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Abstract. Switched systems constitute an important modeling para-
digm faithfully describing many engineering systems in which software
interacts with the physical world. Despite considerable progress on sta-
bility and stabilization of switched systems, the constant evolution of
technology demands that we make similar progress with respect to dif-
ferent, and perhaps more complex, objectives. This paper describes one
particular approach to address these different objectives based on the
construction of approximately equivalent (bisimilar) symbolic models for
a switched system. The main contribution of this paper consists in show-
ing that under standard assumptions ensuring incremental stability of a
switched system (i.e. existence of common or multiple Lyapunov func-
tions), it is possible to construct a symbolic model that is approximately
bisimilar to the original switched system with a precision that can be
chosen a priori. To support the computational merits of the proposed
approach we present a realistic example of a boost dc-dc converter and
show how to synthesize a switched controller that regulates the output
voltage at a desired level.

1 Introduction

Switched systems constitute an important modeling paradigm faithfully describ-
ing many engineering systems in which software interacts with the physical
world. Although this fact already amply justifies its study, switched systems
are also quite intriguing from a theoretical point of view. It is well known that
by judiciously switching between stable subsystems one can render the overall
system unstable. This motivated several researchers over the years to understand
which classes of switching strategies or switching signals preserve stability (see
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e.g. [1]). Despite considerable progress on stability and stabilization of switched
systems, the constant evolution of technology demands that we make similar
progress with respect to different, and perhaps more complex, objectives. These
comprise the synthesis of control strategies guiding the switched systems through
predetermined operating points while avoiding certain regions in the state space,
enforcing limit cycles and oscillatory behavior, reconfiguration upon the occur-
rence of faults, etc.

This paper describes one particular approach to address these different ob-
jectives based on the construction of symbolic models in which sets of states in
the switched system are represented by abstract states. When the symbolic mod-
els are finite, controller synthesis problems can be efficiently solved by resorting
to mature techniques developed in the areas of supervisory control of discrete-
event systems [2] and algorithmic game theory [3]. The crucial step is therefore
the construction of symbolic models that are detailed enough to capture all the
behavior of the original system, but not so detailed that their use for synthesis
is as difficult as the original model. This is accomplished, at the technical level,
by using the notion of approximate bisimulation. Approximate bisimulation has
been introduced in [4] as an approximate version of the usual bisimulation rela-
tion [5, 6]. It generalizes the notion of bisimulation by requiring the outputs of
two systems to be close instead of being strictly equal. This relaxed requirement
makes it possible to compute symbolic models for larger classes of systems as
shown recently for incrementally stable continuous control systems [7].

The main contribution of this paper consists in showing that under stan-
dard assumptions ensuring incremental stability of a switched system (i.e. exis-
tence of common or multiple Lyapunov functions), it is possible to construct a
symbolic model that is approximately bisimilar to the original switched system
with a precision that can be chosen a priori. The proof is constructive and it
is straightforward to derive a procedure for the computation of these symbolic
models. Since in problems of practical interest the state space can be assumed
to be bounded, the resulting symbolic model is guaranteed to have finitely many
states and can thus be used for algorithmic controller synthesis. The technical
contribution extends previous work by the authors that considered only purely
continuous systems [7]. To support the computational merits of the proposed
approach, we present a realistic example of a boost DC-DC converter and show
how to synthesize a switched controller that regulates the output voltage at a
desired level.

In the following, the symbols N, Z, R, R
+ and R

+
0 denote the set of natural,

integer, real, positive and nonnegative real numbers respectively. Given a vector
x ∈ R

n, we denote by xi its i-th coordinate and by ‖x‖ its Euclidean norm.

2 Switched systems and incremental stability

2.1 Switched systems

We shall consider the class of switched systems formalized in the following defi-
nition.



Definition 1. A switched system is a quadruple Σ = (Rn, P,P, F ), where:

– R
n is the state space;

– P = {1, . . . ,m} is the finite set of modes;
– P is a subset of S(R+

0 , P ) which denotes the set of piecewise constant func-
tions from R

+
0 to P , continuous from the right and with a finite number of

discontinuities on every bounded interval of R
+
0 ;

– F = {f1, . . . , fm} is a collection of vector fields indexed by P . For all p ∈ P ,
fp : R

n → R
n is a locally Lipschitz continuous map.

For all p ∈ P , we denote by Σp the continuous subsystem of Σ defined by
the differential equation:

ẋ(t) = fp(x(t)). (1)

We make the assumption that the vector field fp is such that the solutions of
the differential equation (1) are defined on an interval of the form ]a,+∞[ with
a < 0. Sufficient conditions includes linear growth or compact support of the
vector field fp.

