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Abstract

W e propose a gauge-invariant and m anifestly UV nite resum m ation of the
physics of hard therm al/dense loops HTL/HDL) In the them odynam ics of
the quark-gluon plasn a. The starting point is a sim ple, e ectively one-loop
expression for the entropy or the quark densiy which isderived from the fully
selfconsistent two-loop skeleton approxin ation to the free energy, but sub—
“ect to further approxin ations, w hose quality is tested in a scalar toy m odel.
In contrast to the direct HT L/HD L—+resum m ation of the onedoop free energy,
In our approach both the kadingorder (LO) and the next-toJeading order
NNLO ) e ects of nteractions are correctly reproduced and arise from kine-
m atical regin es where the HTL/HD L are justi able approxin ations. The
LO e ects are entirely due to the (asym ptotic) thermm alm asses of the hard
particles. The NLO ones receive contrbbutions both from soft excitations, as
described by the HTL/HD L propagators, and from corrections to the dis-
persion relation of the hard excitations, as given by HTL/HD L perturbation
theory. The num erical evaluations of our nal expressions show very good
agream ent w ith lattice data for zero-density QCD , for tem peratures above
tw ice the transition tem perature.
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I. NTRODUCTION

Besides its obvious relevance for coam ology, astrophysics or ultra-relativistic heavy ion
collisions, the study ofQ CD at high tem perature and/or large baryonic density [ilJA] presents
exciting theoretical challenges. It o ers opportunity to explore the properties of m atter In
a regin e where, unlke in ordinary hadronic m atter, the fundam ental elds ofQCD | the
quarks and g]uons| are the dom fnant degrees of freedom and the fundam ental sym m etries
are explicit.

U nfortunately, analytical toolsavailable for such a study arenotm any. H ow ever, because
ofasym ptotic freedom , the gauge coupling becom es weak at high tem perature, which invites
us to try a perturoative treatm ent ofthe interactions. But explicit perturbative calculations
ofthe QCD fiee energy at high tem perature, which have been pushed in recent years up to
the order 27 B[], show an extrem ely poor convergence except for coupling constants as
Iow as < 005, which would correspond to tem peratures as high as > 10°T.. A Iready the
next-to—leading order perturbative correction, the socalled plasn on e ect which is of order

32/ &°, signals the nadequacy ofthe conventionalthem alperturbation theory except for
very an all coupling, because in contrast to the lrading-order tem s it leads to a free energy
In excess of the idealgas value.

Lattice results on the other hand show a slow approach of the idealgas result from
below wih deviations of not m ore than some 10-15% for tem peratures a few tin es the
decon nem ent tem perature. Besides, these results can be accounted for reasonably wellby
phenom enolbogical ts involving m assive \quasiparticles" ] with m asses of the order of
the perturbative lading-order them alm asses. This suggests that the failure of ordinary
perturoation theory m ay notbe directly related to the non-perturbative phenom ena expected
at the scale T and which cause a breakdown of the Joop expansion at order g° and higher
[l. Rather, the quasiparticke ts support the idea that one should be abk to give an
accurate description of the them odynam ics of the QCD plasn a In tem s of its (rlatively
weakly interacting) quasiparticle exciations.

Tt is worth em phasizing at this stage that, am ong the relevant degrees of freedom , the
soft collective ones, wih m om enta of order gT , are already non-perturbative. A though
their leading order contribution / g° to the pressure can be easily isolated [[], i does not
m ake m uch physical sense to regard this contribution as a genuine perturbative correction.

Indeed, to kading order in g, the dynam ics of the soft m odes is described by an e ective
theory which includes the one-loop them al uctuations of the \hard" m odes w ith m om enta

T . The relevant generalization of the YangM ills equation reads [[J[] :

Z .
—E AL+ 5 TCALA_+ o 1.1)

_ 2
D F =nmj 4_V . c

where the Induced current In the right hand side describes the polarization of the hard
particlesby the soft colour eldsA | in an elkonalapproxin ation. [In this equatjon,ll"{l\ D gT

istheD ebyem ass,Eai isthe soft electric eld, v (1; v),and theangularintegral d runs
over the orientations of the unit vector v.] This current is non—-Jlocal and gauge symm etry,
which forces the presence of the covariant derivative D = @ + igA iIn the denom inator

of Eq. (L), m akes it also non-linear. W hen expanded in powers of A, it generates an
n nite series of non-local selfenergy and vertex corrections, known as \hard them al loops"



@ETL) BJ11. The Jatter encom pass in portant physical phenom ena, lke screening e ects and

non-trivial digpersion relations for the soft excitations E ,B] (and references theremn). Sim ilar
phenom ena exist also in the case of soft ferm ions, which, to leading order in g, obey the
ollow ing generalized D irac equation f}] withM  gT and = v ) :

A+ 12)

At soft momenta k < gT, allHTL’s are leading order e ects, as obvious n Egs. (i)
and {LJ), and must be consistently resimm ed. Analogs of HTL's exist at nite chem ical
potential . In the regin e T these are often referred to as \hard dense loops" HDL).

In traditional perturbative calculations of the them odynam ics perform ed in In agihary
tin e @], the HTL’s play aln ost no rok: only ’cheDebyemassmf> needs to be resumm ed In
the static electric gluon propagator [[Q]. T his resum m ation is reponsble for the occurrence
of odd powers of g In the perturbative expansion.

Such a sin ple resum m ation howeverm ay becom e lnsu cient w henever a m ore com plete
Inform ation on the quasiparticles needs to be taken into acoount. Quite generally, this
physical Infom ation is contained in the spectralweight (ky;k) related to the corresoonding
propagator by:

2
dk ik
D (! ;k)= _OM: 123)
1 2 kg !
In the In aghhary tin e om alisn , and orbosonic elds, ! = i!, 12 nT wih integern.

C karly, the restriction to the M atsubara m ode wih n = 0 retains in the propagator only
one m om ent of the spectralweight. In the HT L approxin ation, we know that the spectral
density is divided into a polk at tim e-lke m om enta and a continuum at space—-lke m om enta.
W hilke there exist physical cbservables which can be accurately describbed In perturbation
theory by a single m om ent of the spectral w eight, this does not appear to be the case in the
calculations that we shall present and In which the various pieces of the spectral functions
contrbute in di erent ways.

In fact, since the them odynam ical finctions are dom Inated by hard degrees of freedom ,
an In portant e ect of the soft m odes w illbe to nduce corrections on the hard quasiparticle
dispersion relations. As we shall nd, the spectral functions for large m om enta w ill take
the approxin ate om (! ;k) (* ¥ m?), wherem? dT? is the leading-order
them alm ass (or asym ptotic m ass) of the hard excitation. C kearly, such an e ect does not
naturally em erge In a schem e where one resum s just then = 0 M atsubara m ode.

In order to overcom e all these lim itations, it has been recently proposed to perform fill
resumm ations of the HTL selfenergies and in calculations of the them odynam ical
functions. In Refs. [L][17], this has been done by m erely replacing the free propagators by
the corresponding H T Lresum m ed ones in the expression of the freeenergy of the idealgas;
eg. (n simpli ed notations) :

TrlogD," ! Trlog®, + ): €4)

In principle, this is Just the st step In a system atic procedure which consists in resum m Ing
the HT L's by adding and subtracting them to the treedevel QCD Lagrangian. This would



be the extension to QCD of the so-called \screened perturbation theory" [[3f14], a m ethod
which, for scalar eld theories, has shown an in proved convergence (in one- and two—Joop
calculations) as com pared to the straightforw ard perturbative expansion. But In its zeroth
order approxin ation in Eq. {L4), this m ethod over-includes the leading-order interaction
tem / g while correctly reproducing the orderg® contrioution), and gives rise to new , uk
tin ately tem perature-dependent UV divergences and associated additional renom alization
schem e dependences.

A nother drawback of such a direct HT L resum m ation appears to be that the HT L's are
kept in the hard m om entum regin e w here they are no longer describing actualphysics, while
hard m om enta are providing the dom inant contributions to the them odynam ic potential.

O ur approach on the other hand {[3,L] w illbe based on selfconsistent approxin ations
using the skeleton representation of the themm odynam ic potential [[]] which takes care
of overcounting problem s autom atically, w ithout the need for themm al counterterm s. W e
shallm ainly consider the so-called 2-loop— derivable approxin ation, forwhich i tums
out that the st derivatives of the them odynam ic potential, the entropy and the quark
densities, take a rather sinple, e ectively oneJdoop om [[JRJ], but in tem s of ully dressed
propagators.

In gauge theordes, the generalized gap equations that detem ine these dressed propaga-—
tors are too com plicated to be solved exactly (even num erically). But an exact solution
would anyhow be unsatisfactory because -derivable approxin ations In general do not re—
Soect gauge invariance. W e therefore propose gauge independent but only approxin ately
self-consistent dressed propagators as obtained from HTL) perturbation theory. Using
these in the enttopyﬂ expression opbtained from the 2-Jloop— -derivable approxin ation gives
a gauge-independent and UV nite approxin ation for the entropy, which, while being non—
perturbative In the coupling, contains the correct leading-order (LO ) and the next-to—Jeading
order (NLO ) e ects of interactions In accordance w ith them al perturbation theory. Both
tum out to arse from kinem atical regin es where the HT L’s are jasti able approxin ations.

W hile also being e ectively a resumm ed one-loop expression, the approxin ately self-
consistent entropy di ers from the direct HT L-resum m ation of the free energy in Eq. (L.4)
in that it nclides correctly also the LO Interaction e ects. Ream arkably, in our approach the
latter are entirely detem Ined by the (asym ptotic) them alm asses of the hard excitations.
This agrees w ith and Jjusti es the sinple quasiparticle m odels of Ref. §f], which assume
constant m asses equal to the respective asym ptotic them alm asses for quarks and asm any
(scalar) bosons as there are transverse gluons. W hereas these m odels do not include the
correct NLO (plasm on) e ect, our approach does, but In a rather unconventional m anner
w hich dem onstrates the nontriviality of the resum m ation that hasbeen achieved: only part
of the plasnon e ect is com Ing directly from soft excitations; a larger part arises from
corrections to the digpersion relation of the (dom inant) hard excitations by soft m odes, as
determ ined by standard H T L perturbation theory 1.

Because of the approxin ations that we have m ade, it does m atter whether the entropy
or the them odynam ic potential is considered. O ur approach however attem pts to take

For brevity we refer only to the entropy explicitly, but all of the Hllow ing rem arks apply to the
density aswell.



advantage of the fact that entropy is generally the sim pler quantity. Indeed, the way by
which the LO and NLO interaction contributions can be traced to spectral properties of free
quasiparticles w ithin our entropy expressions indicates a posteriori the adequateness of this
particular resum m ation schem e to the physics contained in the HT L propagators.

T he present paper isorganized as follow s: In Sect. IT, the general form alisn of -derivable
self-consistent approxin ations is reviewed and the central, e ectively oneJdoop formula for
the entropy in a two—Joop skeleton approxin ation to the them odynam ic potential is derived
In a scalar theory with cubic and quartic interactions. In the simpl solvable m odel of
largeN scalarO (N ) theory RJRF], where the twodoop -derivable approxin ation becom es
exact, the further approxin ations that w ill be considered in the QCD case are com pared
w ith the exact solution and their renom alization scale dependence is exhibited.

In Sect. ITI, the approxin ately selfconsistent resumm ations are Introduced for purely
gluionic QCD  rst, and equivalence w ith conventional perturbation theory up to and in—
cluding order g° is proved and analyzed in detail. Sect. IV generalizes this to QCD with
quarks and to the quark density as an additional themm odynam ic quantity. Som e of the
m ore technical details ofhow the plasn on e ect ardses in our approach are relegated to the
Appendix.

In Sect. V, the various approxin ations are evaluated num erically. W e nd that the
plasnon e ect, which is largely resoonsble for the poor convergence properties of conven—
tional them al perturbation theory, in our approach leads only to m oderate contributions
when com pared w ith the lkading-order e ects. W hen combined w ih a twoJloop renom al-
ization group In provem ent, our resuls are found to com pare ram arkably wellw ith available
lattice data for tem peratures above tw ice the decon nem ent tem perature. M oreover, we
also present num erical results for the quark density at zero tem perature and large cheam ical
potential.

II.GENERAL FORMALISM . THE SCALAR FIELD

In this section we develop the fomm alism of propagator renom alization using tech-
nigques that allow system atic rearrangem ents of the perturbative expansion avoiding double-
countings. W e shall recall in particular how selfoconsistent approxin ations can be used to
obtain a sin pl expression for the entropy which isolates the contribution ofthe elem entary
excitations as a leading contribution. To get fam iliarity w ith the form alisn , we dem onstrate
som e of its in portant features w ith the exam ple of the scalar eld. This provides, in par-
ticular, a test of the validity of approxin ations which willbe used n dealng with QCD in
the rest of the paper.

A . Skeleton expansion for therm odynam ical potential and entropy

Thethem odynam icpotential = PV ofthescalar eld can bew ritten asthe ollow Ing
functional of the lill propagatorD [781:

1 1
D= logZ=§TrlogD ! 5TrD+ D1; 1)



where Tr denotes the trace In con guration space, = 1=T, isthe sslfenergy related to
D by Dyson’s equation (O ( denotes the bare propagator) :

D '=D,"+ ; @2)

and D ]isthe sum ofthe 2-particke—irreducble \skelkton" diagram s

D= 1112@ +y8©©+1/48© o 23)

T he essential property of the functional D ] is to be stationary under variations ofD
(at xed D () around the physical propagator. T he physical pressure is then obtained as the
valie of D ]at isextremum . T he stationarity condition,

DED=20; @4)

In plies the ollow ng relation
1
DFD=_; 2 5)

which, together wih Eq. @J), de nes the physical propagator and selfenergy in a self-
consistent way. Eq. £J) expresses the fact that the skeleton diagram s contrbutingto  are

cbtained by opening up one line of a tw o-particle-irreducible skeleton. N ote that while the
diagram s of the bare perturbation theory, ie., those nvolring bare propagators, are counted
once and only once in the expression of given above, the diagram s of bare perturbation

theory contributing to the them odynam ic potential are counted severaltines in . The

extra tem s .n Eq. .]) precisely correct for this double-counting.

Selfoconsistent (or variational) approxin ations, ie., approxin ations which preserve the
stationarity property £4), are cbtained by selecting a class of skeletons in - D ] and calcu—
hting from Eq. £5). Such approxin ations are comm only called \ derivabk" 18]

T he traces over con guration space in Eq. @.]) involve integration over in aginary tim e
and over spatial coordinates. A lfematively, these can be tumed into summ ations over
M atsubara frequencies and integrations over soatialm om enta:

z z z

O d dJ&x! Vv gk 2 6)
where V isthe spatialvolime, k = @{!,;k)and ', = n T,wih n even (odd) for bosonic
(ferm ionic) elds (the ferm jonsw illbe discussed later) . W e have introduced a condensed no—
tation forthe them easure ofthe loop integrals (ie., the sum overtheM atsubara frequencies
!, and the integral over the spatialm om entum k):

Z Z

X
dk] T

njeven

Pk z x 2 Pk
: fdkg T .
@ )2’ hoad @)

@.7)

Strictly speaking, the sum -integrals In equations lke Eq. 2.) contain ultraviokt diver-
gences, which requires reqularization (eg. by dim ensional continuation). Since, however,
m ost of the forthoom Ing calculations w ill be free of ultraviolet problem s (for the reasons



explained at the end of this subsection), we do not need to spoecify here the UV regulator
(s2e however Sect. for explicit calculations).

Forthe purpose of developing approxin ations for the entropy it is convenient to perform
the summ ations over the M atsubara frequencies. O ne obtains then integrals over real fre-
quencies Involving discontinuities of propagators or selfenergies w hich have a direct physical
signi cance. U sing standard contour integration techniques, one gets:

Z 4
d*k 5 5
= = n() Im log( "+ k“°+ ) Imn D +T DEV (28)

wheren(!)= 1= ' 1).
T he analytic propagatorD (! ;k) can be expressed in temm s of the spectral function:
“1dky oik)

D (!;k)= .7k o 2.9)
0 .

and we de ne, for ! real,

. (! k)
Im D (!;k) InD (! + 1 ;k)= > : (2.10)
T he In aginary parts of other quantities are de ned sim ilarly.
W e are now In the position to caloulate the entropy density:
S= @Q(=V)=QT : (221)

T he them odynam ic potential, as given by Eq. €.§) depends on the tem perature through
the statistical factorsn (! ) and the spectral function , which is detemm Ined entirely by the
selfenergy. Because of Eq. £4) the tem perature derivative of the spectral density in the
dressed propagator cancels out in the entropy density and one obtains [[3,201:

Z

d'k @n(!) 1
S = In logD l(!;k
@ )¢ er gb ~ il
Z 4
d'k @n(!) .
';k)ReD (!;k 212
2 )i et ( JReD ( )+ S (2.12)
w ih
e ) Z &k en(!)
s ""Re InD: 213)

.I_
@T o©» @ ) @T
W e shall verify explicitly that for the two-Jloop skelktons, we have:
s®= o: @14)

Loosely speaking, the rst two tem s in Eq. @.I7) represent essentially the entropy of \in-
dependent quasiparticles", while S° acoounts for a residual interaction am ong these quasi-
particles 2(]1.



Since the condition @ 14) playsan in portant rok in ourwork, we shallderive it explicitly
In a scalarm odelw ith Interaction tem

L= @39 > (=4)7%;

which is a sinpl toy m odel of the tri- and quadrilinear self-nteractions of gauge bosons.
(Interactions w ith ferm ions are already covered by the analysis contained in Ref. PQ].) In
the tw o-loop approxin ation, where only the rst two diagram s of the skeletons in Eq. €3)
are kept, the contrbution nvolring two 3-vertices reads

F ,x &k dk,

T @ = ET - WD (!17%JD (!2;KJID (4 L) K KJ: (@215)

17-

E xpressing the propagators In temm s ofthe spectral fuinctions, and evaluating the M atsubara

sum s by contour integration, one gets:

PP Ak kO k®

T @) - = 3 + ko_l_ k(D 0 @ P

12 @ ) & A ko + kI + k¢
fhe) + 11h ko) + n kg) + 11+ n k)n kg)g (216)

where P denotes the principal value prescription and we have used the identity:
nk+y)l+nk)+nE)l=n&kng): @17

T he twoJdoop skeleton involving the 4-vertex is given by the sin pler expression

n

x 2

#
d3kD<'-k>2— —Zwao ) fn ko)n k)g:  (2.18)
g8 , @y 7Y T 8 T 1 on to)g:

T O -

A ccording to Eq. £13), the rst contrbution to S is given by di erentiating Egs. €.16)
and @I9) with respect to T at xed . Because the integrand in front ofthe curly brackets
n .14) is symm etric, the argum ents of the distribution functions can be freely exchanged
as long as the fact that their products com e w ith distinct argum ents ispreserved. @; [ T ]
is therefore obtained by replacing the tem s in curly brackets n € 19) by £6n kJ)@rn (o) +
3@;n (ko)lg and that in £.18) by 2n kJ)@rn ko).

