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Using the fixed point method, we investigate the stability of the systems of quadratic-cubic and
additive-quadratic-cubic functional equations with constant coefficients form r-divisible groups

into Ŝerstnev probabilistic Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations started with the following question concerning
stability of group homomorphisms proposed byUlam [1] during a talk before aMathematical
Colloquium at the University of Wisconsin, Madison, in 1940.

Let (G1, ·) be a group and (G2, ∗) a metric group with the metric d(·, ·). Given ǫ > 0,
does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(x · y),
h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
d(h(x),H(x)) < ǫ for all x ∈ G1?

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach
spaces as follows.

If E and E′ are Banach spaces and f : E → E′ is a mapping for which there is ε > 0
such that ‖f(x+y)−f(x)−f(y)‖ ≤ ε for all x, y ∈ E, then there is a unique additive mapping
L : E → E′ such that ‖f(x) − L(x)‖ ≤ ε for all x ∈ E.



2 Discrete Dynamics in Nature and Society

Hyers’ Theoremwas generalized by Aoki [3] for additive mappings and by Rassias [4]
for linear mappings by considering an unbounded Cauchy difference, respectively.

The paper of Rassias [5] has provided a lot of influence in the development of what
we now call the generalized Hyers-Ulam stability or asHyers-Ulam-Rassias stability of functional
equations. In 1994, a generalization of the Rassias theorem was obtained by Găvruţa [6] by
replacing the unbounded Cauchy difference by a general control function in the spirit of Ras-
sias’ approach. For more details about the results concerning such problems, the reader is
referred to [4, 5, 7–21, 21–30].

The functional equation

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

(1.1)

is related to a symmetric biadditive function [31, 32]. It is natural that this equation is called
a quadratic functional equation. In particular, every solution of the quadratic equation (1.1)
is called a quadratic function. The Hyers-Ulam stability problem for the quadratic functional
equation was solved by Skof [33]. In [8], Czerwik proved the Hyers-Ulam-Rassias stability
of (1.1). Eshaghi Gordji and Khodaei [34] obtained the general solution and the generalized
Hyers-Ulam-Rassias stability of the following quadratic functional equation: for all a, b ∈

Z \ {0} with a/= ± 1,±b,

f
(

ax + by
)

+ f
(

ax − by
)

= 2a2f(x) + 2b2f
(

y
)

. (1.2)

Jun and Kim [35] introduced the following cubic functional equation:

f
(

2x + y
)

+ f
(

2x − y
)

= 2f
(

x + y
)

+ 2f
(

x − y
)

+ 12f(x), (1.3)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
for the functional equation (1.3). Jun et al. [36] investigated the solution and the Hyers-Ulam
stability for the cubic functional equation

f
(

ax + by
)

+ f
(

ax − by
)

= ab2
(

f
(

x + y
)

+ f
(

x − y
))

+ 2a
(

a2 − b2
)

f(x), (1.4)

where a, b ∈ Z \ {0} with a/= ± 1,±b. For other cubic functional equations, see [37].
Lee et al. [38] considered the following functional equation:

f
(

2x + y
)

+ f
(

2x − y
)

= 4f
(

x + y
)

+ 4f
(

x − y
)

+ 24f(x) − 6f
(

y
)

. (1.5)

In fact, they proved that a function f between two real vector spaces X and Y is a
solution of (1.5) if and only if there exists a unique symmetric biquadratic function B2 : X ×

X → Y such that f(x) = B2(x, x) for all x ∈ X. The bi-quadratic function B2 is given by

B2

(

x, y
)

=
1

12

(

f
(

x + y
)

+ f
(

x − y
)

− 2f(x) − 2f
(

y
))

. (1.6)
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Obviously, the function f(x) = cx4 satisfies the functional equation (1.5), which is
called the quartic functional equation. For other quartic functional equations, see [39].

