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Abstract We prove that roughly d
(1−ϑ)d

ln 1
(1−ϑ)d

points chosen uniformly and inde-

pendently from a centered convex body K in R
d yield a polytope P for which

ϑK ⊆ P ⊆ K holds with large probability. This gives a joint generalization of
results of Brazitikos, Chasapis and Hioni and of Giannopoulos and Milman.
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1 Introduction

A convex body (i.e., a compact convex set with non-empty interior) in R
d is called

centered, if its center of mass is the origin.
We study the following problem. Given a centered convex body K inRd , a positive

integer t ≥ d+1, and δ, ϑ ∈ (0, 1). We want to show that under some assumptions on
the parameters d, t, δ, ϑ (and without assumptions on K ), the convex hull P of t ran-
domly, uniformly and independently chosen points of K contains ϑK with probability
at least 1 − δ.
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[4, Thm. 1.1] concerns the case of very rough approximation, that is, where the
number t of chosen points is linear in the dimension d. It states that the convex hull
of t = αd random points in a centered convex body K is a convex polytope P which
satisfies c1

d K ⊆ P , with probability 1 − δ = 1 − e−c2d , where c1, c2 > 0 and α > 1
are absolute constants. In our first result, we obtain explicit constants.

Theorem 1.1 Let K be a centered convex body in R
d . Choose t = 60(d + 1) points

X1, . . . , Xt of K randomly, independently and uniformly. Then

1

d
K ⊆ conv{X1, . . . , Xt } ⊆ K .

with probability at least 1 − 4e−d−1.

Another instance of our general problem is [7, Thm. 5.2], which concerns fine
approximation, that is, where the number t of chosen points is exponential in the
dimension d. It states that for any δ, γ ∈ (0, 1), if we choose t = eγ d random points
in any centered convex body K in R

d , then the convex polytope P thus obtained
satisfies c(δ)γ K ⊆ P , with probability 1− δ. We note that it is not included explicitly
in the statement of of [7, Thm. 5.2] that it only holds for sufficiently large d, that is,
when d > d0, where d0 depends on δ and γ . This condition is clearly necessary, as
for any γ and any K , with some positive probability, the origin is not in the convex
hull of t = eγ d random points in K .

[7, Prop. 5.3] follows from the same argument as Theorem 5.2 therein. It states that
for any δ, ϑ ∈ (0, 1), if we choose t = c(δ)

( c
1−ϑ

)d random points in any centered
convex body K in R

d , then the convex polytope P thus obtained satisfies ϑK ⊆ P ,
with probability 1 − δ.

Our main result is the following.

Theorem 1.2 Let ϑ ∈ (0, 1),C ≥ 2. Set

t :=
⌈
C

(d + 1)e

(1 − ϑ)d
ln

e

(1 − ϑ)d

⌉
.

Then for any centered convex body K in R
d , if t points X1, . . . , Xt of K are chosen

randomly, independently and uniformly, then

ϑK ⊆ conv{X1, . . . , Xt } ⊆ K

with probability at least 1 − δ, where

δ := 4

[
11C2

(
(1 − ϑ)d

e

)C−2]d+1

.

By substituting ϑ = 1
d ,C = 6, we obtain Theorem 1.1.
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In order to recover [7, Thm. 5.2], substitute C = 3 and ϑ = c(δ)γ in our The-
orem 1.2. Then t ≤ e3c(δ)γ d , when d is large, and δ is roughly e−c(δ)γ d2 . Fixing
c(δ) = 1/3 independently of δ yields the result.

We recover [7, Prop. 5.3] in a form which is slightly weaker if ϑ is close to 1, as
follows. In our Theorem 1.2, t ≤ 10Cd2

(1−ϑ)d+1 (note the exponent d + 1 instead of d) and

δ ≤ 11C2/eC−2. By setting C sufficiently large (depending on the desired δ only), we
can make the latter as small as required.

We compare our Theorem 1.2 with the main result, [4, Thm. 1.2], which states the
following. Let β ∈ (0, 1). There exist a constant α = α(β) > 1 depending only on
β and an absolute constant c > 0 with the following property. Let K be a centered
convex body inRd ,αd ≤ t ≤ ed , and choose t points uniformly distributed in K . Then
the convex polytope thus obtained contains ϑK , where ϑ = cβ ln(t/d)

d with probability
1 − δ, where δ ≤ exp(−t1−βdβ).

When ϑ is of order 1/d, the two results are the same up the constants involved,
see our Theorem 1.1 and the discussion preceding it. For fine approximation, that is,
when ϑ is a constant, by setting C = 1

(1−ϑ)d/2 , we obtain roughly t ≈ exp(ϑd/2)

and δ ≈ exp[−ϑd2 exp(ϑd/2)]. In the mean time, [4, Thm. 1.2] gives roughly t ≈
exp(ϑd/(cβ)) and δ ≈ exp[− exp((1 − β)ϑd/(cβ))dβ ].