A switching signal of Σ is a function p ∈ P, the discontinuities of p are called
switching times. A piecewise C1 function x : R

+
0 → R

n is said to be a trajectory
of Σ if it is continuous and there exists a switching signal p ∈ P such that, at
each t ∈ R

+
0 where the function p is continuous, x is continuously differentiable

and satisfies:
ẋ(t) = fp(t)(x(t)).

We will use x(t, x,p) to denote the point reached at time t ∈ R
+
0 from the initial

condition x under the switching signal p. The assumptions on the vector fields
f1, . . . , fm and the fact that the switching signals have only a finite number of
discontinuities on every bounded interval, thus ruling out Zeno behaviors, ensure
for all initial conditions and switching signals, existence and uniqueness of the
trajectory of Σ. Let us remark that a trajectory of Σp is a trajectory of Σ
associated with the constant switching signal p(t) = p, for all t ∈ R

+
0 . Then, we

will use x(t, x, p) to denote the point reached by Σp at time t ∈ R
+
0 from the

initial condition x.

2.2 Incremental stability

The results presented in this paper rely on some stability notions. A continuous
function γ : R

+
0 → R

+
0 is said to belong to class K if it is strictly increasing

and γ(0) = 0. Function γ is said to belong to class K∞ if it is a K function and
γ(r) → ∞ when r → ∞. A continuous function β : R

+
0 × R

+
0 → R

+
0 is said to

belong to class KL if for all fixed s, the map r 7→ β(r, s) belongs to class K∞

and for all fixed r, the map s 7→ β(r, s) is strictly decreasing and β(r, s) → 0
when s → ∞.

Definition 2. [8] The subsystem Σp is incrementally globally asymptotically
stable (δ-GAS) if there exists a KL function βp such that for all t ∈ R

+
0 , for all

x, y ∈ R
n, the following condition is satisfied:

‖x(t, x, p) − x(t, y, p)‖ ≤ βp(‖x − y‖, t).



Intuitively, incremental stability means that all the trajectories of the subsys-
tem Σp converge to the same reference trajectory independently of their initial
condition. This is an incremental version of the notion of global asymptotic
stability (GAS) [9]. Let us remark that when fp satisfies fp(0) = 0 then δ-GAS
implies GAS, as all the trajectories of Σp converge to the trajectory x(t, 0, p) = 0.
Further, if fp is linear then δ-GAS and GAS are equivalent. Similarly to GAS,
δ-GAS can be characterized by dissipation inequalities.

Definition 3. A smooth function Vp : R
n × R

n → R
+
0 is a δ-GAS Lyapunov

function4 for Σp if there exist K∞ functions αp, αp and κp ∈ R
+ such that:

∀x, y ∈ R
n, αp(‖x − y‖) ≤ Vp(x, y) ≤ αp(‖x − y‖); (2)

∀x, y ∈ R
n,

∂Vp

∂x
(x, y)fp(x) +

∂Vp

∂y
(x, y)fp(y) ≤ −κpVp(x, y). (3)

The following result completely characterizes δ-GAS in terms of existence of
a δ-GAS Lyapunov function.

Theorem 1. [8] Σp is δ-GAS iff it admits a δ-GAS Lyapunov function.

For the purpose of this paper, we extend the notion of incremental stability
to switched systems as follows:

Definition 4. A switched system Σ = (Rn, P,P, F ) is incrementally globally
uniformly asymptotically stable (δ-GUAS) if there exists a KL function β such
that for all t ∈ R

+
0 , for all x, y ∈ R

n, for all switching signals p ∈ P, the
following condition is satisfied:

‖x(t, x,p) − x(t, y,p)‖ ≤ β(‖x − y‖, t).

Let us remark that the speed of convergence specified by the function β is
independent of the switching signal p. Thus, the stability property is uniform
over the set of switching signals; hence the notion of incremental global uni-
form asymptotic stability. Incremental stability of a switched system means that
all the trajectories associated with the same switching signal converge to the
same reference trajectory independently of their initial condition. This is an in-
cremental version of global uniform asymptotic stability (GUAS) for switched
systems [1]. If for all p ∈ P , fp(0) = 0, then δ-GUAS implies GUAS as all the
trajectories of Σ converge to the constant trajectory x(t, 0,p) = 0.

It is well known that a switched system whose subsystems are all GAS may
exhibit some unstable behaviors under fast switching signals. The same kind
of phenomenon can be observed for switched systems with δ-GAS subsystems.
Similarly, the results on common or multiple Lyapunov functions for proving
GUAS of switched systems (see e.g. [1]) can be extended to prove δ-GUAS.

