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Abstract

W e propose a gauge-invariantand m anifestly UV �nite resum m ation ofthe
physicsofhard therm al/dense loops(HTL/HDL)in the therm odynam icsof
the quark-gluon plasm a. The starting pointisa sim ple,e�ectively one-loop
expression fortheentropy orthequark density which isderived from thefully
self-consistent two-loop skeleton approxim ation to the free energy,butsub-
jectto furtherapproxim ations,whosequality istested in a scalartoy m odel.
In contrastto thedirectHTL/HDL-resum m ation oftheone-loop freeenergy,
in our approach both the leading-order (LO ) and the next-to-leading order
(NLO ) e�ects ofinteractions are correctly reproduced and arise from kine-
m aticalregim es where the HTL/HDL are justi�able approxim ations. The
LO e�ects are entirely due to the (asym ptotic) therm alm asses ofthe hard
particles.The NLO onesreceive contributionsboth from softexcitations,as
described by the HTL/HDL propagators,and from corrections to the dis-
persion relation ofthe hard excitations,asgiven by HTL/HDL perturbation
theory. The num ericalevaluations ofour �nalexpressions show very good
agreem ent with lattice data for zero-density Q CD,for tem peratures above
twice thetransition tem perature.
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I.IN T R O D U C T IO N

Besides itsobviousrelevance forcosm ology,astrophysics orultra-relativistic heavy ion
collisions,thestudyofQCD athigh tem peratureand/orlargebaryonicdensity [1,2]presents
exciting theoreticalchallenges. Ito�ersopportunity to explore the propertiesofm atterin
a regim e where,unlike in ordinary hadronic m atter,the fundam ental�elds ofQCD| the
quarksand gluons| arethedom inantdegreesoffreedom and thefundam entalsym m etries
areexplicit.

Unfortunately,analyticaltoolsavailableforsuch astudyarenotm any.However,because
ofasym ptoticfreedom ,thegaugecouplingbecom esweak athigh tem perature,which invites
ustotry aperturbativetreatm entoftheinteractions.Butexplicitperturbativecalculations
oftheQCD freeenergy athigh tem perature,which havebeen pushed in recentyearsup to
the order�5=2s [3,4],show an extrem ely poorconvergence exceptforcoupling constantsas
low as� <

� 0:05,which would correspond to tem peraturesashigh as>� 105Tc.Already the
next-to-leading orderperturbativecorrection,theso-called plasm on e�ectwhich isoforder
�3=2s / g3,signalstheinadequacy oftheconventionaltherm alperturbation theory exceptfor
very sm allcoupling,becausein contrastto theleading-orderterm sitleadsto a freeenergy
in excessoftheideal-gasvalue.

Lattice results on the other hand show a slow approach ofthe ideal-gas result from
below with deviations ofnot m ore than som e 10-15% for tem peratures a few tim es the
decon�nem enttem perature.Besides,theseresultscan beaccounted forreasonably wellby
phenom enological�ts involving m assive \quasiparticles" [5,6]with m asses ofthe order of
the perturbative leading-order therm alm asses. This suggests thatthe failure ofordinary
perturbationtheorym aynotbedirectlyrelatedtothenon-perturbativephenom enaexpected
atthescaleg2T and which causea breakdown oftheloop expansion atorderg6 and higher
[1]. Rather, the quasiparticle �ts support the idea that one should be able to give an
accurate description ofthe therm odynam icsofthe QCD plasm a in term sofits(relatively
weakly interacting)quasiparticleexcitations.

Itisworth em phasizing atthisstage that,am ong the relevantdegreesoffreedom ,the
soft collective ones,with m om enta oforder gT,are already non-perturbative. Although
theirleading ordercontribution / g3 to the pressure can be easily isolated [1],itdoesnot
m akem uch physicalsense to regard thiscontribution asa genuineperturbativecorrection.

Indeed,to leading orderin g,thedynam icsofthesoftm odesisdescribed by an e�ective
theory which includestheone-loop therm aluctuationsofthe\hard"m odeswith m om enta
� T.Therelevantgeneralization oftheYang-M illsequation reads[7,8]:

D �F
�� = m̂

2

D

Z d


4�

v�vi

v� D
E
i� �̂ ab

��A
�
b +

1

2
�̂abc���A

�
bA

�
c + ::: (1.1)

where the induced current in the right hand side describes the polarization ofthe hard
particlesbythesoftcolour�eldsA �

a inaneikonalapproxim ation.[Inthisequation,m̂ D � gT

istheDebyem ass,E i
a isthesoftelectric�eld,v

� � (1;v),and theangularintegral
R
d
runs

overthe orientationsofthe unitvectorv.] Thiscurrentisnon-localand gauge sym m etry,
which forcesthe presence ofthe covariantderivative D � = @� + igA � in the denom inator
ofEq.(1.1),m akes it also non-linear. W hen expanded in powers ofA �

a,it generates an
in�niteseriesofnon-localself-energy and vertex corrections,known as\hard therm alloops"
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(HTL)[9,7].Thelatterencom passim portantphysicalphenom ena,likescreeninge�ectsand
non-trivialdispersion relationsforthesoftexcitations[2,8](and referencestherein).Sim ilar
phenom ena exist also in the case ofsoft ferm ions,which,to leading order in g,obey the
following generalized Diracequation [7](with M̂ � gT and 6v = �v

�):

i6D  = M̂
2

Z d


4�

6v

i(v� D )
 � �̂ + �̂a�A

�
a + ::: (1.2)

At soft m om enta k <
� gT,allHTL’s are leading order e�ects, as obvious in Eqs.(1.1)

and (1.2),and m ust be consistently resum m ed. AnalogsofHTL’sexistat�nite chem ical
potential�.In theregim e� � T theseareoften referred to as\hard denseloops" (HDL).

In traditionalperturbative calculationsofthe therm odynam icsperform ed in im aginary
tim e[2],theHTL’splay alm ostno role:only theDebyem assm 2

D needsto beresum m ed in
thestaticelectricgluon propagator[10].Thisresum m ation isresponsiblefortheoccurrence
ofodd powersofg in theperturbativeexpansion.

Such a sim pleresum m ation howeverm ay becom einsu�cientwhenevera m orecom plete
inform ation on the quasiparticles needs to be taken into account. Quite generally, this
physicalinform ation iscontained in thespectralweight�(k0;k)related tothecorresponding
propagatorby:

D (!;k)=
Z 1

� 1

dk0
2�

�(k0;k)

k0 � !
: (1.3)

In the im aginary tim e form alism ,and forbosonic �elds,! = i!n � i2�nT with integern.
Clearly,the restriction to the M atsubara m ode with n = 0 retainsin the propagatoronly
onem om entofthespectralweight.In theHTL approxim ation,we know thatthe spectral
density isdivided into apoleattim e-likem om enta and acontinuum atspace-likem om enta.
W hile there exist physicalobservables which can be accurately described in perturbation
theory by a singlem om entofthespectralweight,thisdoesnotappearto bethecasein the
calculationsthatwe shallpresentand in which the variouspiecesofthe spectralfunctions
contributein di�erentways.

In fact,sincethetherm odynam icalfunctionsaredom inated by hard degreesoffreedom ,
an im portante�ectofthesoftm odeswillbeto inducecorrectionson thehard quasiparticle
dispersion relations. As we shall�nd,the spectralfunctions for large m om enta willtake
the approxim ate form �(!;k)� �(!2 � k2 � m21 ),where m

2
1 � g2T2 isthe leading-order

therm alm ass(orasym ptotic m ass)ofthe hard excitation.Clearly,such an e�ectdoesnot
naturally em ergein a schem e whereoneresum sjustthen = 0 M atsubara m ode.

In orderto overcom e alltheselim itations,ithasbeen recently proposed to perform full
resum m ationsofthe HTL self-energies� �� and � in calculationsofthe therm odynam ical
functions. In Refs.[11,12],thishasbeen done by m erely replacing the free propagatorsby
thecorresponding HTL-resum m ed onesin theexpression ofthefree-energy oftheidealgas;
e.g.(in sim pli�ed notations):

TrlogD � 1
0

� ! Trlog(D� 1
0

+ �): (1.4)

In principle,thisisjustthe�rststep in asystem aticprocedurewhich consistsin resum m ing
the HTL’sby adding and subtracting them to the tree-levelQCD Lagrangian.Thiswould
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betheextension to QCD oftheso-called \screened perturbation theory" [13,14],a m ethod
which,forscalar�eld theories,hasshown an im proved convergence (in one-and two-loop
calculations)ascom pared to the straightforward perturbative expansion.Butin itszeroth
order approxim ation in Eq.(1.4),this m ethod over-includes the leading-order interaction
term / g2 (whilecorrectly reproducing theorder-g3 contribution),and givesriseto new,ul-
tim ately tem perature-dependentUV divergencesand associated additionalrenorm alization
schem e dependences.

Anotherdrawback ofsuch a directHTL resum m ation appearsto bethattheHTL’sare
keptin thehard m om entum regim ewheretheyarenolongerdescribingactualphysics,while
hard m om enta areproviding thedom inantcontributionsto thetherm odynam icpotential.

Ourapproach on theotherhand [15,16]willbebased on self-consistentapproxim ations
using the skeleton representation of the therm odynam ic potential[17]which takes care
ofovercounting problem s autom atically,without the need for therm alcounterterm s. W e
shallm ainly considertheso-called 2-loop-�-derivable[18]approxim ation,forwhich itturns
out that the �rst derivatives ofthe therm odynam ic potential,the entropy and the quark
densities,takearathersim ple,e�ectively one-loop form [19,20],butin term soffully dressed
propagators.

In gauge theories,the generalized gap equationsthatdeterm ine these dressed propaga-
tors are too com plicated to be solved exactly (even num erically). But an exact solution
would anyhow be unsatisfactory because �-derivable approxim ationsin generaldo notre-
spect gauge invariance. W e therefore propose gauge independent but only approxim ately
self-consistent dressed propagators as obtained from (HTL) perturbation theory. Using
these in the entropy1 expression obtained from the 2-loop-�-derivableapproxim ation gives
a gauge-independentand UV �niteapproxim ation fortheentropy,which,whilebeing non-
perturbativein thecoupling,containsthecorrectleading-order(LO)and thenext-to-leading
order(NLO)e�ectsofinteractionsin accordance with therm alperturbation theory. Both
turn outto arisefrom kinem aticalregim eswheretheHTL’sarejusti�ableapproxim ations.

W hile also being e�ectively a resum m ed one-loop expression,the approxim ately self-
consistententropy di�ersfrom the directHTL-resum m ation ofthefree energy in Eq.(1.4)
in thatitincludescorrectly alsotheLO interaction e�ects.Rem arkably,in ourapproach the
latterare entirely determ ined by the (asym ptotic)therm alm assesofthe hard excitations.
This agrees with and justi�es the sim ple quasiparticle m odels ofRef.[5,6],which assum e
constantm assesequalto therespectiveasym ptotictherm alm assesforquarksand asm any
(scalar) bosons as there are transverse gluons. W hereas these m odels do not include the
correctNLO (plasm on)e�ect,ourapproach does,butin a ratherunconventionalm anner
which dem onstratesthenontriviality oftheresum m ation thathasbeen achieved:only part
ofthe plasm on e�ect is com ing directly from soft excitations; a larger part arises from
correctionsto the dispersion relation ofthe (dom inant)hard excitationsby softm odes,as
determ ined by standard HTL perturbation theory [9].

Because ofthe approxim ationsthatwe have m ade,itdoesm atterwhetherthe entropy
or the therm odynam ic potentialis considered. Our approach however attem pts to take

1Forbrevity we referonly to the entropy explicitly,butallofthe following rem arksapply to the
density aswell.
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advantage ofthe fact that entropy is generally the sim pler quantity. Indeed,the way by
which theLO and NLO interaction contributionscan betraced tospectralpropertiesoffree
quasiparticleswithin ourentropy expressionsindicatesa posterioritheadequatenessofthis
particularresum m ation schem eto thephysicscontained in theHTL propagators.

Thepresentpaperisorganizedasfollows:InSect.II,thegeneralform alism of�-derivable
self-consistentapproxim ationsisreviewed and the central,e�ectively one-loop form ula for
theentropy in atwo-loop skeleton approxim ation tothetherm odynam icpotentialisderived
in a scalar theory with cubic and quartic interactions. In the sim ple solvable m odelof
large-N scalarO(N )theory [21,22],wherethetwo-loop �-derivableapproxim ation becom es
exact,the further approxim ations that willbe considered in the QCD case are com pared
with theexactsolution and theirrenorm alization scaledependence isexhibited.

In Sect.III,the approxim ately self-consistent resum m ations are introduced for purely
gluonic QCD �rst,and equivalence with conventionalperturbation theory up to and in-
cluding order g3 is proved and analyzed in detail. Sect.IV generalizes this to QCD with
quarks and to the quark density as an additionaltherm odynam ic quantity. Som e ofthe
m oretechnicaldetailsofhow theplasm on e�ectarisesin ourapproach arerelegated to the
Appendix.

In Sect.V,the various approxim ations are evaluated num erically. W e �nd that the
plasm on e�ect,which islargely responsible forthe poorconvergence propertiesofconven-
tionaltherm alperturbation theory,in ourapproach leads only to m oderate contributions
when com pared with the leading-ordere�ects. W hen com bined with a two-loop renorm al-
ization group im provem ent,ourresultsarefound tocom parerem arkably wellwith available
lattice data for tem peratures above twice the decon�nem ent tem perature. M oreover,we
also presentnum ericalresultsforthequark density atzero tem peratureand largechem ical
potential.

II.G EN ER A L FO R M A LISM .T H E SC A LA R FIELD

In this section we develop the form alism of propagator renorm alization using tech-
niquesthatallow system aticrearrangem entsoftheperturbativeexpansion avoiding double-
countings. W e shallrecallin particularhow self-consistentapproxim ationscan be used to
obtain a sim pleexpression fortheentropy which isolatesthecontribution oftheelem entary
excitationsasaleadingcontribution.Togetfam iliarity with theform alism ,wedem onstrate
som e ofitsim portantfeatureswith the exam ple ofthe scalar�eld. Thisprovides,in par-
ticular,a testofthevalidity ofapproxim ationswhich willbe used in dealing with QCD in
therestofthepaper.

A .Skeleton expansion for therm odynam icalpotentialand entropy

Thetherm odynam icpotential
= � PV ofthescalar�eld canbewritten asthefollowing
functionalofthefullpropagatorD [17,18]:

�
[D ]= � logZ =
1

2
TrlogD � 1 �

1

2
Tr�D + �[D ]; (2.1)
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where Tr denotesthetracein con�guration space,� = 1=T,� istheself-energy related to
D by Dyson’sequation (D 0 denotesthebarepropagator):

D
� 1 = D

� 1
0
+ �; (2.2)

and �[D ]isthesum ofthe2-particle-irreducible\skeleton" diagram s

� �[D ]= 1/12 +1/8 +1/48 +... (2.3)

The essentialproperty ofthe functional
[D ]isto be stationary undervariationsofD
(at�xed D 0)around thephysicalpropagator.Thephysicalpressureisthen obtained asthe
valueof
[D ]atitsextrem um .Thestationarity condition,

�
[D ]=�D = 0; (2.4)

im pliesthefollowing relation

��[D ]=�D =
1

2
�; (2.5)

which,together with Eq.(2.2),de�nes the physicalpropagator and self-energy in a self-
consistentway.Eq.(2.5)expressesthefactthattheskeleton diagram scontributingto�are
obtained by opening up oneline ofa two-particle-irreducible skeleton.Notethatwhile the
diagram softhebareperturbation theory,i.e.,thoseinvolving barepropagators,arecounted
once and only once in the expression of� given above,the diagram sofbare perturbation
theory contributing to the therm odynam ic potentialare counted severaltim es in �. The
extra term sin Eq.(2.1)precisely correctforthisdouble-counting.

Self-consistent(orvariational)approxim ations,i.e.,approxim ationswhich preserve the
stationarity property (2.4),areobtained by selecting a classofskeletonsin �[D ]and calcu-
lating � from Eq.(2.5).Such approxim ationsarecom m only called \�-derivable" [18].

Thetracesovercon�guration spacein Eq.(2.1)involveintegration overim aginary tim e
and over spatialcoordinates. Alternatively, these can be turned into sum m ations over
M atsubara frequenciesand integrationsoverspatialm om enta:

Z �

0

d�
Z

d3x ! �V

Z

[dk]; (2.6)

where V isthespatialvolum e,k� = (i!n;k)and !n = n�T,with n even (odd)forbosonic
(ferm ionic)�elds(theferm ionswillbediscussed later).W ehaveintroduced acondensed no-
tation forthethem easureoftheloop integrals(i.e.,thesum overtheM atsubarafrequencies
!n and theintegraloverthespatialm om entum k):

Z

[dk]� T
X

n;even

Z d3k

(2�)3
;

Z

fdkg � T
X

n;odd

Z d3k

(2�)3
: (2.7)

Strictly speaking,the sum -integrals in equations like Eq.(2.1) contain ultraviolet diver-
gences,which requires regularization (e.g.,by dim ensionalcontinuation). Since,however,
m ost ofthe forthcom ing calculations willbe free ofultraviolet problem s (for the reasons
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explained atthe end ofthissubsection),we do notneed to specify here the UV regulator
(seehoweverSect.IIB forexplicitcalculations).

Forthepurposeofdeveloping approxim ationsfortheentropy itisconvenienttoperform
the sum m ationsoverthe M atsubara frequencies. One obtainsthen integralsoverrealfre-
quenciesinvolvingdiscontinuitiesofpropagatorsorself-energieswhich haveadirectphysical
signi�cance.Using standard contourintegration techniques,onegets:


=V =
Z
d4k

(2�)4
n(!)

�

Im log(� !
2 + k

2 + �)� Im �D
�

+ T�[D ]=V (2.8)

wheren(!)= 1=(e�! � 1).
TheanalyticpropagatorD (!;k)can beexpressed in term softhespectralfunction:

D (!;k)=
Z

1

� 1

dk0

2�

�(k0;k)

k0 � !
: (2.9)

and wede�ne,for! real,

Im D (!;k)� Im D (! + i�;k)=
�(!;k)

2
: (2.10)

Theim aginary partsofotherquantitiesarede�ned sim ilarly.
W earenow in theposition to calculatetheentropy density:

S = � @(
=V )=@T : (2.11)

The therm odynam ic potential,asgiven by Eq.(2.8)dependson the tem perature through
thestatisticalfactorsn(!)and thespectralfunction �,which isdeterm ined entirely by the
self-energy. Because ofEq.(2.4)the tem perature derivative ofthe spectraldensity in the
dressed propagatorcancelsoutin theentropy density and oneobtains[19,20]:

S = �

Z
d4k

(2�)4
@n(!)

@T
Im logD � 1(!;k)

+
Z
d4k

(2�)4
@n(!)

@T
Im �(!;k)ReD (!;k)+ S 0 (2.12)

with

S0� �
@(T�)

@T

�
�
�
D
+
Z
d4k

(2�)4
@n(!)

@T
Re�Im D : (2.13)

W eshallverify explicitly thatforthetwo-loop skeletons,wehave:

S0= 0: (2.14)

Loosely speaking,the�rsttwo term sin Eq.(2.12)representessentially the entropy of\in-
dependentquasiparticles",while S0 accountsfora residualinteraction am ong these quasi-
particles[20].
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Sincethecondition (2.14)playsan im portantrolein ourwork,weshallderiveitexplicitly
in a scalarm odelwith interaction term

Lint= (g=3!)�3 � (�=4!)�4;

which isa sim ple toy m odelofthe tri-and quadrilinearself-interactions ofgauge bosons.
(Interactionswith ferm ionsare already covered by the analysiscontained in Ref.[20].) In
thetwo-loop approxim ation,whereonly the�rsttwo diagram softheskeletonsin Eq.(2.3)
arekept,thecontribution involving two 3-verticesreads

� T�(a) =
g2

12
T
2
X

!1;!2

Z
d3k1d

3k2

(2�)6
D (!1;j~k1j)D (!2;j~k2j)D (� !1 � !2;j� ~k1 � ~k2j): (2.15)

Expressingthepropagatorsin term softhespectralfunctions,and evaluatingtheM atsubara
sum sby contourintegration,onegets:

� T�(a) =
g2

12

Z
d4kd4k0d4k00

(2�)9
�
3(~k+ ~k

0+ ~k
00)�(k)�(k0)�(k00)P

1

k0 + k00 + k000

� f[n(k0)+ 1][n(k0
0
)+ n(k00

0
)+ 1]+ n(k0

0
)n(k00

0
)g (2.16)

whereP denotestheprincipalvalueprescription and wehaveused theidentity:

n(x + y)[1+ n(x)+ n(y)]= n(x)n(y): (2.17)

Thetwo-loop skeleton involving the4-vertex isgiven by thesim plerexpression

� T�(b) = �
�

8

"
X

!