In Sect. 2, we present a generalization of a classical result of Grünbaum [10],
according to which any half-space containing the center of mass of a convex body
contains at least a 1/e fraction of its volume. In Sect. 3, we state a specific form of
the ε-net theorem, a result from combinatorics obtained by Haussler and Welzl [11]
building on ideas of Vapnik and Chervonenkis [21], and then refined by Komlós et
al. [12]. In Sect. 4, we combine these two to obtain Theorem 1.2. Finally, in Sect. 5,
using a recent result of Fradelizi et al. [6], we extend our main result to approximating
a linear section of a centered convex body.

For surveys on the topic of approximation of convex bodies by polytopes, cf. [2,5,9],
and for some further recent results on approximation in the Banach–Mazur distance
(or, geometric distance) when the vertices are not necessarily picked randomly and
uniformly from the body, see [3,16].

We note that, in a similar vein, Gordon, Litvak, Pajor and Tomczak-Jaegermann [8,
Thm. 3.1] showed that if K is an origin-symmetric convex body inRd and t = (4/ε)2d

random points X1, . . . , Xt are chosen from it uniformly and independently, then, with
probability larger than 1 − exp(−(8/ε)d/2), these t points form a metric ε-net of K
with respect to K , that is, K ⊆ ⋃t

i=1(Xi + εK ). We will use the term ‘ε-net’ in a
different, combinatorial sense, to be defined in Sect. 3.

2 Convexity: A stability Version of a Theorem of Grünbaum

Grünbaum’s theorem [10] states that for any centered convex body K in Rd , and any
half-space F0 that contains the origin we have

vol(K )/e ≤ vol(K ∩ F0), (1)
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where vol (·) denotes volume.
We say that a half-space F supports K fromoutside if the boundary of the half-space

intersects bd K , but F does not intersect the interior of K . Lemma 2.1, is a stability
version of Grünbaum’s theorem.

Lemma 2.1 Let K be a convex body inRd with centroid at the origin. Let 0 < ϑ < 1,
and F be a half-space that supports ϑK from outside. Then

vol(K )
(1 − ϑ)d

e
≤ vol(K ∩ F). (2)

Proof Let F0 be a translate of F containingo on its boundary, and let F1 be a translate of
F that supports K from outside. Finally, let p ∈ bd F1∩K . Thenϑp+(1−ϑ)(K ∩F0)
(that is, the homothetic copy of K ∩ F0 with homothety center p and ratio 1−ϑ) is in
K ∩F . Its volume is (1−ϑ)d vol(K ∩F0), which by (1), is at least (1−ϑ)d vol(K )/e,
finishing the proof. �	

3 Combinatorics: The ε-Net Theorem of Haussler and Welzl

Definition 3.1 LetF be a family of subsets of some setU . The Vapnik–Chervonenkis
dimension (VC-dimension, in short) of F is the maximal cardinality of a subset V of
U such that V is shattered by F , that is, {F ∩ V : F ∈ F} = 2V .

A transversal of the set family F is a subset Q of U that intersects each member
of F .

Let ε ∈ (0, 1) be given. WhenU is equipped with a probability measure for which
each member of F is measurable, then a transversal of those members of F that are
of measure at least ε is called an ε-net.

It follows from Radon’s lemma (cf. [13, Thm. 1.3.1], or [19, Thm. 1.1.5]) that ifU
is any subset of Rd , and F is a family of half-spaces of Rd , then the VC-dimension
of F is at most d + 1.

The ε-Net Theoremwas first proved byHaussler andWelzl [11], and then improved
by Komlós et al. [12]. We state a slightly weaker form of Theorem 3.1 of [12] than
the original, in order to have an explicit bound on the probability δ of failure.

Lemma 3.2 (ε-Net Theorem). Let 0 < ε < 1/e,C ≥ 2, and let D be a positive
integer. Let F be a family of some measurable subsets of a probability space (U, μ),
where the probability of each member F of F is μ(F) ≥ ε. Assume that the VC-
dimension of F is at most D. Set

t :=
⌈
C
D

ε
ln

1

ε

⌉
.

Choose t elements X1, . . . , Xt of V randomly, independently according to μ. Then
{X1,. . ., Xt } is a transversal of F with probability at least 1 − δ, where

δ := 4
[
11C2εC−2]D.
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Proof We provide an outline of the first, conceptual part of the proof closely following
[17, Thm. 15.5]. Then, we continue with a detailed computation to obtain the bound
on the probability stated in Lemma 3.2.

Let T > t be an integer, to be set later. We select (with repetition) independently
t random elements of U with respect to μ, call it the first sample, and denote it by x .
Then, we choose another T − t elements, call it the second sample, and denote it by
y. For any F ∈ F , and any finite sequence w of elements ofU , let I (F, w) denote the
number of elements ofw in F with multiplicity. LetmF denote the median of I (F, y).

Note that I (F, y) is a binomial variable, and hence, its mean and median are close
to each other. More precisely,

mF ≥ (T − t)ε − 1. (3)

It is not hard to see that

μ(∃F ∈ F : I (F, x) = 0) ≤ 2μ(∃F ∈ F : I (F, x) = 0 and I (F, y) ≥ mF ). (4)

Denote the concatenation of the two sequences x and y by xy. Fix any length T
sequence z of elements of U .