Ebadian et al. [40] considered the generalized Hyers-Ulam stability of the following
systems of the additive-quartic functional equations:

f
(

x1 + x2, y
)

= f
(

x1, y
)

+ f
(

x2, y
)

,

f
(

x, 2y1 + y2

)

+ f
(

x, 2y1 − y2

)

= 4f
(

x, y1 + y2

)

+ 4f
(

x, y1 − y2

)

+ 24f
(

x, y1

)

− 6f
(

x, y2

)

,

(1.7)

and the quadratic-cubic functional equations:

f
(

x, 2y1 + y2

)

+ f
(

x, 2y1 − y2

)

= 2f
(

x, y1 + y2

)

+ 2f
(

x, y1 − y2

)

+ 12f
(

x, y1

)

,

f
(

x, y1 + y2

)

+ f
(

x, y1 − y2

)

= 2f
(

x, y1

)

+ 2f
(

x, y2

)

.

(1.8)

For more details about the results concerning mixed type functional equations, the
readers are referred to [41–44].

Recently, Ghaemi et al. [45] investigated the stability of the following systems of quad-
ratic-cubic functional equations:

f
(

ax1 + bx2, y
)

+ f
(

ax1 − bx2, y
)

= 2a2f
(

x1, y
)

+ 2b2f
(

x2, y
)

,

f
(

x, ay1 + by2

)

+ f
(

x, ay1 − by2

)

= ab2
(

f
(

x, y1 + y2

)

+ f
(

x, y1 − y2

))

+ 2a
(

a2 − b2
)

f
(

x, y1

)

,

(1.9)

and additive-quadratic-cubic functional equations:

f
(

ax1 + bx2, y, z
)

+ f
(

ax1 − bx2, y, z
)

= 2af
(

x1, y, z
)

,

f
(

x, ay1 + by2, z
)

+ f
(

x, ay1 − by2, z
)

= 2a2f
(

x, y1, z
)

+ 2b2f
(

x, y2, z
)

,

f
(

x, y, az1 + bz2
)

+ f
(

x, y, az1 − bz2
)

= ab2
(

f
(

x, y, z1 + z2
)

+ f
(

x, y, z1 − z2
))

+ 2a
(

a2 − b2
)

f
(

x, y, z1
)

(1.10)

in PN-spaces (see Definition 1.6), where a, b ∈ Z \ {0} with a/= ± 1,±b. The function f :
R × R → R given by f(x, y) = cx2y3 is a solution of the system (1.9). In particular, letting
y = x, we get a quintic function g : R → R in one variable given by g(x) := f(x, x) = cx5.
Also, it is easy to see that the function f : R × R × R → R defined by f(x, y, z) = cxy2z3

is a solution of the system (1.10). In particular, letting y = z = x, we get a sextic function
h : R → R in one variable given by h(x) := f(x, x, x) = cx6.

The proof of the following propositions are evident.
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Proposition 1.1. Let X and Y be real linear spaces. If a function f : X ×X → Y satisfies the system
(1.9), then f(λx, µy) = λ2µ3f(x, y) for all x, y ∈ X and rational numbers λ, µ.

Proposition 1.2. Let X and Y be real linear spaces. If a function f : X × X × X → Y satisfies the
system (1.10), then f(λx, µy, ηz) = λµ2η3f(x, y, z) for all x, y, z ∈ X and rational numbers λ, µ, η.

For our main results, we introduce Banach’s fixed point theorem and related results.
For the proof of Theorem 1.3, refer to [46] and also Chapter 5 in [29] and, for more fixed point
theory and other nonlinear methods, refer to [28, 47]. Especially, in 2003, Radu [27] proposed
a new method for obtaining the existence of exact solutions and error estimations, based on
the fixed point alternative (see also [48–53]).

Let (X, d) be a generalized metric space. We say that an operator T : X → X satisfies
a Lipschitz condition with Lipschitz constant L if there exists a constant L ≥ 0 such that
d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is less than 1, then the op-
erator T is called a strictly contractive operator.

Note that the distinction between the generalized metric and the usual metric is that
the range of the former is permitted to include the infinity. We recall the following theorem
by Margolis and Diaz.