Z
d3k

(2�)3
D (!;k)

#2

= �
�

8

Z
d4kd4k0

(2�)8
�(k)�(k0)fn(k0)n(k

0
0)g: (2.18)

AccordingtoEq.(2.13),the�rstcontribution toS 0isgiven by di�erentiatingEqs.(2.16)
and (2.18)with respectto T at�xed �.Becausetheintegrand in frontofthecurly brackets
in (2.16)issym m etric,theargum entsofthedistribution functionscan befreely exchanged
aslong asthefactthattheirproductscom ewith distinctargum entsispreserved.@T[� T�]
isthereforeobtained by replacing theterm sin curly bracketsin (2.16)by f6n(k0

0
)@Tn(k0)+

3@Tn(k0)]g and thatin (2.18)by 2n(k00)@Tn(k0).
Thesecond contribution toS0involvestherealpartoftheself-energy asgiven by thetwo

(dressed)one-loop diagram sfollowing from opening up onelinein the�rsttwo diagram sin
(2.3),

Re� (a)(!;q)= �
g2

2

Z
d3k

(2�)3

Z
dk0

2�

dk00

2�
�(k0;j~kj)�(k

0
0
;j~k+ ~qj)

� [n(k0)+ n(k0
0
)+ 1]P

1

! + k0 + k00
(2.19)

Re� (b) =
�

2

Z
d4k

(2�)4
n(k0)�(k0;k) (2.20)

Thisgives
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Z
d4k

(2�)4
@n(k0)

@T
Re� (a)Im D = �

1

4

Z
d4kd4k0d4k00

(2�)9
�
3(~k+ ~k

0+ ~k
00)�(k)�(k0)�(k00)

� P
1

k0 + k00 + k000
[@Tn(k0)][n(k

0
0
)+ n(k00

0
)+ 1] (2.21)

Z
d4k

(2�)4
@n(k0)

@T
Re� (b)Im D =

Z
d4k

(2�)4
@n(k0)

@T

�(k)

2

�

2

Z
d4k0

(2�)4
n(k0

0
)�(k0) (2.22)

wherewehaveused Im D = �=2.Indeed,thiscancelsprecisely � @T[T�]asobtained above,
verifying theproposition thatS0= 0 forthelowest-order(two-loop)diagram sin �[D ].

Asthe previousderivation shows,thevanishing ofS0holdswhetherthepropagatorare
theself-consistentpropagatorsornot.Thatis,only therelation (2.5)isused,and theproof
doesnotrequireD to satisfy theself-consistentDyson equation (2.2).A generalanalysisof
thecontributionsto S0and theirphysicalinterpretation can befound in Ref.[23].

W eem phasize now a few attractivefeaturesofEq.(2.12)with S0= 0,which m akesthe
entropy a privileged quantity to study thetherm odynam icsofultrarelativisticplasm as.W e
note�rstthattheform ulaforS at2-loop orderinvolvestheself-energy only at1-loop order.
Besidesthisim portantsim pli�cation,thisform ulaforS,in contrasttothepressure,hasthe
advantage ofm anifest ultra-violet�niteness,since @n=@T vanishes exponentially forboth
! ! � 1 .Also,any m ultiplicativerenorm alization D ! ZD ,�! Z � 1� with realZ drops
outfrom Eq.(2.12).Finally,theentropy hasam oredirectquasiparticleinterpretation than
the pressure.Thiswillbe illustrated explicitly in the sim ple m odelofthe nextsubsection.
M oregenerally,Eq.(2.12)can betransform ed with thehelp ofthefollowing identity:

Im logD � 1(!;k)= arctan
�

Im �

ReD � 1

�

� ��(!)�(� ReD� 1); (2.23)

with �(!)the sign function and ��

2
< arctan(x)< �

2
. Using thisidentity we rewrite S as

S = Spole + Sdam p,with

Spole =
Z
d4k

(2�)4
@n(!)

@T
��(!)�(� ReD� 1(!;k))

=
Z
d3k

(2�)3

n

(1+ nk)log(1+ nk)� nk lognk
o

: (2.24)

To getthesecond line,wehavem adean integration by part,using

@n(!)

@T
= �

@�(!)

@!
; �(!)� � nlogn + (1+ n)log(1+ n); (2.25)

and we have setnk � n(�k),with �k solution of ReD � 1(! = "k;k)= 0.The quasiparticles
thusde�ned by thepolesofthepropagatoraresom etim escalled \dynam icalquasiparticles"
[23]. The quantity Spole is the entropy ofa system ofsuch non-interacting quasiparticles,
whilethequantity

Sdam p =
Z
d4k

(2�)4
@n(!)

@T

�

Im �(!;k)ReD (!;k)� arctan
�

Im �

ReD � 1

��

; (2.26)

which vanisheswhen Im � vanishes,isa contribution com ing from the continuum partof
thequasiparticlespectralweights.
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B .A sim ple m odel

In thissection weshallpresenttheself-consistentsolutionforthe(�=4!)�4 theory,keeping
in �only thetwo-loop skeleton whoseexplicitexpression isgiven in Eq.(2.18).Anticipating
the factthatthe fully dressed propagatorwillbe thatofa m assive particle,we write the
spectralfunction as �(k0;k) = 2� �(k0)�(k20 � k2 � m2),and consider m as a variational
param eter.Thetherm odynam icpotential(2.1),orequivalently thepressure,becom esthen
a sim plefunction ofm .By Dyson’sequation,theself-energy issim ply �= m 2.W eset:

I(m ) �
1

2

Z

[dk]D (k) =
1

2

Z

[dk]
1

!2
n + k2 + m 2

: (2.27)

Then thepressurecan bewritten as:

� P =



V
=
1

2

Z d3k

(2�)3
"k +

1

�

Z d3k

(2�)3
log(1� e� �"k)� m

2
I(m )+

�0

2
I
2(m ); (2.28)

where"2k � k2+ m 2.By dem anding thatP bestationary with respectto m oneobtainsthe
self-consistency condition which takesheretheform ofa \gap equation":

m
2 = �0I(m ): (2.29)

The pressure in the two-loop �-derivable approxim ation,asgiven by Eqs.(2.27){(2.29),is
form allythesam easthepressureperscalardegreeoffreedom inthe(m assless)N -com ponent
m odelwith theinteraction term written as 3

N + 2
(�=4!)(�i�i)2 in thelim itN ! 1 [22].From

the experience with this latter m odel,we know that Eqs.(2.27){(2.29) adm it an exact,
renorm alizablesolution which werecallnow.

Atthisstage,weneed to specify som epropertiesoftheloop integralI(m )which wecan
writeasthesum ofavacuum pieceI0(m )and a�nitetem peraturepieceIT(m )such that,at
�xed m ,IT(m )! 0 asT ! 0.W eusedim ensionalregularization to controltheultraviolet
divergencespresentin I0,which im pliesI0(0)= 0.Explicitly onehas:

�
�
I(m )= �

m 2

32�2

 
2

�
+ log

��2

m 2
+ 1

!

+ IT(m )+ O(�); (2.30)

with

IT(m )=
Z
d3k

(2�)3
n("k)

2"k
; (2.31)

and "k � (k2+ m 2)1=2.In Eq.(2.30),� isthescaleofdim ensionalregularization,introduced,
as usual,by rewriting the bare coupling �0 as ���̂0,with dim ensionless �̂0;furtherm ore,
� = 4� n,with n thenum berofspace-tim edim ensions,and ��2 = 4�e� �2.

W eusethem odi�ed m inim alsubtraction schem e(M S)and de�neadim ensionlessrenor-
m alized coupling � by:

1

�
=

1

�0�
� �
+

1

16�2�
: (2.32)
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W hen expressed in term s ofthe renorm alized coupling,the gap equation becom es free of
ultravioletdivergences.Itreads:

m
2 =

�

2

Z d3k

(2�)3
n("k)

"k
+

�m 2

32�2

 

log
m 2

��2
� 1

!

; (2.33)

Therenorm alized coupling constantsatis�es

d�

dlog��
=

�2

16�2
; (2.34)

which ensuresthatthe solution m 2 ofEq.(2.33)isindependentof��. Eq.(2.34)coincides
with theexact�-function in thelarge-N lim it,butgivesonly onethird ofthelowest-order
perturbative�-function forN = 1.Thisisno actualfaultsincetherunning ofthecoupling
a�ects the therm odynam ic potentialonly at order �2 which is beyond the perturbative
accuracy ofthe 2-loop �-derivable approxim ation. In order to see the correct one-loop
�-function at�niteN ,theapproxim ation for� would haveto bepushed to 3-loop order.

Notealso that,in thepresentapproxim ation,therenorm alization (2.32)ofthecoupling
constantissu�cienttom akethepressure(2.28)�nite.Indeed,in dim ensionalregularization
thesum ofthezero pointenergies"k=2 in Eq.(2.28)reads:

�
�

Z dn� 1k

(2�)n� 1
"k

2
= �

m 4

64�2

 
2

�
+ log

��2

m 2
+
3

2

!

+ O(�); (2.35)

so that

�
�

Z dn� 1k

(2�)n� 1
"k

2
�

� 2

2�̂0
= �

m 4

2�
�

m 4

64�2

 

log
��2

m 2
+
3

2

!

+ O(�) (2.36)

is indeed UV �nite as n ! 4. After also using the gap equation (2.33),one obtains the
��-independentresult

P = � T

Z d3k

(2�)3
log(1� e� �"k)+

m 2

2
IT(m )+

m 4

128�2
: (2.37)

W enow com pute theentropy according to Eq.(2.12).Since Im � = 0 and Re�= m 2,
wehavesim ply:

S = �

Z
d4k

(2�)4
@n(!)

@T
Im log(k2 � !

2 + m
2): (2.38)

Using

Im log(k2 � !
2 + m

2) = � ��(!)�(!2 � "
2

k); (2.39)

and theidentity (2.25),onecan rewriteEq.(2.38)in theform (with nk � n("k)):

S =
Z
d3k

(2�)3

n

(1+ nk)log(1+ nk)� nk lognk
o

: (2.40)
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Thisform ula showsthat,in thepresentapproxim ation,theentropy oftheinteracting scalar
gasisform ally identicalto theentropy ofan idealgasofm assive bosons,with m assm .

Itisinstructivetoobservethatsuch asim pleinterpretationdoesnotholdforthepressure.
Thepressureofan idealgasofm assive bosonsisgiven by:

P
(0)(m )=

Z
d3k

(2�)3

Z
1

�k

d!
�

n(!)+
1

2

�

= �

Z
d3k

(2�)3

�

T log(1� e� �k=T)+
�k

2

�

; (2.41)

which di�ersindeed from Eq.(2.28)bytheterm m 4=� which correctsforthedouble-counting
ofthe interactionsincluded in thetherm alm ass.Notethatsince the m assdependson the
tem perature,and sinceS = dP=dT,itisnotsurprising to �nd such a m ism atch.

M oreover,unlikethecorrectexpression (2.28),Eq.(2.41)isa�icted with UV divergences
which in dim ensionalregularization are proportionalto m 4 (cf. Eq.(2.35)),and hence
dependentupon the tem perature. Thisisprecisely the kind ofdivergences which are m et
in theone-loop HTL-resum m ed calculation ofthepressurein QCD ofRef.[11].

C .C om parison w ith therm alperturbation theory

In view ofthe subsequent application to QCD,where a fully self-consistent determ i-
nation ofthe gluonic self-energy seem s prohibitively di�cult,we shallbe led to consider
approxim ations to the gap equation. These willbe constructed such thatthey reproduce
(but eventually transcend) the perturbative results up to and including order �3=2 or g3,
which isthem axim um perturbativeaccuracy allowed by theapproxim ation S0= 0.

Inview ofthisitisim portanttounderstand theperturbativecontentoftheself-consistent
approxim ationsform 2,P and S.In thissection weshalldem onstratethat,when expanded
in powersofthecouplingconstant,theseapproxim ationsreproducethecorrectperturbative
resultsup toorder�3=2 [1].Thiswillalsoelucidatehow perturbation theorygetsreorganized
by theuseoftheskeleton representation togetherwith thestationarity principle.

For the scalar theory with only (�=4!)�4 self-interactions, we write2 � � 24g2, and
com pute the corresponding self-energy � = m 2 by solving the gap equation (2.33) in an
expansion in powers ofg,up to order g3. Since we anticipate m to be oforder gT,we
can ignore the second term / �m 2 � g4 in the r.h.s. ofEq.(2.33),and perform a high-
tem perature expansion ofthe integralIT(m )in the �rstterm (cf. Eq.(2.31))up to term s
linearin m .Thisgivesthefollowing,approxim ate,gap equation:

m
2 ’ g

2
T
2 �

3

�
g
2
Tm : (2.42)

The�rstterm in ther.h.s.arisesas

24g2IT(0) = 12g2
Z
d3k

(2�)3
n(k)

k
= g

2
T
2 � m̂

2
: (2.43)

2Thisnorm alization for g is chosen in view ofthe subsequentextension to Q CD since itm akes
the scalar therm alm ass in Eq.(2.43) equalto the leading-order Debye m ass in pure-glue Q CD
(Eq.(3.16)with N = 3).
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This is also the leading-order result for m 2,com m only dubbed the \hard therm alloop"
(HTL)3 [9,7]becausetheloop integralin Eq.(2.43)issaturated by hard m om enta k � T.

Thesecond term ,linearin m ,in Eq.(2.42)com esfrom

12g2
Z
d3k

(2�)3

 
n("k)

"k
�
n(k)

k

!

’ 12g2T
Z
d3k

(2�)3

�
1

k2 + m 2
�

1

k2

�

= �
3g2

�
m T ; (2.44)

where we have used the fact that the m om entum integralis saturated by soft m om enta
k � gT,so that to the order ofinterest n("k) ’ T="k (and sim ilarly n(k) ’ T=k). This
providesthenext-to-leading order(NLO)correction to thetherm alm ass

�m
2 � �

3g2

�
m̂ T = �

3

�
g
3
T
2
: (2.45)

Thus,to orderg3,one hasm 2 = m̂ 2 + �m2. In standard perturbation theory [1,2],the
�rstterm arisesastheone-loop tadpolediagram evaluated with abarem asslesspropagator,
while the second term com es from the sam e diagram where the internalline is soft and
dressed by theHTL,thatis D̂ (!;k)� � 1=(!2 � k2 � m̂2).(Atsoftm om enta k � m̂ � gT,
m̂ 2 isofthe sam e orderasthe free inverse propagatorD � 1

0 � k2 � g2T2,and thuscannot
beexpanded outoftheHTL-dressed propagator D̂ (!;k).)

Considersim ilarly the perturbative estim atesforthe pressure and entropy,asobtained
by evaluating Eqs.(2.28)and (2.40)with theperturbativeself-energy �= m 2 ’ m̂ 2 + �m2,
and furtherexpanding in powersofg,to orderg3. The renorm alized version ofEq.(2.28)
yields,to thisorder(recallthatm � gT and � � g2),

P ’
�2T4

90
�
m 2T2

24
+
m 3T

12�
+ � � � +

m 4

2�
: (2.46)

The �rst term s before the dots represent the pressure ofm assive bosons,i.e. Eq.(2.41)
expanded up to third order in powers ofm =T. From Eq.(2.46),it can be easily veri�ed
thattheaboveperturbativesolution form 2 ensuresthestationarity ofP up to orderg3,as
itshould.Indeed,ifwedenote

P2(m ) � �
m 2T2

24
+

m 4

2�
; P3(m ) �

m 3T

12�
; (2.47)

then thefollowing identitieshold:

@P2

@m

�
�
�
�
m̂

= 0;
@P2

@m

�
�
�
�
m̂ + �m

+
@P3

@m

�
�
�
�
m̂

= 0: (2.48)

ThisshowsthattheNLO m asscorrection �m2 � g3T2 can bealso obtained as

�m
2 = �

(@P3=@m )

(@2P2=@m 2)

�
�
�
�
m̂

= �
3g

�
m̂

2
; (2.49)

3In thefollowing,HTL quantitieswillbem arked by a hat.
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in agreem ent with Eq.(2.45). M oreover,P2 � P2(m̂ ) = � g2T2=48 and P3 � P3(m̂ ) =
m̂ 3T=12� are indeed the correctperturbative correctionsto the pressure,to ordersg2 and
g3,respectively [1].In fact,thepressureto thisordercan bewritten as:

P =
�2T4

90
�
m̂ 2T2

24
(1�

3

�
g)+

m̂ 3T

12�
+ � � � +

m̂ 4

2�
(1�

3

�
g)2 + O (g4)

=
�2T4

90
�
m̂ 2

48
T
2 +

m̂ 3T

12�
: (2.50)

Note that the term oforder g2 is only halfofthat one would obtain from Eq.(2.41) by
replacing m by m̂ . This is due to the aforem entioned m ism atch between Eq.(2.41) and
the correct expression for the pressure,Eq.(2.28). In fact,going back to Eq. (2.1),one
observesthatthenetorderg2 contribution tothepressurecom esfrom �evaluated with bare
propagators:theorderg2 contributionsin theothertwoterm sm utually cancelindeed.This
isto beexpected:thereisa single diagram oforderg2;thisisa skeleton diagram ,counted
therefore once and only once in �. Observe also that the term s oforder g 3 originating
from the term s m̂ 2 and m̂ 4 m utually cancel;that is,the NLO m ass correction �m drops
outfrom thepressure up to orderg3.Thisisno accident:thecancellation resultsfrom the
stationarity ofP atorderg2,the�rstequation (2.48).

Considernow the entropy density. The correctperturbative resultup to orderg3 m ay
be obtained directly by taking the totalderivative ofthe pressure,Eq.(2.50)with respect
to T.Onethen obtains:

S =
4

T

 
�2T4

90
�
m̂ 2T2

48
+
m̂ 3T

12�

!

+ O (g4): (2.51)

W e wish, however, to proceed di�erently, using Eq. (2.40), or equivalently, since
@P=@m = 0 when m isa solution ofthegap equation,by writing:

S =
@P

@T

�
�
�
�
�
m

: (2.52)

Thisyields:

S =
4

T

 
�2T4

90
�
m 2T2

48
+
m 3T

48�

!

+ O (m 4
=T); (2.53)

which coincidesasexpected with theexpression obtained by expanding theentropy ofm as-
sivebosons,Eq.(2.40),up to order(m =T)3.Ifwenow replacem by itsleading ordervalue
m̂ ,theresultingapproxim ation forS reproducestheperturbativee�ectoforder� g2,butit
underestim atesthecorrection oforderg3 by a factorof4.Thisiscorrected by changing m
to m̂ + �m with �m = � 3gm̂ =2� in thesecond orderterm ofEq.(2.53).Notethatalthough
itm akesno di�erence to enforce the gap equation to orderg3 in the pressure (because of
thecancellation discussed above),thereisno such cancellation in theentropy.

In view ofthe forthcom ing application to QCD,we shallnow rephrase the previous
discussion in slightly m ore generalterm s,though stillrestricted to the m ain sim pli�cation
thatthepresentsim plem odelo�ers:a self-energy thatisconstantand real.
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Becauseofthestationarity ofthetherm odynam icpotential,Eq.(2.4),theorderg3 term
in the pressure iscom ing entirely from the log term in the therm odynam ic potentialwith
�= �̂,which reads:

P3 = �

Z
d4k

(2�)4
T

!
Im

h

log(1+ D 0(!;k)̂�)� D 0(!;k)̂�
i

� �
T

2

Z
d3k

(2�)3

"

log

 

1+
�̂

k2

!

�
�̂

k2

#

=
T

12�
�̂ 3=2

; (2.54)

where we have subtracted the order-g2 contribution and used the fact that the rem ain-
ing integrand isdom inated by softm om enta to replace n(!)by T=!. The corresponding
contribution to theentropy followsas:

S3 =
dP3
dT

=
@P3

@T

�
�
�
�
�̂

+
@P3

@�̂

�
�
�
�
T

d�̂

dT
� S

(a)

3 + S
(b)

3 ; (2.55)

whereS(a)

3 ,thederivativeofP3 atconstant�̂,equals1/4 ofthetotalorder-g 3 entropy.The
rem aining 3/4 com efrom thederivativeof�̂.