4 In [8], (3) is replaced by
∂Vp

∂x
(x, y)fp(x)+

∂Vp

∂y
(x, y)fp(y) ≤ −ρp(‖x−y‖), where ρp is

a positive definite function. It is known (see e.g. [1]) that there is no loss of generality
in considering ρp(‖x − y‖) = κpVp(x, y), modifying the δ-GAS Lyapunov function
Vp if necessary.



Because of the lack of space, we omit the proofs of the following theorems. Let
the K∞ functions α, α and the real number κ be given by α = min(α1, . . . , αm),
α = max(α1, . . . , αm) and κ = min(κ1, . . . , κm).

Theorem 2. Consider a switched system Σ = (Rn, P,P, F ). Let us assume that
there exists V : R

n × R
n → R

+
0 which is a common δ-GAS Lyapunov function

for subsystems Σ1, . . . , Σm. Then, Σ is δ-GUAS.

When a common δ-GAS Lyapunov function fails to exist, δ-GUAS of the
switched system can be ensured by using multiple δ-GAS Lyapunov functions
and a restrained set of switching signals. Let Sτd

(R+
0 , P ) denote the set of switch-

ing signals with dwell time τd ∈ R
+
0 so that p ∈ S(R+

0 , P ) has dwell time τd if
the switching times t1, t2, . . . satisfy t1 ≥ τd and ti − ti−1 ≥ τd, for all i ≥ 2.

Theorem 3. Let τd ∈ R
+
0 , consider a switched system Στd

= (Rn, P,P, F )
with P ⊆ Sτd

(R+
0 , P ). Let us assume that for all p ∈ P , there exists a δ-GAS

Lyapunov function Vp for subsystem Στd,p and that in addition there exists µ ≥ 1
such that:

∀x, y ∈ R
n, ∀p, p′ ∈ P, Vp(x, y) ≤ µVp′(x, y). (4)

If τd > log µ
κ

, then Στd
is δ-GUAS.

In the following, we show that under the assumptions of Theorems 2 or 3,
it is possible to compute approximately equivalent symbolic models of switched
systems. We will make the following supplementary assumption on the δ-GAS
Lyapunov functions: for all p ∈ P , there exists a K∞ function γp such that

∀x, y, z ∈ R
n, |Vp(x, y) − Vp(x, z)| ≤ γp(‖y − z‖). (5)

Note that γp is not a function of the variable x; let the K∞ function γ be given
by γ = max(γ1, . . . , γm). We will discuss this assumption later in the paper and
we will show that it is not restrictive provided we are interested in the dynamics
of the switched system on a compact subset of the state space R

n.

3 Approximate bisimulation

In this section, we present a notion of approximate equivalence which will relate
a switched system to the symbolic models that we construct. We start by in-
troducing the class of transition systems which allows us to model switched and
symbolic systems in a common framework.

Definition 5. A transition system is a sextuple T = (Q,L, - , O,H, I)
consisting of:

– a set of states Q;
– a set of labels L;
– a transition relation - ⊆ Q × L × Q;
– an output set O;



– an output function H : Q → O;
– a set of initial states I ⊆ Q.

T is said to be metric if the output set O is equipped with a metric d, countable
if Q and L are countable sets, finite, if Q and L are finite sets.

The transition (q, l, q′) ∈ - will be denoted q
l
- q′. The transition

relation captures the dynamics of the transition system: q
l
- q′ means that

the system can evolve from state q to state q′ under the action labelled by l.
Transition systems can serve as abstract models for describing switched sys-

tems. Given a switched system Σ = (Rn, P,P, F ) where P = S(R+
0 , P ), we

define the associated transition system T (Σ) = (Q,L, - , O,H, I), where
the set of states is Q = R

n; the set of labels is L = P ; the transition relation is

given by q
l
- q′ iff there exists a trajectory x of the subsystem Σl such that

x(τ, q, l) = q′ for some τ ∈ R
+; the set of outputs is O = R

n; the observation
map H is the identity map over R

n; the set of initial states is I = R
n. The

transition system T (Σ) is metric when the set of outputs O = R
n is equipped

with the metric d(q, q′) = ‖q − q′‖. Note that the state space of T (Σ) is infinite.
Usual equivalence relationships between transition systems rely on the equal-

ity of the languages. In this paper, we are mostly interested in bisimulation equiv-
alence [5, 6]. Intuitively, a bisimulation relation between two transition systems
T1 and T2 is a relation between their set of states explaining how a trajec-
tory of T1 can be transformed into a trajectory of T2 with the same associated
sequence of outputs, and vice versa. The requirement of equality of output se-
quences, as in the classical formulation of bisimulation [5, 6] is quite strong for
metric transition systems. We shall relax this, by requiring output sequences to
be close where closeness is measured with respect to the metric on the output
space. This relaxation leads to the notion of approximate bisimulation relation
introduced in [4].