Theorem 1.3 (see [27, 46]). Suppose that (Ω, d) is a complete generalized metric space and T : Ω →

Ω is a strictly contractive mapping with Lipschitz constant L. Then, for any x ∈ Ω, either

d
(

Tmx, Tm+1x
)

= ∞ (1.11)

for all m ≥ 0 or there exists a natural numberm0 such that

(1) d(Tmx, Tm+1x) < ∞ for all m ≥ m0;

(2) the sequence {Tmx} is convergent to a fixed point y∗ of T ;

(3) y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tm0x, y) < ∞};

(4) d(y, y∗) ≤ (1/1 − L)d(y, Ty) for all y ∈ Λ.

The PN-spaces were first defined by Šerstnev in 1963 (see [54]). Their definition was
generalized by Alsina et al. in [55]. In this paper, we follow the definition of probabilistic
space briefly as given in [56] (also, see [57]).

Definition 1.4. A distance distribution function (d.d.f.) is a nondecreasing function F from R
+

into [0, 1] that satisfies F(0) = 0, F(+∞) = 1 and F is left-continuous on (0,+∞), where

R
+
:= [0,+∞].

Forward, the space of distance distribution functions is denoted byΔ+ and the set of all
F inΔ+ with limt→+∞−F(t) = 1 byD+. The spaceΔ+ is partially ordered by the usual pointwise

ordering of functions, that is, F ≤ G if and only if F(x) ≤ G(x) for all x in R
+
. For any a ≥ 0, ε+a

is the d.d.f. given by

ε+a(t) =

⎧

⎨

⎩

0, if t ≤ a,

1, if t > a.
(1.12)
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Definition 1.5. A triangle function is a binary operation onΔ+, that is, a function τ : Δ+ ×Δ+ →

Δ+ that is associative, commutative, non-decreasing in each place, and has ε0 as the identity,
that is, for all F,G and H in Δ+,

(TF1) τ(τ(F,G),H) = τ(F, τ(G,H));

(TF2) τ(F,G) = τ(G,F);

(TF3) F ≤ G ⇒ τ(F,H) ≤ τ(G,H);

(TF4) τ(F, ε0) = τ(ε0, F) = F.

Typical continuous triangle function is

ΠT (F,G)(x) = T(F(x), G(x)), (1.13)

where T is a continuous t-norm, that is, a continuous binary operation on [0, 1] that is
commutative, associative, non-decreasing in each variable, and has 1 as the identity. For ex-
ample, we introduce the following:

M
(

x, y
)

= min
(

x, y
)

(1.14)

for all x, y ∈ [0, 1] is a continuous and maximal t-norm, namely, for any t-norm T , M ≥ T .
Also, note that ΠM is a maximal triangle function, that is, for all triangle function τ ,ΠM ≥ τ .

Definition 1.6. A Šerstnev probabilistic normed space (Šerstnev PN-space) is a triple (X, ν, τ),
where X is a real vector space, τ is continuous triangle function, and ν is a mapping (the
probabilistic norm) fromX intoΔ+ such that, for all choice of p, q ∈ X and a ∈ R

+, the following
conditions hold:

(N1) ν(p) = ε0, if and only if p = θ (θ is the null vector in X);

(N2) ν(ap)(t) = ν(p)(t/|a|);

(N3) ν(p + q) ≥ τ(ν(p), ν(q)).

Let (X, ν, τ) be a PN-space and {xn} a sequence inX. Then {xn} is said to be convergent
if there exists x ∈ X such that

lim
n→∞

ν(xn − x)(t) = 1 (1.15)

for all t > 0. In this case, the point x is called the limit of {xn}. The sequence {xn} in (X, ν, τ) is
called a Cauchy sequence if, for any ε > 0 and δ > 0, there exists a positive integer n0 such that
ν(xn − xm)(δ) > 1 − ε for all m,n ≥ n0. Clearly, every convergent sequence in a PN-space is
a Cauchy sequence. If each Cauchy sequence is convergent in a PN-space (X, ν, τ), then
(X, ν, τ) is called a probabilistic Banach space (PB-space).

For more details about the results concerning stability of the functional equations on
PN-spaces, the readers are referred to [58–61].

In this paper, by using the fixed point method, we establish the stability of the systems
(1.9) and (1.10) form r-divisible groups into Šerstnev PB-space.
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2. Mail Results

We start our work by the following theorem which investigates the stability problem for the
system of the functional equations (1.9) form r-divisible groups into Šerstnev PB-space by
using fixed point methods.

