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Abstract

We present a method to identify approximately independent blocks of linkage

disequilibrium (LD) in the human genome. These blocks enable automated analy-

sis of multiple genome-wide association studies.

Availability (code) http://bitbucket.org/nygcresearch/ldetect

Availability (data): http://bitbucket.org/nygcresearch/ldetect-data
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1 Introduction

The genome-wide association study (GWAS) is a commonly-used study design for

the identification of genetic variants that influence complex traits. In this type of

study, millions of genetic variants are genotyped on thousands to millions of indi-

viduals, and each variant is tested to see if an individual’s genotype is predictive of

their phenotypes. Because of linkage disequilibrium (LD) in the genome [Pritchard

and Przeworski, 2001], a single genetic variant with a causal effect on the pheno-

type leads to multiple statistical (but non-causal) associations at nearby variants.

One initial analysis goal in a GWAS is to count the number of independent associ-

ation signals in the genome while accounting for LD.

The most commonly-used approach to counting independent SNPs that influ-

ence a trait is to count “peaks” of association signals–this can be done manually

when the number of peaks is small (e.g. Wellcome Trust Case Control Consor-

tium [2007]), or in a semi-automated way when the number of peaks is larger (e.g.

Jostins et al. [2012]). There are also fully automated methods that use LD patterns

estimated from large reference panels of individuals [Yang et al., 2012]. In some

contexts (for example, when performing identical analysis on multiple GWAS with

the goal of comparing phenotypes), however, it is useful to define approximately

independent LD blocks a priori rather than letting them vary across analyses per-

formed on different phenotypes [Loh et al., 2015; Pickrell, 2014].

To define approximately-independent LD blocks, Loh et al. [2015] used non-

overlapping segments of 1 megabase, and Pickrell [2014] used non-overlapping

segments of 5,000 single nucleotide polymorphisms (SNPs). The breakpoints of

these segments undoubtedly sometimes fall in regions of strong LD, thus poten-

tially splitting a single association signal over two blocks (and leading to over-

counting of the number of associated variants). A better approximation could be

obtained by considering the empirical patterns of LD in a reference panel. In the

remainder of this paper, we present an efficient signal processing-based heuristic

for choosing approximate segment boundaries.

2 Approach and Results

In order to estimate LD between pairs of loci, we use the r2 metric. If a genetic

variant is in LD with another genetic variant that has a causal influence on disease,

then r2 is proportional to the association statistic at the non-causal SNP [Pritchard

and Przeworski, 2001].

Our approach is a heuristic for choosing segment boundaries, given a mean

segment size (which is the required input). Let there be n genetic variants on a
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Figure 1: (a) and (b) Schematic of the conversion of matrix P to vector V . (c)

Example data (blue) with Hann filter applied (red). (d) Example of Crohn’s disease

GWAS hits with partially filtered vector V and comparison of breakpoints.

chromosome. The method can be broken down into the following basic steps (see

the Supplementary Material for details):

1. Calculate the n×n covariance matrix C for all pairs of loci using the shrink-

age estimator of C from [Wen and Stephens, 2010]

2. Convert the covariance matrix to n × n matrix of squared Pearson product-

moment correlation coefficients P

3. Convert the matrix P = (ei,j) to a (2n − 1)-dimensional vector V = (vk)
as follows:

vk =
k

∑

i=1

ti,k−i+1, ti,j =

{

ei,j , if 1 ≤ i, j ≤ n

0, otherwise
,

(k = 1, 2, ..., 2n− 1)

The effect of this step is representing each antidiagonal of P by the sum of

its elements (Figs. 1a. and b.).

4. Apply low-pass filters of increasing widths to (i.e., “smooth”) V until the

requested number of minima is achieved

5. Perform a local search in the proximity of each minimum from Step 4 in

order to fine-tune the segment boundaries
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In reality, matrix P turns out to be sparse, approximately banded, and approx-

imately block-diagonal, with sporadically overlapping blocks [Slatkin, 2008; Wen

and Stephens, 2010].

In order to provide intuition for Step 3, Fig. 1a. shows a simplified example of

a correlation matrix P , where two loci i and j are either correlated (represented by

1 in element eij of the matrix) or uncorrelated (represented by zero, not shown).

Representing each antidiagonal of P by the sum of its elements results in the vector

shown in Fig. 1b. and identifying segments representing blocks of LD reduces to

identifying local (or more stringently, global) minima in this vector. In reality,

the elements eij of P are continuous values from the interval [0, 1] and result in

an extremely noisy vector V (example in blue in Fig. 1c.) Therefore, in order

to identify large-scale trends of LD and reduce high frequency components in the

signal, we apply a signal processing technique dubbed low-pass filtering (utilizing

a Hann window [Blackman and Tukey, 1958]) in Step 4. The result of applying a

low-pass filter (with width = 100) is shown in red in Fig. 1c.

Applying wider and wider filters to vector V in Step 4 allows us to focus on

the large scale structure of LD blocks, but also causes the approach to miss small

scale variation around identified minima. In order to counteract this effect, Step 5

conducts a local search in the proximity of each local minimum identified in Step

4 to find the closest locus l with min
∑

i<l

∑

j>l eij .

We provide an illustrative example in Fig. 1d., showing genome-wide associa-

tion study (GWAS) results for Crohn’s disease [Jostins et al., 2012] in a region of

chromosome 21 between 44.0 Mb and 46.5 Mb. The figure also shows a scaled-

to-fit illustration of vector V for this region. This example depicts a situation in

which using the uniform breakpoint (in red) would result in two significant SNPs,

while the LD-aware breakpoints avoid stretches of loci in LD.

To test whether this approach is useful more generally, we ran fgwas [Pick-

rell, 2014] on GWAS of Crohn’s disease [Jostins et al., 2012] and height [Wood

et al., 2014], using both uniformly-distributed breakpoints and LD-aware break-

points. Using the LD-aware breakpoints successfully eliminated double-counting

of SNPs in moderate-to-high LD and on opposite sides of uniform breakpoints

(Supplementary Materials, Section 6).

A complete list of breakpoints obtained using this method (with mean segment

size = 104 SNPs) on the 1000 Genomes Phase 1 dataset African, Asian, and Euro-

pean populations are available at [Berisa and Pickrell, 2015] in BED format.
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