mappings, dithers and channel
gains, the decoder performs a consistency check to recover
the transmitted message. For each relayi and quantization
codewordŷ(ki)

i , it first forms the signals

ỹ
(ki)
i = ŷ

(ki)
i − ui mod ΛQ. (10)

Note that fori ∈ Nl

ỹi = ŷi − ui mod ΛQ

= QΛQ
1
(yi + ui) − ui mod ΛQ

= (yi − (yi + ui) mod ΛQ
1 ) mod ΛQ

=
∑

j∈Nl−1

hijxj + zi − u
′
i mod ΛQ, (11)

whereu
′
i = (yi + ui) mod ΛQ

1 . u
′
i is independent ofyi and

is uniform over the Voronoi region ofΛQ
1 (Crypto Lemma,

see [6]).
The decoder then checks the setŴ of messageŝw for which

there exists some indiceski, such that

(x(ŵ)
s ,yd, {ỹ

(ki)
i ,x

(ki)
i }i∈N ) ∈ Ãǫ

whereÃǫ denotes consistency andN denotes the set of relays.
We define consistency as follows: For a given set of indices
{ki}i∈N , we say(x

(ŵ)
s ,yd, {ỹ

(ki)
i ,x

(ki)
i }i∈N ) ∈ Ãǫ if

‖(ỹ
(ki)
i −

∑

j∈Nl−1

hijx
(kj)
j ) mod ΛQ‖2 ≤ n σ2

c , (12)

for all i ∈ Nl, 1 ≤ l ≤ ld where for convenience of notation
we have denotedx(ŵ)

s = x
(kj)
j , j ∈ N0, andyd = ỹ

(ki)
i , i ∈

Nld . We choose
σ2

c = (1 + ǫ) 2σ2

for a constantǫ > 0 that can be taken arbitrarily small. We can
interpret the consistency check as follows. For each layerl =
1, . . . , ld − 1 the decoders picks a set of potential (quantized)
received sequences{ŷ(ki)

i }i∈Nl
and the transmit sequences

corresponding to them{x(ki)
i }i∈Nl

. It checks for each layer
l, whether the inputs and outputs are consistent, i.e., whether
the examined inputs{x(ki)

i }i∈Nl−1
of the layerl could have

generated the examined outputs{ŷ(ki)
i }i∈Nl

. Note that the
termination conditions are known, i.e.,xs is known for the
message being tested, andyd is the observed sequence at the
destination. Therefore, effectively the decoder checks whether
there exists a plausible set of input and output sequences at
each relay that under the messagew yield the observationyd.
Given (11), note that the definition of consistency in (12) is
closely related to weak typicality. Indeed, it is a variant of
the weak typicality condition for Gaussian vectors. Therefore,
effectively our decoder is a typicality decoder.

V. ERROR ANALYSIS

An error occurs if the transmitted messagew is not in the
list, i.e., w /∈ Ŵ or whenw′ 6= w is also in the listŴ . It
is easy to show that the correct messagew is in the list with
high probability. We concentrate on the probability that there

exist an error becausew is not the unique message in̂W .
This probability can be upper bounded by concentrating on
the pair-wise error probabilities, i.e.,

Pe ≤ enR
P(w → w′)

whereP(w → w′) is given by

P

(
∃{k′

i}i∈N s.t.(x(w′)
s ,yd, {ỹ

(k′

i)
i ,x

(k′

i)
i }i∈N ) ∈ Ãǫ

)

≤
∑

k′

1,...,k′

N

P

(
(x(w′)

s ,yd, {ỹ
(k′

i)
i ,x

(k′

i)
i }i∈N ) ∈ Ãǫ

)

We can condition on the event that the correct message
produces indices{ki}, and since this is a generic index, we can
carry out the entire calculation conditioned on this and then
average over it. The summation over theN indicesk′