Theorem 2.1. Let s ∈ {−1, 1} be fixed. Let G be an r-divisible group and (Y, ν,ΠT ) a Šerstnev
PB-space. Let φ, ψ : G ×G ×G → D+ be two functions such that

Φ
(

x, y
)

(t) := ΠT

{

φ
(

a(s−1)/2x, 0, a(s−1)/2y
)(

2a(5s−1)/2t
)

, ψ
(

a(s+1)/2x, a(s−1)/2y, 0
)(

2a(5s+5)/2t
)}

(2.1)

for all x, y ∈ G and, for some 0 < k < a10s,

Φ
(

asx, asy
)

(

ka−2st
)

≥ Φ
(

x, y
)

(t),

lim
n→∞

φ
(

asnx1, a
snx2, a

sny
)

(

a−5snt
)

= lim
n→∞

ψ
(

asnx, asny1, a
sny2

)

(

a−5snt
)

= 1
(2.2)

for all x, y, x1, x2, y1, y2 ∈ G and t > 0. If f : G × G → Y is a function such that f(0, y) = 0 for all
y ∈ G and

ν
(

f
(

ax1 + bx2, y
)

+ f
(

ax1 − bx2, y
)

− 2a2f
(

x1, y
)

− 2b2f
(

x2, y
)

)

(t) ≥ φ
(

x1, x2, y
)

, (2.3)

ν
(

f
(

x, ay1 + by2

)

+ f
(

x, ay1 − by2

)

− ab2f
(

x, y1 + y2

)

−ab2f
(

x, y1 − y2

)

− 2a
(

a2 − b2
)

f
(

x, y1

)

)

(t) ≥ ψ
(

x, y1, y2

)

(2.4)

for all x, y, x1, x2, y1, y2 ∈ G, then there exists a unique quintic function T : G × G → Y satisfying
the system (1.9) and

ν
(

f
(

x, y
)

− T
(

x, y
))

(t) ≥ Φ
(

x, y
)

((

1 − ka−10s
)

t
)

(2.5)

for all x, y ∈ G.

Proof. Putting x1 = 2x and x2 = 0 and replacing y by 2y in (2.3), we get

ν
(

f
(

2ax, 2y
)

− a2f
(

2x, 2y
)

)

(t) ≥ φ
(

2x, 0, 2y
)

(2t) (2.6)

for all x, y ∈ G. Putting y1 = 2y and y2 = 0 and replacing x by 2ax in (2.4), we get

ν
(

f
(

2ax, 2ay
)

− a3f
(

2ax, 2y
)

)

(t) ≥ ψ
(

2ax, 2y, 0
)

(2t) (2.7)
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for all x, y ∈ G. Thus, we have

ν
(

f
(

2ax, 2ay
)

− a5f
(

2x, 2y
)

)

(t) ≥ ΠT

{

φ
(

2x, 0, 2y
)

(

2a−3t
)

, ψ
(

2ax, 2y, 0
)

(2t)
}

(2.8)

for all x, y ∈ G. Replacing x, y by x/2, y/2 in (2.8), we have

ν
(

f
(

ax, ay
)

− a5f
(

x, y
)

)

(t) ≥ ΠT

{

φ
(

x, 0, y
)

(

2a−3t
)

, ψ
(

ax, y, 0
)

(2t)
}

(2.9)

for all x, y ∈ G. It follows from (2.9) that

ν
(

a−5f
(

ax, ay
)

− f
(

x, y
)

)

(t) ≥ ΠT

{

φ
(

x, 0, y
)(

2a2t
)

, ψ
(

ax, y, 0
)(

2a5t
)}

,

ν
(

a5f
(

a−1x, a−1y
)

− f
(

x, y
)

)

(t) ≥ ΠT

{

φ
(

a−1x, 0, a−1y
)(

2a−3t
)

, ψ
(

ax, a−1y, 0
)

(2t)
}

(2.10)

for all x, y ∈ G. So we have

ν
(

a−5sf
(

asx, asy
)

− f
(

x, y
)

)

(t) ≥ Φ
(

x, y
)

(t) (2.11)

for all x, y ∈ G. Let S be the set of all mappings h : G × G → Y with h(0, x) = 0 for all x ∈ G,
and define a generalized metric on S as follows:

d(h, k) = inf
{

u ∈ R
+ : ν

(

h
(

x, y
)

− k
(

x, y
))

(ut) ≥ Φ
(

x, y
)

(t), ∀x, y ∈ G, ∀t > 0
}

, (2.12)

where, as usual, inf ∅ = +∞. The proof of the fact that (S, d) is a complete generalized metric
space, can be shown in [48, 62].