T he second contribution to S° involves the realpart ofthe selfenergy as given by the two
(dress=ed) oneloop diagram s follow Ing from opening up one line in the st two diagram s in

@)r

Z Z
g o * i

Re ®(i@= = oy 2 2 i¥) koi X+ oD
hde) + nky) + “Pm 2.19)
Re ‘b’=—zﬂn(ko> (ko7 k) (2 20)
2 @ )
T his gives



7 Z 41 34,0 341,
d’k @n (k) @) 17 d'kd’k°d’k™ , 0 o 0 o
R mbD= - — K K
2 ) er e 4 2 ) R+ K +kK) k) K) k)
1
Pm[@mko)]h&an&?H 11 @21
Z VA Z 47,0
d’k @n (ko) © d’k @n (kq) k) d’k 0 0
R ImD = — 222
e er ey et 22 gyt ® @22
wherewehaveussed In D = =2. Indeed, thiscancelsprecisely @ [T ]as obtained above,

verifying the proposition that S°= 0 for the lowest-order (two-loop) diagramsin D .

A s the previous derivation show s, the vanishing of S ° holds whether the propagator are
the selfconsistent propagators or not. T hat is, only the relation £J3) isused, and the proof
does not require D to satisfy the selfconsistent D yson equation @ J). A generalanalysis of
the contrbutions to S? and their physical interpretation can be found in Ref. P3].

W e em phasize now a faw attractive features of Eq. §13) with S°= 0, which m akes the
entropy a privilkeged quantity to study the them odynam ics of ultrarelativistic plasm as. W e
note rstthat the formula forS at 2-loop order involves the selfenergy only at 1-loop order.
B esides this in portant sin pli cation, this form ula for S, In contrast to the pressure, has the
advantage of m anifest ultraviolt niteness, since @n=0T vanishes exponentially for both
1! 1 .Also, any multiplicative renom alizationD ! zZD, ! Zz ! wih realZ drops
out from Eq. @13). Fnally, the entropy has a m ore direct quasiparticle interpretation than
the pressure. This willbe illustrated explicitly in the sim ple m odel of the next subsection.
M ore generally, Eq. £.13) can be transform ed w ith the help of the ollow ing dentity:

Im

In ogD *(!;k)= arctan ——— (') ( ReDY); @ 23)
ReD !
with (!) the sign function and 5 < arctan (x) < 5. Using this dentity we rewrite S as
S = Spole + Sdamps With
Z 4
d’k @n(!) 1
Spole = ! ReD ~ (! ;k
o= oyigr () ¢ ReDT(Lik)
Z d3k n o
= PR 1+ ny)og@+ ny) n logny : (2 24)

To get the second line, we have m ade an integration by part, using

| |
en) € ('); M) nlgn+ (1+ n)log@+ n); 2 25)
QT Q!
and we have st ny n(x), wih , solution of ReD ! (! = ";k) = 0. The quasiparticles

thus de ned by the poles of the propagator are som etin es called \dynam ical quasiparticles"”
B3]. The quantity Sy is the entropy of a system of such non-interacting quasiparticles,
while the quantity

> dk @n(!) n

Sdamp =

which vanisheswhen In vanishes, is a contrbution com ing from the continuum part of
the quasiparticle spectral weights.

10



B.A sin ple m odel

In this section we shallpresent the self-consistent solution forthe ( =4!) * theory, keeping
in  only the two—Joop skeleton whose explicit expression isgiven n Eq. (8 18). A nticipating
the fact that the fully dressed propagator w ill be that of a m assive particle, we w rite the
sectral function as  (ko;k) = 2 () & ¥ m?), and considerm as a variational
param eter. T he themm odynam ic potential {£.), or equivalently the pressure, becom es then
a sin ple fiinction ofm . By D yson’s equation, the selffenergy issinply = m 2. W e set:

Z Z

1 1 1
I - k1D = — _ 227
M) 5 EKID ) = o Bl @ 27)
T hen the pressure can be w ritten as:
o 1% 3k _— 1% 3k p— ") 2Tyt 2T ) 228)
=—= - - — e m — ;
v 2 @)p°~ ey 2 2

where"? K+ m?.By dananding that P be stationary w ith respect tom one cbtains the
selfconsistency condition which takes here the form ofa \gap equation":

m?= ,Ifm): 229)

The pressure in the twoJdoop -derivabl approxin ation, as given by Eqgs. @27){ @29}, is
fom ally the sam e asthe pressure per scalar degree of freedom in the (m assless) N -com ponent
m odelw ith the interaction term written as =5 ( =4) ( ; ;) nthelm &N ! 1 PR3] From
the experience with this latter m odel, we know that Egs. 227){ 29) adm i an exact,
renom alizable solution which we recallnow .
At this stage, we need to specify som e properties of the loop IntegralI m ) which we can
w rite asthe sum ofa vacuum piece I) m ) and a nite tem perature piece I: m ) such that, at
xedm,I;m)! OasT ! 0.W euse dinensional regularization to control the utraviolkt
divergences present in Iy, which Inplies I; (0) = 0. Explicitly one has:

m? 2 2
Ifm)= 37 2 —+]og—m2+1 + Irm)+ O(); @ 30)
w ith
Z d3k I'l(")
k
I = ; 231
1 ) 2 2 (2.31)

and ", ®+m?)'™. mEqg. 30), isthe scak ofdin ensional regularization, ntroduced,
as usual, by rew rdting the bare coupling , as AO, w ith dim ensionless Ao; furthem ore,
= 4 n,wih n the number of spacetin e dinensions, and 2= 4 e 2.
W euse them odi ed m ;nin al subtraction schane M S) and de ne a din ensionless renor—
m alized coupling by:

— = + : (2 -32)



W hen expressed In tem s of the renom alized coupling, the gap equation becom es free of
ultraviolt divergences. Tt reads:

, Z d3k n("k) m2 m2 .
nf= s oyt ;o b9 1 (2.33)

T he renom alized coupling constant satis es

d 2

dlog 16 2! @39

which ensures that the solution m ? of Eq. £33) is ndependent of . Eq. £34) coincides
w ith the exact —function In the JargeN Il it, but gives only one third of the lowest-order
perturbative -function forN = 1. This isno actual fault since the running of the coupling
a ects the them odynam ic potential only at order 2 which is beyond the perturbative
accuracy of the 2-loop -derivable approxin ation. In order to see the correct one-loop
—finction at nite N , the approxin ation for would have to be pushed to 3-loop order.

N ote also that, In the present approxin ation, the renom alization @ 37) of the coupling
constant issu cient tom ake the pressure (§28] nite. Indeed, In din ensionalregularization
the sum of the zero point energies "=2 h Eq. €2§) reads:

7 !

an lk "k_ m4 2 b 2 3 ] 5 35
eyriz ez gty oL @)
so that
Z an lk " 2 B m4 m4 v 2+ 3! v o) 2.36)
eyt 2% 2 642 Imz 2

is indeed UV niteasn ! 4. After also using the gap equation €33), one obtains the
—-independent resul

Z 3 2 m

" m
P= T )3bg(1 e )+ It

(2.37)

W e now com pute the entropy according to Eq. €13). Shce ln = 0 and Re =m ?,
we have sinply:

Z

B d'k @n(!) 2 g2 2
S = o) et In logk 1+ m?): 2 38)
U sing
In ogk?® P+ m?) = ¢ & %y 2 39)

and the dentity €29), one can rewrite Eq. £3§) in the orm wihn, n(})):

> &k n °
S = 2y 1+ ny)og@+ nyg) n logn, : (2.40)
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T his form ula show s that, In the present approxin ation, the entropy ofthe interacting scalar
gas is form ally identical to the entropy of an ideal gas ofm assive bosons, wih massm .

Tt is Instructive to cbserve that such a sim ple Interpretation doesnot hold forthepressure.
T he pressure of an ideal gas ofm assive bosons is given by:

P(O)m)= Z d3k Z]_ d' n(')+} _ Z d3k T]Qg(l ek=T)+_k . (241)
@)y ' 2 @) 2 ! ’

which di ers indeed from Eq. 28) by theterm m ‘= which corrects for the double-counting
of the interactions Included In the them alm ass. N ote that since the m ass depends on the
tam perature, and since S = dP=dT, it is not surprisng to nd such a m ign atch.

M oreover, unlike the correct expression €28),Eq. £4]) isa icted wih UV divergences
which in dim ensional regularization are proportionalto m* (cf. Egq. £39)), and hence
dependent upon the tem perature. This is precisely the kind of divergences which are m et
in the one-loop HT L+esumm ed calculation of the pressure in QCD ofRef. [L]]].

C .Com parison w ith therm alperturbation theory

In view of the subsequent application to QCD, where a fiillly selfconsistent determ i
nation of the gluonic sslfenergy seem s prohbiively di cul, we shall be led to consider
approxin ations to the gap equation. These w ill be constructed such that they reproduce
(but eventually transcend) the perturbative results up to and incliding order *%2 or g°,
which is the m axinum perturbative accuracy allowed by the approxin ation S%= 0.

In view ofthis it is in portant to understand the perturbative content ofthe selfconsistent
approxin ations ©rm 2, P and S . In this section we shall dem onstrate that, when expanded
in powers of the coupling constant, these approxin ations reproduce the correct perturbative
resultsup to order *7 [l]. Thiswillalso elucidate how perturbation theory gets reorganized
by the use of the skeleton representation together w ith the stationarity principle.

For the scalar theory wih only ( =4!) * selfsnteractions, we w ritd] 24d, and
com pute the corresponding selfenergy = m ? by solving the gap equation £33) :n an

expansion in powers of g, up to order g°. Since we anticipate m to be of order gT, we
can ignore the second term / m? d I the rhs. ofEq. £33), and perform a high-
tem perature expansion of the integral Iy (n ) in the rst tem (cf. Eq. @31))) up to tem s
linear in m . T his gives the llow Ing, approxin ate, gap equation :

3
m? ’ gZT2 —ngm : 242)

The rsttemm in the rh.s. arises as

240°I; (0) = 12¢° — = ¢*T? m?: @ 43)

2T his nom alization for g is chosen I view of the subsequent extension to QCD sice it m akes
the scalar them alm ass in Eq. £43) equal to the kading-order D ebye m ass in pureglie Q CD
€q. B1d) with N = 3).



This is also the lading-order result for m 2, comm only dubbed the \hard them al loop"
HTL)} Bf]because the oop integral in Eq. £ 43) is saturated by hardmomentak T
The second tem , linear nm , in Eq. €.47) com es from

Z

3 1] : z 3
124° dk nl) nk 129°T dk ! R EmT; 44)

@)y K @) kK2+m?2 k2

where we have used the fact that the m om entum integral is saturated by soft m om enta
k gT, so that to the order of interest n (%) ¥ T="x (@nd similarly nk) ’ T=k). This
provides the next-to-Jeading order NLO ) correction to the themm alm ass

3q°

3
m? —ZMT = ZgT?: @ 45)

Thus, to order g°, onehasm? = m?+ m?. In standard perturbation theory [[B], the
rst tem arises as the one-Joop tadpole diagram evaluated w ith a bare m assless propagator,
whilke the second tem comes from the sam e diagram where the Intemal lne is soft and
dressed by the HT L, that isD (! ;k) 1= ¥ m?). @Atsofftmomentak ™M qgT,
m? is of the sam e order as the free verse propagatorD ,' ¥ ¢T?, and thus cannot
be expanded out of the H T L-dressed propagator D (!;k).)
Consider sin ilarly the perturbative estin ates for the pressure and entropy, as obtained
by evaluating Egs. £2§) and {2.40Q) w ith the perturbative selfenergy =m %’ m?+ m?,
and further expanding in powers of g, to order g°. The renom alized version ofEq. €28)

yields, to this order (recallthatm  gT and 8,
7Y m?T? m3T m*
o N N m (2 46)
90 24 12 2

The rst tem s before the dots represent the pressure of m assive bosons, ie. Eq. €4])
expanded up to third order in powers ofm =T . From Eq. @4§), it can be easily veri ed
that the above perturbative solution form ? ensures the stationarity of P up to order g°, as
it should. Indeed, if we denote

m?T? m! m?3T

+ — P ; 2.47
o4 5 7 3fm) o 7 ( )

P, m)

then the follow ing identities hold:

P 2 2
€2 _ ., % ¢ B, 2 .48)
@m @m 4+ m @m

This show s that the NLO mass correction m?  gT? can be also obtained as

) (@P3=Cm ) _ 3_gm\2 . © 49)
(@2P2=@m 2) m ! )

3In the ollow ing, H T L. quantities w illbe m arked by a hat.
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in agreement wih Eq. @49). M oreover, P, P, @) = JT?%=48 and P, P, ) =
m3T=12 are indeed the correct perturbative corrections to the pressure, to orders g¢ and
g°, repectively [ll]. In fact, the pressure to this order can be w ritten as:

P = T mZTZ(l > )+m3T+ ﬂ(l > Y+ 0 @)
90 24 P12 2 d J
‘Tt m? m>T
= —T%+ : 2 50)
90 48 12

Note that the tem of order g is only half of that one would cbtain from Eq. 241) by
replacing m by . This is due to the aforem entioned m ism atch between Eq. £41) and
the correct expression for the pressure, Eq. £2§). In fact, going back to Eq. (2.1), one
dbserves that the net order g? contribution to the pressure com es from  evaluated w ith bare

propagators: the order g° contributions in the other two term sm utually cancel indeed. This
is to be expected: there is a single diagram of order g?; this is a skeleton diagram , counted
therefore once and only once n . Observe also that the tem s of order g3 originating
from the term s M2 and M * mutually cancel; that is, the NLO mass correction m drops
out from the pressure up to order g°. This is no accident: the cancellation resuls from the
stationarity of P at order g, the rst equation €49§).

Consider now the entropy density. T he correct perturbative result up to order g° m ay
be obtained directly by taking the total derivative of the pressure, Eq. 2.50) with respect
to T . O ne then obtains:

|
4 %T% m?T? m3T
T 9 8 12

S = +0 @"): 2.51)

W e wish, however, to proceed di erently, usihg Eq. @40), or equivalently, since
@P=@m = 0Owhen m isa solution of the gap equation, by w riting:

QP
S= — (2.52)
eT
T his yields:
!
g 4 T miTt T +0 @mi=T) 2 53)
T 90 48 48 !

which coincides as expected w ith the expression obtained by expanding the entropy ofm as—
sive bosons, Eq. €£40), up to order (m =T )>. Ifwe now replacem by its leading order value
', the resulting approxin ation ©rS reproduces the perturbative e ect oforder ¢, but it
underestin ates the correction of order g° by a factor of 4. This is corrected by changing m
tomt+ m with m = 3gm=2 i the second orderterm ofEq.[233). Note that although
it m akes no di erence to enforce the gap equation to order g° in the pressure (pecause of
the cancellation discussed above), there is no such cancellation in the entropy.

In view of the forthoom ng application to QCD, we shall now rephrase the previous
discussion In slightly m ore general tem s, though still restricted to the m ain sim pli cation
that the present sin ple m odelo ers: a sslfenergy that is constant and real.
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Because of the stationarity ofthe therm odynam ic potential, Eq. €4), the order g° tem
In the pressure is com ing entirely from the log term in the them odynam ic potential w ith

= A,whichreads:
“gkT_ b . K
Ps; = —In log@l+Dy(t;k) ) Do(lk)
@ ¢!
" ol N
T Z 33k g 1+ T A3=2 254
2 2 )3 k2 k2 12 !

where we have subtracted the order¢? contrdution and used the fact that the rem ain—
Ing Integrand is dom nated by soft m om enta to replace n (! ) by T=! . The corresponding
contribution to the entropy follow s as:

dp QP ep, 4~
S3 _ 3 _ 3 + A3

@) b)
— +s9; 255
dT QT ~ @" ¢ dT & 3 @)

w here S3(a) , the derivative of P ; at constant " equals 1/4 ofthe total orderq ® entropy. T he
ram aining 3/4 com e from the derivative of ”.
A frematively, the entropy can be cbtained from ourm aster equation @.17) which, in the

present modelwhere In = 0, sinpli es into:
S = " ) o wgp L1 k) @ 56)
2 )¢ eT SR

The tem oforder? isdbtained by writing logD ' = logD , '+ log(1+ D, ), setting =
and expanding the logarithm to rst order in ”. One then obtains:

S, = " d' en() "D (! k): @ 57)

? 2 )4 er o
Sinhce m D,y (!;k)= (1) (¢ K),the ntegrand n £ 57) is concentrated on the unper-
turbed m assshell. The ensuing m om entum integral imm ediately yields S, = T'=12, in

agreem ent w ith Eq. @.51)).

A coording to Eq. €53), the contrbution oforder g° involves two pieces, S; = S + 5.
(cf. Egq. 253)). These can be also understood as the contributions to Eq. ) from
di erent m om entum regin es. Speci cally, the soft m om enta in the latter yield:

Z 4 h i
SPt= dk Em gL+ Do) Dy ; 2 58)
@) !
which is the same as S;” in Eq. £59). The second contrioution of order g* com es from
hard m om enta in Eq. @5§), and is obtained by replacing " ! inEq. @57). Thisyields
Z A
ghard _ 1 &’k l@énk) 1 d
’ 2 @ Pk @T dr
!
~Td"? gk 1 1
2dT @2 ) k2+ 7 k2
Z 4 A
- BT g by =sP; 2.59)
@ ) dr ° >

wherewehave ussed Eq. €43) or " i the rst lneand Eq. ((45] or i the second Ihe.
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D . A pproxim ately selfconsistent solutions

A s we have seen, the 2-loop -derivable approxin ation provides an expression for the
entropy S asa finctionalofthe selfenergy | namely,Eq. @12) with S °= 0| which has
a sin ple quasiparticke interpretation and is m anifestly ultraviolt nite for any ( nite)

T hese attractive features ofEqg. 2.17) are independent ofthe soeci ¢ form ofthe selfenergy,
and willbe shown to hold n QCD aswell. O foourse, within this approxin ation, the self-
energy isuniquely speci ed: by the stationarity principle, this is given by the selfconsistent
solution to the one-loop gap equation. In the scalar “*-m odel, it was easy to give the exact
solution to this equation (cf. Sect. 2B), which coincides w ith the wellknown solution of
ascalarO N )modelin the Iimit N ! 1 @]. In QCD, however, it will tum out that a
fully selfconsistent solution isboth prohbitively di cult (pecause ofthe non-locality ofthe
gap equation), and not really desirable (for reasons to be discussed In Sect. 3B below).
This leads us to consider approxin ately selfconsistent resum m ations, which are ocbtained
In two steps: (@) An approxin ation is constructed for the solution to the gap equation,
and (o) the entropy {£2.17) is evaluated exactly (ie. num erically) w ith this approxin ate self-
energy. W hile step () above is unam biguous and inherently nonperturbative, step @), on
the otherhand, w illbe constrained prin arily by the requirem ent ofpreserving the m axin um
possible perturbative accuracy, of order g° (cf. Sect. 2 C). In addition to that, we shall add
the qualitative requirem ent that the approxin ation for , and the ensuing one for S, are
well de ned and physically m eaningful for all the values of g of interest, and not only for
an all g| that is, for all the values of g where the fully selfconsistent calculation m akes
sense a priori. Aswe shall shortly see, this Jast requiram ent generally excludes a strictly
perturbative solution to the gap equation.