Definition 6. Let T1 = (Q1, L,
1
- , O,H1, I1), T2 = (Q2, L,

2
- , O,H2, I2)

be metric transition systems with the same sets of labels L and outputs O equipped
with the metric d. Let ε ∈ R

+
0 be a given precision, a relation R ⊆ Q1 × Q2 is

said to be an ε-approximate bisimulation relation between T1 and T2 if for all
(q1, q2) ∈ R:

– d(H1(q1),H2(q2)) ≤ ε;

– for all q1
l

1
- q′1, there exists q2

l

2
- q′2, such that (q′1, q

′
2) ∈ R;

– for all q2
l

2
- q′2, there exists q1

l

1
- q′1, such that (q′1, q

′
2) ∈ R.

The transition systems T1 and T2 are said to be approximately bisimilar with
precision ε (denoted T1 ∼ε T2) if:

– for all q1 ∈ I1, there exists q2 ∈ I2, such that (q1, q2) ∈ R;
– for all q2 ∈ I2, there exists q1 ∈ I1, such that (q1, q2) ∈ R.



4 Approximately bisimilar symbolic models

In the following, we will work with a sub-transition system of T (Σ) obtained by
selecting the transitions of T (Σ) that describe trajectories of duration τs for some
chosen τs ∈ R

+. This can be seen as a sampling process. Moreover, we suppose
that switching instants can only occur at times of the form iτs with i ∈ N.
This is a natural constraint when the switching in Σ has to be controlled by a
microprocessor with clock period τs. Given a switched system Σ = (Rn, P,P, F )
where P = S(R+

0 , P ), and a time sampling parameter τs ∈ R
+, we define the

associated transition system Tτs
(Σ) = (Q1, L1,

1
- , O1,H1, I1) where the set

of states is Q1 = R
n; the set of labels is L1 = P ; the transition relation is given

by q
l

1
- q′ iff x(τs, q, l) = q′; the set of outputs is O1 = R

n; the observation

map H1 is the identity map over R
n; the set of initial states is I1 = R

n. The
transition system Tτs

(Σ) is metric when the set of outputs O1 = R
n is equipped

with the metric d(q, q′) = ‖q − q′‖.

4.1 Common Lyapunov function

We first examinate the case when there exists a common δ-GAS Lyapunov func-
tion V for subsystems Σ1, . . . , Σm. We start by approximating the set of states
Q1 = R

n by the lattice:

[Rn]η =

{

q ∈ R
n

∣

∣

∣

∣

qi = ki

2η√
n

, ki ∈ Z, i = 1, ..., n

}

,

where η ∈ R
+ is a state space discretization parameter. By simple geometrical

considerations, we can see that for all x ∈ R
n, there exists q ∈ [Rn]η such that

‖x − q‖ ≤ η.
Let us define the transition system Tτs,η(Σ) = (Q2, L2,

2
- , O2,H2, I2),

where the set of states is Q2 = [Rn]η; the set of labels remains the same L2 =

L1 = P ; the transition relation is given by q
l

2
- q′ iff ‖x(τs, q, l) − q′‖ ≤ η;

the set of outputs remains the same O2 = O1 = R
n; the observation map H2

is the natural inclusion map from [Rn]η to R
n, i.e. H2(q) = q; the set of initial

states is I2 = [Rn]η. Note that the transition system Tτs,η(Σ) is countable.
Moreover, it is metric when the set of outputs O2 = R

n is equipped with the
metric d(q, q′) = ‖q − q′‖.

We now give the result that relates the existence of a common δ-GAS Lya-
punov function for the subsystems Σ1, . . . , Σm to the existence of approximately
bisimilar symbolic models for the transition system Tτs

(Σ).

Theorem 4. Consider a switched system Σ = (Rn, P,P, F ) with P = S(R+
0 , P ),

time and state space sampling parameters τs, η ∈ R
+ and a desired precision

ε ∈ R
+. Let us assume that there exists V : R

n × R
n → R

+
0 which is a common

δ-GAS Lyapunov function for subsystems Σ1, . . . , Σm and such that equation (5)
holds for some K∞ function γ. If

η ≤ min
{

γ−1
(

(1 − e−κτs)α(ε)
)

, α−1 (α(ε))
}

(6)



then, the transition systems Tτs
(Σ) and Tτs,η(Σ) are approximately bisimilar

with precision ε.