1, . . . , k
′
N

above can be rearranged to yield
∑

Ω

∑

k′

i,i∈NΩ

k′

i 6=ki

P

(
(x(w′)

s ,yd, {ỹ
(k′

i)
i ,x

(k′

i)
i }i)∈Ãǫ s.t.k′

i = ki, i∈ N c
Ω

)

︸ ︷︷ ︸
P

whereΩ is a source-destination cut of the network, i.e,Ω =
{s,NΩ} whereNΩ is a subset of the relaying nodesN . The
first summation runs over all possible source-destination cuts
Ω of the network, or equivalently over all subsetsNΩ of the
relaying nodesN . Following [1], the rearrangement of the
summation above can be interpreted as introducing a notion
of distinguishability. The relay nodes inΩ are the ones that
can distinguish betweenw and w′ becauseỹ(k′

i)
i 6= ỹ

(ki)
i ,

when the relay nodes inΩc cannot distinguish betweenw and
w′ becausẽy(k′

i)
i = ỹ

(ki)
i . The source node is naturally in the

distinguishability setΩ and the destination node is inΩc. Thus,
we sum over all possible cases for the distinguishability set Ω.

Now, let us examine the probability denoted byP . For
a given set of{k′

i}i∈N such thatk′
i = ki, i ∈ N c

Ω and
k′

i 6= ki, i ∈ NΩ, the consistency condition in (12) takes two
different forms depending on whetheri ∈ NΩ or i ∈ Ωc. For
nodesi ∈ Ωc, the condition is equivalent to

‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′

j)

j ) + zi − u
′
i) mod ΛQ‖2 ≤ n σ2

c

(13)
whereΩl−1 = Ω∩Nl−1 and we denote this event byAi. For
nodesi ∈ NΩ, the condition yields

‖(ỹ
(k′

i)
i −

∑

j∈Ωc
l−1

hijx
(kj)
j −

∑

j∈Ωl−1

hijx
(k′

j)

j )mod ΛQ‖2 ≤ n σ2
c

(14)
whereΩc

l−1 = Ωc ∩Nl−1 and we denote this event byBi. We
have,

P = P ({Ai, i ∈ Ωc}, {Bi, i ∈ NΩ})

= P (Ai, i ∈ Ωc) P (Bi, i ∈ NΩ | Ai, i ∈ Ωc) .

Note that due to Proposition 4.1,x(kj)
j ,x

(k′

j)

j , j ∈ {s,N} in
expressions (13) and (14) are a set of independent random
variables, uniformly distributed overp−1

r ΛT ∩VT . Due to the
dithering in (10),ỹ(k′

i)
i in (14) is uniformly distributed over

the Voronoi regionVQ
1 of the quantization lattice point̂y(k′

i)
i .



We will first bound the probabilityP (Ai, i ∈ Ωc) by con-
ditioning on the event defined in the following lemma.

Lemma 5.1:Let us defineE1 to be the following event,
{
∃i∈{N , d}, ∃{kj , k

′
j} s.t.

∑

j

hij(x
(kj)
j −x

(k′

j)

j )+zi−u
′
i /∈VQ

}
.

We haveP(E1) → 0.

When E1 is true, we declare this as an error. This adds a
vanishing term to the decoding error probability by the above
lemma. Conditioning on the complement ofE1 allows us to
get rid of the mod operation w.r.tΛQ in (13). GivenEc

1 , the
conditionAi is equivalent to

A′
i =

{
‖(

∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′

j)

j ) + zi − u
′
i)‖

2 ≤ n σ2
c

}
.

Therefore, we have

P (Ai, i ∈ Ωc | Ec
1) = P (A′

i, i ∈ Ωc | Ec
1) ≤

P (A′
i, i ∈ Ωc)

P(Ec
1)

We upperbound the last probability above in the following
lemma.