O foourse, even w ith this Jast requirem ent, there is stilla large am biguiy in the choice of
the approxin ate selfenergy. In this respect the scalar “-m odelprovides an opportunity or
testing the quality ofthese approxin ations against the exact solution of the gap equation of
the fully selfconsistent two-loop calculation. Sin ilar approxin ations w ill be subsequently
used n QCD .

T he exact solutionf] of the gap equation is determm ined by the transcendentalEq. €33)
w ih 24¢.W ith = 2 T, the resuk m=T as a fiunction of g is given by the fiill Ine
n Fig.[]. Asan exact result, it is independent of the renom alization scal: a change of

! Yhasto be Pllowed by a change of the renom alized coupling g( ) ! g( 9 according
to (cf. Eq. €34))

M ore precisely, as discussed in detail n Ref. @], Eqg. ) has two solutions, a fact that is
frequently overlooked. T he larger of the two is exponentially larger than T for am all coupling and
has to be ruled out because our scalar m odel is consistent only as an e ective (cuto ) theory.

5So the scalar theory is fllly de ned by giving both a din ensionfiill scale  and the associated
coupling strength g( ). Equivalently, as usually done in QCD , we could jist give a scale and
agree eg.that g( ) = +1 . In this section we shall take the form er point of view , so for any
given tem perature T , di erent values of g2 T ) param etrize di erently coupled theordes.
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FIG .1. Com parison of the exact them alm ass In the largeN scalarO (N )-m odelas a function
ofg( = 2 T) (full line) wih the lkadingorder HTL) perturbative result (long-dashed lines),
the NLO one correspondingtom? + m? (shorterdashed lines), and the perturbatively equivalent
N LA ) version ) (dotted Iines). E xcept for the exact resul, all these are renom alization scale
dependent, the central Ines corresponding to %= 2 T, the adpoent onesto T and 4 T.

i

h
F(Y= () 1+F()B=2 Hbg( =9 2 60)

A 1l perturbative results on the other hand su er from the problm of renom alization
schem e dependence, the m ore so the stronger the coupling. Having settled for the M S-
schem e, all of the ram aining ambiguity is in the choice of the renom alization scale °.
T hroughout thispaper, we shallchoose = 2 T asour ducialscal and consider the range

= T :::4 T to test for the schan e dependence of the various approxin ationsf]

The ladingorder HTL) result, Eq. £43),issmplym =T = =T = g.Forg= g2 T),
this is the straight Jong-dashed line in Fig.[]. For the di erent choices %= T and4 T,g
is instead the function of g2 T) given by Eq. £.60) and m =T is given by the long-dashed
linesbelow and above the centralone.

The NLO ocorrection @.45) is negative, eventually m aking the perturbative result for
m?=m?+ m? negative, n fact already at m oderately large couplingg 1 (shorterdashed
lines in Fi.[], ndividually corresponding to °=  T;2 T;4 T again). C karly, using this
strictly perturbative result would m ake the them odynam ic potentials allback to the free
resul at g= =3 wherem?+ m? vanishes, and give rise to tachyonic singularities beyond.

H ow ever, there isno unique \strictly perturbative" resul. De ninga NLO m ass through
m=nm+ m would nvolve m m=2r . This would lead to an ocbvious breakdown of
perturbation theory only for twice as large valuesofg,g> 2 =3 2, w ith negative rather
than In aghary values form .

®m Ref. @], from which we deviate slightly In taking = 2 T ratherthan = T asthe ducial
scale, the schem e dependence of them al perturbation theory has been studied in the above scalar
m odel .n great detailw ith the resul that at least at high orders of perturbation theory ° 2 T
seem s to be an optin al renom alization point, corroborating the expectations expressed in Ref. @].
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FIG .2. Com parison of perturbative and H T L-In proved approxin ations to the entropy in the
largeN scalar O N )-m odel. The shaded areas denote the variation under changes of the renor-
m alization scale from %= T to4 T.Theband marked \HTL" refers to using the leading-order
HTL) mass in the 2-doop -derivable entropy, \NLA " to using the approxin ately selfconsistent
NLO m ass ) . A lso given are the corresponding resuls for a naive strictly perturbative NLO
m ass when de ned through m 2 orm , respectively.

But this does not m ean that there is no physical content In the NLO e ects beyond
g 1. Rather, the physical content is unnecessarily lost by the restriction to a polynom ial
resul form 2 (orm ) which does not preserve the m onotonous behavior ofm =T asa fiinction
of g that is odbserved both at lkading order and in the exact resul.

In order to ensure such a m onotonous behavior, in Refs. [[[L§] we have considered the
sinple Pade approxinantm?+ m? ! m2=[1 nf=m?]= ?T?=[L+ 3g= ], which already
achieves a dram atic In provement org ~ 1. An alemative, which is n fact m ore in the
spirit of approxin ate self-consistency, is to retum to the approxin ate gap equation (2.47)

m? = g°T? EgZTm ; @ .61)

and solve this quadratic equation form exactly, yielding

q
mya=T = g2+ GBgP=2 )2 3d=2 : © 62)

In what llows, this will be referred to as our \next-to-Jleading approxim ation” NLA)
for the scalar them alm ass. A lso this approxin ation preserves the propertym of being a
m onotonously grow ng function of g. Forvery large g it saturatesatmypa ! ( =3)T. The
corresoonding resuls for the various renom alization scale choices are given by the dotted
lines in Fig.[l, show ing a striking in provem ent over the standard perturbative results also
for very large coupling.

W ith m approxin ated either by its kadihgorder HTL) value® = g( )T or by the
NLA resulk {2.6]), the correspondingly approxin ated entropy is obtaied by evaluating

19



num erically the expression £3§). In Fig.[d this is com pared w ith the strictly perturbative
expressions for S=S, up to and including order ¢?, and g°, respectively[] The shaded bands
indicate the variation ofthe resultswih °= T :::4 T.Evidently, the perturbative 3rd-
order result fails to be a better approxin ation than the 2nd-order one forg = 1. The
sam iperturbatively evaluated HTL result is already an appreciable in provem ent over the
2nd-order perturbative result, whereas the NLA fllow s closely theexact N ! 1 ) resul.
Alo chown are the results corregponding to the two \strictly perturbative" NLO m ass
de nitionsm entioned above when used In the sam e m anner.

IIT.QCD :APPROXIM ATELY SELF-CONSISTENT RESUMMATIONS

W e tum now to ourmain case of nterest, the QCD plasna. In this section, we shall
concentrate on a purely gluonic plasn a, deferring the addition of quarks to the next section.
A Though the them odynam ic potentialin Q CD is a gauge independent quantity, In w riting
down its skeleton representation we have to specify a gauge. In form ulating the two—Joop

derivable approxin ation we nd i convenient to start with the tem poral axial gauge.
W hile this approxin ation is by itself gauge dependent, when supplem ented by perturbative
approxin ations on the generalized gap equation it results in a gauge Invarant resum m ation
scheam e for the entropy.

A .The skeleton representation of the entropy

In QCD, the them odynam ic potential is a functional of the fullgluon © ), quark (),
and Faddeev-P opov ghost O g4,) propagators,

1
D iSiD gn]= - Tr gD ' TrlbgS' TrlgD,
1
STr D+ Tr S+ Tr aDg+ DiSiDal 31)

where Tr now includes traces over color Indices, and also over Lorentz and spinor indices
when applicabl. T he sslfenergies for glions, quarks and ghosts are denoted respectively by
, and g .= Fi.[, the owest-order (two-loop) skeleton diagram s for are displayed.
In gauges which do not break rotational invariance, the gluon propagator at nite tem —
perature contains up to Hurdi erent structure fiinctions 4. O nly two ofthem correspond
to degrees of freedom which are transverse in 4 din ensions; the rem aining ones are unphys-
ical, constrained by a W ard identity B3], and com pensated for by the Faddeev-P opov ghost

degrees of freedom .
In general, the gluon selfenergy k) is a tensor which is not transverse w ith respect
to the &momentum k = (!;k), but also contains up to 4 structure functions. There are

"Thispltdi ers from the corresponding one presented in R ef. E] in that in the latterthe ducial
renom alization scale = T hasbeen used, so the abscissae are non-linearly related.
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FIG .3. Diagram sor at2-doop orderin QCD .W igly, plain, and dotted lines refer respectively
to glions, quarks, and ghosts.

how ever gauges w here ghosts decoup e and w here as a consequence is strictly transversﬂ :
axialgaugesn A® = 0,wih n a constant 4-vector.

A particularly convenient choice appears to be the tem poralaxialgauge, wheren ocoin—
cides w ith the rest—fram e velocity of the heat bath and thus preserves rotational nvariance.
Ignoring the welkknown di culties w ith this gauge in the in aginary-tin e form alisn  [6]), the
tem poral axial gauge would Jead to great sim pli cations of the structure of Eq. BJ)): The
ghost selfenergy g, vanishes and the ghost propagator does not appear in . Secondly,
there are only two independent structure functions in the glion selfenergy, which can then
be wrdtten as (suppressing the color labels)

kik; kik;! 2
g (k)= 5 2 T (!;k) " L (15k); 32)
kg
oo (15k)=" ¢ (1;Kk); 0i (f7k) = 2 L (tik): 33)

W ith these de nitions, the propagator in tem poral axial gauge reads

kik; kiks k2
DIk = 5 3 DK+ —25D5 (1K) (3.4)
where
Dt (!;k) L Dy (!;k) L 35)
Y 12 R L (k) L K2+ o (k)

N ote that because D ;*¢ = D T}¢ 0, only the spatial com ponents ;5 of the polarization
tensor enter Eq. .]) in tem poralaxial gauge.
For Jater use we Introduce the follow Ing spectral representations:

8T his property can nevertheless be lost in approxin ations w hich do not preserve gauge sym m etry;
cf. the discussion affer Eq. §.11).
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dk, 'k
Dy (k) = dko T(ko,),
1 ko !
VA
1 bodky 1 kosk)
D.,(;k)= — + _— 36
T N e 3.6)
Here ; and . are the soectral densities:
L;T koik) ]'jf%ZMDL;T ko+ 1 ;k): 3.7

N ote the subtraction perform ed In the spectral representation ofD ;, (! ;k): this is necessary
sinceDy (1;k) ! 1=K asi 3! 1 .Attreedvel, ;) =0and ) =2 () (&), and
therebreD ) = 1=(? ¥)andD,/” = 1=K

Concentrating on the gluonic contrlbutions for now and postponing the inclusion of

ferm jons to the next section, we cbtain in analogy to Eq. £.9§)

2 4
d*k 5 5

+ I bgk’+ )+ I Dy +T 4 D;DEV (3.8)

where N, isthe number ofglions N * 1 forSU I ), ie.8 orQ CD )] T he entropy ofpurely
glionic Q CD can then be written in com plete analogy to the derivation of Eq. €.17) as

S=8S; + S, +8° 3.9)
where
~ > d'k en(!)n P °
Sy = 2N, ) ot In bg( "+ k*+ ;) In ;ReD: ; (3.10a)
_ * d'k en(!)n 2 °
Sy = Ng 2 )i er Im ogk“+ )+ Im ReD ; (3.10b)
and
QT ) 2 @k @n(!)
s + N CRe ;InD; Re  InDy): (311)

@T ©D 9 @) QT

A s In the scalar case, we are Interested in the -derivable approxin ation obtained by
keeping only the two-loop skeltons of Fig.[. In gauge theories, however, the -derivable
approxin ations have n general the drawbacdck of violating gauge sym m etry, because vertex
functions are not treated on equal footing with selfenergies (In particular, in the two—
loop approxin ation to  there are no vertex corrections at all). Thus the corresponding

°H ere we have assum ed a principalvalue treatm ent of the factork?=!? n Eq. @) for the contour
Integration. Because this factor is real and posiive, it can be dropped from w ithin the In aghary
part of the logarithm nvolving 1, .
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approxin ation to the polarization tensor needs not be transverse. N everthelss, in the
tem poral axial gauge, the previous expressions are not a ected by a loss of 4-din ensional
transversality, because they involve only the spatial com ponents 5, orequivalently : and

v (Cf Eq. B2).

Therefore, in this gauge, the property that S° = 0 in the two-loop approxin ation to

still holds, for the sam e, essentially com binatorial reasons as in the scalar eld theory
w ith cubic and quartic Interactions of the previous section. In this approxin ation, the self-
energies r, 1 and propagatorsD r, D are to be detem ined selfconsistently, by solving
the generalized \gap equations"

DTl: P+ k*+ :D:;DLI; DLl: ¥ 1DriDr]; (312)

ie. the Dyson equationswhere D:;D.] (s= T;L) are the one-bop slfenergies built
outofD; and Dy, .

W hereas the entropy expressions 8.1() them selves arem anifestly UV nite, Egs. §.13)
contain UV divergencesw hich require renom alization . B ecause ofthe sin ple W ard identities
of axial gauges, (wave function) renom alization of the gluon selfenergy at lowest order In
g contains the correct one-doop coe cient of the beta function HB7}48]. Beyond lowest order,
how ever, it isnot clear that the gap equations .13) can be renom alized in a sin plem anner
(in contrast to the scalar toy m odel of Sect. [IIB]) .

At any rate, In general gauges the 2-loop -derivable approxin ation m isses the correct
perturbative munning of the coupling constant. Ideed, the latter is an orderg® e ect in
the them odynam ic potentials and is thus beyond the perturbative accuracy of a 2-loop

-derivable approxin ation.

B . A pproxim ately selfconsistent solutions

Unlke the scalar theory with  * interactions, ln QCD the \gap equations" 813) are
non—local, which m akes their exact solution prohbitively di cult. But n fact, as we have
Just explained, uncertainties conceming gauge sym m etry and renom alization beyond order
g° m ake such a filly selfconsistent solution not really desirable.

For this reason we shall construct approxim ately selfconsistent solutions which m ain—
tain equivalence with conventional perturbation theory up to and including order g° (the
maxinum perturbative accuracy allowed by two—Joop approxin ations for ), and which
are m anifestly gauge-independent and UV nie. A fler such approxin atjons| where the
glion polarization tensor is transverse and the ghost selfenergy (In gauges w ith ghosts) is
neglkected| , Egs. 810) have the sam e form al structure in any other gauge, and S°= 0
to the sam e accuracy. W e can therefore drop the restriction to the som ew hat problem atic
team poral axial gauge. For Instance, In the m ore comm only used Coulom b gauge the gauge
propagator is given by

kik-
> D1 (!k) (313)

Dss (1;k)=Dy(1;k); DSE (L;k)= 4 2

i3

and the ghost propagator does not contribute as long as there is no nontrivial ghost self-
energy; In covariant gauges under the sam e circum stances, the then propagating ghosts just
com pensate for an additionalm assless pol that is present In the gluon propagator.
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W ih the gauge-independent approxin ations for 1, that we shallcbtain from HTL)
perturbation theory, the e ectively one-loop expressions for the entropy, Egs. §.10), con-
stitute a gauge-invariant approxin ation to the full entropy. By then com puting exactly
these expressions, we shall obtain a gauge-nvariant result which is nonperturbative in the
coupling g, while being equivalent to conventional resum m ed perturbation theory up to and
including order g°.

As generally with themal eld theories ], the perturbative solution of Egs. §17)
requires to distinguish between soft k < gT) and hard ( T) elds, which are dressed
di erently by them al uctuations. In (purely gluonic) QCD, and in the Coulomb gauge,
the hard eldsare always transverse, whilk the soft elds | which m ay be seen as collective
excitations of the om er [1J4] | can be eitther Iongitudinal, or transverse.

Because ofthe 1im ited phase-space, the kading order (LO ) contrbution ofthe softm odes
to the therm odynam ical fiinctions is already oforderg® [, so the corresponding selfenergies
are needed only to lading order In g. These are the socalled hard them al loops AL and
"; B3P1, which i the present fom alisn appear as the solutions to Egs. §13) to LO in g
and for soft k gT ) extermalm om enta. They read:

~ 5 ! !+ k#
L (M;k)y=mg 1 9T 314)
A 1, I A
r (1;k)= > my + IRV ; (3.15)
w ith the D ébye m ass
Z
N “1 @n TN
m? = g dkk® — = g 346)
2 9 QRk 3

The HTL’s §I4) are manifestly UV nite: they derive from one-loop Feynm an graphs,
but Involre only the contribution of the them al uctuations in the latter (as opposed to
the vacuum uctuations, which are responsbl for UV divergences). The corresponding
propagators are then de ned via the D yson equations §12):

Bl (k) = P+ki+ (k) Btk = K Tk 317

Note that, ork  gT, the selfenergy corrections in Egs. [B.I}){[BI}) are as in portant as
the corresponding tree-level nverse propagatorsD ,© ¥ ¢T2. Thus, at soft m om enta,
the selfenergies cannot be expanded out of the HT L-resumm ed propagators. The HTL
soectral densities consist of quasiparticle poles at tin e-like m om enta and Landau dam ping
cuts or 3 < k. W hen k gT , the transverse pole describes the usual shgleparticle
excitations (hard transverse gluons), whilk the additional pole associated to the collective
longitudinal excitation has exponentially vanishing residue [1].