Now, we consider the mapping J : S → S defined by

Jh
(

x, y
)

:= a−5sh
(

asx, asy
)

(2.13)

for all h ∈ S and x, y ∈ G. Let f, g ∈ S such that d(f, g) < ε. Then it follows that

ν
(

Jg
(

x, y
)

− Jf
(

x, y
))

(

kua−10st
)

= ν
(

a−5sg
(

asx, asy
)

− a−5sf
(

asx, asy
)

)(

kua−10st
)

= ν
(

g
(

asx, asy
)

− f
(

asx, asy
))

(

kua−2st
)

≥ Φ
(

asx, asy
)

(

ka−2st
)

≥ Φ
(

x, y
)

(t),

(2.14)
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that is, if d(f, g) < ε, then we have d(Jf, Jg) < ka−10sε. This means that

d
(

Jf, Jg
)

≤ ka−10sd
(

f, g
)

(2.15)

for all f, g ∈ S; that is, J is a strictly contractive self-mapping on Swith the Lipschitz constant
ka−10s. It follows from (2.11) that

ν
(

Jf
(

x, y
)

− f
(

x, y
))

(t) ≥ Φ
(

x, y
)

(t) (2.16)

for all x, y ∈ G and t > 0, which implies that d(Jf, f) ≤ 1. From Theorem 1.3, it follows
that there exists a unique mapping T : G × G → Y such that T is a fixed point of J , that is,
T(asx, asy) = a5sT(x, y) for all x, y ∈ G. Also, we have d(Jmg, T) → 0 as m → ∞, which
implies the equality

lim
m→∞

a−5smf
(

asmx, asmy
)

= T(x) (2.17)

for all x, y ∈ G. It follows from (2.3) that

ν
(

T
(

ax1 + bx2, y
)

+ T
(

ax1 − bx2, y
)

− 2a2T
(

x1, y
)

− 2b2T
(

x2, y
)

)

(t)

= lim
n→∞

ν
(

a−5snf
(

asn(ax1 + bx2), a
sny

)

+ a−5snf
(

asn(ax1 − bx2), a
sny

)

−2a−5sna2f
(

asnx1, a
sny

)

− 2a−5snb2f
(

asnx2, a
sny

)

)

(t)

≥ lim
n→∞

φ
(

asnx1, a
snx2, a

sny
)

(

a−5snt
)

= 1

(2.18)

for all x1, x2, y ∈ G. Also, it follows from (2.4) that

ν
(

T
(

x, ay1 + by2

)

+ T
(

x, ay1 − by2

)

−ab2
(

T
(

x, y1 + y2

)

− T
(

x, y1 − y2

))

− 2a
(

a2 − b2
)

T
(

x, y1

)

)

(t)

= lim
n→∞

ν
(

a−5snf
(

asnx, asn(ay1 + by2

))

+ a−5snf
(

asnx, asn(ay1 − by2

))

− a−5snab2f
(

asnx, asn(y1 + y2

))

− a−5snab2f
(

asnx, asn(y1 − y2

))

−2a−5sna
(

a2 − b2
)

f
(

asnx, asny1

)

)

(t)

≥ lim
n→∞

a−5snψ
(

asnx, asny1, a
sny2

)

(t)

= 1

(2.19)

for all x, y1, y2 ∈ G. This means that T satisfies (1.9); that is, T is quintic.
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According to the fixed point alternative, since T is the unique fixed point of J in the set
Ω = {g ∈ S : d(f, g) < ∞}, T is the unique mapping such that

ν
(

f
(

x, y
)

− T
(

x, y
))

(ut) ≥ Φ
(

x, y
)