Alternatively,theentropy can beobtained from ourm asterequation (2.12)which,in the
presentm odelwhere Im �= 0,sim pli�esinto:

S = �

Z
d4k

(2�)4
@n(!)

@T
Im logD � 1(!;k) (2.56)

Theterm oforderg2 isobtained by writinglogD � 1 = logD � 1
0 + log(1+ D 0�),setting�= �̂

and expanding thelogarithm to �rstorderin �̂.Onethen obtains:

S2 = �

Z
d4k

(2�)4
@n(!)

@T
�̂ Im D 0(!;k): (2.57)

Since Im D 0(!;k)= ��(!)�(!2 � k2),theintegrand in (2.57)isconcentrated on theunper-
turbed m ass-shell. The ensuing m om entum integralim m ediately yields S2 = � T�̂=12,in
agreem entwith Eq.(2.51).

According toEq.(2.55),thecontribution oforderg3 involvestwo pieces,S3 = S
(a)

3 + S(b)

3

(cf. Eq.(2.55)). These can be also understood as the contributions to Eq.(2.56) from
di�erentm om entum regim es.Speci�cally,thesoftm om enta in thelatteryield:

Ssoft

3 = �

Z
d4k

(2�)4
1

!
Im

h

log(1+ D 0�̂)� D 0�̂
i

; (2.58)

which is the sam e as S(a)

3 in Eq.(2.55). The second contribution oforder g3 com es from
hard m om enta in Eq.(2.56),and isobtained by replacing �̂! ��in Eq.(2.57).Thisyields

Shard

3
=
1

2
��

Z
d3k

(2�)3
1

k

@n(k)

@T
=

1

�
��

d�̂

dT

=
T

2

d�̂

dT

Z
d3k

(2�)3

 
1

k2 + �̂
�

1

k2

!

=
Z
d4k

(2�)4
T

!
Im

�
d�̂

dT
(D̂ � D0)

�

= S
(b)

3 ; (2.59)

wherewehaveused Eq.(2.43)for�̂ in the�rstlineand Eq.(2.45)for��in thesecond line.
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D .A pproxim ately self-consistent solutions

As we have seen,the 2-loop �-derivable approxim ation provides an expression forthe
entropy S asafunctionaloftheself-energy �| nam ely,Eq.(2.12)with S 0= 0| which has
a sim ple quasiparticle interpretation and ism anifestly ultraviolet�nite forany (�nite)�.
TheseattractivefeaturesofEq.(2.12)areindependentofthespeci�cform oftheself-energy,
and willbe shown to hold in QCD aswell. Ofcourse,within thisapproxim ation,the self-
energy isuniquely speci�ed:by thestationarity principle,thisisgiven by theself-consistent
solution to theone-loop gap equation.In thescalar�4-m odel,itwaseasy to givetheexact
solution to thisequation (cf. Sect. 2.B),which coincides with the well-known solution of
a scalarO(N )-m odelin the lim itN ! 1 [22]. In QCD,however,itwillturn outthata
fully self-consistentsolution isboth prohibitively di�cult(becauseofthenon-locality ofthe
gap equation),and not really desirable (for reasons to be discussed in Sect. 3.B below).
This leads us to consider approxim ately self-consistentresum m ations,which are obtained
in two steps: (a)An approxim ation isconstructed forthe solution � to the gap equation,
and (b)theentropy (2.12)isevaluated exactly(i.e.,num erically)with thisapproxim ateself-
energy. W hile step (b)above isunam biguousand inherently nonperturbative,step (a),on
theotherhand,willbeconstrained prim arilyby therequirem entofpreservingthem axim um
possibleperturbativeaccuracy,oforderg3 (cf.Sect.2.C).In addition to that,weshalladd
the qualitative requirem ent thatthe approxim ation for�,and the ensuing one forS,are
wellde�ned and physically m eaningfulforallthe valuesofg ofinterest,and notonly for
sm allg| that is,for allthe values ofg where the fully self-consistent calculation m akes
sense a priori. As we shallshortly see,this last requirem ent generally excludes a strictly
perturbativesolution to thegap equation.

Ofcourse,even with thislastrequirem ent,thereisstillalargeam biguity in thechoiceof
theapproxim ateself-energy.In thisrespectthescalar�4-m odelprovidesan opportunity for
testing thequality oftheseapproxim ationsagainsttheexactsolution ofthegap equation of
the fully self-consistent two-loop calculation. Sim ilarapproxim ationswillbe subsequently
used in QCD.

The exactsolution4 ofthegap equation isdeterm ined by thetranscendentalEq.(2.33)
with � � 24g2. W ith �� = 2�T,the resultm =T asa function ofg isgiven by the fullline
in Fig.1. As an exact result,itis independent ofthe renorm alization scale: a change of
�� ! ��0hasto befollowed by a changeoftherenorm alized coupling g(��)! g(��0)according
to (cf.Eq.(2.34))5

4M ore precisely,as discussed in detailin Ref.[22],Eq.(2.33) has two solutions,a fact that is
frequently overlooked.Thelargerofthetwo isexponentially largerthan T forsm allcoupling and
hasto beruled outbecause ourscalarm odelisconsistentonly asan e�ective (cut-o�)theory.

5So the scalar theory is fully de�ned by giving both a dim ensionfulscale �� and the associated
coupling strength g(��). Equivalently,asusually done in Q CD,we could justgive a scale �� and
agree e.g.that g(��) = + 1 . In this section we shalltake the form er point ofview,so for any
given tem perature T,di�erentvaluesofg(2�T)param etrize di�erently coupled theories.
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FIG .1. Com parison oftheexacttherm alm assin thelarge-N scalarO (N )-m odelasa function
ofg(�� = 2�T) (fullline) with the leading-order (HTL) perturbative result (long-dashed lines),
theNLO onecorresponding to m̂ 2+ �m 2 (shorter-dashed lines),and theperturbatively equivalent
(NLA)version (2.62)(dotted lines).Exceptfortheexactresult,allthesearerenorm alization scale
dependent,thecentrallinescorresponding to ��0= 2�T,the adjacentonesto �T and 4�T.

g
2(��0)= g

2(��)
h

1+ g
2(��)(3=2�2)log(��=��0)

i� 1
: (2.60)

Allperturbative results on the other hand su�er from the problem ofrenorm alization
schem e dependence,the m ore so the stronger the coupling. Having settled for the M S-
schem e, allofthe rem aining am biguity is in the choice ofthe renorm alization scale ��0.
Throughoutthispaper,weshallchoose �� = 2�T asour�ducialscaleand considertherange
��0= �T :::4�T to testfortheschem e dependence ofthevariousapproxim ations.6

Theleading-order(HTL)result,Eq.(2.43),issim ply m =T = m̂ =T = g.Forg = g(2�T),
thisisthestraightlong-dashed linein Fig.1.Forthedi�erentchoices ��0= �T and 4�T,g
isinstead thefunction ofg(2�T)given by Eq.(2.60)and m =T isgiven by thelong-dashed
linesbelow and abovethecentralone.

The NLO correction (2.45) is negative,eventually m aking the perturbative result for
m 2 = m̂ 2+ �m2 negative,in factalready atm oderately largecoupling g� 1(shorter-dashed
linesin Fig.1,individually corresponding to ��0= �T;2�T;4�T again). Clearly,using this
strictly perturbative resultwould m ake the therm odynam ic potentialsfallback to the free
resultatg = �=3 where m̂ 2 + �m2 vanishes,and giveriseto tachyonicsingularitiesbeyond.

However,thereisnounique\strictly perturbative"result.De�ningaNLO m assthrough
m = m̂ + �m would involve �m � �m2=2m̂ . Thiswould lead to an obviousbreakdown of
perturbation theory only fortwice aslargevaluesofg,g > 2�=3 � 2,with negative rather
than im aginary valuesform .

6In Ref.[22],from which we deviateslightly in taking �� = 2�T ratherthan �� = T asthe�ducial
scale,theschem edependenceoftherm alperturbation theory hasbeen studied in theabovescalar
m odelin greatdetailwith the resultthatatleastathigh ordersofperturbation theory ��0� 2�T
seem sto bean optim alrenorm alization point,corroborating theexpectationsexpressed in Ref.[4].
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FIG .2. Com parison ofperturbative and HTL-im proved approxim ationsto the entropy in the
large-N scalar O (N )-m odel. The shaded areas denote the variation underchanges ofthe renor-
m alization scale from ��0= �T to 4�T.Theband m arked \HTL" refersto using theleading-order
(HTL)m assin the 2-loop �-derivable entropy,\NLA" to using the approxim ately self-consistent
NLO m ass(2.62). Also given are the corresponding resultsfora naive strictly perturbative NLO
m asswhen de�ned through m 2 orm ,respectively.

But this does not m ean that there is no physicalcontent in the NLO e�ects beyond
g � 1.Rather,the physicalcontentisunnecessarily lostby therestriction to a polynom ial
resultform 2 (orm )which doesnotpreservethem onotonousbehaviorofm =T asafunction
ofg thatisobserved both atleading orderand in theexactresult.

In orderto ensure such a m onotonousbehavior,in Refs.[15,16]we have considered the
sim plePad�eapproxim ant m̂ 2 + �m2 ! m̂ 2=[1� �m2=m̂ 2]= g2T2=[1+ 3g=�],which already
achieves a dram atic im provem ent forg >

� 1. An alternative,which isin factm ore in the
spiritofapproxim ateself-consistency,isto return to theapproxim ategap equation (2.42)

m
2 = g

2
T
2 �

3

�
g
2
Tm ; (2.61)

and solvethisquadraticequation form exactly,yielding

m N LA=T =
q

g2 + (3g2=2�)2 � 3g2=2�: (2.62)

In what follows, this willbe referred to as our \next-to-leading approxim ation" (NLA)
forthe scalartherm alm ass. Also this approxim ation preserves the propertym ofbeing a
m onotonously growing function ofg.Forvery largeg itsaturatesatm N LA ! (�=3)T.The
corresponding resultsforthe variousrenorm alization scale choicesare given by the dotted
linesin Fig.1,showing a striking im provem entoverthe standard perturbative resultsalso
forvery largecoupling.

W ith m approxim ated either by its leading-order (HTL) value m̂ = g(��)T or by the
NLA result (2.61),the correspondingly approxim ated entropy is obtained by evaluating
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num erically theexpression (2.38).In Fig.2 thisiscom pared with thestrictly perturbative
expressionsforS=S0 up to and including orderg2,and g3,respectively.7 Theshaded bands
indicate thevariation oftheresultswith ��0= �T :::4�T.Evidently,the perturbative 3rd-
order result fails to be a better approxim ation than the 2nd-order one for g >

� 1. The
sem i-perturbatively evaluated HTL result isalready an appreciable im provem ent overthe
2nd-orderperturbative result,whereasthe NLA followsclosely the exact(N ! 1 )result.
Also shown are the results corresponding to the two \strictly perturbative" NLO m ass
de�nitionsm entioned abovewhen used in thesam em anner.

III.Q C D :A P P R O X IM AT ELY SELF-C O N SIST EN T R ESU M M AT IO N S

W e turn now to ourm ain case ofinterest,the QCD plasm a. In this section,we shall
concentrateon apurely gluonicplasm a,deferringtheaddition ofquarkstothenextsection.
Although thetherm odynam icpotentialin QCD isa gaugeindependentquantity,in writing
down itsskeleton representation we have to specify a gauge. In form ulating the two-loop
�-derivable approxim ation we �nd it convenient to start with the tem poralaxialgauge.
W hilethisapproxim ation isby itselfgaugedependent,when supplem ented by perturbative
approxim ationson thegeneralized gap equation itresultsin a gaugeinvariantresum m ation
schem e fortheentropy.

A .T he skeleton representation ofthe entropy

In QCD,the therm odynam ic potentialisa functionalofthe fullgluon (D ),quark (S),
and Faddeev-Popov ghost(D gh)propagators,

�
[D ;S;D gh]=
1

2
TrlogD � 1 � TrlogS� 1 � TrlogD� 1gh

�
1

2
Tr�D + Tr�S + Tr� ghD gh + �[D ;S;D gh]; (3.1)

where Trnow includes traces over color indices,and also over Lorentz and spinor indices
when applicable.Theself-energiesforgluons,quarksand ghostsaredenoted respectively by
�,� and � gh.In Fig.3,thelowest-order(two-loop)skeleton diagram sfor� aredisplayed.

In gaugeswhich do notbreak rotationalinvariance,thegluon propagatorat�nitetem -
peraturecontainsup tofourdi�erentstructurefunctions[24].Only two ofthem correspond
to degreesoffreedom which aretransversein 4 dim ensions;therem aining onesareunphys-
ical,constrained by a W ard identity [25],and com pensated forby theFaddeev-Popov ghost
degreesoffreedom .

In general,thegluon self-energy � ��(k)isa tensorwhich isnottransverse with respect
to the 4-m om entum k� = (!;k),butalso containsup to 4 structure functions. There are

7Thisplotdi�ersfrom thecorrespondingonepresented in Ref.[15]in thatin thelatterthe�ducial
renorm alization scale �� = T hasbeen used,so the abscissae are non-linearly related.
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(a) (b) (c) (d)

FIG .3. Diagram sfor�at2-loop orderin Q CD.W igly,plain,and dotted linesreferrespectively
to gluons,quarks,and ghosts.

howevergaugeswhereghostsdecoupleandwhereasaconsequence� �� isstrictlytransverse8:
axialgaugesn�A a� = 0,with n� a constant4-vector.

A particularly convenientchoiceappearsto bethetem poralaxialgauge,wheren� coin-
cideswith therest-fram evelocity oftheheatbath and thuspreservesrotationalinvariance.
Ignoringthewell-known di�cultieswith thisgaugein theim aginary-tim eform alism [26],the
tem poralaxialgauge would lead to greatsim pli�cationsofthe structure ofEq.(3.1):The
ghostself-energy � gh vanishes and the ghostpropagatordoesnotappearin �. Secondly,
thereareonly two independentstructurefunctionsin thegluon self-energy,which can then
bewritten as(suppressing thecolorlabels)

� ij(!;k)=

 

�ij �
kikj

k2

!

� T(!;k)�
kikj!

2

k4
� L(!;k); (3.2)

� 00(!;k)= � �L(!;k); � 0i(!;k)= �
!ki

k2
� L(!;k): (3.3)

W ith thesede�nitions,thepropagatorin tem poralaxialgaugereads

D
TAG

ij (!;k)=

 

�ij �
kikj

k2

!

D T(!;k)+
kikj

k2

k2

!2
D L(!;k) (3.4)

where

D T(!;k) �
� 1

!2 � k2 � �T(!;k)
; D L(!;k) �

� 1

k2 + � L(!;k)
: (3.5)

Note thatbecause D TAG
0� = D TAG

�0 � 0,only the spatialcom ponents�ij ofthe polarization
tensorenterEq.(3.1)in tem poralaxialgauge.

Forlateruseweintroducethefollowing spectralrepresentations:

8Thisproperty can neverthelessbelostin approxim ationswhich donotpreservegaugesym m etry;
cf.thediscussion afterEq.(3.11).
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D T(!;k)=
Z 1

� 1

dk0
2�

�T(k0;k)

k0 � !
;

D L(!;k)= �
1

k2
+
Z 1

� 1

dk0
2�

�L(k0;k)

k0 � !
: (3.6)

Here�T and �L arethespectraldensities:

�L;T(k0;k) � lim
�! 0

2Im D L;T(k0 + i�;k): (3.7)

[Notethesubtraction perform ed in thespectralrepresentation ofD L(!;k):thisisnecessary

since D L(!;k)! � 1=k2 asj!j! 1 . Attree-level,�(0)L = 0 and �
(0)

T = 2��(k0)�(k2),and

thereforeD (0)

T = � 1=(!2 � k2)and D (0)

L = � 1=k2.]
Concentrating on the gluonic contributions for now and postponing the inclusion of

ferm ionsto thenextsection,weobtain in analogy to Eq.(2.8)


g=V = N g

Z
d4k

(2�)4
n(!)

�

2
�

Im log(� !
2 + k

2 + � T)� Im �TD T

�

+
�

Im log(k2 + � L)+ Im � LD L

��

+ T�g[D T;D L]=V (3.8)

whereN g isthenum berofgluons(N 2� 1forSU(N ),i.e.8forQCD).9 Theentropy ofpurely
gluonicQCD can then bewritten in com pleteanalogy to thederivation ofEq.(2.12)as

S = ST + SL + S0 (3.9)

where

ST = � 2Ng
Z
d4k

(2�)4
@n(!)

@T

n

Im log(� !
2 + k

2 + � T)� Im �T ReD T

o

; (3.10a)

SL = � Ng

Z
d4k

(2�)4
@n(!)

@T

n

Im log(k2 + � L)+ Im � L ReD L

o

; (3.10b)

and

S0� �
@(T�)

@T

�
�
�
D
+ N g

Z
d4k

(2�)4
@n(!)

@T
(2Re� T Im D T � Re�L Im D L): (3.11)

As in the scalar case,we are interested in the �-derivable approxim ation obtained by
keeping only the two-loop skeletonsofFig.3. In gauge theories,however,the �-derivable
approxim ationshave in generalthe drawback ofviolating gauge sym m etry,because vertex
functions are not treated on equalfooting with self-energies (in particular, in the two-
loop approxim ation to � there are no vertex corrections at all). Thus the corresponding

9Herewehaveassum ed aprincipal-valuetreatm entofthefactork2=!2 in Eq.(3.4)forthecontour
integration.Because thisfactorisrealand positive,itcan be dropped from within the im aginary
partofthelogarithm involving � L.
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approxim ation to thepolarization tensor� �� needsnotbetransverse.Nevertheless,in the
tem poralaxialgauge,the previousexpressions are nota�ected by a lossof4-dim ensional
transversality,becausethey involveonly thespatialcom ponents� ij,orequivalently � T and
� L (cf.Eq.(3.2)).

Therefore,in this gauge,the property that S0 = 0 in the two-loop approxim ation to
� stillholds,for the sam e,essentially com binatorialreasons as in the scalar �eld theory
with cubicand quarticinteractionsoftheprevioussection.In thisapproxim ation,theself-
energies� T,� L and propagatorsD T,D L areto bedeterm ined self-consistently,by solving
thegeneralized \gap equations"

D
� 1
T = � !

2 + k
2 + � T[D T;D L]; D

� 1
L = � k

2 � �L[D T;D L]; (3.12)

i.e.,the Dyson equationswhere � s[D T;D L](s = T;L)are the one-loop self-energiesbuilt
outofD T and D L.

W hereastheentropy expressions(3.10)them selvesarem anifestly UV �nite,Eqs.(3.12)
containUV divergenceswhich requirerenorm alization.Becauseofthesim pleW ardidentities
ofaxialgauges,(wave function)renorm alization ofthe gluon self-energy atlowestorderin
g containsthecorrectone-loop coe�cientofthebeta function [27,28].Beyond lowestorder,
however,itisnotclearthatthegap equations(3.12)can berenorm alized in asim plem anner
(in contrastto thescalartoy m odelofSect.IIB).

Atany rate,in generalgaugesthe 2-loop �-derivable approxim ation m issesthe correct
perturbative running ofthe coupling constant. Indeed,the latter is an order-g4 e�ect in
the therm odynam ic potentials and is thus beyond the perturbative accuracy ofa 2-loop
�-derivableapproxim ation.

B .A pproxim ately self-consistent solutions

Unlike the scalartheory with ��4 interactions,in QCD the \gap equations" (3.12)are
non-local,which m akestheirexactsolution prohibitively di�cult. Butin fact,aswe have
justexplained,uncertaintiesconcerning gaugesym m etry and renorm alization beyond order
g3 m akesuch a fully self-consistentsolution notreally desirable.

For this reason we shallconstruct approxim ately self-consistentsolutions which m ain-
tain equivalence with conventionalperturbation theory up to and including order g3 (the
m axim um perturbative accuracy allowed by two-loop approxim ations for �),and which
are m anifestly gauge-independent and UV �nite. After such approxim ations| where the
gluon polarization tensoristransverse and the ghostself-energy (in gaugeswith ghosts)is
neglected| ,Eqs.(3.10) have the sam e form alstructure in any other gauge,and S0 = 0
to the sam e accuracy. W e can therefore drop the restriction to the som ewhatproblem atic
tem poralaxialgauge.Forinstance,in the m orecom m only used Coulom b gaugethe gauge
propagatorisgiven by

D
CG

00
(!;k)= D L(!;k); D

CG

ij (!;k)=

 

�ij �
kikj

k2

!