Proof. We start by showing that the relation R ⊆ Q1×Q2 defined by (q1, q2) ∈ R
iff V (q1, q2) ≤ α(ε), is an ε-approximate bisimulation relation. Let (q1, q2) ∈ R,
then ‖q1 − q2‖ ≤ α−1 (V (q1, q2)) ≤ ε. Thus, the first condition of Definition 6

holds. Let q1
l

1
- q′1, then q′1 = x(τs, q1, l). There exists q′2 ∈ [Rn]η such that

‖x(τs, q2, l)− q′2‖ ≤ η. Then, we have q2
l

2
- q′2. Let us check that (q′1, q

′
2) ∈ R.

From equation (5), |V (q′1, q
′
2)−V (q′1,x(τs, q2, l))| ≤ γ(‖q′2−x(τs, q2, l))‖) ≤ γ(η).

It follows that

V (q′1, q
′
2) ≤ V (q′1,x(τs, q2, l)) + γ(η) = V (x(τs, q1, l),x(τs, q2, l)) + γ(η)

≤ e−κτsV (q1, q2) + γ(η) (7)

because V is a δ-GAS Lyapunov function for subsystem Σl. Then, from equa-
tion (6) and since γ is a K∞ function, V (q′1, q

′
2) ≤ e−κτsα(ε) + γ(η) ≤ α(ε).

Hence, (q′1, q
′
2) ∈ R. In a similar way, we can prove that, for all q2

l

2
- q′2, there

is q1
l

1
- q′1 such that (q′1, q

′
2) ∈ R. Hence R is an ε-approximate bisimulation

relation between Tτ (Σ) and Tτ,η(Σ).

By definition of I2 = [Rn]η, for all q1 ∈ I1 = R
n, there exists q2 ∈ I2 such

that ‖q1 − q2‖ ≤ η. Then, V (q1, q2) ≤ α(‖q1 − q2‖) ≤ α(η) ≤ α(ε) because of
equation (6) and α is a K∞ function. Hence, (q1, q2) ∈ R. Conversely, for all
q2 ∈ I2, q1 = q2 ∈ R

n = I1, then V (q1, q2) = 0 and (q1, q2) ∈ R. Therefore,
Tτs

(Σ) and Tτs,η(Σ) are approximately bisimilar with precision ε. �

Let us remark that, for a given time sampling parameter τs and a desired
precision ε ∈ R

+, there always exists η ∈ R
+ sufficiently small such that equation

(6) holds. This means that for switched systems admitting a common δ-GAS
Lyapunov function there exists approximately bisimilar symbolic models and
any precision can be reached for all sampling rates.

4.2 Multiple Lyapunov functions

If a common δ-GAS Lyapunov function does not exist, it remains possible to
compute approximately bisimilar symbolic models provided we restrict the set
of switching signals using a dwell time τd. In this section, we consider a switched
system Στd

= (Rn, P,P, F ) where P = Sτd
(R+

0 , P ). Let τs be a time sam-
pling parameter; for simplicity, we will assume that the dwell time τd is an
integer multiple of τs: there exists N ∈ N such that τd = Nτs. Representing
Στd

using a transition system is a bit less trivial than previously as we need
to record inside the state of the transition system the time elapsed since the
latest switching occured. Thus, the transition system associated with Στd

is
Tτs

(Στd
) = (Q1, L1,

1
- , O1,H1, I1) where:



– the set of states is Q1 = R
n×P ×{0, . . . , N −1}, a state (x, p, i) ∈ Q1 means

that the current state of Στd
is x, the current value of the switching signal is

p and the time elapsed since the latest switching is exactly iτs if i < N − 1
or at least (N − 1)τs if i = N − 1.

– the set of labels is L1 = P ;

– the transition relation is given by (x, p, i)
l

1
- (x′, p′, i′) iff l = p and one

the following holds:
• i < N −1, x′ = x(τs, x, p), p′ = p and i′ = i+1: switching is not allowed

because the time elapsed since the latest switch is strictly smaller than
the dwell time;

• i = N − 1, x′ = x(τs, x, p), p′ = p and i′ = N − 1: switching is allowed
but no switch occurs;

• i = N − 1, x′ = x(τs, x, p), p′ 6= p and i′ = 0: switching is allowed and a
switch occurs.