(t) (2.20)

for all x, y ∈ G and t > 0. Using the fixed point alternative, we obtain

d
(

f, T
)

≤
1

1 − L
d
(

f, Jf
)

≤
1

1 − ka−10s
, (2.21)

which implies the inequality

ν
(

f
(

x, y
)

− T
(

x, y
))

(

t

1 − ka−10s

)

≥ Φ
(

x, y
)

(t) (2.22)

for all x, y ∈ G and t > 0. Therefore, we have

ν
(

f
(

x, y
)

− T
(

x, y
))

(t) ≥ Φ
(

x, y
)

((

1 − ka−10s
)

t
)

(2.23)

for all x, y ∈ XG and t > 0. This completes the proof.

Now, we investigate the stability problem for the system of the functional equations
(1.10) form r-divisible groups into Šerstnev PB-space by using the fixed point theorem.

Theorem 2.2. Let s ∈ {−1, 1} be fixed. Let G be an r-divisible group and (Y, ν,ΠT ) a Šerstnev
PB-space. Let Φ,Ψ,Υ : G × G ×G ×G → D+ be functions such that

Θ
(

x, y, z
)

(t) : = ΠT

{

Υ
(

a(s+1)/2x, a(s+1)/2y, a(s+1)/2z, 0
)(

2a3s+3t
)

,

ΠT

{

Ψ
(

a(s+1)/2x, a(s+1)/2y, 0, a(s−1)/2z
)(

2a3s+6t
)

,

Φ
(

a(s−1)/2x, 0, a(s−1)/2y, a(s−1)/2z
)(

2a3s+8t
)}}

(2.24)

for all x, y, z ∈ G and, for some 0 < k < a6s,

Φ
(

asx, asy, asz
)

(kt) ≥ Φ
(

x, y, z
)

(t);

lim
n→∞

Φ
(

asnx1, a
snx2, a

sny, asnz
)

(

a−6snt
)

= lim
n→∞

Ψ
(

asnx, asny1, a
sny2, a

snz
)

(

a−6snt
)

= lim
n→∞

Υ
(

asnx, asny, asnz1, a
snz2

)

(

a−6snt
)

= 1

(2.25)
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for all x, y, x1, x2, y1, y2, z1, z2 ∈ G. If f : G ×G ×G → Y is a function such that f(x, 0, z) = 0 for
all x, z ∈ G and

ν
(

f
(

ax1 + bx2, y, z
)

+ f
(

ax1 − bx2, y, z
)

− 2af
(

x1, y, z
))

(t) ≥ Φ
(

x1, x2, y, z
)

(t), (2.26)

ν
(

f
(

x, ay1 + by2, z
)

+ f
(

x, ay1 − by2, z
)

− 2a2f
(

x, y1, z
)

− 2b2f
(

x, y2, z
)

)

(t)

≥ Ψ
(

x, y1, y2, z
)

(t),

(2.27)

ν
(

f
(

x, y, az1 + bz2
)

+ f
(

x, y, az1 − bz2
)

−ab2
(

f
(

x, y, z1 + z2
)

+ f
(

x, y, z1 − z2
))

− 2a
(

a2 − b2
)

f
(

x, y, z1
)

)

(t)

≥ Υ
(

x, y, z1, z2
)

(t)

(2.28)

for all x, y, x1, x2, y1, y2, z1, z2 ∈ G, then there exists a unique quintic function T : G ×G ×G → Y
satisfying (1.10) and

ν
(

f
(

x, y, z
)

− T
(

x, y, z
))

(t) ≥ Θ
(

x, y, z
)

((

1 − ka−6s
)

t
)

(2.29)

for all x, y, z ∈ G.