For hard, transverse, elds, we need the solution 1 &k T) ofEgs. [312) to leading,
and next-to-leading order NLO ). This is obtained as:

kT P+ 4 (3.18)

w here T(Z) Dol d is the bare one-doop selfenergy (ie., the standard one-doop dia—

gram s w ith treeJevel propagatorsD o = O T(O);D IfO)) on the intemal lines), and 1 gT?
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FIG.4. NLO contrbutionsto 1 at hard m om entum . Thick dashed and wiggly linesw ith a
blob represent HT L-resum m ed longiudinal and transverse propagators, respectively.

is an e ective oneloop selfenergy where one of the Intemal lines is hard (@nd transverse),
while the other one is soft (longiudinal or transverse) and dressed by the HTL.Thus, ¢
is the sum of the fur diagram s depicted in F ig.[d; these are explicitly com puted in App.
E3.

A priori, the onedocp selfenergy involves also vacuum uctuations, and therefore UV
divergences, whith call for renom alization. The UV divergences could be absorbed by
a wave-function renomm alization constant, which drops out from the entropy expressions
BG10).Asiwilltum out presently, only the light-cone lim it of | D (]w illcontrbute to the
order of interest. In line w ith our strategy of restricting to gauge-invarant approxin ations
to the selfenergy, we shall altogether drop the gauge-dependent vacuum pieces, which in
fact vanish on the light-cone.

Because from standard HTL perturoation theory we take UV  nite approxin ations for

L., we shall in fact have no inherent beta finction[Y prescrbing the scale dependence of
the coupling g. W hen num erically evaluating the results, we shall sin ply adopt the standard
rmunning coupling constant oftheM S schem e and consider the resulting renom alization-scale
dependence of our resuls as an estin ate of our theoretical error (cf. Sect.[IID]).

C .Perturbation theory: Low est orders

In this and the follow Ing subsections, we shall consider the perturbative expansion of
our m aster equation for the entropy, Egs. 8.10), and recover in the process the standard
perturbative results up to order g°. This is usefil not only as a cross check of the various
approxin ations, but also as an illustration of the rather non-trivial way that perturbation
theory gets reorganized by this equation. M oreover, the perturbative expansion w ill shed
m ore light on the physical interpretation of the various tem s in Egs. 8.10), and give us
hints for better approxim ations to be used In the non-perturbative, num erical calculations
to com e.

107 re nem ent ofthe present approach which is accurate at and above order g* and w hich has cor-
rect (low est-order) coupling constant renom alization would require at least a 3-loop approxin ation
to the themm odynam ic potentials.
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The leading-order result is obtained by puttihng = [ = 0in Egs. 8I1(). This is the
Stefan-B oltzm ann entropy of a free gas ofm assless transverse glions:
Z

d'k @n(!) 2 L2
Sgp = 2N, —— Im “+ k
2N C ok e hT Iog (1 k:T)i : 2N T3 (3.19)
= —_— e = — :
9 @ )er 45 9
Here the retarded prescription (! ! !+ i ) isinplicit in the rst integral, which isevaluated

w ith the help of the dentities £39) and £29).

The orderg® contrbution to the entropy com es also exclusively from hard transverse
gluons, via onedoop corrections. Speci cally, by expanding Eq. §103) to order g, one
obtains:

8 9
Z 4 < @) -
_ d'k €n T @) 1
Sz— 2Ng W@—T: BTIi!Z ]@+Bn TRe'Z ]@;
N “ d'k en @ 1o 1
= — Re _
g9 (2 )4 @T T !2 ]@
Z 4
d’k @
= Ny ) )4@—; (1) (* ¥)Re 2 (;k); (3.20)

where the integralis indeed dom fnated by hardmomentak T . Notethat S® involves only
@

the light-cone profction Re [ (! = k) of the onedoop selfenergy for (hard) transverse
glions T(2> (! ;k). Thisprofction isa prioriUV nite: indeed, gauge sym m etry guarantees
that the vacuum contribution to Re T(Z) (! = k) must vanish. M oreover, quite ram arkably,

this profection tums out to be also m om entum —“independent 3],

D 2=x%)= #NT?=6 m; 321)

and thus de nes a (them al) m ass correction, also known as the asym ptotic m ass. Thus,
nally,

mZT N

N
S;= N 6gg2T3; (322)

6 3
which is indeed the correct resul f]]. Note also that at leading order the asym ptotic m ass
is sin ply related to the HTL) Debyemass: m? = mZ =2.

It is worth em phasizing that Eq. 82(Q) is the sam e as the entropy of an ideal gas of
m assive particles (with constant m asses equalto m; ) when expanded to lading order in
mf . Aswas the case in the scalarm odel discussed In Sect. II, such a sin pl identi cation
is speci ¢ to the entropy, and does not hold for the orderg? e ect in the pressure.

In the scalar case we have seen that the HT L-resum m ed one—loop pressure over-inclides
the LO interaction tem by a factor of two. For gluons, Ref. [[]] reported instead a factor
of three. Inspecting the corresponding calculation reveals that this arises because of an
noom plete in plem entation of dim ensional reqularisation. W hilke in the atter 2 2 trans-
verse polarisations of the gluons are considered, the HT L expressions for have not been
m odi ed accordingly. However in d 6 3 spatial din ensions, Eqgs. 8193.14) becom e
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" # " #
A 1 , 17 K. A ) 1 _d ¥k
T = 4 1 My + Tz b ; r=my 1 2F1(§;1;5;ﬁ) ; (323)
w here
T @ 1 &h
m2=@d 1GNT?()*° 2 a> 2) (324)

@a+ 1)=2

as detem ined by the d-din ensional analog of Eq. (31§). This gives a real and constant
" =m2 = d 1)m? such that the orderg? contribution to the 1-loop H T L-resumm ed

pressure Py 11, = %Tr]og(Dol+ A) is

Z A Z
dd+ lk dd+ 1

@ n(!) In = N2

1
Pyry = Ng CE 7 r n()mm—p ! 2 B (329

Q@ )l 12

asd ! 3, wih dimensional regularization elin inating the quadratic divergence for ! !

1 . This is then oconsistent wih mom entum cuto regularization, where d = 3 can be
kept throughout, after dropping a divergence / mZ 2. P resum ably, the num erical results
reported in Ref. [[]]will change signi cantly when corrected accordingly.

This sensitivity to (@ consistent usage of) regularization schemes is related in fact to
the UV behavior of HT L-screened perturbation theory; it is not present In our UV — nie
HTL-resumm ation of (two-loop) entropy and density.

D .Perturbation theory: O rder g°

T he extraction of the orderg® contrbution to the entropy in Eq. 8.10) tums out to be
m ore intricate than the standard calculation of the plasn on e ect in the pressure [i].

1. The order g° in the pressure

Letusbrie ydiscuss rsttheplasn on e ect in the pressure, asobtained from the skeleton
representation @.]). A sexplained forthe scalar case in Sect. [IIC], the orderg® contribution
to the pressure com es entirely from soft m om enta, and reads (cf. Eq. £59)):

Z d4k T h N Ai
“ M bgl+D,Y) Dy : (326)

PTG

A A

InQCD,D = ©O;Dy), "= (- ), and a sum over color and polarization states is
implicit in 824). Note the m inus sign in front of ;| i these com pact notations; this
re ects our conventions in Egs. @) { §5).] The ntegralover ! yields:

Z d! h N N i h N i N
—']H ]Qg(l+Do ) DO =]le+Do(!=0) (!=O) (!=O)D o('=0)
' mg! m 2
Shg 1Sl g ©2n
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w here the non-vanishing contribution In the second line com es from the longiudinal sector

alone B3], since "1 (! = 0)=m2,whike "1 (! = 0)= 0. Thus,
" ! #
Py = N'I'Z &k og 1+ m\% rﬁ% = N rﬁST. (328)
° ey k2 k2 S12

where the cobr factor N, = N? 1 has been reintroduced. Eq. [B2B) is indeed the stan-
dard resul orPj;, generally obtained by sum m ing the ring diagram s in the I aghary-tin e
perturbation theory 1.

The orderg® e ect in the entropy can be now directly calculated as the total derivative
of P53 with respect to T . W e thus obtain S; = S + S, where

Z

4 | h i 3
o %m = N, %@z;') T gl+Dy) D, = Ng%; (3.29a)
is the derivative at xed = ~ (recallthat the HTL's depend upon the tem perature only
via the D ebye m ass; cf. Egs. {3.14) and 8.1§)), and
Z 4 R # 3
sp  CPadfo GE o m L6 by = N (32%)
*  emp, dr ST dr ° g4

T his decom position of S; is Interesting in view of the com parison with the perturbative
expansion ofEgs. {3.1(0), to which we now tum.

2. The order g° in the entropy

Unlike what happens for the pressure, the orderg® e ects of the hard m odes do not
cancel n Egs. B10), sin {larly to what we have cbserved in the scalar case in Sect. [IIC].
R ather, we get a non—zero such contribution by replacing Re ) | Re . inEq. §20),
with  gT? theNLO selfenergy correction ofhard transverse gluons (cf. Eq. B1§)).
T his yields:

2 $Px 1 @n k)

9 @2 Bk eT

Once again, we need only the light-cone profction of the selfenergy of the hard particles.
W hat is, however, new as com pared to the siuation at order ¢ is that Re . (! = k) is
not a constant \m ass correction", but rather a com plicated fiunction of k (see Egs. A 14)
and @&I7)). The calculation of S7°™ is deferred to the Appendix, but the nal result can
be anticipated, aswe shall see shortly.

T he other contributions of order g° com e from the soft gluons, which can be Iongiudinal

hard _
Ss =

T (! =k): (3.30)

or transverse, and we w rite S% = SL(3) + ST(3).W ehave wWithn (')’ T=!):
z
s = ﬁinm ogk’+ ")+ I ", ReD 7 (3 31)
L g (2 )4 ! L L L 7
" ! #
Z A A
sO_ gy, Sk 1 g 1 T =
T I 0 ) 12 R 12 R
m";Re B: DY ; (3.32)



where In the transverse sector, the contrbution of order g2 has been subtracted (cf.

Eq. [320)). M ore precisely, Eq. $2(Q) involves the fill oneoop selfenergy <+, whilk
the subtracted tem s In Eq. {334) involve only ", the HTL. This is nevertheless correct

. 2 A . . .
since T( " and "; coincide on the Iight-cone:

@)

r(1?=k%)= (1?=%)=m?: 333)

U ltin ately, all the contributions of order g° displayed in Egs. §30){ (337) are soft eld

e ects: the quantities S;” and S, are the LO entropies of the soft gluons, while SP*® is
the NLO correction to the entropy of the hard gluons induced by their coupling to the soft
elds (cf. Fig.[) . W e expect these three contributions to add to the standard result for the

plasn on e ect In the entropy, nam ely (cf. Egs. B29)):
SPF+ 53 = 55 Ngm2=@ ): 334)

This is veri ed In the Appendix, where the quantities in Egs. 830){ (32 are explicitly
com puted, but it can be also understood on the basis of the follow ing argum ent.
Egs. 830){ 837) can be com pactly rew ritten as

g%k 1n_ b N . o
S3= — ]Og(l+D0) DO Im Re(D Do)
@ )
d4
P ento) T D,; (3 .35)
@ )¢ QT

w here the sum over color and polarization states isagain implicit. The st tem within the

(soft) Integralover k is cbviously the sam e as S3(a) , the tam perature derivative ofP; at xed
My, (f. Eq. {3293)). I thus ramains to show that the other term s in Eq. 83]) add to
8300) , the piece of the entropy involving the derivative of the D ebye m ass (cf. Eq. §29)).
T hat is, one has to prove the follow ing relation:

Z

4 4 |
d’p @H@O)Re T D,= d’k @n(')mARe(DA D)
@ ) QT @ ) @T
a’ .
)T — D : 336
+n(!) dT(D 0) ( )

Eq. 83) isnothingbut the general 2-loop dentity S°= 0 expanded to the orderg®. Indeed,
to order g°, Eq. £ 13) in plies:
er ;) P dken() . . “ d'p en )

= R Imn (D Do) +
@T o 2y er ~e I ot oy er

Re Tm D g; (337)

where the rst Integral is saturated by sofft momenta k gT , whilke the second one is
dom inated by p hard, p T .On the otherhand, ;D ]has the explicit expression]

11Thisﬁ>]]owsbyexpandjng D linpowersofgaslliows: DJ]= D o]+ ( DED)p, ©
Do)+ 2t 3t
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T d A A
T 3D ] ETI[ D o]0 Do)l "’ C )4n(!)]n [ (D Do)] (3.38)
which Inplies:
(T ) 2 gx Cenq) a’ )
— . A A ' el A .
o o er m T Dlnm @ Dy (3.39)

A ocom parison ofEgs. 337) and $39) immediately kadsto Eq. (3.39).

M oreover, the soft Jongiudinal and transverse sectors are decoupled at thisorder: ;D ]
in Eq. B8.39) is sin ply the sum oftwo two-loop diagram s, one w ith a soft electric gluon, the
other one w ith a soft m agnetic gluon. The condition S°= 0 can be applied to any of these
two diagram s separately. Tt ©llow s that Eq. 8.34) must hold separately in the electric, and
the m agnetic sector. This is explicitly veri ed in the Appendix, via a lengthy calculation.
Rem arkably, Eq. (336) provides a relation between the e ects of therm al uctuations on
the hard and soft excitations, which are both encoded in the twoJoop diagram s for 3: By
opening up the soft line n 3, one obtains the hard oneJloop diagram responsble for the
HTL by opening up one of the hard lines, one gets the e ective one-doop diagram s for

digplayed in Fig.[l]. In the case of the scalar theory, this relation is explicitly veri ed i
Egs. 25N {£259).

Let us conclude this subsection on perturbation theory wih a comm ent on the higher-
order contrioutions to Sy, : By inspection of Eq. {3.10d), it is easy to verify that not only
the LO contrbution ¢ discussed above, but also the corrections of order g* and g°, com e
exclusively from softm om enta. Indeed, one can estin ate the contribution ofhard m om enta
by expanding the integrand .n Eq. I0H) in powersof =k?, to cbtain:

In 1 ( p)? Im o Im Re |
I logk* + = - + = +
gk 2) K2 2kt K2 K4
I LR L m o I cRe o (3.40)
67= . .
TR K2 k4 '

up to tem s of order ( 1 =k?)®. Rem arkably, not only the LO tem s, but also the NLO ones,
of order g*, mutually cancel in the sum of the above equations. Thus, as anticipated, the
hard m odes contribute to Sy, only at order g° or higher. T his show s that our approxin ation
schem e is rather insensitive to the unphysical, hard longitudinal m odes. This is to be
contrasted to the direct HTL resumm ation of the pressure where, to one-loop order, the
Iongitudinal sector is sensitive to hard m om enta already at order g*, as indicated by the
presence of UV divergences at this order [I].

3. The HTL entropy

Sihce r (! = k) is a com plicated, non-local function, whose num erical treatm ent is
di cul, it isinteresting to explore rst approxin ationsw here ¢ Issetto zero. Speci cally,
ket us de ne the ollow ing approxin ation to the entropy, which is obtained from Egs. G.10)
by replacing all propagators and selfenergies by their HT L counterparts:
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2 &k @n()n

@ )% @T
(]
2 "t ReD; + I logk?+ "p)+ In ",ReD, : (.41)

2 og( P+ k*+ o)

W e shall succinctly refer to thisasthe HT L entropy. C karly, this is still a non-perturbative
approxin ation, since its expansion contains all orders In g.

A prior, Eq. 341)) is not doing justice to the hard particles, since it uses the HTL
corrections forboth hard and soft m om enta whilk we know that the HTL’s are the LO self-
energies for soft m om enta alone). But it tums out that the orderg? e ect, which is entirely
due to the hard elds, is nevertheless correctly reproduced by Eq. B41): S\ 4, = S,. The
point, as em phasized in Sect. [[IIC|, is that S, is sensitive only to the light-cone profction
of the s=elfenergy, where the HT L “r isa good LO approxin ation for the hard m odes (cf.
Eq. €33

On the otherhand, Sy 11, contains only a part ofthe g° e ect, nam ely that part which is
associated w ith the entropy of soft gluons: indeed, it is cbvious that the orderg® contribution
to Eq. (§4]) comes from soft m om enta alone, where it coincides with SP% = 5, + 5, f.
Egs. ){ ) . Let us therefore study this quantity in m ore detail (it is the sam e as the

rst integralin Eq. G39)):
z

@) d'k 18 _ b A oA T A N °
SHTL WT Imn log(l+ Dy ) D ¢ In Re (D Dy)

&y s 5; (.42)

S3

where S3(a) = (@P3=@T)3%, = S3=4 (cf Eq. §293)), and the rem ainder is

Z

dik 1™ ~ A ©) N N o °
Ss N T 2m "t Re D Dy " Re D, D,
s+ s P (3.43)

R em arkably, we have found that the transverse and longitudinal contribbutionsto S 3 cancel
w ithin the accuracy that we have reached in a num erical integration of Eq. (3.43) (m orethan
8 signi cant digits). W ith S 3 = O, SH(3%L is precisely equal to one Purth of the total g°

e ect, as it was also the case In the scalar theory w ith g° * selfnteractions (cf. Sect. [[IC)):

@ _ @P3

@) @), s/
QT n,

Syt St = S3=4: (344a)

In QCD, however, this property is much m ore subtle: In the scalar theory, the quantity
which we callhere S 3 was trvially zero, since Im "= 0 in that case. Here, S 3= 0onlk
because a com pensation takesplace in betw een the transverse and longiudinal contributions

2This is to be contrasted with a direct HTL resumm ation of the oneJoop expression for the
pressure In Q CD along the lines ofR ef. @]| there the HT L corrections contribute throughout the
hard m om entum phase space, whik no longer being the right approxin ation. Instead they give
rise to arti cialUV problem s.
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FIG.5. The integrand ofEq. ) after perform ing the energy Integral. T he transverse (T)
and longiudinal (L) contrbutions do not cancel for each value ofk; their sum (f1ll line) vanishes
only upon integration over allk.

toEq. 843), both ofwhich arise from Landau-dam ping contributions at space-lkem om enta.
M oreover, this cancellation occurs only after ntegrating over all energies and m om enta (for
generic k, the result of the energy integralin Eq. {8.43) isnon—zero, see Fig.[}) . Num erically,

the contributions to SQB%L SrG) + SL(B) tum out to be

3)

@) _
ST

+ 5. = (034008738 ::: 009008738 ::9)S;: (3.44b)

Let us sum m arize here the various cancellations which take place at order g° in the com —
plete twoJdoop entropy: T he straightforw ard perturbative expansion of ourm aster equations

B.10) kadsusto Egs. (330){ 3.33), and thus to the follow ing expression for S; [recall the
com pact notation introduced afterEq. §29)1:

Sy = SP* + sid;

@p

sP = _@T3 o+ s Dy s Y,
D v .