Lemma 5.2:

P

(
‖

∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′

j)

j ) + zi − u
′
i‖

2 ≤ n σ2
c , ∀i ∈ Ωc

)

≤ e−n(I(XΩ;HXΩ+ZΩc )− 1
2 |Ω

c|(1+log(1+ǫ))−on(1)),

whereXi, i ∈ Ω are i.i.d Gaussian random variablesN (0, P ),
ZΩc are i.i.d Gaussian random variablesN (0, σ2) and H is
the channel transfer matrix from nodes inΩ to nodes inΩc.

The proof of the lemma involves two main steps. Recall

thatx(kj)
j ,x

(k′

j)

j , j ∈ Ω are discrete random variables, indepen-
dently and uniformly distributed overp−1

r ΛT ∩ VT . We first
show that the probability in the lemma is upper bounded by

enǫ2P

(
‖

∑

j∈Ωl−1

hij(xj − x
′
j) + zi − z

′
i‖

2 ≤ n σ2
c , ∀i ∈ Ωc

)

(15)
where xj ,x

′
j , j ∈ Ω and z

′
i, i ∈ Ωc are all independent

Gaussian random variables such thatxj ,x
′
j ∼ N (0, σ2

xIn),
z
′
i ∼ N (0, σ2

zIn) and asn increases,σ2
x → σ2(ΛT ) → P if

ΛT is Roger’s good,σ2
z → σ2(ΛQ

1 ) → σ2 if ΛQ
1 is Roger’s

good which is our case here.ǫ2 → 0 when n → ∞, again
if ΛT and ΛQ

1 are Roger’s good. Given this translation to
Gaussian distributions the problem becomes very similar tothe
one for Gaussian codebooks in [1]. The second step is to bound
the probability in (15) by following a similar approach to [1].

We will now upper bound the term
∑

k′

i,i∈NΩ

k′

i 6=ki

P (Bi, i ∈ NΩ | Ai, i ∈ Ωc) (16)

by first removing the conditionk′
i 6= ki in the summation

above and then noting that this term is equal toe|NΩ|nRr

times the probabilityP (Bi, i ∈ NΩ | Ai, i ∈ Ωc) evaluated for
a randomly and independently chosen set of indices{k′

i}i∈NΩ .

When each of the indices{k′
i}i∈NΩ is chosen uniformly

at random,ỹ(k′

i)
i in (14) is a random variable uniformly

distributed overVQ. This is due to the dithering over the
Voronoi regionVQ

1 of the fine lattice and the mod operation
with respect to the coarse latticeΛQ in (10). Moreover, by the
Crypto Lemma,

νi = ỹ
(k′

i)
i −

∑

j∈Ωc
l−1

hijx
(kj)
j −

∑

j∈Ωl−1

hijx
(k′

j)

j mod ΛQ

is also uniformly distributed overVQ and is independent of
∑

j∈Ωc
l−1

hijx
(kj)
j +

∑

j∈Ωl−1

hijx
(k′

j)

j .

This is due to the fact that̃y(k′

i)
i is independent of this term,

which is due to the fact the indexk′
i and the ditherui are

chosen independently of everything else. Therefore (16) is
upper bounded by

∑

k′

i
,i∈NΩ

P (Bi, i ∈ NΩ | Ai, i ∈ Ωc)

= e|NΩ|nRr

∏

i∈NΩ

P
(
‖νi‖

2 ≤ nσ2
c

)

≤ e|NΩ|n 1
2 (log(2(1+ǫ))+1+on(1)) (17)

where the last inequality follows from the below lemma.2

Lemma 5.3:Let ν be uniformly distributed overVQ. We
have,

P

(
‖ν‖2 ≤ n σ2

c

)
≤ e

−n
2

„

log

„

1+ σ2(ΛQ)

σ2
c

«

−1−on(1)

«

.

Combining the results of Lemma 5.2 and (17), an consid-
ering the summation over all possible source-destination cuts
proves the main result of this paper stated in Theorem 2.1.
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