– the set of outputs is O1 = R
n;

– the observation map H1 is given by H1((x, p, i)) = x;
– the set of initial states is I1 = R

n × P × {0}.
One can verify that the output trajectories of Tτs

(Στd
) are the output trajectories

of Tτs
(Σ) associated with switching signals with dwell time τd = Nτs. The

approximation of the set of states of Tτs
(Στd

) by a symbolic model is done using
a lattice, as previously. Let η ∈ R

+ be a state space discretization parameter,
we define the transition system Tτs,η(Στd

) = (Q2, L2,
2
- , O2,H2, I2) where:

– the set of states is Q2 = [Rn]η × P × {0, . . . , N − 1}.
– the set of labels remains the same L2 = L1 = P ;

– the transition relation is given by (x, p, i)
l

1
- (x′, p′, i′) iff l = p and one of

the following holds:
• i < N − 1, ‖x(τs, x, p) − x′‖ ≤ η, p′ = p and i′ = i + 1;
• i = N − 1, ‖x(τs, x, p) − x′‖ ≤ η, p′ = p and i′ = N − 1;
• i = N − 1, ‖x(τs, x, p) − x′‖ ≤ η, p′ 6= p and i′ = 0;

– the set of outputs remains the same O2 = O1 = R
n;

– the observation map H2 is given by H2((x, p, i)) = x;
– the set of initial states is I2 = [Rn]η × P × {0}.

Note that the transition system Tτs,η(Στd
) is countable. Moreover, Tτs

(Στd
) and

Tτs,η(Στd
) are metric when the set of outputs O1 = O2 = R

n is equipped with
the metric d(x, x′) = ‖x−x′‖. The following theorem establishes the approximate
equivalence of Tτs

(Στd
) and Tτs,η(Στd

).

Theorem 5. Consider τd ∈ R
+
0 , a switched system Στd

= (Rn, P,P, F ) with
P = Sτd

(R+
0 , P ), time and state space sampling parameters τs, η ∈ R

+ and a
desired precision ε ∈ R

+. Let us assume that for all p ∈ P , there exists a δ-GAS
Lyapunov function Vp for subsystem Στd,p and that equations (4) and (5) hold

for some µ ≥ 1 and K∞ functions γ1, . . . , γm. If τd > log µ
κ

and

η ≤ min

{

γ−1

(

1
µ
− e−κτd

1 − e−κτd
(1 − e−κτs)α(ε)

)

, α−1 (α(ε))

}

(8)



then, the transition systems Tτs
(Στd

) and Tτs,η(Στd
) are approximately bisimilar

with precision ε.

Proof. Let us define the relation R ⊆ Q1 × Q2 by

R = {(x1, p1, i1, x2, p2, i2) ∈ Q1 × Q2| p1 = p2 = p, i1 = i2 = i, Vp(x1, x2) ≤ δi}

where δ0, . . . , δN are given recursively by δ0 = α(ε), δi+1 = e−κτsδi + γ(η). Let
us remark that:

δi = e−iκτsα(ε)+γ(η)
1 − e−iκτs

1 − e−κτs
=

γ(η)

1 − e−κτs
+e−iκτs

(

α(ε) − γ(η)

1 − e−κτs

)

(9)

From equation (4), µ ≥ 1; then, from equation (8) and since γ is a K∞ function,
γ(η) ≤ (1 − e−κτs)α(ε). It follows from (9) that δ0 ≥ δ1 ≥ · · · ≥ δN−1 ≥ δN .
From equation (8), and since γ is a K∞ function and τd = Nτs,

δN = e−κτdα(ε) + γ(η)
1 − e−κτd

1 − e−κτs
≤ e−κτdα(ε) +

(

1

µ
− e−κτd

)

α(ε) =
α(ε)

µ
.

We can now prove that R is an ε-approximate bisimulation relation between
Tτs

(Στd
) and Tτs,η(Στd

). Let (x1, p, i, x2, p, i) ∈ R, then

‖H1(x1, p, i) − H2(x2, p, i)‖ = ‖x1 − x2‖ ≤ α−1 (Vp(x1, x2))

≤ α−1(δi) ≤ α−1(δ0) = ε.

Hence, the first condition of Definition 6 holds. Let us prove that the second

condition holds as well. Let (x1, p, i)
p

1
- (x′

1, p
′, i′), then x′

1 = x(τs, x1, p).

There exists a transition (x2, p, i)
p

2
- (x′

2, p
′, i′) with ‖x′

2 − x(τs, x2, p)‖ ≤ η.

From equation (5) and since Vp is a δ-GAS Lyapunov function for subsystem Σp

we can show, similarly to equation (7), that

Vp(x
′
1, x

′
2) ≤ e−κτsVp(x1, x2) + γ(η) ≤ e−κτsδi + γ(η) = δi+1. (10)

We now examinate three separate cases:

– i < N − 1, then p′ = p and i′ = i + 1; since Vp(x
′
1, x

′
2) ≤ δi+1, it follows that

(x′
1, p, i + 1, x′

2, p, i + 1) ∈ R.
– i = N − 1 and p′ = p then i′ = N − 1; from (10), Vp(x

′
1, x

′
2) ≤ δN ≤ δN−1,

it follows that (x′
1, p,N − 1, x′

2, p,N − 1) ∈ R.
– i = N − 1 and p′ 6= p then i′ = 0; from (10), Vp(x

′
1, x

′
2) ≤ δN ≤ δ0/µ.