@P,; dm d*k @n(! NN
Sglard: 3 D , == ( )ﬂn Re (5 Dy)

@, dT @ )¢ QT

@P; dm

- @m3 dTD s sy (3.45)
D
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Th these equations, S and S .’ have been de ned in Eq. §43), and the second line

in the above expression for S1*™ fllow s either by using S® = 0 (cf. Sect. IIID 2), or
by explicitly computing Eq. 83() within HT Lresumm ed perturbation theory (cf. the
Appendix; see especially Egs. 24) and {E23) there) . Furthem ore, by construction, S, s,
isthe sam e as S°&.

A coording to these equations, the quantities S and S .” cancel in % + ghexd

independently In the longitudinal and transverse sectors, thus yilding the correct result

for S;, cf. Egs. 829d) and §294). This is what we have been ablk to prove analytically
(cf. Sect. IIID 2 and the Appendix). On the other hand, we have found num erically that
Ss= S+ s =0, that the actual results for ST and S2*™ are even sin pler:

soft __ % . hard _ @P3 dIfl\D .

> QT ay, °  emp dr

At this stage, we have no fundam ental understanding of the \sum rulk" S ;= 0.But this
serendipious result will have In portant consequences in practice, as we shall see below,
because it determ ines the m agnitude of S52™ to be 3=4 0f S3, as was the case In the sinpk
scalar m odel of Sect. [IIC|, whik being an incom parably m ore com plicated expression than
£59).

A fullnum erical evaluation ofthe H T L entropy, non-perturbative in g, w illbe presented
in Sect. below, and estin ates of the e ectsof ncluding 1  gT? in Sect. .

(3.46)

IV.QCD:ADDING THE FERM ION S

It is now straightforward to add fem ions to our theory. W e consider N¢ avors of
m asskss ferm jons w ith equal chem ical potential ; we choose 0, which corresoonds
to an excess of ferm ions over antiferm ions for all avors. A dding the fem ions will have
two e ects: rst, this willm odify the param eters of the glionic sector, nam ely the D ebye
masstmZ , and therefore also the asymptoticmassm? = 2 =2; second, there w illbe new
contributions to the entropy. In addition, at nite ,there isa new them odynam ic function
of Interest, nam ely the density N , which sharesm any of the interesting properties found for
S.

The full (leading-order) D ebye m ass in the QGP reads [{] :

@n Qf Qf
m2 = = dk k? 2N@+Nf - 4

T
= (ZN +Nf)T+Nf (4.1)

W e have introduced here the statistical distribution fiinctions for ferm ions (£, ) and an-—
tiferm ions (£ ),

1
f &) ﬁ; 42)
and we have usad the follow Ing Integral:
Z 272 2
dkk £ K)+ £ k) = + —: (43)
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A . Entropy and density from the skeleton expansion

To construct the ferm ion contrioution to the entropy, ket us retum to the full skeleton
representation of the thermm odynam ic potential (in a ghost-free gauge) and add fem ions to
it. This becom es

1 1
D;S]= 5TrJogD ! 5TrD TrlgS '+ Tr S+ D;S}; 4 4)

where S and denote respectively the ferm ion propagator and selfenergy, and the sum over
the gluon polarization states (two transverse and one longitudinal) is inplictt. D ;S]is
the sum ofthe 2-particlke—rreducible \skeleton" diagram s constructed out of the propagators
D and S. Below, we shall be mainly interested in the 2-doop approxin ation to D ;S],
where the only new diagram is the one represented in Fig.[§d. The selfenergies and i
Eqg. {f4) are them selves functionals of the propagators, de ned as

D;S] D;S]

; 2——: 45
s 5 @.5)

T he selfoonsistent propagatorsD and S are cbtained by solving the D yson equations
D "=D,'+ ; s '=35,'+ : 4.6)

Then, the functional D ;S]is stationary under varations ofD and S around the solutions
to Egs. @.4):

D;SE S=0; D;SE D = 0: @.7)

Theentropy S (T; ) and thedensity N (T; ) are obtained as the derivatives of the them o—
dynam ic potentialw ith respect to the tam perature, and the chem icalpotential, respectively:

g &=V oy &) @8)
QT @ T

Because of the stationarity property @.]), we can ignore the T and dependences of the
goectral densities of the propagators when di erentiating D ;S]. That is, we have to
di erentiate only the statistical factorsn (! ) = 1= ' 1)andf ()= 1=“ '+ 1)which
arise after perform ing the M atsubara sum s in Eq. {@4). This yields, for the entropy,

- 0,
S = T - S+ Sg+ S (4.9)

where S, = St + S, isthepurely gluonic part of the entropy, as shown in Egs. 3.9){ 104),
S¢ isthe corresponding fem ionic piece, which reads (the trace below refers to D irac indices)

2 gk @f() =n °

S oier T M BIeS ) M (o)ReE o) ; @10

and
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has the in portant property to vanish at 2-loop order BQ]. That is, S ’ Sp+ S; to the order
of Interest.

The cormresponding expression for the density is obtained by replacihg @£f=Q@T) !
@f=@ ) in all the Pmulae above. ThisgivesN = N+ N % wih N = 0 in the 2-loop
approxin ation. T hus, to the order of interest,

2 gk @f(1) o

N’ 2 o) e tr In log( oS ) In (o )Re S o) : 412)

For sin plicity, all the previous fom ulae have been w ritten for only one ferm ionic degree
of freedom ; the corresponding formulae for N oolors and N¢ avors can be obtained by
m ultiplying the fem ionic contributions above by N N ¢ .

Note nally the follow ing M axwell relations,

¢@s _ @N @13)
e r er '
which express the equality of the m ixed, second order derivatives of the them odynam ic
potential. In our subsequent, selfconsistent construction of S and N , these relations w ill
be satis ed at the sam e order as the requirem ent of selfconsistency.

B .The structure of the ferm ion propagator

In the previous formulae we have always associated a factor of  with the fem ion
propagator and selfenergy. This was possbl since g = 1l and det o = 1; i is alo
convenient shoe, eg., SY = (S (,and i ispreferable to work w ith hem itian D iracm atrices.

In order to compute the D irac traces in Egs. {£10){ ¢I17), i is usefiil to recall the
structure of the fermn ion propagator at nite tem perature and density: The m ost general

form ofthe selfenergy which is com patible w ith the rotational and chiral sym m etries is:

(;k)=a(;k) °+ b( ;k)ﬁ : 4.14)
For a m assive ferm ion, this would also lnclude a m ass correction, ie., = a(l;k) °+
b(! ;k)k + c(! ;k).) This can be rew ritten as:
o (k)= 4 (k) 4 K) (k) ®); (415)
where (! ;k) b(!;k) a(!;k), and the soin m atrices
k) ! 20 k; .t =1;
2= . = . =0; tr = 2; @le)

proEct onto soinorsw hose chirality isequal ( ; ), oropposite (), to theirhelicity. D yson’s
equation S '= &+ then inplies:
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oS TUik) = JMUik) 4+ MUik) @amn)
wih ! I &+ )]. This is trivially inverted to yield the ferm ion propagator:
S ol;k) = L (1;k) 4+ (k) 418)

T he presence of the profction operators i Egs. (419), {417) and @1§) allowsone
to easily com pute the D irac traces .n Egs. {#.10) and {4.13), and thus cbtain:

Z

Se= 4 d4k@f(!)nm1c>g L+ I log( by +
£ @ )¢ @T *
o
Im ;Re . + Im Re : 4.19)
T he corresponding expression for N is obtained by replacihg @f=Q@T) ! @£f=Q@ ) in the

equation above.

C .Perturbation theory for S¢ : order ¢?

Eq. @19) willbe now supplied with certain approxin ations for the quark selfenergies

. Asbefore, we ain at reproducing the results of perturbation theory up to order g°.
T hisw illbe achieved by approxin ations analogous to those em ployed for the gluons, nam ely
the HT L approxin ation ", supplem ented by the NLO correction to the hard fem ion
selfenergy on the light cone.

N ote, however, an in portant di erence w ith respect to the gluon case: unlike the soft
gluons, which contribute to the entropy already at order g°, the soft farm ions contribute
only at order g* orhigher, because their contribution is not enhanced by the statistics. N ev—
ertheless, in our num erical calculation below , we shall carefilly Include the contrioution of
the soft ferm ions, approprately dressed by the HT L. T his is in linew ith our general strategy
of constructing non-perturbative approxin ations for the entropy (or other thermm odynam ic
quantities) which Include asmuch as possbl the dom inant collective e ects In the plasn a.

In the HT L approxin ation, the ferm ion selfenergies read as ollow s BJA] :

|
ok, '+ ko
2k g ! k

A

M 2
(k) = == 1 ; 420)

whereM 2 istheplan a frequency for ferm ions, ie., the frequency of longwavelength &k ! 0)
ferm jonic excitations Cr = N2  1)=2N):
_ gCe 2

gchzl 2
= 1z dkk 2nk)+ £ kK)+ £ k) = 3 T + = 421)

M 2

W e are now I position to evaliate the ferm jonic entropy and density up to order g?:
To zeroth order, ie. for an ideal gas of m assless ferm jons at tem perature T and chem i
cal potential , we obtain the well known results fl] the color- avor factor NN ¢ is here
reintroduced) :
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® = NN + P NP = NNeo TR 422)

T he correction of order g involves the ferm ion selfenergies to one loop order, @,

Z

d’k @fn 1 1°
SPNNg= 4 e P ——  Re “m
Q ) er Ik '+ k )
Z 3
&Pk £ £( k
- W e @uoy L Ppe @0 1 @23
@ )3 QT QT

As in the gluon case (cf. Eq. 8320)), the correction of order g* is sensitive only to the
light-cone proction of the one-docp selfenergy, which is correctly reproduced by the HTL
approxin ation @2Q) BJ]. That is,

Re 0= =" (= x) = 4 24)

M2
k
Egs. @18) and @24) show that, to order g, the hard ferm jons (or antiferm jons) propagate
as m assive particles, w ith dispersion relation "2 = k? + 2M 2. This identi es the ferm fonic
asymptoticmassasM ? = 2M 2. By also using the properties f k) = £, k) and £ ( k) =
1 f k) (f. Eq. {43)), togetherwith Eq. (43), we nally deduce

2 M2 @ 212 2 M 2T M2T
SN = — — +— = = : (4 25)

T he kading-order correction to the density N f(z) is obtained sim ilarly:

@) MAZ @ " 2T2 2# MAZ M 2
— — — l .
NINNe = e et = = (4 26)

T he above resuls brSf(z) and N f(z) , togetherw ith the previous ones forscalars, Eq. € 51),
orgluons, Eq. 827), can be generalized to the ollow ing, rem arkably sin ple, form ulae, which
hold foran arbitrary eld theory involring m asskess bosons (w ith zero chem ical potentials)
and ferm ions:

1 X 5
SZ= T — + H N2= p FMlF: (4.27)
B F F

Here the sum s run over all the bosonic B ) and fermm ionic ) degrees of freedom (9. 4
for each D irac ferm ion), which are allowed to have di erent asym ptotic m asses and, in the
case of ferm ions, di erent chem ical potentials. A ccording to Eq. E27), the kading-order
Interaction term in the entropy as well as In the density has a very sin ple physical origin:
it is entirely due to the them alm asses acquired by the hard plaan a particks, ie., directly
given by the spectral properties of the dom inant degrees of freedom .

To conclude this discussion of the order g7, ket us sum m arize here the respective contri-

butions to entropy (S, S + S) and density (N ;) in hot SU (N ) gauge theory with N ¢
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quark avors: these Pllow from Egs. §22), €29), @2§) (wih the themalmasses @J)
and {421)), and read:

g o INGT AN 4N , W, o G NNe o, 7

> 48 3 2 T2 16 2 2 !
N 4N + 5N N N

p,= IN, fT4+—§2T2+—f44: 4 28)
32 18 2

In w riting these equations, we have also added the corresponding expression of the pressure
(P,), as taken from Ref. ]. C Jlearly, our above results or S, and N, are consistent w ith
this expression forP, : S, = @P,=Q@T ,N, = @P,=(@

D .Perturbation theory for S¢ : order g°

Unlike the g° corrections in Eq. {@29), | which apply to the whole area of the T
plane where the coupling constant is an all (ie., such that max( ; T) ismuch larger than
ocp) | , the corrections of order g° that we shall discuss now apply only to the high
team perature regin eﬁ T M . T his restriction isobvious in the in aginary tin e form ulation
of themm al perturbation theory, where the e ects of order g° arise entirely from the sector
w ith zero M atsubara frequency []1. In the present calculation, these e ects are cbtained by
approxin atingn k) * T=k fork ny , which is valid provided m p T . A ssum Ing this
condition to be satis ed, we challnow show how the \plasn on e ect" arises in our form alism
when the fermm ions are also included. This is sin ilar to the previous discussion of the pure
glue case (cf. Sect.[ID]), so we shall indicate here only the relevant di erences.

T here are tw o types of contributions of order g° to the entropy: (i) the direct contribution
ofthe soft gluons, ST = SL(3)+ ST(B) , which is stillgiven by Egs. 33]) and §37), and (ii) the
NLO correction S5 to the entropy of the hard particles, which now inclides contrbutions
from both transverse glions and ferm ions, via the NLO corrections to the corresponding

selfenergies on the light cone (cf. Eq. 30) and {@23)):

Z

&k 1 @n k)
;¥ = —— Ng— =k
3 2 )y %k eT v =%+
+ 2N N; O, (k)Re L =k) + er &) Re (= k) : (429
QT QT

The diagram s pertinent to  ; have been shown in Fig.[d. T he corresponding diagram s for
are sin ilar, and are displayed in F ig.[d. T heir evaluation proceeds along the sam e Ines,

and isbrie y discussed in App.R]. Let us sum m arize here the nalresuls:
A s in the pure glue case, it can be veri ed that there is no net contribution from the
soft transverse gluons: the direct contrbution S; i Eq. 30) is precisely cancelled by
the corresponding contributions to the selfenergies of the hard particles, - and © (cf.

BIf = 0,thenm D gT , and this condition is equivalent to weak coupling; for > 0, however,
there is a new scale In the problem , and the high-T condition becom es an Independent condition.
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FIG.6. NLO contributions to at hard m om entum . Thick dashed and w iggly lines with a
blob represent HT L-resum m ed Iongiudinal and transverse propagators, respectively.

Figs.[d and [g) . A s expected, the whole contribution of order g° com es from soft Iongitudinal

gluons (etther directly, via SL(3) , or indirectly, via their contrbution to $}#*), and reads:

N 2 N T@m?> Ngtp, Ny

S3 = — T > M) + 3fpmZ ; (4 30)
w here we have Introduced the notation
T2 2
m2 =m2+m?; m? (N +Nf)926 ;0 m? Nfgzzz; 431)

so that T@rm 2 = 2m 2. Note that, om ally, Eq. @30) would predict a non-vanishing en-
tropy In the zero tem perature lim i, com ing from the tem mg ; this is, how ever, w rong, since,
as already m entioned, this expression hasbeen obtained on the basis of a high tem perature
expansion and cannot be extrapolated to an all tem peratures.

Still as in the pure glue case, the two term s in the rh.s. of Eq. {£43(Q) are the same
as S$* and S1™, respectively, because of the \sum k" S ;= 0. CE£ the discussion
in Sect. [ID J; the argum ents leading to Eq. 8.44) are not changed by the addition of
ferm jons, since they hold for any value mg of the Debye mass.) The only di erence w ith
respect Sect. isthat, or 6 0, the two term s in Eq. @3(0) are no longer equal to
1/4 and, respectively, 3/4 of the total result (com pare to Eq. (3.44)); ndeed, the identity
T@mMZ = 2mZ isvaldonly at = 0.

Consider now the orderg® e ect in the quark density: since soft ferm ions do not con—
trbute to order ¢°, the only such contribution com es from the NLO corrections to the
hard ferm ion selfenergies. This is calculated explicitly in App.[R] along the sam e Ines as
for the entropy (cf. Egs. B28) and @ 29)) with the result

2
N, = NgT4HTDm gzlggi\lf My T : 4 32)
T he previous expressions for N ; and Ss verify the M axwell relation,
@Ss @N 3 gNN¢ (7 +m2)

@ QT 8 3 mp ( )

which is as expected, since our calculational schem e has preserved selfconsistency up to
order g°. These are also consistent with the weltknown result for the sum of the ring
diagram s fJl, P53 = N ngg =12 :A s eanphasized already, this resul is valid only for high
enough tem peratures, T M . In the opposite lm i T = 0, it iswellknown [B489] that
the sum ofthe ring diagram sgives a resut P,y ¢ * logg.
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V.QCD:NUMERICAL EVALUATIONS

In the Pllow Ing, we shall tum to a f1ll num erical evaluation of the entropy and the
density in the approxin ation S°= 0= N °when firther approxin ated, rstly by the HTL
approxin ation (cf. Sect. [IIID J), secondly by also including NLO corrections to the self-
energy of hard excitations.

A .HTL/HDL approxin ation

W e have seen that the HTL approxin ation (or in the case of T = 0 and high the
hard-dense-doop HD L] approxin ation) is su cient for a correct keading-order interaction
term in entropy and/or density| In contrast to a direct HT L, approxin ation of the one-loop
pressure. O n the other hand, the so-called plasm on e ect of order g° is included only partly,
nam ely only in the form of \direct" contributions from soft m odes; a (larger) \indirect"
contrbution is due to NLO ocorrections to the selfenergy ofhard particles on the light-cone
as given by standard HT L perturbation theory.

Since we have found in our scalar toy m odel of Sect. that already the HT L approx—
in ation i the entropy expression wih S°= 0 is an in provem ent over the leading-order
perturbative resul, we shall rst concentrate on num erically including all the higherorder
e ects of HTL/HD L propagators In entropy and density.

Conceming the contributions of the glionic quasiparticlkes, the task is to evaluate
Eqg. B4]) without expanding out the integrand in powers ofmt, =T / g.

Syrr (T;mMp ) Involves two physically distinct contributions. One corresponds to the
transverse and longitudinal gluonic quasiparticle poles,

sop 2 r2dk @nh e !t KT i

= N — 2T log (1 e!T(k’zT)+T]ogl
HTL go 22@T l

=l 5.1)

where only the explicit T dependences are to be di erentiated, and not those in plicit In the
HTL dispersion laws !1 k) and !y, k). The hatter are given by the solutionsof 12 K =
“r(r;k)andk®= " (!y;k)wih "y and " given by Egs. 314319).