D T(!;k) (3.13)

and the ghostpropagatordoesnotcontribute aslong asthere isno nontrivialghostself-
energy;in covariantgaugesunderthesam ecircum stances,thethen propagating ghostsjust
com pensateforan additionalm asslesspolethatispresentin thegluon propagator.
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W ith the gauge-independentapproxim ationsfor� L;T thatwe shallobtain from (HTL)
perturbation theory,the e�ectively one-loop expressions forthe entropy,Eqs.(3.10),con-
stitute a gauge-invariant approxim ation to the fullentropy. By then com puting exactly
these expressions,we shallobtain a gauge-invariantresultwhich isnonperturbative in the
coupling g,whilebeing equivalenttoconventionalresum m ed perturbation theory up to and
including orderg3.

As generally with therm al�eld theories [8,2],the perturbative solution ofEqs.(3.12)
requires to distinguish between soft(k <

� gT)and hard (k � T)�elds,which are dressed
di�erently by therm aluctuations. In (purely gluonic)QCD,and in the Coulom b gauge,
thehard �eldsarealwaystransverse,whilethesoft�elds| which m ay beseen ascollective
excitationsoftheform er[7,8]| can beeitherlongitudinal,ortransverse.

Becauseofthelim ited phase-space,theleadingorder(LO)contribution ofthesoftm odes
tothetherm odynam icalfunctionsisalreadyoforderg3 [1],sothecorrespondingself-energies
are needed only to leading orderin g. These are the so-called hard therm alloops �̂ L and
�̂ T [29,9],which in thepresentform alism appearasthesolutionsto Eqs.(3.12)to LO in g
and forsoft(k � gT)externalm om enta.They read:

�̂ L(!;k)= m̂
2

D

"

1�
!

2k
log

! + k

! � k

#

; (3.14)

�̂ T(!;k)=
1

2

"

m̂
2

D +
!2 � k2

k2
�̂ L

#

; (3.15)

with theDebyem ass

m̂
2

D = �
g2N

�2

Z
1

0

dkk2
@n

@k
=

g2T2N

3
: (3.16)

The HTL’s (3.14) are m anifestly UV �nite: they derive from one-loop Feynm an graphs,
but involve only the contribution ofthe therm aluctuations in the latter (as opposed to
the vacuum uctuations,which are responsible for UV divergences). The corresponding
propagatorsarethen de�ned via theDyson equations(3.12):

D̂
� 1
T (!;k) = � !

2 + k
2 + �̂ T(!;k); D̂

� 1
L (!;k) = � k

2 � �̂ L(!;k); (3.17)

Notethat,fork � gT,theself-energy correctionsin Eqs.(3.14){(3.17)areasim portantas
thecorresponding tree-levelinverse propagatorsD � 1

0 � k2 � g2T2.Thus,atsoftm om enta,
the self-energies cannot be expanded out ofthe HTL-resum m ed propagators. The HTL
spectraldensitiesconsistofquasiparticle polesattim e-like m om enta and Landau dam ping
cuts for j!j< k. W hen k � gT,the transverse pole describes the usualsingle-particle
excitations (hard transverse gluons),while the additionalpole associated to the collective
longitudinalexcitation hasexponentially vanishing residue [31].

Forhard,transverse,�elds,we need the solution � T(k � T)ofEqs.(3.12)to leading,
and next-to-leading order(NLO).Thisisobtained as:

� T(k � T)’ �(2)T + ��T; (3.18)

where � (2)

T � �T[D 0]� g2 isthe bare one-loop self-energy (i.e.,the standard one-loop dia-

gram swith tree-levelpropagatorsD 0 = (D (0)

T ;D
(0)

L )on theinternallines),and ��T � g3T2
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FIG .4. NLO contributionsto ��T athard m om entum .Thick dashed and wiggly lineswith a
blob representHTL-resum m ed longitudinaland transverse propagators,respectively.

isan e�ective one-loop self-energy where one ofthe internallinesishard (and transverse),
whiletheotheroneissoft(longitudinalortransverse)and dressed by theHTL.Thus,��T
isthe sum ofthe fourdiagram sdepicted in Fig.4;these are explicitly com puted in App.
A 3.

A priori,the one-loop self-energy involves also vacuum uctuations,and therefore UV
divergences, which callfor renorm alization. The UV divergences could be absorbed by
a wave-function renorm alization constant,which drops out from the entropy expressions
(3.10).Asitwillturn outpresently,onlythelight-conelim itof� T[D 0]willcontributetothe
orderofinterest.In linewith ourstrategy ofrestricting to gauge-invariantapproxim ations
to the self-energy,we shallaltogether drop the gauge-dependent vacuum pieces,which in
factvanish on thelight-cone.

Because from standard HTL perturbation theory we take UV �nite approxim ationsfor
� L;T,we shallin facthave no inherentbeta function10 prescribing the scale dependence of
thecouplingg.W hen num erically evaluatingtheresults,weshallsim ply adoptthestandard
runningcouplingconstantoftheM S schem eand considertheresultingrenorm alization-scale
dependence ofourresultsasan estim ateofourtheoreticalerror(cf.Sect.IID).

C .Perturbation theory: Low est orders

In this and the following subsections,we shallconsider the perturbative expansion of
ourm asterequation forthe entropy,Eqs.(3.10),and recover in the process the standard
perturbative resultsup to orderg3. Thisisusefulnotonly asa crosscheck ofthe various
approxim ations,butalso asan illustration ofthe rathernon-trivialway thatperturbation
theory getsreorganized by this equation. M oreover,the perturbative expansion willshed
m ore light on the physicalinterpretation ofthe various term s in Eqs.(3.10),and give us
hintsforbetterapproxim ationsto be used in the non-perturbative,num ericalcalculations
to com e.

10A re�nem entofthepresentapproach which isaccurateatand aboveorderg4 and which hascor-
rect(lowest-order)couplingconstantrenorm alization would requireatleasta3-loop approxim ation
to the therm odynam icpotentials.
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Theleading-orderresultisobtained by putting � T = � L = 0 in Eqs.(3.10).Thisisthe
Stefan-Boltzm ann entropy ofa freegasofm asslesstransverse gluons:

SSB = � 2Ng
Z
d4k

(2�)4
@n(!)

@T
Im log(� !

2 + k
2)

= � 2Ng
Z
d3k

(2�)3
@

@T

h

T log(1� e
� k=T)

i

=
4�2

45
N gT

3
: (3.19)

Heretheretarded prescription (! ! !+ i�)isim plicitin the�rstintegral,which isevaluated
with thehelp oftheidentities(2.39)and (2.25).

The order-g2 contribution to the entropy com es also exclusively from hard transverse
gluons,via one-loop corrections. Speci�cally,by expanding Eq.(3.10a) to order g2,one
obtains:

S2 = � 2Ng
Z
d4k

(2�)4
@n

@T

8
<

:
� Im

� (2)

T

!2 � k2
+ Im � (2)

T Re
1

!2 � k2

9
=

;

= 2N g

Z
d4k

(2�)4
@n

@T
Re� (2)

T Im
1

!2 � k2

= � 2�Ng
Z
d4k

(2�)4
@n

@T
�(!)�(!2 � k

2)Re� (2)

T (!;k); (3.20)

wheretheintegralisindeed dom inated byhard m om entak � T.NotethatS(2)involvesonly
the light-cone projection Re� (2)

T (! = k) ofthe one-loop self-energy for (hard)transverse

gluons� (2)

T (!;k).Thisprojection isa prioriUV �nite:indeed,gaugesym m etry guarantees
thatthevacuum contribution to Re� (2)

T (! = k)m ustvanish.M oreover,quite rem arkably,
thisprojection turnsoutto bealso m om entum -independent[32],

� (2)

T (!2 = k
2)= g

2
N T

2
=6� m

2

1 ; (3.21)

and thus de�nes a (therm al) m ass correction,also known as the asym ptotic m ass. Thus,
�nally,

S2 = � Ng
m 2

1 T

6
= �

N N g

36
g
2
T
3
; (3.22)

which isindeed the correctresult[1].Note also thatatleading orderthe asym ptotic m ass
issim ply related to the(HTL)Debyem ass:m 2

1 = m̂ 2
D =2.

It is worth em phasizing that Eq.(3.20) is the sam e as the entropy ofan idealgas of
m assive particles (with constantm asses equalto m 1 )when expanded to leading orderin
m 2

1 .Aswasthecasein thescalarm odeldiscussed in Sect.II,such a sim ple identi�cation
isspeci�cto theentropy,and doesnothold fortheorder-g2 e�ectin thepressure.

In thescalarcasewehaveseen thattheHTL-resum m ed one-loop pressureover-includes
the LO interaction term by a factoroftwo. Forgluons,Ref.[11]reported instead a factor
ofthree. Inspecting the corresponding calculation reveals that this arises because ofan
incom plete im plem entation ofdim ensionalregularisation.W hile in the latter2� 2� trans-
versepolarisationsofthegluonsareconsidered,theHTL expressionsfor� �� havenotbeen
m odi�ed accordingly.Howeverin d 6= 3 spatialdim ensions,Eqs.(3.15,3.14)becom e
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�̂ T =
1

d� 1

"

m̂
2

D +
!2 � k2

k2
�̂ L

#

; �̂ L = m̂
2

D

"

1� 2F1(
1

2
;1;

d

2
;
k2

!2
)

#

; (3.23)

where

m̂
2

D = (d� 1)g2N T2(
T

�
)d� 3

�(d� 1)�(d+ 1
2
)

�(d+ 1)=2
(d > 2) (3.24)

as determ ined by the d-dim ensionalanalog ofEq.(3.16). This gives a realand constant
�̂ �
� = m̂ 2

D = (d� 1)m21 such thatthe order-g2 contribution to the 1-loop HTL-resum m ed

pressurePH TL = � 1

2
Trlog(D � 1

0 + �̂)is

P
(2)

H TL = N g

Z
dd+ 1k

(2�)d+ 1
n(!)Im

�̂ �
�

!2 � k2
= N gm̂

2

D

Z
dd+ 1k

(2�)d+ 1
n(!)Im

1

!2 � k2
! 2� P2 (3.25)

as d ! 3,with dim ensionalregularization elim inating the quadratic divergence for ! !

� 1 . This is then consistent with m om entum cut-o� regularization,where d = 3 can be
keptthroughout,afterdropping a divergence / m̂ 2

D �
2. Presum ably,the num ericalresults

reported in Ref.[11]willchangesigni�cantly when corrected accordingly.
This sensitivity to (a consistent usage of) regularization schem es is related in fact to

the UV behavior ofHTL-screened perturbation theory;it is not present in our UV-�nite
HTL-resum m ation of(two-loop)entropy and density.

D .Perturbation theory: O rder g3

Theextraction oftheorder-g3 contribution to theentropy in Eq.(3.10)turnsoutto be
m oreintricatethan thestandard calculation oftheplasm on e�ectin thepressure[1].

1.The order g3 in the pressure

Letusbrieydiscuss�rsttheplasm one�ectinthepressure,asobtainedfrom theskeleton
representation (2.1).Asexplained forthescalarcasein Sect.IIC,theorder-g3 contribution
to thepressure com esentirely from softm om enta,and reads(cf.Eq.(2.54)):

P3 = �

Z
d4k

(2�)4
T

!
Im

h

log(1+ D 0�̂)� D 0�̂
i

: (3.26)

In QCD,D = (D T;D L),�̂ = (�̂ T;� �̂ L),and a sum overcolorand polarization statesis
im plicit in (3.26). [Note the m inus sign in front of� L in these com pact notations;this
reectsourconventionsin Eqs.(3.2){(3.5).]Theintegralover! yields:

Z
d!

�!
Im

h

log(1+ D 0�̂)� �̂D 0

i

= log
h

1+ D 0(! = 0)̂�(! = 0)
i

� �̂(! = 0)D 0(! = 0)

= log

 

1+
m̂ 2

D

k2

!

�
m̂ 2

D

k2
; (3.27)
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wherethenon-vanishing contribution in thesecond linecom esfrom thelongitudinalsector
alone[33],since �̂ L(! = 0)= m̂ 2

D ,while �̂ T(! = 0)= 0.Thus,

P3 = � NgT

Z
d3k

(2�)3

"

log

 

1+
m̂ 2

D

k2

!

�
m̂ 2

D

k2

#

= N g

m̂ 3
D T

12�
; (3.28)

where the colorfactorN g = N 2 � 1 hasbeen reintroduced. Eq.(3.28)isindeed the stan-
dard resultforP3,generally obtained by sum m ing thering diagram sin theim aginary-tim e
perturbation theory [1].

Theorder-g3 e�ectin theentropy can benow directly calculated asthetotalderivative
ofP3 with respectto T.W ethusobtain S3 = S

(a)

3 + S
(b)

3 ,where

S
(a)

3 �
@P3

@T

�
�
�
�
m̂ D

= � Ng

Z
d4k

(2�)4
@n(!)

@T
Im

h

log(1+ D 0�̂)� �̂D 0

i

= N g

m̂ 3
D

12�
; (3.29a)

isthe derivative at�xed � = �̂ (recallthatthe HTL’sdepend upon the tem perature only
via theDebyem ass;cf.Eqs.(3.14)and (3.16)),and

S
(b)

3 �
@P3

@m̂ D

dm̂ D

dT
= � Ng

Z
d4k

(2�)4
n(!)Im

"
d�̂

dT
(D̂ � D0)

#

= N g

m̂ 3
D

4�
: (3.29b)

This decom position ofS3 is interesting in view ofthe com parison with the perturbative
expansion ofEqs.(3.10),to which wenow turn.

2.The order g3 in the entropy

Unlike what happens for the pressure,the order-g3 e�ects ofthe hard m odes do not

cancelin Eqs.(3.10),sim ilarly to what we have observed in the scalar case in Sect.IIC.

Rather,wegeta non-zero such contribution by replacing Re� (2)

T � ! Re��T in Eq.(3.20),
with ��T � g3T2 theNLO self-energy correction ofhard transverse gluons(cf.Eq.(3.18)).
Thisyields:

Shard

3 = � Ng

Z
d3k

(2�)3
1

k

@n(k)

@T
Re��T(! = k): (3.30)

Once again,we need only the light-cone projection ofthe self-energy ofthe hard particles.
W hatis,however,new ascom pared to the situation atorderg2 isthat Re��T(! = k)is
nota constant\m asscorrection",butrathera com plicated function ofk (see Eqs.(A16)
and (A17)). The calculation ofShard

3 isdeferred to the Appendix,butthe �nalresultcan
beanticipated,asweshallseeshortly.

Theothercontributionsoforderg3 com efrom thesoftgluons,which can belongitudinal
ortransverse,and wewriteSsoft

3 = S
(3)

L + S
(3)

T .W ehave(with n(!)’ T=!):

S
(3)

L = � Ng

Z
d4k

(2�)4
1

!

n

Im log(k2 + �̂ L)+ Im �̂ L ReD̂ L

o

; (3.31)

S
(3)

T = � 2Ng
Z
d4k

(2�)4
1

!

�

Im

"

log

 

1�
�̂ T

!2 � k2

!

+
�̂ T

!2 � k2

#

� Im �̂ T Re
�

D̂ T � D
(0)

T

��

; (3.32)
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where in the transverse sector, the contribution of order g2 has been subtracted (cf.

Eq.(3.20)). M ore precisely, Eq.(3.20) involves the fullone-loop self-energy � (2)

T ,while
the subtracted term sin Eq.(3.32)involve only �̂ T,the HTL.Thisisnevertheless correct

since� (2)

T and �̂ T coincideon thelight-cone:

�̂ T(!
2 = k

2)= � (2)

T (!2 = k
2)= m

2

1 : (3.33)

Ultim ately,allthecontributionsoforderg3 displayed in Eqs.(3.30){(3.32)aresoft�eld

e�ects: the quantitiesS (3)

L and S
(3)

T are the LO entropiesofthe softgluons,while Shard
3

is
theNLO correction to theentropy ofthehard gluonsinduced by theircoupling to thesoft
�elds(cf.Fig.4).W eexpectthesethreecontributionsto add to thestandard resultforthe
plasm on e�ectin theentropy,nam ely (cf.Eqs.(3.29)):

Ssoft

3 + Shard

3 = S3 � Ngm̂
3

D =(3�): (3.34)

This is veri�ed in the Appendix,where the quantities in Eqs.(3.30){(3.32)are explicitly
com puted,butitcan bealso understood on thebasisofthefollowing argum ent.

Eqs.(3.30){(3.32)can becom pactly rewritten as

S3 = �

Z
d4k

(2�)4
1

!

n

Im
h

log(1+ D 0�̂)� �̂D 0

i

� Im �̂Re(D̂ � D0)
o

�

�

Z
d4p

(2�)4
@n(p0)

@T
Re��Im D 0; (3.35)

wherethesum overcolorand polarization statesisagain im plicit.The�rstterm within the
(soft)integraloverk isobviously thesam easS(a)

3 ,thetem peraturederivativeofP3 at�xed
m̂ D (cf. Eq.(3.29a)). Itthus rem ains to show thatthe other term s in Eq.(3.35)add to

S
(b)

3 ,the piece ofthe entropy involving the derivative ofthe Debye m ass(cf. Eq.(3.29b)).
Thatis,onehasto provethefollowing relation:

Z
d4p

(2�)4
@n(p0)

@T
Re��Im D 0 =

Z
d4k

(2�)4

�
@n(!)

@T
Im �̂Re(D̂ � D0)

+n(!)Im
�
d�̂

dT
(D̂ � D0)

��

: (3.36)

Eq.(3.36)isnothingbutthegeneral2-loopidentityS0= 0expanded totheorderg3.Indeed,
to orderg3,Eq.(2.13)im plies:

@(T�3)

@T

�
�
�
D
=

Z
d4k

(2�)4
@n(!)

@T
Re�̂Im (D̂ � D0)+

Z
d4p

(2�)4
@n(p0)

@T
Re��Im D 0; (3.37)

where the �rst integralis saturated by soft m om enta k � gT,while the second one is
dom inated by p hard,p� T.On theotherhand,�3[D ]hastheexplicitexpression11

11Thisfollowsby expanding �[D ]in powersofg asfollows:�[D ]= �[D 0]+ (��[D ]=�D )jD 0
(D �

D 0)+ � � � � �2 + �3 + � � � .
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T�3[D ]�
T

2
Tr[�[D 0](D � D0)]’

Z
d4k

(2�)4
n(!)Im [̂�(D̂ � D0)] (3.38)

which im plies:

@(T�3)

@T

�
�
�
D
=

Z
d4k

(2�)4

(
@n(!)

@T
Im [̂�(D̂ � D0)]+ n(!)Im

�d�̂

dT
(D̂ � D0)

�)

: (3.39)

A com parison ofEqs.(3.37)and (3.39)im m ediately leadsto Eq.(3.36).
M oreover,thesoftlongitudinaland transversesectorsaredecoupled atthisorder:�3[D ]

in Eq.(3.38)issim ply thesum oftwo two-loop diagram s,onewith a softelectricgluon,the
otheronewith a softm agnetic gluon.The condition S0= 0 can beapplied to any ofthese
two diagram sseparately.ItfollowsthatEq.(3.36)m usthold separately in theelectric,and
the m agnetic sector. Thisisexplicitly veri�ed in the Appendix,via a lengthy calculation.
Rem arkably,Eq.(3.36)provides a relation between the e�ects oftherm aluctuations on
thehard and softexcitations,which areboth encoded in thetwo-loop diagram sfor�3:By
opening up the softline in �3,one obtainsthe hard one-loop diagram responsible forthe
HTL �̂;by opening up one ofthe hard lines,one getsthe e�ective one-loop diagram sfor
�� displayed in Fig.4.In thecaseofthescalartheory,thisrelation isexplicitly veri�ed in
Eqs.(2.57){(2.59).

Letusconclude thissubsection on perturbation theory with a com m enton the higher-
ordercontributionsto SL : By inspection ofEq.(3.10b),itiseasy to verify thatnotonly
theLO contribution � g3 discussed above,butalso thecorrectionsoforderg4 and g5,com e
exclusively from softm om enta.Indeed,onecan estim atethecontribution ofhard m om enta
by expanding theintegrand in Eq.(3.10b)in powersof� L=k

2,to obtain:

Im log(k2 + � L)=
Im � L

k2
�
1

2

Im (� L)2

k4
+ � � � =

Im � L

k2
�

Im � L Re� L

k4
+ � � �

� Im �L Re
1

k2 + � L

= �
Im � L

k2
+

Im � L Re� L

k4
+ � � � ; (3.40)

up to term soforder(� L=k
2)3.Rem arkably,notonly theLO term s,butalso theNLO ones,

oforderg4,m utually cancelin the sum ofthe above equations. Thus,asanticipated,the
hard m odescontributeto SL only atorderg6 orhigher.Thisshowsthatourapproxim ation
schem e is rather insensitive to the unphysical, hard longitudinalm odes. This is to be
contrasted to the direct HTL resum m ation ofthe pressure where,to one-loop order,the
longitudinalsector is sensitive to hard m om enta already at order g4,as indicated by the
presence ofUV divergencesatthisorder[11].