Proof. Putting x1 = 2x and x2 = 0 and replacing y, z by 2y, 2z in (2.26), we get

ν
(

f
(

2ax, 2y, 2z
)

− af
(

2x, 2y, 2z
))

(

1

2
t

)

≥ Φ
(

2x, 0, 2y, 2z
)

(t) (2.30)

for all x, y, z ∈ G. Putting y1 = 2y and y2 = 0 and replacing x, z by 2ax, 2z in (2.27), we get

ν
(

f
(

2ax, 2ay, 2z
)

− a2f
(

2ax, 2y, 2z
)

)

(

1

2
t

)

≥ Ψ
(

2ax, 2y, 0, 2z
)

(t) (2.31)

for all x, y, z ∈ G. Putting z1 = 2z and z2 = 0 and replacing x, y by 2ax, 2ay in (2.28), we get

ν
(

f
(

2ax, 2ay, 2az
)

− a3f
(

2ax, 2ay, 2z
)

)

(

1

2
t

)

≥ Υ
(

2ax, 2ay, 2z, 0
)

(t), (2.32)

for all x, y, z ∈ G. Thus,

ν
(

f
(

2ax, 2ay, 2az
)

− a6f
(

2x, 2y, 2z
)

)

(t)

≥ ΠT

{

Υ
(

2ax, 2ay, 2z, 0
)

(2t),ΠT

{

Ψ
(

2ax, 2y, 0, 2z
)

(

2a3t
)

,Φ
(

2x, 0, 2y, 2z
)

(

2a5t
)}}

(2.33)
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for all x, y, z ∈ G. Replacing x, y, and z by x/2, y/2, and z/2 in (2.33), we have

ν
(

f
(

ax, ay, az
)

− a6f
(

x, y, z
)

)

(t)

≥ ΠT

{

Υ
(

ax, ay, z, 0
)

(2t),ΠT

{

Ψ
(

ax, y, 0, z
)

(

2a3t
)

,Φ
(

x, 0, y, z
)

(

2a5t
)}}

(2.34)

for all x, y, z ∈ G. It follows from (2.34) that

ν
(

a−6f
(

ax, ay, az
)

− f
(

x, y, z
)

)

(t)

≥ ΠT

{

Υ
(

ax, ay, z, 0
)

(

2a6t
)

,ΠT

{

Ψ
(

ax, y, 0, z
)

(

2a9t
)

,Φ
(

x, 0, y, z
)

(

2a11t
)}}

,

ν
(

a6f
(

a−1x, a−1y, a−1z
)

− f
(

x, y, z
)

)

(t)

≥ ΠT

{

Υ
(

x, y, a−1z, 0
)

(2at),ΠT

{

Ψ
(

x, a−1y, 0, a−1z
)(

2a3t
)

Φ
(

a−1x, 0, a−1y, a−1z
)

,

(

2a5t
)}}

(2.35)

for all x, y, z ∈ G. Thus, we have

ν
(

a−6sf
(

asx, asy, asz
)

− f
(

x, y, z
)

)

(t) ≥ Θ
(

x, y, z
)

(t) (2.36)

for all x, y, z ∈ G. Let S be the set of all mappings h : X × X × X → Y with h(x, 0, z) = 0 for
all x, z ∈ G, and define a generalized metric on S as follows:

d(h, k) = inf
{

u ∈ R
+ : ν

(

h
(

x, y, z
)

− k
(

x, y, z
))

(ut) ≥ Θ
(

x, y, z
)

(t), ∀x, y, z ∈ G, t > 0
}

,
(2.37)

where, as usual, inf ∅ = +∞. The proof of the fact that (S, d) is a complete generalized metric
space can be shown in [48, 62].

Now, we consider the mapping J : S → S defined by

Jh
(

x, y, z
)

:= a−6sh
(

asx, asy, asz
)

(2.38)

for all h ∈ S and x, y, z ∈ G. Let f, g ∈ S be such that d(f, g) < ε. Then we have

ν
(

Jg
(

x, y, z
)

− Jf
(

x, y, z
))

(

kua−6st
)

= ν
(

a−6sg
(

asx, asy, asz
)

− a−6sf
(

asx, asy, asz
)

)(

kua−6st
)

= ν
(

g
(

asx, asy, asz
)

− f
(

asx, asy, asz
))

(kut)

≥ Θ
(

asx, asy, asz
)

(kt) ≥ Θ
(

x, y, z
)

(t),

(2.39)
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that is, if d(f, g) < ε, then we have d(Jf, Jg) < ka−6sε. This means that

d
(

Jf, Jg
)

≤ ka−6sd
(

f, g
)