Secondly, there are contrbutions associated with the contihuum part of the spectral
welghts. These read

7 2 7k
k2dk @n (1)™ N
SI%. = N > @é)Zarg[kz 2+ T
0 0
A A A A A ©
2 ";Rek® P+ "p1'+amgki+ "] I T Reki+ "1t (52)

Both the Stefan-Boltzm ann part Ssp and the standard perturbative g°-contrbution S,
ofEq. 323) are contained in the rsttem ofEq. 5J);alltheotherterm sinEgs. ), 62)
are oforder g® in a sm allg expansion . H owever, if such an expansion were truncated beyond
order g°, the resulting entropy would be a fiinction of g that initially decreases w ith g, but
eventually grow s w ithout bound to values larger than Sgg (dashed line .n Fig.[]).

On the other hand, the full num erical result for the HTL entropy (full lne in Fig. E)
tums out to be a m onotonously decreasing fiinction ofrm p =T . In the case ofEq. (5.), the
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FIG.7. The HTL entropy per glionic degree of freedom nomm alized to is Stefan-Boltzm ann
value as a function of the Debye mass My (T; )=T. The full line gives the com plete num eri-
cal result corresponding to Eq. {341)); the dashed line corresoonds to the perturbative resul to
order M p =T )3 g°. The dotted line gives t%e entropy for scalar degrees of freedom with m o—
m entum -independent massm = m; = Mp= 2; is perturbative approxin ant is given by the

dash-dotted line.

num ericalevaluation involes solving rst num erically the transcendentalequations for ! ¢+ (k)
and !y k), and a num erical integration, In which it is advisable to ssparate o the Stefan-
Boltzm ann valie through the replacement Iog[l e 't ®<T]1 gl e'Tt®T=1 ee¥T)j;
Eqg. (J) requires two successive num erical integrations.

Tt is interesting to com pare the rather com plicated expression Sy r; with the sinple
scalar expression Eq. €3§) of the entropy of an ideal gas of m assive bosons, 2N gSo M),
which isbasically what is considered in the sin ple m assive quasiparticle m odels ofR ef. §g1.
If In the latter the boson m asses are identi ed with the asym ptotic m ass of the glions,
m=m; = mMp= 2, then this reproduces the correct keading-order Interaction term in the
entropy. The plasnon e ect (ie. the orderg® contrbution) is included only partially, but
not as 1=4 of the com plkte plasmon e ect, but as 1=¢4 5) . This is because a constant
thﬁnﬂ alm ass equal to its asym ptotic value upderestin ates the D ebye m ass by a factor of
1= 2 and therefore the plasnon e ect by (1= 2)3, which is only partially com pensated by
now having 2N 4 degrees of freedom exhibbiting the analog ofD ebye screening instead ofonly
the N4 longitudinal ones.

Num erically, 2N 4S, m 1 ) reproduces the HT L entropy very accurately W ithin < 0:1%)
up to mMp T . For larger values of M, , the HTL entropy lads to signi cantly larger
deviations from Sgy . T his Jatter fact is som ew hat surprising since the plasn on e ect, which
In the HTL entropy is 30% greater than in the sin ple m assive quasiparticle entropy, always
counteracts the lreading-order interaction contribution, as can be seen from the perturbative
approxin ant of2N ¢Sy n ; ) (dash-dotted Inein F ig.[]) and that ofthe H T L entropy (dashed
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FIG . 8. Relative deviation of the HTL entropy from that of a gas of m assive bosons w ith
(constant) massm ; (full line). The relative deviation of just the transverse quasiparticle contri-
bution is given by the uppem ost dash-dotted line; the transverse Landau-dam ping contribution
is given by the lower dash-dotted line. T he short-dashed line gives the longitudinal quasiparticle
contribution; the long-dashed line the Iongitudinal Landau-dam ping one.

line) through order g®. This is partly due to the fact that Syr; contains also a tem

d Jog (c=g), which is not present in the sin ple m assive quasiparticle entropy 2N gSomq ).

Ingoecting In m ore detail the num erical deviation of the HTL entropy from that of a
m assive gas of bosons, one nds that the quasiparticke contrbution from the transverse
m odes, which is always the dom inant contribution to the entropy, by iself is always above
2N 43S m 1 ). The transverse Landau-dam ping contribution is also positive, but relatively
an aller. O n the other hand, both the longitudinal quasiparticlke and Landau-dam ping con—
trbutions are negative, resulting in a sn all net deviation from the sin ple m assive boson
entropy for small values of Mt =T . W hen nomn alized to the deviation of 2N 4S; fm; ) from
the Stefan-Boltzm ann result, the deviation of Sy from 2N S, fm; ) is less than about
+1% formtp =T < 0:739, while negative and rapidly grow ing for larger values ofm =T, as
shown in Fig.[g.

The fom ulae for the farm jonic contributions to the entropy are quite analogous to the
gluonic contributions. They read Sezrr, = Sty 1y + Sty With

Z x2ak @ 0

_ T:Iog(l+ e &) ]:T)

QP
Sf;HTL:NNf 2 @T

&) T o
+ (! ) ©3)

1+
+ T log

1+ & =T

where again only the explicit T dependences are to be di erentiated and not those i plicit
in the dispersion laws !, (k) and ! (k) of the fermm ionic quasiparticles, which are given by
the soutionsof ! = p+ (! ;k)lwih ~ given by Eq. {£20).
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FIG.9. The HTL entropy per quark degree of freedom at = 0 nom alized to its free value
as a function of the ferm ionic plasn a frequency M =T . The full line gives the com plete num erical
result corresponding to Eq. ) In the HT L approxin ation; the dashed line corresponds to the
perturbative resul to order o™ =T )? g°; the dotted line gives the entropy for a ferm ionic degree
of freedom w ith m om entum -independentm assM = M { = oM , which hasthe sam e perturbative
approxin ant to order g° .

T he ferm jonic Landau-dam ping contribution to the entropy is

#
2 weqk ¥ ef, (1), ef () "

SE .= NN T o7 2ok L+ 7 (1K)
0 0
", (I;k)Rek !+, (k)11
(@]
+amgk+ '+ 7 (1;k)] Im” (;k)Rek+ !+ 7 (k)1 G 4)

In the case of the gluonic contrioutions to the HTL entropy, there was no di erence
between vanishing and non-zero cham ical potential other than the resulting di erent value
of My, which depends on  according to Eq. §@J). For the quark contrbutions to the
entropy, the chem ical potential enters both explicitly through the Fem iD irac distrioution
function £ and through the m agnitude of the ferm jonic plasn a frequency M .

In Fig.[§ the results of a num erical evaluation of the ferm ionic contribution to the HTL
entropy nom alized to its fiee value is given as a function of M=T pr = 19'— /Y\N hen
com pared w ith the free entropy of sin ple m assive ferm ionsofmassM =M ; = 2M ,one

nds that the HT L entropy exoeeds the latter by at most + 1 2% for M =T 1, coincides
with i at M =T 1:39, and becom es lower for largerM =T [/ On the other hand, the
strictly perturbative result up to order g is signi cantly lower, but com pared to the glionic

A gain, this good agreem ent requires all quasipartick and Landau-dam ping contributions to—
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contrbution the discrepancy ismuch sn aller because there isno (direct) plasnon e ect In
the form jonic contributions Bllorder g° contributions eventually arise from NLO corrections
toM; ].

Tuming now to the quark density, its quasiparticle and Landau-dam ping contributions
are obtained by replacing @=QRT in the above omulae 535 4) by @=@

Inthelmit T ! 0, the resulting expressions can be sinpli ed to read (for > 0)

argk + 74 (k)]

", ( ;k)Rek + 7, (k)T

@)
A A

+argk+ + 7 (;k)] " (;k)Rek+ + (;kK)1Y : (5.6

For > M ,the quasiparticle contrbution (5J) can be m ore explicitly w ritten as

op 3 1 h 5 i 1 h 5 i
NHDL:NNfT:O;>MA:? 3 2 K () S 2 K () o.7)
wherek () isthesolutionof! «k )= .

The rst tem on the right-hand side of Eq. (5.]) represents the free contrbution of
onem assless D irac ferm jon, the two bracketed tem s are the corrections from the nontrivial
dispersion law s of the two fermm ionic quasiparticle brandqes

For com parison, the ferm ion density of a free m assive D irac ferm ion with mass M is
given by

(
1,2 213=2
— M“) for > M
N = 37 58
o M )T:O 0 for <M ©8)
P—.

MentifyinjM =M ; = 2M gives the correct kading-order interaction tem of order o,
while Jeading to som ewhat Jarger values or N than the perturbative order¢” resul for all
M= .

gether; for nstance, the nom al + ) quasiparticke pol contrbutions alone would give deviations
which go up to about + 7% for the range of M =T considered.

1B ecause of the \plasn ino dip", Eq. @) becom es m ore com plicated for < M, but this case
corresponds to m uch too strong coupling to be taken seriously anyway.

160 ccasionally @], in sin ple quasiparticle m odels of the pressure of ferm ions at high density the
denti cation M = M ismade. This happens to give the correct leading-order interaction term of
orderM %= 2 & there, but only because of com pensating errors. At high densities the m ass of
quasiparticles at the Fem i surface is actually M 12 = 2M 2, but in the pressure the lading-order
Interaction term is over-included by precisely a factor 2 when considering only the expression for
free particles and inserting a constant them alm ass.
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FIG.10. The HDL quark density per quark degree of freedom at T = 0 nomn alized to its
free value as a function of the ferm ionic plasm a frequency M = . The full line gives the com plete
num erical result correspondingto Eg. ) in the HD L approxin ation; the dashed line corresponds
to the perturbative resul to order o = )2 9°; the dotted line gjyespthe densiy for a ferm ionic
degree of freedom w ith m om entum -ndependent massM = M = 2M", which has the sam e

A

perturbative approxin ant to order g%, and vanishes for M ,le. M = 1= 2.

In F ig.[1{ the num erical result ©rN,;, at T = 0 isplotted orM = up to 1=p 2, where
the ferm jon density of Eq. ), displayed by the dotted line, vanishes. The HD L resul,
w hich isgiven by the fi1ll line, is seen to drop to zero aln ost at the sam e r.eltjo,towil:,MA =
069264 . Beyond this point the result becom es negative, show ing that the approxin ation is
breaking down at such high values ofM = . Notethat, shoeM 2 = ¢? 2=6 2 ©orN = 3 and
T =0 (cf. Eqg. @)),MA= 069 corresponds to a relatively large coupling g = 5:3.]

For com parison, the strictly perturbative result to order g° is given by the dashed line
in Fig.[Ld, which is seen to approach zero faster than the HD L density as well as that of a
sin ple m assive quasiparticle.

B .Estin ate of N LO contributions

A swe have discussed at length in the previous sections, the HT L approxin ation in the
entropy contains only part of the plasm on e ect, a di erent source of order g contrdbutions
com es from NLO oorrections to the gluonic and ferm ionic selfenergies at hard m om enta
on the light-cone as given by Eq. f29). From the resul (344) we know that this NLO
contribution corresponds precisely to the second tem of the right-hand side of Eq. @34).

In the case of the density, it is clear from the absence of a bosonic distribution fiinction
inEqg. @17) that N in the HTL/HD L approxin ation does not contain any g°> contribution,
so allofN 5 as given by Eq. §33) arises from the NLO correction to the quark selfenergy
at hard m om enta on the light-cone.
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As can be sen eg. from Egs. A14) and @AT17), the NLO selfenergy corrections are
com plicated and nonlocal quantities. Even when evaluated on the light-cone, they do not
sin ply give a constant correction to the asym ptotic m ass, but a nontrivial function of the
(hard) m om entum . In fact, there are even contrbutions of the orm g’ p, which grow
lamgerthan g°T? orp T, eventually causing a break-down of standard H T L perturbation
theory, but fortunately such contributions are irrelevant thanks to the fact that n (o) shuts
o exponentially then.

Because a full inclusion of the NLO selfenergy corrections is rather com plicated and
com putationally expensive, and because in the applications below the m agnitude of the
NLO corrections, when treated along the lines of the scalar toy m odel in Sect. [IID], tums
out to be com paratively an all, we shall In the follow ing consider the approxin ation of an
e ective constant NLO asym ptotic m ass. The com plkte evaluation of and , which
Involves a num ber of technical intricacies, w illbe reserved for a ssparate publication. T heir
eventual num erical e ects on the them odynam ic potentials is work In progress, though we
do not expect them to deviate too much from the estin ates derived in this subsection.

From the requirem ent thata replacementofm { andM ? mEgs. 827), @23),and @29)
by e ective constant (ie.averaged) corrections m? and M? equals S7®™ and N 12 = N 4
(cf. Egs. {#3() and §37), respectively), we have

1 2 1 2 1 2
%Ng my T %NNf Ml T = 4—NngmT (5.9)
1 2 T 2
S5NNe MY = Ng —mom (5.10)

with My, m¢,andm asde ned n Eq. 31). This has the rem arkably sin ple unigue
solution

1 1
m? = 2—g2NTm\D; M2 = 2—92CfTrfTD; (6.11)

where in the latter Cy = N,=(N ). Indeed, in Eq. 611)) both the dependence on the
Casin irsN and C¢ aswell as their proportionality tom p is In accordance to one’s expecta—
tions from the form of the corresponding H T L-resum m ed one-loop diagram s of F igs. | and
[, respectively.

However, in com pkte analogy to the scalar toy m odel of Sect. [[ID], we nd that the
m agnitude of the corrections to the asym ptotic masses are such that m? + m? drops
to negative values or g © 1, which would give rise to tachyonic singularities n the sem i
perturbative entropy result (forN = 3 and = 0 the naive strictly perturbative m ass is
again given by the shorterdashed line in Fi.[l]). For slightly higher values ofrft, =T g,
the sam e phenom enon occurswith M 7 + M7 .

In the scalar m odel we have seen that including the NLO oorrection to the them al
m ass in the approxin ately selfconsistent form @ .61]) gives nstead a m onotonously grow ing
function In g and very good agreem ent w ith the exact result in theN ! 1 Im it even for
lrgeg. ForQCD ,wede ne in analogy to Eq. €.6]]) theNLA asym ptoticm ass through the
quadratic equation

+ N (=2)T? NT
m 2 _ oW £=2) %E m, 512)

! 6
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FIG.1l. The NLA entropy obtained by Including m; according to Eq. ) for hard m o—
menta k = 2 Tmipc i the pureglie entropy. The central line in the shaded areas
corresponds to ¢ = 1, the two di erently shaded areas to the bandsc = % :t:2and c = % 1::4,
respectively. The dotted line corresponds to a sin ple scalar m odel w ith constant m assm m od—
ied according to Eqg. ) such that it also contains the perturbative pureglie resul up to
and including order g°; the Jatter is displayed by the dashed line that kaves the plot already at

mp=T 0:785.

and sin ibrly orM 7 .

In contrast to the scalar case, however, where the them alm ass and its NLO correction
was m om entum -independent and therefore applicable for allm om enta, the results (5.11)
apply only at hard m om enta. ITndeed, NLO oorrections to them almasses in QCD as far
as they have been calculated tum out to be rather di erent at soft m om enta: ITn Ref. ],
the NLO oorrection forthe plaan a frequency ofpure—g]u%Q CD in the long-wavelength lim it

has been calculated with the result m2 =m? 0:18 N g, which is only about a third
of the relative (averaged) correction ofm f . M reover, the D ebye m ass tums out to even
receive positive corrections @] m% =rﬁ§ =+ 3N=@2 ) glog(c=g), wih recent lattice

sin ulations Bg] yielding a rather large constant c.

For this reason we choose to leave the HT L resuls for the soft gluonic propagators and
selfenergies com plktely untouched, and we in plem ent the NLO correction to the asym ptotic
B ass by introducing a cuto scale that ssparates hard from soft momenta at a scale =

2 Ty c which isproportional to the geom etric m ean of the hard M atsubara scale 2 T
and a soft scalec My . Formom enta k we keep the HT L approxin ation and fork
we take the them alglions to have the constant asymptoticmassm? ofEq. {513). This
com pletes the de nition of our present next-to—-Jeading approxin ation to the entropy Sy 1a -

In Fig.[]], the num erical result for puregluie QCD wih ¢ = 1 is given by the fiill line.
The e ect of varying ¢ in the range % :::2, which kesps well in between the interval
Mp ;2 T) for all values of M =T, is displayed by the dark-grey band; the m ore extram e
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variation ¢ = % :::4 extends the Jatter by the lightgrey areas. W e shall see, however, that
In the eventual applicationsto Q CD at tem peratures a few tin es the transition tem perature
the resulting ncrease in our \theoretical error" w illbe stillm oderate when com pared to the
renom alization schem e dependences.

For the sake of com parison w ith a sin pler quasiparticle m odel, the dotted Iine in F ig.[1]
show s the entropy of two interaction-free scalar bosons w ith constant m ass

p_ !
, 1, 4 2 Im
m?=mZ 1 ——— (5.13)
2 T
which m in icks the NLA resulk (17), but adjisted such as to reproduce the perturbative
QCD resul up to and including order g° in this sin pler m odel.
In the ferm jonic quantities S and N , w hich because ofthe absence of B ose enhancem ent
are Jess sensitive to the soft scale, we inplem ent the ferm jonic analog of Eq. $13) by
rescaling M 2 at allm om enta for sin plicity (@s In the scalar case in Sect. IID).

C .Renom alization-group Im provem ent

In the HTL/HD L approxin ation, all the gluonic and fem ionic contributions above de-
pend on the num erical value ofthe HTL/HD L massesm2 and M ?, respectively, which are
proportionalto o = g°=4 . The latter is a renom alization schem e and renom alization
scale ( ) dependent quantity, and so are therefore our results for entropy and density. Fol-
lowing Ref. ] we adopt m odi ed m inin al subtraction and assum e that an optin al choice
of the renom alization scale should be found around the scale ofthe M atsubara frequencies,
2 T, or in the case of zero tam perature and nite density around the scale of the diam eter
of the Fem i sphere, 2 . A fler all, the hard them al/dense loops are generated by hard ex—
citations, as are In fact the NLO contributions to the asym ptotic m asses within HTL/HD L
perturbation theory.