From equation (5), it follows that Vp′(x′
1, x

′
2) ≤ µVp(x

′
1, x

′
2) ≤ δ0. Therefore,

(x′
1, p

′, 0, x′
2, p

′, 0) ∈ R.

Similarly, we can show that for any transition (x2, p, i)
l

2
- (x′

2, p
′, i′), there

exists a transition (x1, p, i)
l

1
- (x′

1, p
′, i′) such that (x′

1, p
′, i′, x′

2, p
′, i′) ∈ R.

Hence, R is an ε-approximate bisimulation relation.



For all initial states (x1, p, 0) ∈ I1, there exists (x2, p, 0) ∈ I2 such that
‖x1 − x2‖ ≤ η. Then, Vp(x1, x2) ≤ α(η) ≤ α(ε) because of equation (8) and α
is K∞ function. Hence, Vp(x1, x2) ≤ δ0 and (x1, p, 0, x2, p, 0) ∈ R. Conversely,
for all (x2, p, 0) ∈ I2, (x1, p, 0) = (x2, p, 0) ∈ I1. Then, Vp(x1, x2) = 0 ≤ δ0 and
(x1, p, 0, x2, p, 0) ∈ R. Thus, Tτs

(Στd
) and Tτs,η(Στd

) are approximately bisimilar
with precision ε. �

Provided that τd > log µ
κ

, for a given time sampling parameter and a desired
precision, there always exists η ∈ R

+ sufficiently small such that equation (8)
holds. Thus, if the dwell time is large enough, we can compute symbolic models
of arbitrary precision of the switched system. Let us remark that the lower
bound we obtain on the dwell time is the same than the one in Theorem 3
ensuring incremental stability of the switched system. Theorem 4 can be seen
as a corollary of Theorem 5. Indeed, existence of a common δ-GAS Lyapunov
function is equivalent to equation (4) with µ = 1. Then, no constraint is necessary
on the dwell time and equation (8) becomes equivalent to (6).

The previous Theorems also give indications on the practical computation of
these symbolic models. The sets of states of Tτs,η(Σ) or Tτs,η(Στd

) are countable
but infinite. However, if we are interested in the dynamics of the switched system
only on a compact subset C ⊆ R

n, then we can restrict the set of states of
Tτs,η(Σ) or Tτs,η(Στd

) to the sets [Rn]µ ∩C or ([Rn]µ ∩C)×P ×{0, . . . , N − 1}
which are finite. The computation of the transition relations is then relatively
simple since it mainly involves the numerical computation of the points x(τs, x, p)
with x ∈ [Rn]µ∩C and p ∈ P . This can be done by simulation of the subsystems
Σ1, . . . , Σm. Numerical errors in the computation of these points can be taken
into account: it is sufficient to replace η by η + e, where e is an evaluation of the
error, in Theorems 4 and 5.

Finally, we would like to discuss the assumption made in equation (5). This
assumption is quite strong because the inequality has to hold for any triple in
R

n, and the function γp must be independent of x. However, if we are interested
in the dynamics of the switched system on the compact subset C ⊆ R

n, we only
need this assumption to hold for all x, y, z ∈ C. Then, it is sufficient to assume
that Vp is C1 on C. Indeed, for all x, y, z ∈ C,

|Vp(x, y) − Vp(x, z)| ≤
(

max
x,y∈C

∥

∥

∥

∥

∂Vp

∂y
(x, y)

∥

∥

∥

∥

)

‖y − z‖ = γp(‖y − z‖).

In this case, equation (5) holds. This means that the existence of approximately
bisimilar symbolic models on an arbitrary compact subset of R

n does not need
more assumptions than existence of common or multiple Lyapunov functions
ensuring incremental stability of the switched system.

5 Symbolic models for the boost DC-DC converter

In this section, we use our methodology to compute symbolic models of a concrete
switched system: the boost DC-DC converter (see Figure 1). This is an example



of electrical power convertor that has been studied from the point of view of
hybrid control in [10–13].

il

s1

vs

rl
xl

s2

xc

rc

vc

r0 v0

Fig. 1. boost DC-DC converter.

The boost converter has two operation modes depending on the position of the
switch. The state of the system is x(t) = [il(t) vc(t)]

T where il(t) is the inductor
current and vc(t) the capacitor voltage. The dynamics associated with both
modes are affine of the form ẋ(t) = Apx(t) + b (p = 1, 2) with

A1 =

[

− rl
xl

0

0 − 1
xc

1
r0+rc

]

, A2 =

[

− 1
xl

(rl+
r0rc

r0+rc
) − 1

xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

]

, b =
[

vs
xl

0

]

.