3.The HTL entropy

Since ��T(! = k) is a com plicated,non-localfunction,whose num ericaltreatm ent is
di�cult,itisinterestingtoexplore�rstapproxim ationswhere�� T issettozero.Speci�cally,
letusde�nethefollowing approxim ation to theentropy,which isobtained from Eqs.(3.10)
by replacing allpropagatorsand self-energiesby theirHTL counterparts:
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SH TL = � Ng

Z
d4k

(2�)4
@n(!)

@T

n

2Im log(� !
2 + k

2 + �̂ T)

� 2Im �̂ T ReD̂ T + Im log(k2 + �̂ L)+ Im �̂ L ReD̂ L

o

: (3.41)

W eshallsuccinctly referto thisastheHTL entropy.Clearly,thisisstilla non-perturbative
approxim ation,sinceitsexpansion containsallordersin g.

A priori,Eq.(3.41) is not doing justice to the hard particles,since it uses the HTL
correctionsforboth hard and softm om enta (whileweknow thattheHTL’saretheLO self-
energiesforsoftm om enta alone).Butitturnsoutthattheorder-g2 e�ect,which isentirely

due to the hard �elds,isneverthelesscorrectly reproduced by Eq.(3.41):S (2)

H TL = S2.The
point,asem phasized in Sect.IIIC,isthatS2 issensitive only to the light-cone projection
ofthe self-energy,where the HTL �̂ T isa good LO approxim ation forthe hard m odes(cf.
Eq.(3.33)).12

On theotherhand,SH TL containsonly a partoftheg3 e�ect,nam ely thatpartwhich is
associated withtheentropyofsoftgluons:indeed,itisobviousthattheorder-g3 contribution
to Eq.(3.41)com esfrom softm om enta alone,whereitcoincideswith Ssoft

3
= S

(3)

L + S
(3)

T ,cf.
Eqs.(3.31){(3.32).Letusthereforestudy thisquantity in m oredetail(itisthesam easthe
�rstintegralin Eq.(3.35)):

S
(3)
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Z
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(2�)4
1

!

n

Im
h

log(1+ D 0�̂)� �̂D 0
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� Im �̂Re(D̂ � D0)
o

= S
(a)

3 + �S 3; (3.42)

whereS(a)

3 = (@P3=@T)ĵm D
= S3=4 (cf.Eq.(3.29a)),and therem ainderis

�S 3 � Ng

Z
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(2�)4
1

!

n

2Im �̂ T Re
�

D̂ T � D
(0)

T

�

� Im �̂ L Re
�

D̂ L � D
(0)

L

�o

� �S (3)

T + �S (3)

L : (3.43)

Rem arkably,wehavefound thatthetransverseand longitudinalcontributionsto�S 3 cancel
within theaccuracythatwehavereached in anum ericalintegration ofEq.(3.43)(m orethan

8 signi�cant digits). W ith �S 3 = 0,S(3)

H TL isprecisely equalto one fourth ofthe totalg3

e�ect,asitwasalso thecasein thescalartheory with g2�4 self-interactions(cf.Sect.IIC):

S
(3)

H TL � S
(3)

T + S
(3)

L =
@P3

@T

�
�
�
�
m̂ D

= S3=4: (3.44a)

In QCD,however,this property is m uch m ore subtle: In the scalar theory,the quantity
which wecallhere�S 3 wastrivially zero,since Im �̂ = 0 in thatcase.Here,�S 3 = 0 only
becauseacom pensation takesplacein between thetransverseand longitudinalcontributions

12This is to be contrasted with a direct HTL resum m ation ofthe one-loop expression for the
pressurein Q CD along thelinesofRef.[11]| theretheHTL correctionscontributethroughoutthe
hard m om entum phase space,while no longer being the right approxim ation. Instead they give
riseto arti�cialUV problem s.
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FIG .5. The integrand ofEq.(3.43) afterperform ing the energy integral. The transverse (T)
and longitudinal(L)contributionsdo notcancelforeach value ofk;theirsum (fullline)vanishes
only upon integration overallk.

toEq.(3.43),bothofwhicharisefrom Landau-dam pingcontributionsatspace-likem om enta.
M oreover,thiscancellation occursonly afterintegrating overallenergiesand m om enta (for
generick,theresultoftheenergy integralin Eq.(3.43)isnon-zero,seeFig.5).Num erically,

thecontributionsto S(3)

H TL � S
(3)

T + S
(3)

L turn outto be

S
(3)

T + S
(3)

L = (0:34008738:::� 0:09008738:::)S3: (3.44b)

Letussum m arizeherethevariouscancellationswhich takeplaceatorderg3 in thecom -
pletetwo-loop entropy:Thestraightforward perturbativeexpansion ofourm asterequations
(3.10)leadsusto Eqs.(3.30){(3.32),and thusto thefollowing expression forS3 [recallthe
com pactnotation introduced afterEq.(3.26)]:

S3 = Ssoft

3
+ Shard

3
;

Ssoft

3 =
@P3

@T

�
�
�
�
m̂ D

+ �S (3)

L + �S (3)

T ;

Shard

3
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@P3

@m̂ D

dm̂ D

dT
� Ng

Z
d4k

(2�)4
@n(!)

@T
Im �̂Re(D̂ � D0)

=
@P3

@m̂ D

dm̂ D

dT
� �S (3)

L � �S (3)

T : (3.45)
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In these equations,�S (3)

L and �S (3)

T have been de�ned in Eq.(3.43),and the second line
in the above expression for Shard

3
follows either by using S0 = 0 (cf. Sect. III.D.2),or

by explicitly com puting Eq.(3.30) within HTL-resum m ed perturbation theory (cf. the

Appendix;seeespecially Eqs.(A22)and (A23)there).Furtherm ore,by construction,S(3)

H TL

isthesam easSsoft
3 .

According to these equations,the quantities �S (3)

L and �S (3)

T cancelin Ssoft
3

+ Shard
3

independently in the longitudinaland transverse sectors,thus yielding the correct result
forS3,cf. Eqs.(3.29a)and (3.29b). Thisiswhatwe have been able to prove analytically
(cf. Sect. III.D.2 and the Appendix). On the otherhand,we have found num erically that

�S 3 = �S (3)

L + �S (3)

T = 0,so thattheactualresultsforSsoft
3 and Shard

3 areeven sim pler:

Ssoft

3 =
@P3

@T

�
�
�
�
m̂ D

; Shard

3 =
@P3

@m̂ D

dm̂ D

dT
: (3.46)

Atthisstage,wehave no fundam entalunderstanding ofthe\sum rule" �S 3 = 0.Butthis
serendipitous result willhave im portant consequences in practice,as we shallsee below,
becauseitdeterm inesthem agnitudeofShard

3
to be3=4 ofS3,aswasthecasein thesim ple

scalarm odelofSect.IIC,while being an incom parably m ore com plicated expression than
(2.59).

A fullnum ericalevaluation oftheHTL entropy,non-perturbativein g,willbepresented
in Sect.V A below,and estim atesofthee�ectsofincluding ��T � g3T2 in Sect.V B.

IV .Q C D :A D D IN G T H E FER M IO N S

It is now straightforward to add ferm ions to our theory. W e consider N f avors of
m assless ferm ions with equalchem icalpotential�;we choose � � 0,which corresponds
to an excess offerm ions over antiferm ions for allavors. Adding the ferm ions willhave
two e�ects: �rst,thiswillm odify the param etersofthe gluonic sector,nam ely the Debye
m ass m̂ 2

D ,and therefore also the asym ptotic m assm 2
1 = m̂ 2

D =2;second,there willbe new
contributionstotheentropy.In addition,at�nite�,thereisanew therm odynam icfunction
ofinterest,nam ely thedensity N ,which sharesm any oftheinteresting propertiesfound for
S.

Thefull(leading-order)Debyem assin theQGP reads[7]:

m̂
2

D = �
g2

2�2

Z 1

0

dkk2
(

2N
@n

@k
+ N f

 
@f+

@k
+

@f�

@k

! )

= (2N + N f)
g2T2

6
+ N f

g2�2

2�2
: (4.1)

W e have introduced here the statisticaldistribution functions for ferm ions (f+ ) and an-
tiferm ions(f� ),

f� (k) �
1

e�(k� �)+ 1
; (4.2)

and wehaveused thefollowing integral:
Z

dkk
�

f+ (k)+ f� (k)
�

=
�2T2

6
+
�2

2
: (4.3)

33



A .Entropy and density from the skeleton expansion

To constructthe ferm ion contribution to the entropy,letusreturn to the fullskeleton
representation ofthetherm odynam ic potential(in a ghost-freegauge)and add ferm ionsto
it.Thisbecom es

�
[D ;S]=
1

2
TrlogD � 1 �

1

2
Tr�D � TrlogS� 1 + Tr�S + �[D ;S]; (4.4)

whereS and �denoterespectively theferm ion propagatorand self-energy,and thesum over
the gluon polarization states (two transverse and one longitudinal) isim plicit. �[D ;S]is
thesum ofthe2-particle-irreducible\skeleton" diagram sconstructed outofthepropagators
D and S. Below,we shallbe m ainly interested in the 2-loop approxim ation to �[D ;S],
wheretheonly new diagram istheonerepresented in Fig.3d.Theself-energies� and � in
Eq.(4.4)arethem selvesfunctionalsofthepropagators,de�ned as

� �
��[D ;S]

�S
; � � 2

��[D ;S]

�D
: (4.5)

Theself-consistentpropagatorsD and S areobtained by solving theDyson equations

D
� 1 = D

� 1
0 + �; S

� 1 = S
� 1
0 + �: (4.6)

Then,thefunctional�[D ;S]isstationary undervariationsofD and S around thesolutions
to Eqs.(4.6):

�
[D ;S]=�S = 0; �
[D ;S]=�D = 0: (4.7)

Theentropy S(T;�)and thedensity N (T;�)areobtained asthederivativesofthetherm o-
dynam icpotentialwith respecttothetem perature,and thechem icalpotential,respectively:

S = �
@(
=V )

@T

�
�
�
�
; N = �

@(
=V )

@�

�
�
�
T
: (4.8)

Because ofthe stationarity property (4.7),we can ignore the T and � dependences ofthe
spectraldensities ofthe propagators when di�erentiating �[D ;S]. That is, we have to
di�erentiateonly thestatisticalfactorsn(!)= 1=(e�! � 1)and f(!)= 1=(e�(!� �)+ 1)which
ariseafterperform ing theM atsubara sum sin Eq.(4.4).Thisyields,fortheentropy,

S = �
@(
=V )

@T

�
�
�
�;D ;S

� Sb+ Sf + S0
; (4.9)

whereSb = ST + SL isthepurely gluonicpartoftheentropy,asshown in Eqs.(3.9){(3.10b),
Sf isthecorrespondingferm ionicpiece,which reads(thetracebelow referstoDiracindices)

Sf � � 2
Z
d4k

(2�)4
@f(!)

@T
tr

n

Im log(0S
� 1)� Im (0�)Re(S 0)

o

; (4.10)

and
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@T
Re�Im D + 2

@f(!)

@T
tr
h

Re(0�)Im (S 0)
i
)

(4.11)

hastheim portantproperty to vanish at2-loop order[20].Thatis,S ’ Sb+ Sf to theorder
ofinterest.

The corresponding expression for the density is obtained by replacing (@f=@T) !

(@f=@�) in allthe form ulae above. This gives N = N f + N 0,with N 0 = 0 in the 2-loop
approxim ation.Thus,to theorderofinterest,

N ’ � 2
Z
d4k

(2�)4
@f(!)

@�
tr

n

Im log(0S
� 1)� Im (0�)Re(S 0)

o

: (4.12)

Forsim plicity,allthepreviousform ulaehavebeen written foronly oneferm ionicdegree
offreedom ;the corresponding form ulae for N colors and N f avors can be obtained by
m ultiplying theferm ioniccontributionsaboveby N N f.

Note�nally thefollowing M axwellrelations,

@S

@�

�
�
�
T
=

@N

@T

�
�
�
�
; (4.13)

which express the equality ofthe m ixed,second order derivatives ofthe therm odynam ic
potential. In oursubsequent,self-consistent construction ofS and N ,these relationswill
besatis�ed atthesam eorderastherequirem entofself-consistency.

B .T he structure ofthe ferm ion propagator

In the previous form ulae we have always associated a factor of0 with the ferm ion
propagator and self-energy. This was possible since 2

0
= 1 and det0 = 1; it is also

convenientsince,e.g.,Sy = 0S0,anditispreferabletoworkwith herm itianDiracm atrices.
In order to com pute the Dirac traces in Eqs.(4.10){(4.12),it is usefulto recallthe

structure ofthe ferm ion propagatorat �nite tem perature and density: The m ost general
form oftheself-energy � which iscom patiblewith therotationaland chiralsym m etriesis:

�(!;k) = a(!;k) 0 + b(!;k)̂k � : (4.14)

(For a m assive ferm ion,this would also include a m ass correction,i.e.,� = a(!;k) 0 +
b(!;k)̂k �  + c(!;k).) Thiscan berewritten as:

0�(!;k) = � + (!;k)�+ (̂k)� �� (!;k)�� (̂k); (4.15)

where�� (!;k)� b(!;k)� a(!;k),and thespin m atrices

�� (̂k)�
1� 0 �k̂

2
; �+ + �� = 1;

�2

� = �� ; �+ �� = �� �+ = 0; tr�� = 2; (4.16)

projectontospinorswhosechiralityisequal(�+ ),oropposite(�� ),totheirhelicity.Dyson’s
equation S� 1 = � 6k+ � then im plies:

35



0S
� 1(!;k) = � � 1

+
(!;k)�+ + � � 1

� (!;k)�� ; (4.17)

with � � 1
� � � [! � (k+ �� )].Thisistrivially inverted to yield theferm ion propagator:

S0(!;k) = � + (!;k)�+ + � � (!;k)��: (4.18)

Thepresenceoftheprojection operators�� in Eqs.(4.15),(4.17)and (4.18)allowsone
to easily com putetheDiractracesin Eqs.(4.10)and (4.12),and thusobtain:

Sf = � 4
Z
d4k

(2�)4
@f(!)

@T

n

Im log� � 1
+ + Im log(� �� 1� )+

� Im �+ Re� + + Im �� Re� �

o

: (4.19)

The corresponding expression forN is obtained by replacing (@f=@T) ! (@f=@�) in the
equation above.

C .Perturbation theory for Sf : order g
2

Eq.(4.19)willbe now supplied with certain approxim ationsforthe quark self-energies
�� . As before,we aim at reproducing the results ofperturbation theory up to order g3.
Thiswillbeachieved by approxim ationsanalogoustothoseem ployed forthegluons,nam ely
theHTL approxim ation �̂� ,supplem ented by theNLO correction ��� to thehard ferm ion
self-energy on thelightcone.

Note,however,an im portantdi�erence with respect to the gluon case: unlike the soft
gluons,which contribute to the entropy already at order g3,the soft ferm ions contribute
only atorderg4 orhigher,becausetheircontribution isnotenhanced by thestatistics.Nev-
ertheless,in ournum ericalcalculation below,we shallcarefully include the contribution of
thesoftferm ions,appropriately dressed by theHTL.Thisisin linewith ourgeneralstrategy
ofconstructing non-perturbative approxim ationsforthe entropy (orothertherm odynam ic
quantities)which includeasm uch aspossiblethedom inantcollectivee�ectsin theplasm a.

In theHTL approxim ation,theferm ion self-energiesread asfollows[30,2]:

�̂� (!;k) =
M̂ 2

k

 

1 �
! � k

2k
log

! + k

! � k

!

; (4.20)

whereM̂ 2 istheplasm afrequencyforferm ions,i.e.,thefrequencyoflong-wavelength (k ! 0)
ferm ionicexcitations(Cf = (N 2 � 1)=2N ):

M̂
2 =

g2Cf

4�2

Z 1

0

dkk
�

2n(k)+ f+ (k)+ f� (k)
�

=
g2Cf

8

 

T
2 +

�2

�2

!

: (4.21)

W e are now in position to evaluate the ferm ionic entropy and density up to order g2:
To zeroth order,i.e.,for an idealgas ofm assless ferm ions at tem perature T and chem i-
calpotential�,we obtain the wellknown results [1](the color-avor factor N N f is here
reintroduced):
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S
(0)

f = N N f

 
7�2T3

45
+

�2T

3

!

; N (0) = N N f

�

3

 

T
2 +

�2

�2

!

: (4.22)

Thecorrection oforderg2 involvestheferm ion self-energiesto oneloop order,�(2)

� :

S
(2)

f =N N f = � 4
Z
d4k

(2�)4
@f

@T

n

Re�(2)

+ Im
� 1

! � k
� Re�(2)� Im

� 1

! + k

o

= � 2
Z
d3k

(2�)3

(
@f(k)

@T
Re�(2)

+ (! = k)�
@f(� k)

@T
Re�(2)

� (! = � k)

)

: (4.23)

As in the gluon case (cf. Eq.(3.20)),the correction oforder g2 is sensitive only to the
light-coneprojection oftheone-loop self-energy,which iscorrectly reproduced by theHTL
approxim ation (4.20)[32].Thatis,

Re�(2)

� (! = � k) = �̂� (! = � k) =
M̂ 2

k
: (4.24)

Eqs.(4.18)and (4.24)show that,toorderg2,thehard ferm ions(orantiferm ions)propagate
asm assive particles,with dispersion relation "2k = k2 + 2M̂ 2. Thisidenti�esthe ferm ionic
asym ptotic m assasM 2

1 = 2M̂ 2. By also using the propertiesf(k)= f+ (k)and f(� k)=
1� f� (k)(cf.Eq.(4.2)),togetherwith Eq.(4.3),we�nally deduce

S
(2)

f =N N f = �
M̂ 2

�2

@

@T

"
�2T2

6
+
�2

2

#

= �
M̂ 2T

3
= �

M 2
1 T

6
: (4.25)

Theleading-ordercorrection to thedensity N (2)

f isobtained sim ilarly:

N
(2)

f =N N f = �
M̂ 2

�2

@

@�

"
�2T2

6
+
�2

2

#

= �
�M̂ 2

�2
= �

�M 2
1

2�2
: (4.26)

TheaboveresultsforS(2)

f andN (2)

f ,togetherwiththepreviousonesforscalars,Eq.(2.57),
orgluons,Eq.(3.22),can begeneralized tothefollowing,rem arkablysim ple,form ulae,which
hold foran arbitrary �eld theory involving m asslessbosons(with zero chem icalpotentials)
and ferm ions:

S2 = � T

(
X

B

m 2
1 B

12
+

X

F

M 2
1 F

24

)

; N 2 = �
1

8�2
X

F

�F M
2

1 F : (4.27)

Here the sum s run over allthe bosonic (B )and ferm ionic (F)degrees offreedom (e.g. 4
foreach Diracferm ion),which are allowed to have di�erentasym ptotic m assesand,in the
case offerm ions,di�erentchem icalpotentials. According to Eq.(4.27),the leading-order
interaction term in the entropy aswellasin the density hasa very sim ple physicalorigin:
itisentirely dueto thetherm alm assesacquired by thehard plasm a particles,i.e.,directly
given by thespectralpropertiesofthedom inantdegreesoffreedom .

To concludethisdiscussion oftheorderg2,letussum m arizeheretherespective contri-
butionsto entropy (S2 � S

(2)

b + S
(2)

f )and density (N 2)in hotSU(N )gaugetheory with N f
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quark avors: these follow from Eqs.(3.22),(4.25),(4.26)(with the therm alm asses (4.1)
and (4.21)),and read:

S2 = �
g2N gT

48

�
4N + 5N f

3
T
2 +

3N f

�2
�
2

�

; N 2 = �
g2�N gN f

16�2

 

T
2 +

�2

�2

!