Exactly asdone in Ref. [[]]]in a direct H T L resum m ation ofthe them odynam ic pressure,
we put in the running of the coupling by hand and choose it to be determ ined by the 2-loop
renom alization group equation according to

4 2 1og@ ()
s = 1 514
¢ oL () §L () oD
with L () = bg( *= ) and
o= (1IN 2N¢)=3; 1= (34N 2 13N N¢ + 3N =N )=6: 545)
1. Entropy

At Jeast at zero density, lattice results relate the Q CD scale param eter - to the critical
tam perature T., which In acocordance with Ref. ] we choose as T, = 1:14 &, both for
pureglie QCD and also rN¢ & 0, sihce lattice data indicate only a weak dependence of
the ratio T.= ;5 on the number of quark avor.
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FIG.12. Comparison of the HTL entropy (full lnes), the NLA results for ¢ = %:::2

(dash-dotted lines) aswellasc = % :::4 (gray dash-dotted lines), and the free entropy ofbosons
w ith m ass ) such as to reproduce the correct perturbative plasn on e ect (dotted lines), all
wih M S renom alization scale = T :::4 T, wih the lattice result of Ref. @] for pure SU (3)

gauge theory (dark-gray band).

Puttihg = c 2 T ;nEq. $J14) and assum ing ¢ 1 prescribes reasonably an allvalies
for  and thus formMpy =@ T) and MA=( T) forallT > T, so as to m ake it Interesting
to com pare the above HTL and NLA expressions w ith nonperturbative resuls from lattioe
gauge theory. Indeed, we have found that, formp 2 T and M T, the deviation
from the free Stefan-B oltzm ann result is sm all enough to m ake a sam iperturbative picture
m Inin ally tenable, although it is clar that the physics of the phase transition itself is
com pktely beyond reach. On the other hand, the strictly perturbative resuls up to and
including the order g° are such that entropy and pressure would be much higher than
their Stefan-B oltzm ann values, indicating a com plete loss of convergence of strict them al
perturoation theory.

In order to have som e indication of the theoretical uncertainty involved, we consider,
again as done in Ref. f[]], a variation of the renom alization scalke by a factorofc = % 112,

Forpurely guonicQ CD , the lattice results involve the least uncertainties. In Ref. AJ], the
them odynam ic potentials of pure SU (3) gauge theory have been calculated from plaquette
action densities on Jatticesup to 8 32 fortem peraturesup to about 4 5T, and extrapolating
to the continuum lim it by com paring di erent lattice sizes. T he Jattice result for the entropy
density is rendered In F i.[I9 by a grey band whose thickness ism eant to give a rough idea
of the errors reported in Ref. [4Q].

Our resul for the HTL entropy as displayed in Fig.[] transhtes into a range of values
bounded by the choices = T (ower full Iine) and = 4 T (@upper il line). This
already gives a rem arkably good approxin ation of the Jattice result for T ~ 2T., som ew hat
underestin ating the values at higher tam peratures. In allofthis the param eternt , =T takes
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on valies in the range 1 :::2, where we have found the entropy of sin ple m assive bosons
to give only slightly larger results (cf. Fig.[]).

Now the HTL entropy contains only part (ere 1/4) of the plagnon e ect. The latter
is com plktely included in the NLA entropy as de ned after Eq. $1d). In Fig. [, Sy1a
is represented by the area bounded by the black dash-dotted lines, where the lower one
corresoondstothe choice = T andc = 2,and thehigheroneto =4 T andc = 1=2.
Forthisrangeofc thescal remahnswellssparated from bothm , and 2 T forallT > T..
E xtending the range ofc to c = 1=4 :::4 gives the area bounded by the gray dash-dotted
Iines. A lthough now varesalltheway from M ; to 2 T, the errorband isonly m oderately
enlarged [']

Evidently, theNLA estin atesbased upon Eq. (6.13) do notm ove away toom uch from the
HTL results, which rst ofall is what is required to m ake our sam perturbative procedure
tenable. W hat is m ore, the resuls show a surprisingly good agreem ent w ith the lattice
results for tem peratures greater than 2...3 tim es the critical tem perature.

Recently, n Ref. 1] the results ofRef. AJ] have been reproduced w ithin errorsby using
a renom alization-group in proved lattice action for tem perature up to 3:5T.. The resuls
of Ref. [&1]] for the pressure are system atically higher by about 5...2% for tem peratures
2...35T.. For the entropy, which has not been extracted explicitly in Ref. 1], this would
imply a resulk that is centered around the upper boundary of the grey band in Fig. [[3
for T 3T, and slightly atter around T 2T., allw ith slightly reduced error bars. If
anything, the agreem ent w th our HTL and NLA results appears to be even a bit in proved.

Comparing nally wih the entropy of free m assive bosons with m ass according to
Eg. (£13) such as to reproduce the correct perturbative plasm on e ect, this is lncluded
in Fig.[I] as the band bounded by the dotted lines correspondingto = T :::4 T. Since
the renom alization scale dependence decreases w ith decreasing deviation from the Stefan-
Bolzm ann value, this band is rather narrow . It is also clearly In lesser agreem ent w ith the
Jattice data, which thus favor the m om entum -dependent inclusion ofNLO corrections to the
them alm asses that follow s from NLO perturbation theory and that we have m odelled in
our NLA estin ates.

In Fig.[[3, the central results orthe HTL and NLA entropy ( = 2 T andc = 1) are
displayed together w ith the results forN ¢ = 2 and 3. O nly a ratherweak dependence on N ¢
is ound in this (greatly m agni ed) plot where the entropy is nom alized to the free value,
and T to the respective (N ¢-dependent) T. / MS

These results are in good agreem ent w ith recent lattice results 4] orN ¢ = 2 and their
estin ated extrapolation to the continuum lin i and to the lin i of m asskess quarks aswe
have already noted in Ref. [[§]. In Fig.[I3, a conversion of the lattice result to the entropy
is included as a gray band, and, indeed, or T=T. ~ 25 our NLA estin ate tums out to lie
close to the center of the estim ated error band of the lattice resul.

17 ¥hough in Fjg. there was a noticeable increase In the error band for the NLA results when
Increasing the range of ¢ , this does not a ect so much the total error because the lower bound,
w hich corresponds to higher values ofmftp =T, ism oved further down only by Increasing c , where
the addition in the error band is am all; the upperbound on the other hand corresponds to an aller
values ofift p =T , w here the upw ard increase In the error is correspondingly am aller.
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FIG.13. Comparison of the HTL entropy (full lines) and the NLA result wih ¢ = 1
(dash-dotted lines) for avor numbersN ¢ = 0;2;3, allw ith the central choice ofM S renom aliza—
tion scale = 2 T . The estin ate of a contihuum extrapolation of the lattice result orN ¢ = 2 as
reported n Ref. @@] and its estin ated error, converted to S=Sgp , is given by the gray band.
N otice the blow n-up scale of the ordinate com pared to Fjg..

The further result that for N¢ = 3 our NLA estin ate for S=S55 as a function of T=T,
is approxin ately the same ts nicely to the recent lattice data ©or Ny = 3 [E3], which
are oconsistent w ith a coincidence of the asym ptotic values of P=Pgsy and also for S=Sgp .
A m ore detailked com parison of our results with the lattice data, In particular at an aller
tam peratures, is hardly worthwhilke in view of the large uncertainties associated w ith the
extrapolation to the m assless continuum lin i

In ourprevicus works [L3[1§]we have been considering a sin ple P ade—in proved inclusion
oftheNLO asym ptoticm ass correction in place oftheNLA form (FI7).A com parison ofthe
respective results show s that our estin ate of the e ects of an approxin ately selfconsistent
treatm ent 0f N LO corrections to the selfenergies is fairly robust, w ith them ain uncertainties
com ing from the choice of the renom alization scale.

¥m a recent paper the authors of Ref. @] have reported an extrem ely good t of the entire
lattice data using only the perturbative rst-order correction to the pressure, a bag constant and
a num erically integrated 2-loop -function. However, this agreem ent has been achieved w ith the
lattice results which still contain nitecuto e ects. Tn Ref. [i2}43], the size of the estin ated
correction for the continuum lm it is given as +15 5% . These corrections are essential for the
good agreem ent w ith our resuls as shown in Fig. E C onversely, the results of Ref. @] rem ain
even below the plbt area ofF ig.[13.
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2. Density

Fornonvanishing chem icalpotential, where lattice data arem issing to determ ine precisely
the critical tem perature ordensity in temm sof &, we can nevertheless transhte our results
Into functions of T= ;5 and = ;5 provided we choose the renom alization scale  as
a suitable combination of T and . If, as we have assum ed, the spacing of the M atsubara
frequencies, 2 T, gives a good choice forthe renom alization scale at zero density, it seem s
plausbl to adopt the diam eter of the Fem i sohere, 2 , In the case of zero tem perature.
This choice of a relative factorof  is particularly naturalwhen considering the form ofthe
leading-order result for the ferm jonic therm alm asses, Eq. {4 2]), where T and = appear
on equal footing.

In Fjg.@ we give the num erical results for the quark density Nypp at T = 0 orN = 3
andN ¢ = 3asa function of = ;5 fortherange = :::4 .Inthiscaseswedonotattempt
to nclude NLO corrections, forthey do not contribute tem s oforderg®. NLO corrections to
the hard fem jon selfenergy are In fact responsible for com pleting the plasn on e ect at oxder
g* Iog (g), but a com plete calculation of the ©m er would be needed to determ ine that part
ofthe constant under the logarithm that com es from the spectralproperties of quasiparticles
rather than explicit orderg? interactions, which are dropped in the approxin ation N °= 0.

The dashed line in Fig.[[4 gives the strictly perturbative result at order g?. The result
corresoonding to a sinpl quasiparticle modelwih massM = M ; isnot inclided; from
Fig.[[J i is clear that it is in between the HD L resul and the orderg® one, and som ewhat
closer to the latter.

T he perturbative result up to and incliding order g* has been calculated by Freedm an
and M cLerran [B4] and by Baluni fB§]. However, it has been obtained in a particular
mom entum subtraction scheme. Tn order to convert this to the gauge-ndependent M S
schem e, one should replace the scale param eter  n Ref. B4]1 M i Refs. §[]]) according
to

n o

o= exp [(151+ 36 + 9 *)N 40N¢ FR4 (11N 2N¢)] ; (5.16)

where isthe gauge param eter used In the m om entum subtraction schem e calculation. In
particular orN = 3 and uniform chem ical potentials one ndg

s() B Ne ()
P=P0= 1 22— 10347 O:536Nf+Nf]Qg7

2 o), s
+ A1 SNobg— ()40 () G17)
s() B Ne o()
N=Ny=1 2—— 7597 0369N¢ + N ¢ log———
2 o), s
+ (11 §Nf)]og— ——) +O(S): 5.18)

19T he num erical coe cients have been assembld from Eq. (4.46) of Ref. 5] ushg Eq. {.16),
thus avoiding som e unnecessary accum ulated rounding errors that are present in the nal results
(514) and (515) of Ref. @]. T he actual error in the above num erical coe cients is probably
about 1 in the next-to-ast digit.
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FIG .14. The result forthe quark density forN ¢ = 3 In theHD L approxim ation for = :::4

(full lines) com pared w ith the perturbative resuls at order g° (dashed lines) and order g* (dotted
lnes).

W ith N¢ = 3, this is lncluded in Fig. [[4 by the dotted linef]. A lthough the perturba-
tive orderg? result constitutes a substantial correction of the order¢” result, perturbation
theory at zero team perature and high densities is clearly m uch better behaved than at high
tem peratures| the interaction term sare ncreased by kessthan 50% or ~ 2 ;5 ( ~ 3 ;5
in the case ofP=P).

O n the other hand, the nonperturbative N g p ;, resul is rather close to the perturbative
order¢? resul, show ing even a slight decrease of the interaction contribution com pared to
the latter. The Ny result contains already a fraction of the coe cient of the ﬁ Iog( )
tem , together w ith a subset of the true higher-order contrbutions. It would be interesting
to see how an NLA calculation, which would com plete the g Iog(g) coe cient, com pares
w ith the perturbative orderg? result. W e intend to investigate that in firture work.

VI.CONCLUSIONSAND OUTLOOK

W e have shown that it is possbl to perform a resumm ation of HT L’s which is free
of overcounting and UV problem s through approxin ately selfconsistent calculations of the
them odynam ical fuinctions ofQ CD , w ithout the need for them al countertem s. The two-—
Joop skelkton approxin ation for the free energy reduces to e ectively one-doop expressions
forthe entropy and the density but w ith dressed propagators. W ith the lJatter approxin ated

201n F ig. 4 of our previous publication R ef. @], the perturbative orderg” resul was not correctly
Incluided because of an Incom plete schem e conversion.
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by the HTL/HD L propagators we reproduce correctly the leading-order interaction tem 7.
In fact, the Jatter can be expressed entirely In term s of the asym ptotic them alm ass. The
so-called plasm on-e ect contributions of order g on the other hand are only partly ac—
counted forby HT L selfenergies and propagators; the rem aining contrilbutions arise, rather
unoconventionally, from NLO corrections to the sslfenergy ofhard particlkes at the light-cone
as given by standard HT L perturbation theory.

This is to be contrasted w ith a direct HT L resumm ation of the oneJoop pressure [[]]].
There the plasnon e ect is contained com pltely In the soft contrbutions, whereas the
leading-order interaction tem s are over-included and corrected only In a (very com plicated)
tw o—-Joop calculation.

W ewould ke to recallthat while the HTL and NLA approxin ations that we have con—
sidered are m anifestly gauge independent, this is not the case for our starting point, the
selfconsistent -derivable two—Joop order approxinm ation itself. The corresoonding gap
equation would involve unphysical gauge dependent features as well as an incom plete low —
est order -fiinction both of which enter at order g?, ie. beyond the perturbative accuracy
of a twoJloop approxin ation. These are autom atically dropped In our current approxin a—
tions. Further In provem ents, beyond our HTL and NLA approxin ations would require to
also In prove upon the selfconsistent two—Joop approxin ation. In order to achieve gauge
Independence n (@pproxim ately) self-consistent resum m ations one should cbviousl tum to
approxin ations w hich include dressed vertices, using for nstance the form alisn swhich have
been developed Jong ago by de D om inicisand M artin [I]] and also Freedm an and M cLerran
B41. The strategy, in principle, would be to include vertex corrections, together w ith in—
creasingly better approxin ations for the quasiparticle propagators. That is, w ith Increasing
numberofloopsin ,thebuildingblocks in this schem e| the s=lfconsistent propagatorsand
vertjoes| should be also in proved. However, a practical in plem entation of such a scheme
In the case of nonabelian gauge theories seem s to be hopelessly com plicated. It is therefore
gratifying that the approxin ate propagator renom alization that we have presented tums
out to be already a good approxin ation.

In the expressions that we use for the entropy and density the m ain contrdoution com es
from the vicinity of the light-cone where hard them al loops ram ain accurate also at hard
m om enta and provide the asym ptotic m asses. W e have proposed a procedure of including
N LO ocorrections through approxin ately selfconsistent corrections to the them alm asses of
the hard excitations only. The NLO ocorrections to the asym ptotic m asses can be calculated
m ore accurately by m eans of standard HT L perturbation theory, the details of which are
postponed to a forthcom ing publication.

T he num erical evaluation of our resuls com bined w ith a two-loop renom alization group
In provem ent tum out to com pare rem arkably wellw ith available lattice data at zero quark
chem ical potential, which supports the picture according to which much of the e ects of
the interactions In the quark-glion plasn a can be adequately described by m eans ofweakly

2l1n Ref. @] an attem pt hasbeen m ade to resum the H T L selfenergies directly on the levelofthe
skeleton representation of the free energy. H owever this relies on an arbitrary m odi cation of the
finctional which, although it yields the correct g2 e ects (oy construction), does not respect the
correct com binatorial factors and thus violates the proper counting of the higherorder diagram s.
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Interacting gluonic and ferm jonic H T L) quasiparticles.
E xtensions of the present work which are in progress concem the evaluation for general
> 0and T > 0, and the integration of entropy and density to the them odynam ic pressure
P ( ;T), sin ilarly to what hasbeen done in sin ple quasiparticle m odels in Ref. ] (see also
4] . M axwell's relations, which constitute the corresponding integrability conditions, are
satis ed up to and including order g° upon inclusion ofthe NLO contributions; beyond that
order they give constraints on a possible renom alization-group In provem ent and it seem s
Interesting to further pursue the present approach of com bining the physical content of the
perturbatively derivable hard them al/dense selfenergies w ith nonperturbative expressions
for entropy and density, which in selfoconsistent tw o-Joop order approxin ations only depend
on the spectral properties of quasiparticle excitations.
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APPENDIX A:THE PLASMON EFFECT IN THE QCD ENTROPY

In this Appendix, we shall explicitly verify that our approxim ation for the entropy (cf.
Egs. 810) and {4.10)) contains indeed the right perturbative correction of order g°. R ecall
that S; Involves two types of contrbutions: the LO entropy of the soft gluons (longiudinal
and transverse; cf. Egs. ) and {3.33)), and the NLO entropy of the hard particles
(transverse gluons and femm ions), as determm ined by the corresponding NLO selfenergies on
the light-cone (cf. Egs. 83() and ¢29)).

O ur strategy w illbe as ollow s: In Sect. A 1, we shall rew rite the soft gluon entropy In a
way which willbe convenient later. Then, in Sects. A 2 and A 3 we shall com pute the NLO
slfenergy : of a hard transverse glion, and the corresponding contrdbution S; to the
entropy. T his w ill com plete the derivation ofthe plasn on e ect fora purely gluonic plagm a.
T he extension to a plasn a w ith ferm ionsw illbe nally considered, In Sect. A 4.

1. The entropy of soft gluons

From Egs. 831) and (333), the orderg® contrbution of the soft gluons reads

2 ¢x 1n b ~ a1 N N °
Shetal 2T Imn ogl+Dy") Do In Re(D Do)

+ S3j @al1)

@)
=S3a

where S3(a) = (@P3=@T)j%, (f Eqg. 8299)), and S ; isde ned n Eq. B43). In Sect.
11D 3, we have m entioned that S 3 has been num erically found to vanish, because of a
com pensation between the electric and the m agnetic contributions to Eq. §43). In what

follow s, however, we shall not use this inform ation, but rather consider ssparately these
electric and m agnetic contrbutions, and show how they combine wih the corresponding
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contrbutions to the NLO entropy of the hard particles S. Speci cally, we shall verify that
the identity in Eq. 834) holds separately in the electric and the m agnetic sector.

To this ain, i is convenient to rewrite Eq. 843) in a slightly di erent form by using
Imn "ReD = Im ('D) Re"In D, and then Integrating the rst temm :

Sk oAt 5. b9 — m2 % Pk 1 1 o a2
@) 2! BERTE 2 2 ) k¥ k2+nm?2 g8
Thisyields wih ¢, = 2 Dy, cf. Eq. B)):
Z 4
dk 17 A n ©) N @) @)
S3=Ng (2 )45 L Re L m\% 2 T T Re T SL + ST 7 (AB)
where we have also used the ©llow ing \sum wulk" (f. Eq. 34)):
Z
dal & (k) 1 1
e 4
2 ! K2 K2+ mZ a4

G ven the com plicated structure ofthe H T L selfenergiesand soectral functions, the Integrals
in Eq. A3) cannot be further evaluated In closed form . But this is actually not needed:
indeed, the cum bersom e term s In these expressions w ill be shortly shown to cancel against
sin flartem s in S1%, the orderg® contrbution ofthe hard particks, to be com puted below .