It is clear that the boost DC-DC converter is an example of a switched system.
In the following, we use the numerical values from [11], that is, in the per unit
system, xc = 70 p.u., xl = 3 p.u., rc = 0.005 p.u., rl = 0.05 p.u., r0 = 1 p.u. and
vs = 1 p.u.. The goal of the boost DC-DC converter is to regulate the output
voltage across the load r0. This control problem is usually reformulated as a
current reference scheme. Then, the goal is to keep the inductor current il(t)
around a reference value irefl . This can be done, for instance, by synthesizing
a controller that keeps the state of the switched system in an invariant set I
centered around the reference value.

It can be shown by solving a set of 2 linear matrix inequalities that the
subsystems associated with the two operation modes are both incrementally
stable and that they share a common δ-GAS Lyapunov function of the form
V (x, y) =

√

(x − y)T M(x − y), where M is positive definite symmetric. For a
better numerical conditioning, we rescale the second variable of the system (i.e.
the state of the system becomes x(t) = [il(t) 5vc(t)]

T ; the matrices A1, A2

and vector b are modified accordingly). The δ-GAS Lyapunov function that we
obtain has the following characteristics: α(s) = s, α(s) = γ(s) = 1.0127s, κ =
0.014, and we set the sampling period to τs = 0.5. Then, a symbolic model can
be computed for the boost DC-DC converter using the procedure described in
Section 4. According to Theorem 4, a desired precision ε can be achieved by
choosing a state space discretization parameter η satisfying η ≤ ε/145. In this
example, the ratio between the precision of the symbolic approximation and the
state space discretization parameter is quite large. This is explained by the fact
that the subsystems are quite weakly stable since the value of κ is small.

We consider two different values of the precision parameter ε. We first choose
a precision ε = 2.6 which can be achieved by choosing η = 1

40
√

2
. This precision is



Fig. 2. Symbolic model of the DC-DC converter for η = 1

40
√

2
(left); Controller for the

symbolic model (right) (dark gray: mode 1, light gray: mode 2, medium gray: both
modes are acceptable, white: the invariance property cannot be ensured from these
states).

quite poor and makes the computed symbolic model of no practical use. However,
it helps to understand the second experiment related further. On Figure 2, the
symbolic model of the boost DC-DC converter is shown on the left, red and blue
arrows represent the transitions associated with mode 1 and 2, respectively. We
only represented the transitions that keep the state of the symbolic model in
the set I ′ = [1.3, 1.7]× [5.7, 5.8]. Using supervisory control [2], we synthesized a
controller that keeps the state of the symbolic model inside I ′. It is shown on
the right figure: dark and light gray means that for these states of the symbolic
model the controller has to use mode 1 and 2, respectively; medium gray means
that for these states the controller can use either mode 1 or mode 2; white means
that from these states there does not exist any switching sequence that keeps
the state of the symbolic model in I ′. From this controller, using the approach
presented in [14], one could derive a controller for the boost DC-DC converter
that keeps the state of the switched system in I = [1.3−ε, 1.7+ε]×[5.7−ε, 5.8+ε]
which is not useful in practice.

The second value we consider for the precision parameter is ε = 0.026. This
precision can be achieved by choosing η = 1

4000
√

2
. We do not show the symbolic

model as it has too many states (642001) to be represented graphically. We
repeat the same experiment with this model, the supervisory controller that
keeps the state of the symbolic model in I ′ is shown in Figure 3, on the left.
The computation of the symbolic model and the synthesis of the supervisory
controller, implemented in MATLAB, takes overall around 80 seconds. From the
controller of the symbolic model, we derive a controller for the boost DC-DC
converter that keeps the state of the switched system in I = [1.3 − ε, 1.7 + ε] ×
[5.7−ε, 5.8+ε]. We apply a lazy control strategy, when the controller can choose
both modes 1 and 2, it just keeps the current operation mode unchanged. A state
trajectory of the controlled boost DC-DC converter is shown in Figure 3, on the
right. We can see that the trajectory remains in the invariant set.



Fig. 3. Controller for a symbolic model of the DC-DC converter for η = 1

4000
√

2
(left);

Trajectory of the boost DC-DC converter using the previous controller (right).

6 Conclusion

In this paper, we showed, under standard assumptions ensuring incremental sta-
bility, the existence of approximately bisimilar symbolic abstractions for switched
systems. The abstractions are effectively computable and any precision can be
achieved. An example of application has been showed on the DC-DC converter.
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