;

P2 = �
g2N g

32

� 4N + 5N f

18
T
4 +

N f

�2
�
2
T
2 +

N f

2�4
�
4

�

: (4.28)

In writing theseequations,wehavealso added thecorresponding expression ofthepressure
(P2),astaken from Ref.[1]. Clearly,ourabove results forS2 and N 2 are consistent with
thisexpression forP2:S2 = @P2=@T,N 2 = @P2=@�.

D .Perturbation theory for Sf : order g
3

Unlike the g2 corrections in Eq.(4.28),| which apply to the whole area ofthe �� T

plane where the coupling constantissm all(i.e.,such thatm ax(�;T)ism uch largerthan
�Q C D ) | ,the corrections oforder g3 that we shalldiscuss now apply only to the high
tem peratureregim e13 T � m̂ D .Thisrestrictionisobviousintheim aginarytim eform ulation
oftherm alperturbation theory,where the e�ectsoforderg3 arise entirely from the sector
with zero M atsubara frequency [1].In thepresentcalculation,thesee�ectsareobtained by
approxim ating n(k)’ T=k fork � m̂D ,which isvalid provided m̂ D � T. Assum ing this
condition tobesatis�ed,weshallnow show how the\plasm on e�ect"arisesin ourform alism
when the ferm ionsare also included. Thisissim ilarto the previousdiscussion ofthe pure
gluecase(cf.Sect.IIID),so weshallindicatehereonly therelevantdi�erences.

Therearetwotypesofcontributionsoforderg3 totheentropy:(i)thedirectcontribution

ofthesoftgluons,Ssoft
3

= S
(3)

L + S(3)

T ,which isstillgiven byEqs.(3.31)and (3.32),and (ii)the
NLO correction Shard

3
to theentropy ofthehard particles,which now includescontributions

from both transverse gluons and ferm ions,via the NLO corrections to the corresponding
self-energieson thelightcone(cf.Eq.(3.30)and (4.23)):

Shard

3
= �

Z
d3k

(2�)3

�

N g

1

k

@n(k)

@T
Re��T(! = k)+

+ 2N N f

�
@f+ (k)

@T
Re��+ (! = k)+

@f� (k)

@T
Re��� (! = � k)

��

: (4.29)

Thediagram spertinentto ��T havebeen shown in Fig.4.Thecorresponding diagram sfor
��� aresim ilar,and aredisplayed in Fig.6.Theirevaluation proceedsalongthesam elines,
and isbriey discussed in App.A.Letussum m arize herethe�nalresults:

As in the pure glue case,it can be veri�ed thatthere isno net contribution from the
soft transverse gluons: the direct contribution S

(3)

T in Eq.(3.30) is precisely cancelled by
thecorresponding contributionsto theself-energiesofthehard particles,��tT and ��t� (cf.

13If� = 0,then m̂ D � gT,and thiscondition isequivalentto weak coupling;for� > 0,however,
there isa new scale in the problem ,and thehigh-T condition becom esan independentcondition.
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δΣl δΣt

FIG .6. NLO contributionsto �� athard m om entum . Thick dashed and wiggly lines with a
blob representHTL-resum m ed longitudinaland transverse propagators,respectively.

Figs.4 and 6).Asexpected,thewholecontribution oforderg3 com esfrom softlongitudinal

gluons(eitherdirectly,via S(3)

L ,orindirectly,via theircontribution to Shard
3 ),and reads:

S3 =
N gm̂

3
D

12�
+ T

@m̂ 2
D

@T

N gm̂ D

8�
=

N g

12�

�

m̂
3

D + 3m̂ D m
2

T

�

; (4.30)

wherewehaveintroduced thenotation

m̂
2

D = m
2

T + m
2

�; m
2

T � (2N + Nf)
g2T2

6
; m

2

� � Nf
g2�2

2�2
; (4.31)

so thatT@T m̂ 2
D = 2m 2

T. Note that,form ally,Eq.(4.30)would predicta non-vanishing en-
tropyin thezerotem peraturelim it,com ingfrom theterm m̂ 3

D ;thisis,however,wrong,since,
asalready m entioned,thisexpression hasbeen obtained on thebasisofa high tem perature
expansion and cannotbeextrapolated to sm alltem peratures.

Stillas in the pure glue case,the two term s in the r.h.s. ofEq.(4.30) are the sam e
as Ssoft

3
and Shard

3
,respectively,because ofthe \sum rule" �S 3 = 0. (Cf. the discussion

in Sect. IIID 3;the argum ents leading to Eq.(3.46) are not changed by the addition of
ferm ions,since they hold forany value m̂ 2

D ofthe Debye m ass.) The only di�erence with
respectSect. IIID 3 isthat,for� 6= 0,the two term sin Eq.(4.30)are no longerequalto
1/4 and,respectively,3/4 ofthe totalresult(com pare to Eq.(3.44));indeed,the identity
T@T m̂

2
D = 2m̂ 2

D isvalid only at� = 0.
Consider now the order-g3 e�ect in the quark density: since softferm ionsdo notcon-

tributeto orderg3,theonly such contribution com esfrom theNLO corrections��� to the
hard ferm ion self-energies. Thisiscalculated explicitly in App.A along the sam e linesas
fortheentropy (cf.Eqs.(A28)and (A29))with theresult

N 3 =
N gTm̂ D m

2
�

4��
�

g2N gN f

8�3
�m̂ D T : (4.32)

ThepreviousexpressionsforN 3 and S3 verify theM axwellrelation,

@S3

@�
=

@N 3

@T
=

g2N gN f

8�3
�(m̂ 2

D + m 2
T)

m̂ D

; (4.33)

which is as expected,since our calculationalschem e has preserved self-consistency up to
order g3. These are also consistent with the well-known result for the sum ofthe ring
diagram s[1],P3 = N gTm̂

3
D =12� :Asem phasized already,thisresultisvalid only forhigh

enough tem peratures,T � m̂ D . In the opposite lim itT = 0,itiswellknown [34,35]that
thesum ofthering diagram sgivesa resultPring � g4�4logg.
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V .Q C D :N U M ER IC A L EVA LU AT IO N S

In the following,we shallturn to a fullnum ericalevaluation ofthe entropy and the
density in the approxim ation S0= 0 = N 0 when furtherapproxim ated,�rstly by the HTL
approxim ation (cf. Sect. IIID 3),secondly by also including NLO corrections to the self-
energy ofhard excitations.

A .H T L/H D L approxim ation

W e have seen that the HTL approxim ation (or in the case ofT = 0 and high � the
hard-dense-loop [HDL]approxim ation) is su�cient for a correct leading-order interaction
term in entropy and/ordensity| in contrastto a directHTL approxim ation oftheone-loop
pressure.On theotherhand,theso-called plasm on e�ectoforderg3 isincluded only partly,
nam ely only in the form of\direct" contributions from soft m odes;a (larger) \indirect"
contribution isdueto NLO correctionsto theself-energy ofhard particleson thelight-cone
asgiven by standard HTL perturbation theory.

Sincewehavefound in ourscalartoy m odelofSect.IIC thatalready theHTL approx-
im ation in the entropy expression with S0 = 0 is an im provem ent over the leading-order
perturbative result,we shall�rstconcentrate on num erically including allthe higher-order
e�ectsofHTL/HDL propagatorsin entropy and density.

Concerning the contributions of the gluonic quasiparticles, the task is to evaluate
Eq.(3.41)withoutexpanding outtheintegrand in powersofm̂ D =T / g.

SH TL(T;m̂ D ) involves two physically distinct contributions. One corresponds to the
transverse and longitudinalgluonicquasiparticle poles,

S
Q P

H TL = � Ng

1Z

0

k2dk

2�2
@

@T

h

2T log(1� e
� !T (k)=T)+ T log

1� e� !L (k)=T

1� e� k=T

i

; (5.1)

whereonly theexplicitT dependencesareto bedi�erentiated,and notthoseim plicitin the
HTL dispersion laws!T(k)and !L(k). The latterare given by the solutionsof!2

T � k2 =
�̂ T(!T;k)and k2 = � �̂ L(!L;k)with �̂ L and �̂ T given by Eqs.(3.14,3.15).

Secondly,there are contributions associated with the continuum part ofthe spectral
weights.These read

SLD

H TL = � Ng

1Z

0

k2dk

2�3

kZ

0

d!
@n(!)

@T

n

2arg[k2 � !
2 + �̂ T]

� 2Im �̂ T Re[k
2 � !

2 + �̂ T]
� 1 + arg[k2 + �̂ L]� Im �̂ L Re[k

2 + �̂ L]
� 1
o

: (5.2)

Both the Stefan-Boltzm ann partSSB and thestandard perturbative g2-contribution S2
ofEq.(3.22)arecontained in the�rstterm ofEq.(5.1);alltheotherterm sin Eqs.(5.1),(5.2)
areoforderg3 in asm all-gexpansion.However,ifsuch an expansion weretruncated beyond
orderg3,theresulting entropy would bea function ofg thatinitially decreaseswith g,but
eventually growswithoutbound to valueslargerthan SSB (dashed linein Fig.7).

On the other hand,the fullnum ericalresult forthe HTL entropy (fullline in Fig.7)
turnsoutto bea m onotonously decreasing function ofm̂ D =T.In thecaseofEq.(5.1),the

40



0.5 1 1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

m̂

D

=T

S

HTL

=S

SB

FIG .7. The HTL entropy pergluonic degree offreedom norm alized to its Stefan-Boltzm ann
value as a function of the Debye m ass m̂ D (T;�)=T. The fullline gives the com plete num eri-
calresult corresponding to Eq.(3.41);the dashed line corresponds to the perturbative result to
order (m̂ D =T)3 � g3. The dotted line gives the entropy for scalar degrees offreedom with m o-
m entum -independent m ass m = m 1 = m̂ D =

p
2; its perturbative approxim ant is given by the

dash-dotted line.

num ericalevaluationinvolvessolving�rstnum ericallythetranscendentalequationsfor!T(k)
and !L(k),and a num ericalintegration,in which itisadvisable to separate o� the Stefan-
Boltzm ann valuethrough thereplacem entlog[1� e� !T (k)=T]! log[(1� e� !T (k)=T=(1� e� k=T)];
Eq.(5.2)requirestwo successive num ericalintegrations.

It is interesting to com pare the rather com plicated expression SH TL with the sim ple
scalar expression Eq.(2.38) ofthe entropy ofan idealgas ofm assive bosons,2N gS0(m ),
which isbasically whatisconsidered in thesim plem assivequasiparticlem odelsofRef.[5,6].
Ifin the latter the boson m asses are identi�ed with the asym ptotic m ass ofthe gluons,
m = m 1 = m̂ D =

p
2,then thisreproducesthe correctleading-orderinteraction term in the

entropy. The plasm on e�ect(i.e.the order-g3 contribution)isincluded only partially,but
not as 1=4 ofthe com plete plasm on e�ect,but as 1=(4

p
2). This is because a constant

therm alm assequalto itsasym ptotic value underestim ates the Debye m assby a factorof
1=
p
2 and thereforetheplasm on e�ectby (1=

p
2)3,which isonly partially com pensated by

now having 2N g degreesoffreedom exhibiting theanalogofDebyescreening instead ofonly
theN g longitudinalones.

Num erically,2N gS0(m 1 )reproducestheHTL entropy very accurately (within <
� 0:1% )

up to m̂ D � T. For larger values of m̂D ,the HTL entropy leads to signi�cantly larger
deviationsfrom SSB .Thislatterfactissom ewhatsurprising sincetheplasm on e�ect,which
in theHTL entropy is30% greaterthan in thesim plem assivequasiparticleentropy,always
counteractstheleading-orderinteraction contribution,ascan beseen from theperturbative
approxim antof2N gS0(m 1 )(dash-dotted linein Fig.7)andthatoftheHTL entropy(dashed
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FIG .8. Relative deviation ofthe HTL entropy from that of a gas of m assive bosons with
(constant)m assm 1 (fullline). The relative deviation ofjustthe transverse quasiparticle contri-
bution is given by the upperm ostdash-dotted line;the transverse Landau-dam ping contribution
isgiven by the lower dash-dotted line. The short-dashed line givesthe longitudinalquasiparticle
contribution;the long-dashed line the longitudinalLandau-dam ping one.

line) through order g3. This is partly due to the fact that SH TL contains also a term
� g4log(c=g),which isnotpresentin thesim plem assivequasiparticleentropy 2N gS0(m 1 ).

Inspecting in m ore detailthe num ericaldeviation ofthe HTL entropy from that ofa
m assive gas ofbosons,one �nds that the quasiparticle contribution from the transverse
m odes,which isalwaysthedom inantcontribution to theentropy,by itselfisalwaysabove
2N gS0(m 1 ). The transverse Landau-dam ping contribution is also positive,but relatively
sm aller.On theotherhand,both thelongitudinalquasiparticle and Landau-dam ping con-
tributions are negative,resulting in a sm allnet deviation from the sim ple m assive boson
entropy forsm allvaluesofm̂ D =T. W hen norm alized to the deviation of2N gS0(m 1 )from
the Stefan-Boltzm ann result,the deviation ofSH TL from 2N gS0(m 1 ) is less than about
+1% for m̂ D =T < 0:739,while negative and rapidly growing forlargervaluesofm̂ D =T,as
shown in Fig.8.

The form ulae forthe ferm ionic contributionsto the entropy are quite analogousto the
gluoniccontributions.They read Sf;H TL = S

Q P

f;H TL + SLD
f;H TL with

S
Q P

f;H TL = N N f

1Z

0

k2dk

�2

@

@T

n

T log(1+ �
� [!+ (k)� �]=T)

+T log
1+ �� [!� (k)� �]=T

1+ �� (k� �)=T
+ (� ! � �)

o

(5.3)

whereagain only theexplicitT dependencesareto bedi�erentiated and notthoseim plicit
in the dispersion laws!+ (k)and !� (k)ofthe ferm ionic quasiparticles,which are given by
thesolutionsof!� = � [p+ �̂� (!� ;k)]with �̂� given by Eq.(4.20).
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FIG .9. The HTL entropy perquark degree offreedom at � = 0 norm alized to its free value
asa function ofthe ferm ionic plasm a frequency M̂ =T.The fullline givesthe com plete num erical
resultcorresponding to Eq.(4.10)in the HTL approxim ation;the dashed line correspondsto the
perturbativeresultto order(M̂ =T)2 � g2;thedotted linegivestheentropy fora ferm ionicdegree
offreedom with m om entum -independentm assM = M 1 =

p
2M̂ ,which hasthesam eperturbative

approxim antto orderg2.

Theferm ionicLandau-dam ping contribution to theentropy is

SLD

f;H TL = � N Nf

1Z

0

k2dk

�3

kZ

0

d!

"
@f+ (!)

@T
+
@f� (!)

@T

#
n

arg[k� ! + �̂+ (!;k)]

� Im �̂+ (!;k)Re[k� ! + �̂+ (!;k)]
� 1

+ arg[k+ ! + �̂� (!;k)]� Im �̂� (!;k)Re[k+ ! + �̂� (!;k)]
� 1
o

(5.4)

In the case ofthe gluonic contributions to the HTL entropy,there was no di�erence
between vanishing and non-zero chem icalpotentialotherthan the resulting di�erentvalue
of m̂ D ,which depends on � according to Eq.(4.1). For the quark contributions to the
entropy,the chem icalpotentialentersboth explicitly through the Ferm i-Diracdistribution
function f and through them agnitudeoftheferm ionicplasm a frequency M̂ .

In Fig.9 theresultsofa num ericalevaluation oftheferm ioniccontribution to theHTL
entropy norm alized to its free value is given as a function of M̂ =T for � = 0. W hen
com pared with thefreeentropy ofsim ple m assive ferm ionsofm assM = M 1 =

p
2M̂ ,one

�ndsthatthe HTL entropy exceeds the latterby atm ost+1.2% for M̂ =T � 1,coincides
with it at M̂ =T � 1:39,and becom es lower for largerM̂ =T.14 On the other hand,the
strictly perturbativeresultup to orderg2 issigni�cantly lower,butcom pared tothegluonic

14Again,this good agreem ent requires allquasiparticle and Landau-dam ping contributions to-
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contribution thediscrepancy ism uch sm allerbecause there isno (direct)plasm on e�ectin
theferm ioniccontributions[allorderg3 contributionseventually arisefrom NLO corrections
to M 1 ].

Turning now to the quark density,itsquasiparticle and Landau-dam ping contributions
areobtained by replacing @=@T in theaboveform ulae(5.3,5.4)by @=@�.

In thelim itT ! 0,theresulting expressionscan besim pli�ed to read (for� > 0)

N
Q P

H D L

�
�
�
T= 0

= N N f

�Z

0

k2dk

�2
[�(� � !+ (k))� �(!� (k)� �)]: (5.5)

and

N LD

H D L

�
�
�
T= 0

= � N Nf

1Z

�

k2dk

�3

n

arg[k� � + �̂+ (�;k)]

� Im �̂+ (�;k)Re[k� � + �̂+ (�;k)]
� 1

+ arg[k+ � + �̂� (�;k)]� Im �̂� (�;k)Re[k+ � + �̂� (�;k)]
� 1
o

: (5.6)

For� > M̂ ,thequasiparticle contribution (5.5)can bem oreexplicitly written as

N
Q P

H D L=N N f

�
�
�
T= 0;�> M̂

=
�3

3�2
�

1

3�2

h

�
3 � k

3

+
(�)

i

�
1

3�2

h

�
3 � k

3

� (�)
i

(5.7)

wherek� (�)isthesolution of!� (k� )= �.
The �rst term on the right-hand side ofEq.(5.7) represents the free contribution of

onem asslessDiracferm ion,thetwo bracketed term sarethecorrectionsfrom thenontrivial
dispersion lawsofthetwo ferm ionicquasiparticle branches.15

For com parison,the ferm ion density ofa free m assive Dirac ferm ion with m ass M is
given by

N 0(M )
�
�
�
T= 0

=

(
1

3�2
(�2 � M 2)3=2 for � > M

0 for � < M
(5.8)

Identifying16 M = M 1 =
p
2M̂ givesthecorrectleading-orderinteraction term oforderg2,

while leading to som ewhatlargervaluesforN than theperturbative order-g2 resultforall
M̂ =�.

gether;forinstance,the norm al(+ )quasiparticle pole contributions alone would give deviations
which go up to about+ 7% forthe rangeofM̂ =T considered.

15Because ofthe \plasm ino dip",Eq.(5.7)becom esm ore com plicated for� < M̂ ,butthiscase
correspondsto m uch too strong coupling to betaken seriously anyway.

16O ccasionally [12],in sim plequasiparticle m odelsofthepressure offerm ionsathigh density the
identi�cation M = M̂ ism ade.Thishappensto give thecorrectleading-orderinteraction term of
orderM 2=�2 � g2 there,butonly because ofcom pensating errors. Athigh densitiesthe m assof
quasiparticles atthe Ferm isurface isactually M 2

1 = 2M̂ 2,butin the pressure the leading-order
interaction term isover-included by precisely a factor2 when considering only the expression for
freeparticlesand inserting a constanttherm alm ass.
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FIG .10. The HDL quark density per quark degree offreedom at T = 0 norm alized to its
free value asa function ofthe ferm ionic plasm a frequency M̂ =�. The fullline givesthe com plete
num ericalresultcorrespondingtoEq.(4.12)in theHDL approxim ation;thedashedlinecorresponds
to the perturbative resultto order(M̂ =�)2 � g2;the dotted line givesthe density fora ferm ionic
degree offreedom with m om entum -independent m ass M = M 1 =

p
2M̂ ,which has the sam e

perturbativeapproxim antto orderg2,and vanishesforM � �,i.e. M̂ =� � 1=
p
2.

In Fig.10thenum ericalresultforN H D L atT = 0 isplotted forM̂ =� up to1=
p
2,where

the ferm ion density ofEq.(5.8),displayed by the dotted line,vanishes. The HDL result,
which isgiven bythefullline,isseen todrop tozeroalm ostatthesam eratio,towit,M̂ =� �

0:69264.Beyond thispointtheresultbecom esnegative,showing thattheapproxim ation is
breaking down atsuch high valuesofM̂ =�.[Notethat,since M̂ 2 = g2�2=6�2 forN = 3and
T = 0 (cf.Eq.(4.21)),M̂ =� � 0:69 correspondsto a relatively largecoupling g � 5:3.]

Forcom parison,the strictly perturbative resultto orderg2 isgiven by the dashed line
in Fig.10,which isseen to approach zero fasterthan theHDL density aswellasthatofa
sim plem assive quasiparticle.