2. The NLO glion selfenergy

W e shallnow com pute the NLO selfenergy contrbution . ofa hard transverse gluon.
This is detem ined by the e ective one-loop diagram s in Fig. @ where one of the Intemal
lines isa soft gluon (L or T) with the HT L-dressed propagator]:)A Dy (the subtraction of
the free propagatorD , is ensures that the loop Integral is saturated by soft m om enta). The
other line in each of these diagram s is hard and transverse, and therefore undressed.

W e are Interested only in the transverse proction of

1 .. -
©) T ©) > (7 B) 50): A5)
W e wrte T = T+ Y, where the upper indices refer to the soft intemal lnes in
these diagram s, and com pute only the longitudinal contrbution ! in m ore detail. (The
calculation ofthe transverse contrdoution is com pletely analogous.) T his involves two ofthe

diagram s in F igs.[d: the tadpoke . and the non-ocaldiagram . The tadpok gives

Z Z

~ d*k
l- 4N pkIB.k) DYk = dn oy b Goikin o)
Z
dik 1 o°N Tt p
’ N T =N Kesk) =
g oy k koik) 2 @6)

where the M atsubara sum in the rst line hasbeen perfom ed by using the soectral repre—
sentation (.4), and in the second line we have replaced n (ko) / T=k, (as appropriate at
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soft energies), and then perform ed the energy integralw ith the help of the sum +wul @4).
The nalresult in Eq. @ §) is indeed of order g°Trtp,  GT?, as expected.
The non-Jdocaldiagram in Fig.f b yields:
1 g ©
b .. P) = 27 Bk] @po + ko)’ (P"‘ k) By k) Dy k) ; @)

ij
where D l(;) : (@) is the free m agnetic propagator in the Coulom b gauge,

DY @= (5 4&) ! @8)
€ 4’

and the factor 2 in front of the integral re ects the two possbl ways to choose the soft
longitudinal line am ong the two intermal lines in the original one-loop diagram .

T he transverse pro fction of Eq. @) nvolves 2 (9 Bp)) (3 &%), whereg= k + p.
Sincep T, wehave ¢= B’ py, whik the integral in Eq. @) will be eventually
dom inated by soft k mom enta. Tn what follow s, we shall often perform such kinem atical
sin pli cations relying on the fact that k  p. W ih this sin pli cation, the product of the
transverse pro fctors above reduces to the identity, so that

z

)= dN  ©dkl@p+ ko)’Dop+ k) Dy k) Dy k) : @9)

To perform theM atsubara sum over kg we need the Pllowing sums With g k+ p):

X Z 4k 2 g ne) 0l
T k) D(O) = 0 _Qb/\ Qb—,. 10
. Do+ k) Dy k) p &) > 5 1k o@ . @ 10)
* “ ko “ a np) nk)
k k $ ©) = Y qu O_'o—;
Tko Pofr i) brlo Dl 2 2 k@ T
x % dko © d
T koko+ Po)Dof+ k) Dy k) D k) = — &b ko 7 K) O(q)M:
2 2 ko @+ po

ko

This nally yields, for the retarded selfenergy,

d'k " dy : n@ nk)
2y 2 ¢ &) o @ HBp; + 3poko + koo_‘o]]({O el @11)

Z
t) = JN

To com pute the entropy . 30) we need the light-cone profction of the realpart of this
selfenergy, Re kl)(po = p). Note that in previous calculations of the dam ping rate, it was
rather the Im aginary part of this sam e selfenergy which was required [B3£§]. T he calula—
tion of the in aginary part is easier shoe the LO contrbution  ¢T? can be inm ediately
extracted from Eq. 1) by neglecting n () 1 againstn(e) ’ T=k, 1, and keeping
only the large externalm om entum 4p; in the num erator. T his, together w ith

1

In - = & g+ po)’ & koos +p p); A12)
ko g+ pot+ i

Jeads to the ollow ing, standard, result for the Iongitudinal part of the dam ping rate (4] :
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Z

1 _ Z 3 !
In ;o P)=92NT d’k d_'AL(z;k) (! koos ): A13)

2p 2 @ )3 |

If we perfom , however, the sam e sin pli cations on the real part, then the would-be LO
result tums out to vanish, by parity W ih P denoting the principal value):
z

Re neo=p)  =9NT —— —

Fk 4 al 1
— N (;k) P ———— = 0: @ 14)
! k cos

In fact, this isonly to be expected: the term s in Eq. (A 14) are form ally of order g°T 2, while
we know that Re  should be rather of order g°T 2. Thus, In order to extract the lading
contrioution to Re  from Eq. @ 11) one has to push the kinem atical approxin ations one
step further as com pared to the dam ping rate. In particular, we need the expansion of the
statistical factors n Eq. @ 11)) to LO and NLO order:
nky) n@’ = M: @135)
ko 2
W e shall denote by Re |, the contrbution com ng from T=k,, and by Re , the re-
m aining onedue to (2n () + 1)=2. These quantities w illbe evaluated at py = p, so they are
functions of the three-m om entum p alone. W e have:
Z Z Z

d’k * dk dop 0 @
R ! =gNT N — WBp® + 3pk k P—
e L P g 2y 2k L k) 5 lp” + 3pko + kop] K q+p
2 @k ? dkg ,
= gNT 2y 21 r® @t k) ReDop k) @ 16)

where In the seocond line we have identi ed the (retarded) free propagator via its spectral
representation. h Re 1, we can restrict ourselves to the LO tem 4p? in the denom i-
nator, and to the positiveenergy poke g = P+ kj’ p+ koos In the spectral fiinction
o @; P+ k). This yields:
z
d'k 7 koik)

Re @)’ dNpln@+1) = @17)

3. The NLO entropy of hard gluons

Let us consider rst a purely gluonic plasn a, n which case the hard gluon selfenergy

r= '+ % isallwhat we need to com pute the NLO entropy Sie™ 3+ st.As
before, we focus on the Iongitudinal contrbution S'; by inserting Egs. 2 4), A 14) and
BT]) nEq. 830),wecbtah S'= S+ S;, where:

Z h i
d'p @n (og)
S N g 0P g it Re
Z 4 A Z 4 h i
d*k k) d @ )
= gNN,T oy ~ o I; Zfo 0®) @p+ ko) ReDofp+ k) 1
0
Z 4 A
d*k A
’N 10 € et koik) : @ 18)

T
g C )¢ 2k, QT
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In w rting the last line above, we have identi ed the one-Joop contribution to the selfenergy
of the soft Iongitudinalgluon due to hard transverse glions. To the order of Interest, this is
precisely the HTL AL . The second piece  S; of the entropy reads:

z

dPp 1 @n )
1 1
% @ QPp @T e ©)
Z 3 Z 4 A
d’p @n@) "~ dk 1 Kosk)
= #NN 2 +1
INN, e )3(n(p) )@T @ )k, koos
Mg e, Pk ek
2 QT P C )k, koos
Z 4 A
dk n A @]
L(k)gTReL m? @ 19)

9 @2 ) 2k, @T

In golng from the second to the third Iine above, the follow ing chain of dentities has been
used (seealo Eqg. (314)):

Z

Z 3 3
d’p Gn@E) i d’p
20N o B e = 29N s s

d3
= 2<§N@ p o _ ¢©

— = — Tm?2 : @ 20)
QT (2 ) @p QT P
Furthem ore, In writing the last Iine in Eq. @ 19), we have identi ed the Iongitudinal HT L
ReAL as ollow s (com pare to Eq. )):
z
d k cos

Re' (;k)= m? T v @21)

nE)l+nE]=

By adding Egs. @19) and @ 19), we nally deduce the Hllowing expression or the
Iongitudinal piece of the NLO entropy:
z

oy p @057 Ak ) kAR L s
TRT @) 2k @) 2k Lo
@2 N m
=T 8 s, ®22)

wih S ,” asde ned ;nEq. E3). An entirely sin ilar caloulation show s that the rem aining,
@)

transverse, piece  S* cancels against the transverse contrbution S, to S 3, Eq. @3):
s+ s = o0: (@ 23)

T hat is, the total contribution of the soft transverse glions to the plagn on e ect cancels
away, as it should.

A lltogether, Egs. @ 1), & 3), A27) and (A 23) provide the expected result forthe order-
g° e ect in the entropy of the purely gluonic plasma where T @;m2 ) = 22 :
SBSOﬁ:_I_ S?ard= Ngmg + T @m\% Ngm\D — Ngm\g . @ 24)

12 QT 8 3

M oreover, it can be easily recognized that Egs. f273) and @A23) are equivalent to the
longitudinal, and, respectively, transverse com ponents of Eq. {3.3§), as they should.
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4. Adding the ferm ions

T he previous resuls are easily extended to a QCD plaan a w ith ferm ions. T he entropy

S in this case volves also the NLO selfenergies of the hard ferm ions,
( )
Z 4
d'p @n (o) @f X
s = N Re 1 + 2NN;— Re 25
3 @ )4 g QT o ) T £ QT s ) s A 25)

s=

Once again, we focus on the controution S* of the soft ongitudinal gluons, and use the
integral over the hard momentum p in Eq. A2Y) to reconstruct the HTL "L. Here, this
Involves both a hard gluon loop and a hard ferm ion loop, which enters via the selfenergies
1
For instance, the ferm jonic analog of Re  ,, Eq. B 17), reads:

9PCe 'k 4 koik)

2f ; 26
2 L ©)] 2 Yk koos ' A 26)
which, when serted into Eq. @23), detemm ines the follow ing contrdoution to the NLO

entropy (com pare to Eq. B 19)):
Z 33

d @n Ng¢ X @f

SlegzNg P £ s

Re lz(P)=

Z

4k A ,'k
N L+ 2n)—+ — @ 2f) d L Koik)
@) QT 2 QT C ¥ ko koos

s=

Z A .
Ng @ Tm\z d4k L (kOlk)

2 QT P @2 )k, koos
Wehaveussdhere 1 2f)@f= @ EQL £)]= @ (TQL), togetherwih Eq. @) for
the D ebye m ass.) This is form ally the sam e result as orpure glue, Eq. @ 19), except that,
here, ity isthe ullHTL D ebye m ass, which includes contrdbutions from fem ions.

Sin larly, the other contrbution S} preservesthe form 1 Eq. @ 19) where, however, "1
isnow the ullHTL in a theory w ith form ions. Thusthe nalresult in Eq. @ 22) is om ally
unchanged, but it now appliessto a QCD plasn a with ferm ions, forwhich T <@ng ) = 2m%
(cf. Eq. @31)).

Consider nally the order g° e ect in the quark density: as explained in the m ain text,
this com es entirely from the NLO ocorrections to the hard fem ion selfenergies, and,
m ore precisely, from the longitudinal sector alone (the soft transverse e ects eventually
cancel, as In the case of the entropy). Thus, N3 = N1, with N! given by the same
equations as above, except for the replacam ent of the tem perature derivatives by derivatives
with repect to .Thus N* N}+ N, where (cf. Egs. 31§) and @ 19)):

2 4k A @

@A 27)

N!= N,T] — — —Re iK) ; 28
1 g (2 )4 2k0 @ L (kOI )I (A )
and
z z
N,T @2 “ d'k A ik d'k A @ ~
Ni= O D L kojk) N,T L — Re", m : (@29
2 Q@ @2 )¥ky kcos @2 ) 2k, @

A s In the entropy, the non-local term s involving Re ", k) cancel ;n the sum of the two
contrbutions above, and we are kft w ith the Hllow ng sin ple expression:
ez © d'k A k) NgTm’my

Ny = N,T
’ e 2 ) 2k, 4

@& 30)

60



REFERENCES

[L]1J.I.Kapusta, F initetem perature el theory (Cambridge University P ress, C am bridge,
England, 1989).
RIM .LeBellac, Them alF ield T heory, (C am bridge U niversity P ress, C am bridge, England,
1996).
Bl1P.Amold and C. Zhai, Phys. Rev.D 50, 7603 (1994), bid. 51, 1906 (1995); C. Zhai
and B .K astening, jbid. 52, 7232 (1995).
B]1E .Braaten and A .N ieto, Phys.Rev.D 53, 3421 (1996).
B]A .Pechier, B.Kampfer, O .P.Pavlknko, and G .So ,Phys.Rev.D 54,2399 (1996);A.
Peshier, hep—ph/9809379.
6]P.Levaiand U .Heinz, Phys.Rev.C 57, 1879 (1998) and references therein.
[71J-P.B hizot and E . Jancu, Nucl. Phys. B 390, 589 (1993); Phys. Rev. Lett. 70, 3376
(1993); NucLPhys.B 417, 608 (1994).
B]1JP .Blaizot, E . Jancu and J~Y .0 llitraul, in Quark-G luon Plasna IT, edited by R C.
Hwa W orld Scienti ¢, Singapore, 1996).
O]E.Braten and R.D . Pisarski, Nucl Phys. B 337, 569 (1990); J.Frenkel and J.C.
Taylor, Nucl. Phys.B 334, 199 (1990).
[L0]P.Amold and O .Espinosa, Phys.Rev.D 47, 3546 (1993).
[11]1J.0 .Andersen, E .Braten, and M . Strickland, Phys.Rev.Lett. 83, 2139 (1999), Phys.
Rev.D 61,014017, 074016 (2000).
[L2]R .Bair and K .Redlich, Phys.Rev. Lett. 84, 2100 (2000).
[13]F .Karsch, A .Patkos, and P .Petreczky, Phys. Lett.B 401, 69 (1997); hep—ph/9708244.
[14]S.Chiku and T .Hatsuda, Phys.Rev.D 58, 076001 (1998).
[15] 0P .B lizot, E . JTancu and A .Rebhan, Phys.Rev. Lett. 83, 2906 (1999).
6] J-P.B hizot, E. Iancu and A .Rebhan, Phys. Lett.B 470, 181 (1999).
L7]J.M . Luttinger and J.C . W ard, Phys. Rev. 118, 1417 (1960); C .De D om nicis and
PC.Martin, J.M ath.Phys. 5, 14, 31 (1964).
18]G .Baym,Phys.Rev.127, 1391 (1962).
[L9]E.Ridel, Z.Phys. 210, 403 (1968).
R0]B .Vanderheyden and G .Baym , J. Stat. Phys. 93, 843 (1998).
R1l]L.Dolan and R . Jackiw , Phys.Rev.D 9, 3320 (1974).
R2]I. T .Drummond, R.R.Horan, P.V .Landsho , and A . Rebhan, NuclL Phys. B 524,
579 (1998); A .Rebhan, hep—ph/980921Y§.
R3]1G .M .Cameiro and C . J.Pethik, Phys.Rev.B 11, 1106 (1975).
R4]1K .Kapantieand J.Kapusta,Ann.Phys. W Y .) 160,477 (1985);U .Henz, K .K aantie
and T.Tommela, Ann.Phys. W XY . 176,218 (1987).
R5]R.Kobes, G .Kunstatterand K .W .M ak, Z.Phys.C 45, 129 (1989).
R6]K .James and P V . Landsho ,Phys.Lett.B 251, 167 (1990).
R7]1W .Kummer, Acta Physica Austraca 41, 315 (1975).
28] J.Frenkeland JC . Taylor, NucL Phys.B 109, 439 (1976); E : bid.B 155, 544 (1979).
29]0 .K .Kalshnikovand V.V .K lin ov, Sov.J.NuclL Phys.31, 699 (1980);H .A .W eldon,
Phys.Rev.D 26,1394 (1982).
BO]V .V .Klmov, Sov.J.NucLPhys.33, 934 (1981);H .A .W edon, Phys.Rev.D 26, 2789
(1982), tbid. 40, 2410 (1989).
B1]R.D .Pisarski, Physica A 158, 246 (1989).

61


http://arxiv.org/abs/hep-ph/9809379
http://arxiv.org/abs/hep-ph/9708244
http://arxiv.org/abs/hep-ph/9809215

B2]U.Kmenmer, M . Kreuzer, and A . Rebhan, Ann.Phys. N Y. 201, 223 (1990) Ap-
pendix]; F .F lechsig and A .K .Rebhan, Nucl. Phys. B 464, 279 (1996).

B3]R.D .Pisarski, Phys.Rev.D 47,5589 (1993).

B4]1B A .Freedm an, and L .M cLerran, Phys.Rev.D 16,1130, 1147, 1169 (1978).

B5]T.Toinela, Int. J. Theoret. Phys. 24, 901 (1985).

B6]1H .Schulz, Nucl Phys.B 413, 353 (1994).

B7]1A .K .Rebhan, Phys.Rev.D 48,R3967 (1993).

B8]K .Kap@ntie, M .Laine, J.Peisa, A .Rajantie, K . Rumm ukainen, and M . Shaposhnikov,
Phys.Rev. Lett. 79, 3130 (1997); M . Lanne and O . Philijpsen, Phys. Lett.B 459, 259
(1999).

B9]0 .Kaczm arek, F . Karsch, E. Laem ann, and M . Lutgem efer, hep—1at/9908010 and
references therein.

40]G .Boyd et al,, NucLPhys.B 469, 419 (1996).

41]M .Okamoto et al. CP-PACS Collaboration], Phys.Rev.D 60, 094510 (1999).

42]1F .K arsch, hep—1at/9909004.

43]F .Karsth, E . Laem ann, and A . Peikert, hep—1at/0002003.

44]S.Ham ih, J. Letessier, J.Rafelski, M . Schroedter, and A . Tounsi, hep—ph/0004014§.

45]V .Baluni, Phys.Rev.D 17,2092 (1978).

46] A .Peshier, hep—ph/991045].

A7]A .Peshier, B .Kampfer, and G .So , hep—ph/9906305, Phys.Rev.C 61, 045203 (2000).

48] J-P.Blizot and E. Tancu, Phys. Rev. Lett. 76, 3080 (1996); Phys. Rev.D 55, 973
1997).

..l>

..l>

N

62


http://arxiv.org/abs/hep-lat/9908010
http://arxiv.org/abs/hep-lat/9909006
http://arxiv.org/abs/hep-lat/0002003
http://arxiv.org/abs/hep-ph/0004016
http://arxiv.org/abs/hep-ph/9910451
http://arxiv.org/abs/hep-ph/9906305