It is simple to obtain a bound on the following conditional probability:

μ

(
∃F ∈ F : I (F, x) = 0andI (F, y) ≥ mF | xy = z

)

≤ χ [I (F, z) ≥ mF ]
(
1 − t

T

)mF
, (5)

where χ denotes the indicator function of an event, that is, it is one if the event holds,
and zero otherwise.

The key idea follows. Consider z as a set. Then, by the Shatter function lemma (cf.
of [17, Thm. 15.4] or [13, Lem. 10.2.5]) proved independently by Shelah [20], Sauer
[18] and Vapnik and Chervonenkis [21], z has at most

D∑

i=0

(
T

i

)

distinct intersections with members of F . Thus by (3) and (5), we have

μ

(
∃F ∈ F : I (F, x) = 0 and I (F, y) ≥ mF | xy = z

)
≤

D∑

i=0

(
T

i

)(
1− t

T

)(T−t)ε−1

.

(6)
Let E be the ‘bad’ event, that is, when {X1, . . . , Xt } is not a transversal of F . So

far, by (4) and (6), we obtained that for any integer T > t , we have that the probability
of the event E is

μ(E) < 2
D∑

i=0

(
T

i

)(
1 − t

T

)(T−t)ε−1

.
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From this point on, we describe the computations in detail, in order to obtain the bound
on the probability stated in Lemma 3.2.

We set T = ⌊
εt2
D

⌋
and use

∑D
i=0

(T
i

) ≤ ( eT
D

)D , to obtain that

μ(E) < 2
(eT
D

)D(
1 − t

T

)(T−t)ε−1
< 2

(eεt2

D2

)D(
1 − D

εt

)
(

εt2/D−t−1

)
ε−1

< 2
(eεt2

D2

)D
e−εt+D+D/t+D/(εt),

which, after substituting the expression for t in some places and using ε < 1/e, is at
most

(
2e1/C+1/(eC)

)(e2εt2

D2

)D

εCD,

which, using C ≥ 2 is at most

(
2e1/C+1/(eC)

)(e2(1 + 1/(2e))2C2 ln2(1/ε)

ε

)D

εCD < 4
(
11C2εC−2)D,

completing the proof of Lemma 3.2. �	
For more on the theory of ε-nets, see [1,13,15,17].

4 Proof of Theorem 1.2

Proof of Theorem 1.2 We consider the following set system on the base set K :

F := {K ∩ F : F is a half-space that supports ϑK from outside}.

Clearly, the VC-dimension ofF is at most D := d+1. Letμ be the Lebesguemeasure
restricted to K , and assume that vol(K ) = 1, that is, that μ is a probability measure.

By (2), we have that each set inF is of measure at least ε := (1−ϑ)d

e . Lemma 3.2 yields
that if we choose t points of K independently with respect to μ (that is, uniformly),
then with probability at least 1 − δ, we obtain a set Q ⊆ K that intersects every
member of F . The latter is equivalent to ϑK ⊆ conv Q, completing the proof. �	

5 Approximating a Section of a Convex Body

Let K be a centered convex body in Rd , and V a linear subspace of Rd . Now, K ∩ V
may not be centered however, wemay still want to approximate K ∩V with a polytope
P ⊂ K ∩ V such that ϑ(K ∩ V ) ⊂ P for some not too small ϑ .

The main result of [6] (for further results, see also [14]) states that there is an
absolute constant c > 0 such that for every centered convex body K in R

d , every
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(d − k)-dimensional linear subspace V of Rd , 0 ≤ k ≤ d − 1, and any u ∈ V unit
vector, we have

vold−k(K ∩ V ∩ u+) ≥ c

(k + 1)2

(
1 + k + 1

d − k

)−(d−k−2)

vold−k(K ∩ V ), (7)

where u+ = {x ∈ R
d : 〈u, x〉 ≥ 0} is the half-space with inner normal vector u.

Using this result, our proof of Theorem 1.2 immediately yields the following.

Theorem 5.1 Let ϑ ∈ (0, 1), C ≥ 2. Let K be a centered convex body in R
d and V

be (d − k)-dimensional linear subspace of Rd with 0 ≤ k ≤ d − 1. Set

t :=
⌈
C

(d − k + 1)(k + 1)2

c
(
1 + k+1

d−k

)d−k−2
(1 − ϑ)d−k

ln
(k + 1)2

c
(
1 + k+1

d−k

)d−k−2
(1 − ϑ)d−k

⌉
,

where c is the universal constant from (7). Choose t points X1, . . . , Xt of K ∩ V ran-
domly, independently and uniformly with respect to the (d−k)-dimensional Lebesgue
measure on V . Then

ϑ(K ∩ V ) ⊆ conv{X1, . . . , Xt } ⊆ K ∩ V,

with probability at least 1 − δ, where

δ := 4

[
11C2

(
c
(
1 + k+1

d−k

)d−k−2
(1 − ϑ)d−k

(k + 1)2

)C−2]d−k+1

.
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