(2.40)

for all f, g ∈ S; that is, J is a strictly contractive self-mapping on Swith the Lipschitz constant
ka−6s. It follows from (2.36) that

ν
(

Jf
(

x, y, z
)

− f
(

x, y, z
))

(t) ≥ Θ
(

x, y, z
)

(t) (2.41)

for all x, y, z ∈ G and all t > 0, which implies that d(Jf, f) ≤ 1. From Theorem 1.3, it follows
that there exists a unique mapping T : G × G × G → Y such that T is a fixed point of J , that
is, T(asx, asy, asz) = a6sT(x, y, z) for all x, y, z ∈ G. Also, d(Jmg, T) → 0 as m → ∞, which
implies the equality

lim
m→∞

a−6smf
(

asmx, asmy, asmz
)

= T(x) (2.42)

for all x ∈ X. It follows from (2.26), (2.27), and (2.28) that

ν
(

T
(

ax1 + bx2, y, z
)

+ T
(

ax1 − bx2, y, z
)

− 2aT
(

x1, y, z
))

(t)

= lim
n→∞

ν
(

a−6snf
(

asn(ax1 + bx2), a
sny, asnz

)

+a−6snf
(

asn(ax1 − bx2), a
sny, asnz

)

− 2aa−6snf
(

asnx1, a
sny, asnz

)

)

(t)

≥ lim
n→∞

Φ
(

asnx1, a
snx2, a

sny, asnz
)

(

a−6snt
)

= 1,

ν
(

T
(

x, ay1 + by2, z
)

+ T
(

x, ay1 − by2, z
)

− 2a2T
(

x, y1, z
)

− 2b2T
(

x, y2, z
)

)

(t)

= lim
n→∞

ν
(

a−6snf
(

asnx, asn(ay1 + by2

)

, asnz
)

+ f
(

asnx, asnay1 − asnby2, a
snz

)

−2a2a−6snf
(

asnx, asny1, a
snz

)

+ 2b2a−6snf
(

asnx, asny2, a
snz

)

)

(t)

≥ lim
n→∞

Ψ
(

asnx, asny1, a
sny2, a

snz
)

(

a−6snt
)

= 1,

ν
(

T
(

x, y, az1 + bz2
)

+ T
(

x, y, az1 − bz2
)

− ab2
(

T
(

x, y, z1 + z2
)

−T
(

x, y, z1 − z2
))

− 2a
(

a2 − b2
)

T
(

x, y, z1
)

)

(t)

= lim
n→∞

ν
(

a−6snf
(

asnx, asny, asn(az1 + bz2)
)
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+ a−6snf
(

asnx, asny, asn(az1 − bz2)
)

− ab2a−6sn(f
(

asnx, asny, asn(z1 + z2)
)

+f
(

asnx, asny, asn(z1 − z2)
))

− 2aa−6sn
(

a2 − b2
)

f
(

asnx, asny, asnz1
)

)

(t)

≥ lim
n→∞

Υ
(

asnx, asny, asnz1, a
snz2

)

(

a−6snt
)

= 1

(2.43)

for all x, y, x1, x2, y1, y2, z1, z2 ∈ G. This means that T satisfies (1.10); that is, T is sextic.
According to the fixed point alternative, since T is the unique fixed point of J in the set

Ω = {g ∈ S : d(f, g) < ∞}, T is the unique mapping such that

ν
(

f
(

x, y, z
)

− T
(

x, y, z
))

(ut) ≥ Θ
(

x, y, z
)

(t) (2.44)

for all x, y, z ∈ G and t > 0. Using the fixed point alternative, we obtain

d
(

f, T
)

≤
1

1 − L
d
(

f, Jf
)

≤
1

1 − ka−6s
, (2.45)

which implies the inequality

ν
(

f
(

x, y, z
)

− T
(

x, y, z
))

(

t

1 − ka−6s

)

≥ Θ
(

x, y, z
)

(t) (2.46)

for all x, y, z ∈ G and t > 0. So

ν
(

f
(

x, y, z
)

− T
(

x, y, z
))

(t) ≥ Θ
(

x, y, z
)

((

1 − ka−6s
)

t
)

(2.47)

for all x, y, z ∈ G and t > 0. This completes the proof.
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