B .Estim ate ofN LO contributions

Aswe have discussed atlength in theprevioussections,the HTL approxim ation in the
entropy containsonly partoftheplasm on e�ect,a di�erentsourceoforderg3 contributions
com es from NLO corrections to the gluonic and ferm ionic self-energies at hard m om enta
on the light-cone as given by Eq.(4.29). From the result (3.44)we know that this NLO
contribution correspondsprecisely to thesecond term oftheright-hand sideofEq.(4.30).

In thecaseofthedensity,itisclearfrom theabsenceofa bosonicdistribution function
in Eq.(4.12)thatN in theHTL/HDL approxim ation doesnotcontain any g3 contribution,
so allofN 3 asgiven by Eq.(4.32)arisesfrom theNLO correction to the quark self-energy
athard m om enta on thelight-cone.
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As can be seen e.g.from Eqs.(A16) and (A17),the NLO self-energy corrections are
com plicated and nonlocalquantities. Even when evaluated on the light-cone,they do not
sim ply give a constantcorrection to the asym ptotic m ass,buta nontrivialfunction ofthe
(hard) m om entum . In fact,there are even contributions ofthe form g2m̂ D p,which grow
largerthan g3T2 forp� T,eventually causing abreak-down ofstandard HTL perturbation
theory,butfortunately such contributionsareirrelevantthanksto thefactthatn(p)shuts
o� exponentially then.

Because a fullinclusion ofthe NLO self-energy corrections is rather com plicated and
com putationally expensive, and because in the applications below the m agnitude ofthe
NLO corrections,when treated along the linesofthe scalartoy m odelin Sect.IID,turns
outto be com paratively sm all,we shallin the following considerthe approxim ation ofan
e�ective constant NLO asym ptotic m ass. The com plete evaluation of�� and ��,which
involvesa num beroftechnicalintricacies,willbereserved fora separatepublication.Their
eventualnum ericale�ectson thetherm odynam icpotentialsiswork in progress,though we
do notexpectthem to deviatetoo m uch from theestim atesderived in thissubsection.

From therequirem entthatareplacem entofm 2
1 andM 2

1 inEqs.(3.22),(4.25),and(4.26)
by e�ectiveconstant(i.e.averaged)corrections ��m2

1 and ��M 2
1 equalsShard

3
and N hard

3
= N 3

(cf.Eqs.(4.30)and (4.32),respectively),wehave

�
1

6
N g

��m2

1 T �
1

6
N N f

��M 2

1 T =
1

4�
N gm̂ D m

2

T (5.9)

�
1

2�2
N N f

��M 2

1 � = N g

T

4��
m̂ D m

2

� (5.10)

with m̂ D ,m T,and m � as de�ned in Eq.(4.31). This has the rem arkably sim ple unique
solution

��m2

1 = �
1

2�
g
2
N Tm̂ D ;

��M 2

1 = �
1

2�
g
2
CfTm̂ D ; (5.11)

where in the latter Cf = N g=(2N ). Indeed, in Eq.(5.11) both the dependence on the
Casim irsN and Cf aswellastheirproportionality to m̂ D isin accordanceto one’sexpecta-
tionsfrom theform ofthecorresponding HTL-resum m ed one-loop diagram sofFigs.4 and
6,respectively.

However,in com plete analogy to the scalar toy m odelofSect.IID,we �nd that the
m agnitude ofthe corrections to the asym ptotic m asses are such that m 2

1 + ��m2
1 drops

to negative values forg >
� 1,which would give rise to tachyonic singularities in the sem i-

perturbative entropy result (forN = 3 and � = 0 the naive strictly perturbative m ass is
again given by the shorter-dashed line in Fig.1). Forslightly highervaluesofm̂ D =T � g,
thesam ephenom enon occurswith M 2

1 + ��M 2
1 .

In the scalar m odelwe have seen that including the NLO correction to the therm al
m assin theapproxim ately self-consistentform (2.61)givesinstead a m onotonously growing
function in g and very good agreem entwith the exactresultin the N ! 1 lim iteven for
largeg.ForQCD,wede�nein analogy to Eq.(2.61)theNLA asym ptoticm assthrough the
quadraticequation

�m 2

1 =
g2(N + N f=2)T2

6
�
g2N T
p
2�

�m 1 (5.12)
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FIG .11. The NLA entropy obtained by including ��m 1 according to Eq.(5.12) forhard m o-
m enta k � � =

p
2�Tm̂ D c� in the pure-glue entropy. The central line in the shaded areas

correspondsto c� = 1,thetwo di�erently shaded areasto the bandsc� = 1

2
:::2 and c� =

1

4
:::4,

respectively. The dotted line corresponds to a sim ple scalar m odelwith constant m ass m m od-
i�ed according to Eq.(5.13) such that it also contains the perturbative pure-glue result up to
and including order g3;the latter is displayed by the dashed line that leaves the plot already at
m̂ D =T � 0:785.

and sim ilarly for �M 2
1 .

In contrastto thescalarcase,however,wherethetherm alm assand itsNLO correction
was m om entum -independent and therefore applicable for allm om enta,the results (5.11)
apply only athard m om enta. Indeed,NLO corrections to therm alm asses in QCD asfar
asthey have been calculated turn outto be ratherdi�erentatsoftm om enta:In Ref.[36],
theNLO correction fortheplasm afrequency ofpure-glueQCD in thelong-wavelength lim it
hasbeen calculated with the result �m2

pl:=m̂
2
pl: � � 0:18

p
N g,which is only abouta third

ofthe relative (averaged)correction ofm 2
1 . M oreover,the Debye m assturnsoutto even

receive positive corrections [37]�m2
D =m̂

2
D = +

p
3N =(2�)� glog(c=g),with recent lattice

sim ulations[38]yielding a ratherlargeconstantc.
Forthisreason wechooseto leave theHTL resultsforthesoftgluonicpropagatorsand

self-energiescom pletely untouched,and weim plem enttheNLO correction totheasym ptotic
m assby introducing a cuto� scale thatseparateshard from softm om enta ata scale � =
p
2�Tm̂ D c� which isproportionalto thegeom etricm ean ofthehard M atsubara scale2�T

and a softscalec� m̂ D .Form om enta k � � wekeep theHTL approxim ation and fork � �
we take the therm algluonsto have the constantasym ptotic m ass �m 2

1 ofEq.(5.12). This
com pletesthede�nition ofourpresentnext-to-leading approxim ation to theentropy SN LA.

In Fig.11,thenum ericalresultforpure-glueQCD with c� = 1 isgiven by thefullline.
The e�ect ofvarying c� in the range 1

2
:::2,which keeps � wellin between the interval

(m̂ D ;2�T)forallvalues of m̂ D =T,is displayed by the dark-grey band;the m ore extrem e
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variation c� =
1

4
:::4 extendsthelatterby thelight-grey areas.W eshallsee,however,that

in theeventualapplicationstoQCD attem peraturesafew tim esthetransition tem perature
theresulting increasein our\theoreticalerror" willbestillm oderatewhen com pared to the
renorm alization schem e dependences.

Forthesakeofcom parison with a sim plerquasiparticlem odel,thedotted linein Fig.11
showstheentropy oftwo interaction-freescalarbosonswith constantm ass

�m 2 =
1

2
m̂

2

D

 

1�
4
p
2� 1

�

�m

T

!

(5.13)

which m im icks the NLA result(5.12),butadjusted such asto reproduce the perturbative
QCD resultup to and including orderg3 in thissim plerm odel.

In theferm ionicquantitiesSf and N ,which becauseoftheabsenceofBoseenhancem ent
are less sensitive to the soft scale, we im plem ent the ferm ionic analog ofEq.(5.12) by
rescaling M̂ 2 atallm om enta forsim plicity (asin thescalarcasein Sect.II.D).

C .R enorm alization-group im provem ent

In the HTL/HDL approxim ation,allthe gluonic and ferm ionic contributionsabove de-
pend on thenum ericalvalueoftheHTL/HDL m asses m̂ 2

D and M̂ 2,respectively,which are
proportionalto �s = g2=4�. The latter is a renorm alization schem e and renorm alization
scale (��)dependentquantity,and so arethereforeourresultsforentropy and density.Fol-
lowing Ref.[4]we adoptm odi�ed m inim alsubtraction and assum e thatan optim alchoice
oftherenorm alization scaleshould befound around thescaleoftheM atsubara frequencies,
2�T,orin thecaseofzero tem peratureand �nitedensity around thescaleofthediam eter
oftheFerm isphere,2�.Afterall,thehard therm al/dense loopsaregenerated by hard ex-
citations,asarein facttheNLO contributionsto theasym ptoticm asseswithin HTL/HDL
perturbation theory.

Exactlyasdonein Ref.[11]in adirectHTL resum m ation ofthetherm odynam icpressure,
weputin therunning ofthecoupling by hand and chooseitto bedeterm ined by the2-loop
renorm alization group equation according to

�s(��)=
4�

�0�L(��)

 

1�
2�1log(�L(��))

�20
�L(��)

!

(5.14)

with �L(��)= log(��2=�2

M S
)and

�0 = (11N � 2Nf)=3; �1 = (34N 2 � 13N Nf + 3N f=N )=6: (5.15)

1.Entropy

Atleastatzerodensity,latticeresultsrelatetheQCD scaleparam eter�
M S

tothecritical
tem perature Tc,which in accordance with Ref.[39]we choose as Tc = 1:14�

M S
,both for

pure-glue QCD and also forN f 6= 0,since lattice data indicate only a weak dependence of
theratio Tc=�M S

on thenum berofquark avor.
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FIG .12. Com parison of the HTL entropy (full lines), the NLA results for c� = 1

2
:::2

(dash-dotted lines)aswellasc� = 1

4
:::4 (gray dash-dotted lines),and the freeentropy ofbosons

with m ass (5.13) such as to reproduce the correct perturbative plasm on e�ect (dotted lines),all
with M S renorm alization scale �� = �T :::4�T,with the lattice resultofRef.[40]forpure SU(3)
gauge theory (dark-gray band).

Putting �� = c��2�T in Eq.(5.14)and assum ing c�� � 1prescribesreasonably sm allvalues
for �s and thus for m̂ D =(2�T) and M̂ =(�T) for allT > Tc so as to m ake it interesting
to com paretheaboveHTL and NLA expressionswith nonperturbative resultsfrom lattice
gauge theory. Indeed,we have found that,for m̂ D � 2�T and M̂ � �T,the deviation
from thefreeStefan-Boltzm ann resultissm allenough to m akea sem i-perturbative picture
m inim ally tenable, although it is clear that the physics ofthe phase transition itself is
com pletely beyond reach. On the other hand,the strictly perturbative results up to and
including the order g3 are such that entropy and pressure would be m uch higher than
theirStefan-Boltzm ann values,indicating a com plete lossofconvergence ofstricttherm al
perturbation theory.

In order to have som e indication ofthe theoreticaluncertainty involved,we consider,
again asdonein Ref.[11],avariation oftherenorm alization scaleby afactorofc�� =

1

2
:::2.

ForpurelygluonicQCD,thelatticeresultsinvolvetheleastuncertainties.InRef.[40],the
therm odynam icpotentialsofpureSU(3)gaugetheory havebeen calculated from plaquette
actiondensitiesonlatticesupto8� 323 fortem peraturesup toabout4:5Tc andextrapolating
tothecontinuum lim itby com paringdi�erentlatticesizes.Thelatticeresultfortheentropy
density isrendered in Fig.12 by a grey band whosethicknessism eantto givea rough idea
oftheerrorsreported in Ref.[40].

Ourresultforthe HTL entropy asdisplayed in Fig.7 translatesinto a range ofvalues
bounded by the choices �� = �T (lower fullline) and �� = 4�T (upper fullline). This
already givesa rem arkably good approxim ation ofthelatticeresultforT >

� 2Tc,som ewhat
underestim ating thevaluesathighertem peratures.In allofthistheparam eterm̂ D =T takes
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on valuesin therange� 1:::2,wherewehavefound theentropy ofsim plem assive bosons
to giveonly slightly largerresults(cf.Fig.7).

Now the HTL entropy containsonly part(here 1/4)ofthe plasm on e�ect. The latter
is com pletely included in the NLA entropy as de�ned after Eq.(5.12). In Fig.12,SN LA

is represented by the area bounded by the black dash-dotted lines,where the lower one
correspondsto thechoice �� = �T and c� = 2,and thehigheroneto �� = 4�T and c� = 1=2.
Forthisrangeofc� thescale�rem ainswellseparated from both m̂ D and 2�T forallT > Tc.
Extending therangeofc� to c� = 1=4:::4 givesthearea bounded by thegray dash-dotted
lines.Although �now variesalltheway from m̂ D to2�T,theerrorband isonly m oderately
enlarged.17

Evidently,theNLA estim atesbased uponEq.(5.12)donotm oveawaytoom uch from the
HTL results,which �rstofalliswhatisrequired to m ake oursem i-perturbative procedure
tenable. W hat is m ore,the results show a surprisingly good agreem ent with the lattice
resultsfortem peraturesgreaterthan 2...3 tim esthecriticaltem perature.

Recently,in Ref.[41]theresultsofRef.[40]havebeen reproduced within errorsby using
a renorm alization-group im proved lattice action fortem perature up to 3:5Tc. The results
ofRef.[41]for the pressure are system atically higher by about 5...2% for tem peratures
2...3.5Tc.Fortheentropy,which hasnotbeen extracted explicitly in Ref.[41],thiswould
im ply a result that is centered around the upper boundary ofthe grey band in Fig.12
forT � 3Tc,and slightly atteraround T � 2Tc,allwith slightly reduced errorbars. If
anything,theagreem entwith ourHTL and NLA resultsappearsto beeven a bitim proved.

Com paring �nally with the entropy of free m assive bosons with m ass according to
Eq.(5.13) such as to reproduce the correct perturbative plasm on e�ect,this is included
in Fig.12 astheband bounded by thedotted linescorresponding to �� = �T :::4�T.Since
the renorm alization scale dependence decreaseswith decreasing deviation from the Stefan-
Boltzm ann value,thisband israthernarrow.Itisalso clearly in lesseragreem entwith the
latticedata,which thusfavorthem om entum -dependentinclusion ofNLO correctionstothe
therm alm assesthatfollowsfrom NLO perturbation theory and thatwe have m odelled in
ourNLA estim ates.

In Fig.13,thecentralresultsfortheHTL and NLA entropy (�� = 2�T and c� = 1)are
displayed togetherwith theresultsforN f = 2and 3.Only aratherweak dependenceon N f

isfound in this(greatly m agni�ed)plotwhere the entropy isnorm alized to the free value,
and T to therespective (N f-dependent)Tc / �M S .

Theseresultsarein good agreem entwith recentlatticeresults[42]forN f = 2 and their
estim ated extrapolation to the continuum lim itand to the lim itofm assless quarks aswe
have already noted in Ref.[16].In Fig.13,a conversion ofthelatticeresultto theentropy
isincluded asa gray band,and,indeed,forT=Tc >� 2:5 ourNLA estim ate turnsoutto lie
closeto thecenteroftheestim ated errorband ofthelatticeresult.

17Although in Fig.11 therewasa noticeable increasein theerrorband fortheNLA resultswhen
increasing the range ofc�,thisdoesnota�ect so m uch the totalerrorbecause the lower bound,
which correspondsto highervaluesofm̂ D =T,ism oved furtherdown only by increasing c�,where
theaddition in theerrorband issm all;theupperbound on theotherhand correspondsto sm aller
valuesofm̂ D =T,wheretheupward increase in the erroriscorrespondingly sm aller.
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FIG .13. Com parison of the HTL entropy (full lines) and the NLA result with c� = 1
(dash-dotted lines)foravornum bersN f = 0;2;3,allwith the centralchoice ofM S renorm aliza-
tion scale �� = 2�T.Theestim ate ofa continuum extrapolation ofthe lattice resultforN f = 2 as
reported in Ref.[42,43]and its estim ated error,converted to S=SSB ,is given by the gray band.
Notice the blown-up scale oftheordinate com pared to Fig.12.

The furtherresultthatforN f = 3 ourNLA estim ate forS=SSB asa function ofT=Tc
is approxim ately the sam e �ts nicely to the recent lattice data for N f = 3 [43],which
are consistent with a coincidence ofthe asym ptotic values ofP=PSB and also forS=SSB .
A m ore detailed com parison ofour results with the lattice data,in particular at sm aller
tem peratures,is hardly worthwhile in view ofthe large uncertainties associated with the
extrapolation to them asslesscontinuum lim it.18

In ourpreviousworks[15,16]wehavebeen consideringasim plePad�e-im proved inclusion
oftheNLO asym ptoticm asscorrection in placeoftheNLA form (5.12).A com parison ofthe
respective resultsshowsthatourestim ate ofthee�ectsofan approxim ately self-consistent
treatm entofNLO correctionstotheself-energiesisfairlyrobust,with them ain uncertainties
com ing from thechoiceoftherenorm alization scale.

18In a recent paper the authors ofRef.[44]have reported an extrem ely good �t ofthe entire
lattice data using only the perturbative �rst-ordercorrection to the pressure,a bag constantand
a num erically integrated 2-loop �-function. However,thisagreem ent hasbeen achieved with the
lattice results which stillcontain �nite-cut-o� e�ects. In Ref.[42,43],the size ofthe estim ated
correction for the continuum lim it is given as + 15� 5% . These corrections are essentialfor the
good agreem ent with ourresultsasshown in Fig.13. Conversely,the resultsofRef.[44]rem ain
even below theplotarea ofFig.13.
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2.Density

Fornonvanishingchem icalpotential,wherelatticedataarem issingtodeterm ineprecisely
thecriticaltem peratureordensity in term sof�

M S
,wecan neverthelesstranslateourresults

into functions ofT=�
M S

and �=�
M S

provided we choose the renorm alization scale �� as
a suitable com bination ofT and �. If,aswe have assum ed,the spacing ofthe M atsubara
frequencies,2�T,givesagood choicefortherenorm alization scale �� atzerodensity,itseem s
plausible to adoptthe diam eter ofthe Ferm isphere,2�,in the case ofzero tem perature.
Thischoiceofa relativefactorof� isparticularly naturalwhen considering theform ofthe
leading-orderresultfortheferm ionic therm alm asses,Eq.(4.21),where T and �=� appear
on equalfooting.

In Fig.14 wegivethenum ericalresultsforthequark density N H D L atT = 0 forN = 3
and N f = 3asafunction of�=�

M S
fortherange�� = �:::4�.In thiscasewedonotattem pt

toincludeNLO corrections,fortheydonotcontributeterm soforderg3.NLO correctionsto
thehard ferm ion self-energyarein factresponsibleforcom pletingtheplasm on e�ectatorder
g4log(g),buta com pletecalculation oftheform erwould beneeded to determ ine thatpart
oftheconstantunderthelogarithm thatcom esfrom thespectralpropertiesofquasiparticles
ratherthan explicitorder-g4 interactions,which aredropped in theapproxim ation N 0= 0.

The dashed line in Fig.14 givesthe strictly perturbative resultatorderg2. The result
corresponding to a sim ple quasiparticle m odelwith m ass M = M 1 is notincluded;from
Fig.10 itisclearthatitisin between theHDL resultand theorder-g2 one,and som ewhat
closerto thelatter.

The perturbative resultup to and including orderg4 hasbeen calculated by Freedm an
and M cLerran [34] and by Baluni[45]. However, it has been obtained in a particular
m om entum subtraction schem e. In order to convert this to the gauge-independent M S
schem e,oneshould replacethescaleparam eter�0 in Ref.[34](M in Refs.[45,1])according
to

�0 = ��exp
n

[(151+ 36� + 9�2)N � 40Nf]=[24(11N � 2Nf)]
o

; (5.16)

where � isthegaugeparam eterused in them om entum subtraction schem e calculation.In
particularforN = 3 and uniform chem icalpotentialsone�nds19

P=P0 = 1� 2
�s(��)

�
�
h

10:347� 0:536Nf + N f log
N f�s(��)

�

+ (11�
2

3
N f)log

��

�

i

(
�s(��)

�
)2 + O (�3s); (5.17)

N =N 0 = 1� 2
�s(��)

�
�
h

7:597� 0:369Nf + N f log
N f�s(��)

�

+ (11�
2

3
N f)log

��

�

i

(
�s(��)

�
)2 + O (�3s): (5.18)

19The num ericalcoe�cients have been assem bled from Eq.(4.46) ofRef.[45]using Eq.(5.16),
thusavoiding som e unnecessary accum ulated rounding errorsthatare presentin the �nalresults
(5.14) and (5.15) ofRef.[45]. The actualerror in the above num ericalcoe�cients is probably
about1 in thenext-to-lastdigit.

52



2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

^

M=�

N

HDL

=N

(0)

FIG .14. Theresultforthequark density forN f = 3in theHDL approxim ation for�� = �:::4�
(fulllines)com pared with theperturbativeresultsatorderg2 (dashed lines)and orderg4 (dotted
lines).

W ith N f = 3,this is included in Fig.14 by the dotted lines20. Although the perturba-
tive order-g4 resultconstitutesa substantialcorrection ofthe order-g2 result,perturbation
theory atzero tem perature and high densitiesisclearly m uch betterbehaved than athigh
tem peratures| theinteraction term sareincreased bylessthan 50% for� >� 2�

M S
(� >� 3�

M S

in thecaseofP=P0).
On theotherhand,thenonperturbativeN H D L resultisrathercloseto theperturbative

order-g2 result,showing even a slightdecrease ofthe interaction contribution com pared to
the latter. The N H D L resultcontainsalready a fraction ofthe coe�cientofthe � 2

slog(�s)
term ,togetherwith a subsetofthetruehigher-ordercontributions.Itwould beinteresting
to see how an NLA calculation,which would com plete the g4log(g)coe�cient,com pares
with theperturbativeorder-g4 result.W eintend to investigate thatin futurework.

V I.C O N C LU SIO N S A N D O U T LO O K

W e have shown that it is possible to perform a resum m ation ofHTL’s which is free
ofovercounting and UV problem sthrough approxim ately self-consistentcalculationsofthe
therm odynam icalfunctionsofQCD,withoutthe need fortherm alcounterterm s.The two-
loop skeleton approxim ation forthe free energy reducesto e�ectively one-loop expressions
fortheentropy and thedensity butwith dressed propagators.W ith thelatterapproxim ated

20In Fig.4 ofourpreviouspublication Ref.[16],theperturbativeorder-g4 resultwasnotcorrectly
included becauseofan incom plete schem e conversion.
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by theHTL/HDL propagatorswereproducecorrectly theleading-orderinteraction term s21.
In fact,the lattercan be expressed entirely in term softhe asym ptotic therm alm ass.The
so-called plasm on-e�ect contributions oforder g3 on the other hand are only partly ac-
counted forby HTL self-energiesand propagators;therem aining contributionsarise,rather
unconventionally,from NLO correctionstotheself-energy ofhard particlesatthelight-cone
asgiven by standard HTL perturbation theory.

Thisisto be contrasted with a directHTL resum m ation ofthe one-loop pressure [11].
There the plasm on e�ect is contained com pletely in the soft contributions, whereas the
leading-orderinteraction term sareover-included and corrected only in a(very com plicated)
two-loop calculation.

W ewould liketo recallthatwhiletheHTL and NLA approxim ationsthatwehavecon-
sidered are m anifestly gauge independent,this is not the case for our starting point,the
self-consistent �-derivable two-loop order approxim ation itself. The corresponding gap
equation would involve unphysicalgauge dependentfeaturesaswellasan incom plete low-
estorder�-function both ofwhich enteratorderg4,i.e.beyond theperturbative accuracy
ofa two-loop approxim ation. These are autom atically dropped in ourcurrentapproxim a-
tions. Furtherim provem ents,beyond ourHTL and NLA approxim ationswould require to
also im prove upon the self-consistent two-loop approxim ation. In order to achieve gauge
independencein (approxim ately)self-consistentresum m ationsoneshould obviously turn to
approxim ationswhich includedressed vertices,usingforinstancetheform alism swhich have
been developed longagoby deDom inicisand M artin [17]and also Freedm an and M cLerran
[34]. The strategy,in principle,would be to include vertex corrections,together with in-
creasingly betterapproxim ationsforthequasiparticlepropagators.Thatis,with increasing
num berofloopsin �,thebuildingblocksin thisschem e| theself-consistentpropagatorsand
vertices| should be also im proved. However,a practicalim plem entation ofsuch a schem e
in thecaseofnonabelian gaugetheoriesseem sto behopelessly com plicated.Itistherefore
gratifying thatthe approxim ate propagatorrenorm alization thatwe have presented turns
outto bealready a good approxim ation.

In theexpressionsthatweusefortheentropy and density them ain contribution com es
from the vicinity ofthe light-cone where hard therm alloopsrem ain accurate also athard
m om enta and provide the asym ptotic m asses. W e have proposed a procedure ofincluding
NLO correctionsthrough approxim ately self-consistentcorrectionsto thetherm alm assesof
thehard excitationsonly.TheNLO correctionsto theasym ptoticm assescan becalculated
m ore accurately by m eans ofstandard HTL perturbation theory,the details ofwhich are
postponed to a forthcom ing publication.

Thenum ericalevaluation ofourresultscom bined with atwo-loop renorm alization group
im provem entturn outto com parerem arkably wellwith availablelatticedata atzero quark
chem icalpotential,which supports the picture according to which m uch ofthe e�ects of
theinteractionsin thequark-gluon plasm a can beadequately described by m eansofweakly

21In Ref.[46]an attem pthasbeen m adetoresum theHTL self-energiesdirectly on thelevelofthe
skeleton representation ofthe free energy.Howeverthisrelieson an arbitrary m odi�cation ofthe
functional� which,although ityieldsthecorrectg 2 e�ects(by construction),doesnotrespectthe
correctcom binatorialfactorsand thusviolatesthe propercounting ofthehigher-orderdiagram s.

54



interacting gluonicand ferm ionic(HTL)quasiparticles.
Extensionsofthepresentwork which arein progressconcern theevaluation forgeneral

� > 0and T > 0,and theintegration ofentropy and density tothetherm odynam icpressure
P(�;T),sim ilarly towhathasbeen donein sim plequasiparticlem odelsin Ref.[47](seealso
[16]). M axwell’srelations,which constitute the corresponding integrability conditions,are
satis�ed up to and including orderg3 upon inclusion oftheNLO contributions;beyond that
orderthey give constraintson a possible renorm alization-group im provem entand itseem s
interesting to furtherpursuethepresentapproach ofcom bining thephysicalcontentofthe
perturbatively derivablehard therm al/dense self-energieswith nonperturbative expressions
forentropy and density,which in self-consistenttwo-loop orderapproxim ationsonly depend
on thespectralpropertiesofquasiparticle excitations.
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A P P EN D IX A :T H E P LA SM O N EFFEC T IN T H E Q C D EN T R O P Y

In thisAppendix,we shallexplicitly verify thatourapproxim ation forthe entropy (cf.
Eqs.(3.10)and (4.10))containsindeed therightperturbativecorrection oforderg3.Recall
thatS3 involvestwo typesofcontributions:theLO entropy ofthesoftgluons(longitudinal
and transverse; cf. Eqs.(3.31) and (3.32)),and the NLO entropy ofthe hard particles
(transversegluonsand ferm ions),asdeterm ined by thecorresponding NLO self-energieson
thelight-cone(cf.Eqs.(3.30)and (4.29)).

Ourstrategy willbeasfollows:In Sect.A.1,weshallrewritethesoftgluon entropy in a
way which willbeconvenientlater.Then,in Sects.A.2 and A.3 weshallcom putetheNLO
self-energy ��T ofa hard transverse gluon,and the corresponding contribution �ST to the
entropy.Thiswillcom pletethederivation oftheplasm on e�ectforapurely gluonicplasm a.
Theextension to a plasm a with ferm ionswillbe�nally considered,in Sect.A.4.

1. T he entropy ofsoft gluons

From Eqs.(3.31)and (3.32),theorder-g3 contribution ofthesoftgluonsreads

Ssoft

3 = �

Z
d4k

(2�)4
1

!

n

Im
h

log(1+ D 0�̂)� �̂D 0

i

� Im �̂Re(D̂ � D0)
o

= S
(a)

3 + �S 3; (A1)

where S(a)

3 = (@P3=@T)ĵm D
(cf. Eq.(3.29a)),and �S 3 is de�ned in Eq.(3.43). In Sect.

IIID 3,we have m entioned that �S 3 has been num erically found to vanish,because ofa
com pensation between the electric and the m agnetic contributionsto Eq.(3.43). In what
follows,however,we shallnot use this inform ation,but rather consider separately these
electric and m agnetic contributions,and show how they com bine with the corresponding
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contributionsto theNLO entropy ofthehard particles�S.Speci�cally,weshallverify that
theidentity in Eq.(3.36)holdsseparately in theelectricand them agneticsector.

To thisaim ,itisconvenient to rewrite Eq.(3.43)in a slightly di�erent form by using
Im �̂Re D̂ = Im (̂� D̂ )� Rê�Im D̂ ,and then integrating the�rstterm :

Z
d3k

(2�)3

Z
d!

2�!
Im

�

�̂ L(D̂ L � D
(0)

L )
�

=
m̂ 2

D

2

Z
d3k

(2�)3

 
1

k2
�

1

k2 + m̂ 2
D

!

=
m̂ 3

D

8�
: (A2)

Thisyields(with �̂L;T = 2Im D̂ L;T,cf.Eq.(3.7)):

�S 3 = N g

Z
d4k

(2�)4
1

2!

n

�̂L

�

Re�̂ L � m̂
2

D

�

� 2
�

�̂T � �
(0)

T

�

Re�̂ T

o

� �S (3)

L + �S (3)

T ; (A3)

wherewehavealso used thefollowing \sum -rule" (cf.Eq.(3.6)):

Z
d!

2�

�̂L(!;k)

!
=

1

k2
�

1

k2 + m̂ 2
D

: (A4)

Given thecom plicated structureoftheHTL self-energiesand spectralfunctions,theintegrals
in Eq.(A3) cannot be further evaluated in closed form . But this is actually not needed:
indeed,the cum bersom e term sin these expressionswillbe shortly shown to cancelagainst
sim ilarterm sin Shard

3
,theorder-g3 contribution ofthehard particles,tobecom puted below.

2. T he N LO gluon self-energy

W eshallnow com putetheNLO self-energy contribution ��T ofahard transversegluon.
This isdeterm ined by the e�ective one-loop diagram s in Fig.4 where one ofthe internal
linesisa softgluon (L orT)with theHTL-dressed propagator D̂ � D0 (thesubtraction of
thefreepropagatorD 0 isensuresthattheloop integralissaturated by softm om enta).The
otherlinein each ofthesediagram sishard and transverse,and thereforeundressed.

W eareinterested only in thetransverse projection of����:

��(p)� ��T(p)�
1

2
(�ij � p̂

i
p̂
j)��ij(p): (A5)

W e write ��T = ��l + ��t, where the upper indices refer to the soft internallines in
these diagram s,and com pute only the longitudinalcontribution ��l in m ore detail. (The
calculation ofthetransversecontribution iscom pletely analogous.) Thisinvolvestwo ofthe
diagram sin Figs.4:thetadpole��la and thenon-localdiagram ��lb.Thetadpolegives

��la = � g
2
N

Z

[dk]
�

D̂ L(k)� D
(0)

L (k)
�

= � g
2
N

Z
d4k

(2�)4
�̂L(k0;k)n(k0)

’ � g
2
N T

Z
d4k

(2�)4
1

k0
�̂L(k0;k) = �

g2N Tm̂ D

4�
; (A6)

where theM atsubara sum in the �rstline hasbeen perform ed by using the spectralrepre-
sentation (3.6),and in the second line we have replaced n(k0)’ T=k0 (asappropriate at
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softenergies),and then perform ed the energy integralwith the help ofthe sum -rule (A4).
The�nalresultin Eq.(A6)isindeed oforderg2Tm̂ D � g3T2,asexpected.

Thenon-localdiagram in Fig.4.b yields:

�

��lb
�

ij
(p) = � 2

g2N

2

Z

[dk](2p0 + k0)
2
D

(0)

ij (p+ k)
�

D̂ L(k)� D
(0)

L (k)
�

; (A7)

whereD (0)

ij (q)isthefreem agneticpropagatorin theCoulom b gauge,

D
(0)

ij (q) = (�ij � q̂iq̂j)
� 1

q20 � q2
; (A8)

and the factor 2 in front ofthe integralreects the two possible ways to choose the soft
longitudinallineam ong thetwo internallinesin theoriginalone-loop diagram .

Thetransverseprojection ofEq.(A7)involves 1

2
(�ij� p̂ip̂j)(�ij� q̂iq̂j),whereq = k + p.

Since p � T,we have q̂i =
pi+ ki
jp+ kj

’ p̂i,while the integralin Eq.(A7) willbe eventually
dom inated by soft k m om enta. In what follows,we shalloften perform such kinem atical
sim pli�cationsrelying on the factthatk � p.W ith thissim pli�cation,the productofthe
transverse projectorsabovereducesto theidentity,so that

��lb(p) = � g
2
N

Z

[dk](2p0 + k0)
2
D 0(p+ k)

�

D̂ L(k)� D
(0)

L (k)
�

: (A9)

To perform theM atsubara sum overk0 weneed thefollowing sum s(with q � k + p):

T
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k0
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; (A10)
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:

This�nally yields,fortheretarded self-energy,

��lb(p) = � g
2
N

Z
d4k

(2�)4

Z
dq0

2�
�̂L(k)�0(q)[4p

2

0
+ 3p0k0 + k0q0]

n(q0)� n(k0)

k0 � q0 + p0 + i�
: (A11)

To com putetheentropy (3.30)weneed thelight-coneprojection oftherealpartofthis
self-energy, Re��lb(p0 = p).Notethatin previouscalculationsofthe dam ping rate,itwas
rathertheim aginary partofthissam eself-energy which wasrequired [33,48].Thecalcula-
tion ofthe im aginary partiseasiersince the LO contribution � g2T2 can be im m ediately
extracted from Eq.(A11)by neglecting n(q0)� 1 againstn(k0)’ T=k0 � 1,and keeping
only thelargeexternalm om entum 4p2

0
in thenum erator.This,togetherwith

Im
1

k0 � q0 + p0 + i�
= � ��(k0 � q0 + p0) ’ � ��(k0 � kcos� + p0 � p); (A12)

leadsto thefollowing,standard,resultforthelongitudinalpartofthedam ping rate[48]:
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l � �
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g2N T

2

Z
d3k

(2�)3
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�̂L(!;k)�(! � kcos�): (A13)

Ifwe perform ,however,the sam e sim pli�cations on the realpart,then the would-be LO
resultturnsoutto vanish,by parity (with P denoting theprincipalvalue):

�

Re��lb(p0 = p)
�

naive
= g

2
N T

Z
d3k

(2�)3

Z
d!

�!
�̂L(!;k)P

1

! � kcos�
= 0: (A14)

In fact,thisisonly to beexpected:theterm sin Eq.(A14)areform ally oforderg2T2,while
we know that Re�� should be ratheroforderg3T2.Thus,in orderto extractthe leading
contribution to Re�� from Eq.(A11)onehasto push thekinem aticalapproxim ationsone
step furtherascom pared to the dam ping rate.In particular,we need theexpansion ofthe
statisticalfactorsin Eq.(A11)to LO and NLO order:

n(k0)� n(q0)’
T

k0
�

2n(q0)+ 1

2
: (A15)

W e shalldenote by Re��lb1 the contribution com ing from T=k0,and by Re��lb2 the re-
m aining onedueto (2n(q0)+ 1)=2.Thesequantitieswillbeevaluated atp0 = p,so they are
functionsofthethree-m om entum p alone.W ehave:

Re��lb1(p)= g
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where in the second line we have identi�ed the (retarded)free propagatorvia itsspectral
representation. In Re��b2,we can restrict ourselves to the LO term 4p2 in the denom i-
nator,and to the positive-energy pole q0 = jp + kj’ p+ kcos� in the spectralfunction
�0(q0;jp + kj).Thisyields:

Re��lb2(p)’ � g
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N p(2n(p)+ 1)

Z
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k0 � kcos�
: (A17)

3. T he N LO entropy ofhard gluons

Letusconsider�rsta purely gluonic plasm a,in which case the hard gluon self-energy
��T = ��l+ ��t,isallwhatwe need to com pute the NLO entropy Shard

3 � �Sl+ �St.As
before,we focus on the longitudinalcontribution �Sl;by inserting Eqs.(A6),(A16) and
(A17)in Eq.(3.30),weobtain �Sl= �Sl

1
+ �Sl

2
,where:
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In writing thelastlineabove,wehaveidenti�ed theone-loop contribution totheself-energy
ofthesoftlongitudinalgluon dueto hard transversegluons.To theorderofinterest,thisis
precisely theHTL �̂ L.Thesecond piece�Sl2 oftheentropy reads:
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In going from the second to the third line above,the following chain ofidentitieshasbeen
used (seealso Eq.(3.16)):
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Furtherm ore,in writing thelastlinein Eq.(A19),wehaveidenti�ed thelongitudinalHTL
Re�̂ L asfollows(com pareto Eq.(3.14)):

Re�̂ L(!;k)= � m̂
2
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! � kcos�
: (A21)

By adding Eqs.(A18) and (A19),we �nally deduce the following expression for the
longitudinalpieceoftheNLO entropy:
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with �S (3)

L asde�ned in Eq.(A3).An entirely sim ilarcalculation showsthattherem aining,

transverse,piece�St cancelsagainstthetransverse contribution �S (3)

T to �S 3,Eq.(A3):

�St + �S (3)

T = 0: (A23)

That is,the totalcontribution ofthe soft transverse gluons to the plasm on e�ect cancels
away,asitshould.

Alltogether,Eqs.(A1),(A3),(A22)and (A23)providetheexpected resultfortheorder-
g3 e�ectin theentropy ofthepurely gluonicplasm a whereT(@T m̂ 2

D )= 2m̂ 2
D :
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M oreover, it can be easily recognized that Eqs.(A22) and (A23) are equivalent to the
longitudinal,and,respectively,transverse com ponentsofEq.(3.36),asthey should.
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4. A dding the ferm ions

The previousresultsare easily extended to a QCD plasm a with ferm ions. The entropy
Shard
3

in thiscaseinvolvesalso theNLO self-energiesofthehard ferm ions,��� :
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: (A25)

Once again,we focus on the contribution �Sl ofthe softlongitudinalgluons,and use the
integralover the hard m om entum p in Eq.(A25)to reconstruct the HTL �̂ L. Here,this
involvesboth a hard gluon loop and a hard ferm ion loop,which entersvia theself-energies
��l� .

Forinstance,theferm ionicanalog of Re��lb2,Eq.(A17),reads:
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which,when inserted into Eq.(A25),determ ines the following contribution to the NLO
entropy (com pareto Eq.(A19)):
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(W e have used here (1� 2f)@Tf = @T[f(1� f)]= � @T(T@kf),togetherwith Eq.(4.1)for
theDebyem ass.) Thisisform ally thesam eresultasforpureglue,Eq.(A19),exceptthat,
here,m̂ D isthefullHTL Debyem ass,which includescontributionsfrom ferm ions.

Sim ilarly,theothercontribution �Sl1 preservestheform in Eq.(A18)where,however,�̂ L

isnow thefullHTL in a theory with ferm ions.Thusthe�nalresultin Eq.(A22)isform ally
unchanged,butitnow appliesto a QCD plasm a with ferm ions,forwhich T(@T m̂ 2

D )= 2m 2
T

(cf.Eq.(4.31)).
Consider�nally the orderg3 e�ectin thequark density:asexplained in them ain text,

this com es entirely from the NLO corrections ��� to the hard ferm ion self-energies,and,
m ore precisely, from the longitudinalsector alone (the soft transverse e�ects eventually
cancel, as in the case ofthe entropy). Thus, N 3 = �N l,with �N l given by the sam e
equationsasabove,exceptforthereplacem entofthetem peraturederivativesby derivatives
with respectto �.Thus�N l� �Nl

1
+ �N l

2
,where(cf.Eqs.(A18)and (A19)):

�N l
1 = N gT

Z
d4k

(2�)4
�̂L

2k0

@

@�
Re�̂ L(k0;k); (A28)

and

�N l
2 =

N gT

2

@m̂ 2
D

@�

Z
d4k

(2�)4
�̂L(k0;k)

k0 � kcos�
= � NgT

Z
d4k

(2�)4
�̂L

2k0

@

@�

�

Re�̂ L � m̂
2

D

�

: (A29)

As in the entropy,the non-localterm s involving Re�̂ L(k) cancelin the sum ofthe two
contributionsabove,and weareleftwith thefollowing sim pleexpression:

N 3 = N gT
@m̂ 2

D

@�

Z
d4k

(2�)4
�̂L(k)

2k0
=

N gTm
2
�m̂ D

4��
: (A30)
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