
Approximating a Gram Matrix for Improved
Kernel-Based Learning

(Extended Abstract)

Petros Drineas1 and Michael W. Mahoney2

1 Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, New York 12180
drinep@cs.rpi.edu

2 Department of Mathematics, Yale University,
New Haven, CT 06520
mahoney@cs.yale.edu

Abstract. A problem for many kernel-based methods is that the amount
of computation required to find the solution scales as O(n3), where n is
the number of training examples. We develop and analyze an algorithm
to compute an easily-interpretable low-rank approximation to an n × n
Gram matrix G such that computations of interest may be performed
more rapidly. The approximation is of the form G̃k = CW+

k CT , where
C is a matrix consisting of a small number c of columns of G and Wk

is the best rank-k approximation to W , the matrix formed by the inter-
section between those c columns of G and the corresponding c rows of
G. An important aspect of the algorithm is the probability distribution
used to randomly sample the columns; we will use a judiciously-chosen
and data-dependent nonuniform probability distribution. Let ‖·‖2 and
‖·‖F denote the spectral norm and the Frobenius norm, respectively, of
a matrix, and let Gk be the best rank-k approximation to G. We prove
that by choosing O(k/ε4) columns

∥
∥
∥G − CW+

k CT
∥
∥
∥

ξ
≤ ‖G − Gk‖ξ + ε

n∑

i=1

G2
ii,

both in expectation and with high probability, for both ξ = 2, F , and
for all k : 0 ≤ k ≤ rank(W). This approximation can be computed using
O(n) additional space and time, after making two passes over the data
from external storage.

1 Introduction

1.1 Background

Given a collection X of data points, which are often but not necessarily elements
of R

m, techniques such as linear Support Vector Machines (SVMs), Gaussian
Processes (GPs), Principle Component Analysis (PCA), and the related Sin-
gular Value Decomposition (SVD), identify and extract structure from X by

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 P. Drineas and M.W. Mahoney

computing linear functions, i.e., functions in the form of dot products, of the
data. For example, in PCA the subspace spanned by the first k eigenvectors is
used to give a k dimensional model of the data with minimal residual; thus, it
provides a low-dimensional representation of the data. Such spectral analysis has
a rich theoretical foundation and has numerous practical applications.

In many cases, however, there is nonlinear structure in the data (or the data,
e.g. text, may not support the basic linear operations of addition and scalar
multiplication). In these cases, kernel-based learning methods have proved to be
quite useful [7, 27]. Kernel-based learning methods are a class of statistical learn-
ing algorithms, the best known examples of which are SVMs [7]. In this approach,
data items are mapped into high-dimensional spaces, where information about
their mutual positions (in the form of inner products) is used for constructing
classification, regression, or clustering rules. Kernel-based algorithms exploit the
information encoded in the inner product between all pairs of data items and
are successful in part because there is often an efficient method to compute in-
ner products between very complex or even infinite dimensional vectors. Thus,
kernel-based algorithms provide a way to deal with nonlinear structure by re-
ducing nonlinear algorithms to algorithms that are linear in some feature space
F that is nonlinearly related to the original input space.

More precisely, assume that the data consists of vectors X(1), . . . , X(n) ∈ X ⊂
R

m and let X ∈ R
m×n be the matrix whose i-th column is X(i). In kernel-based

methods, a set of features is chosen that define a space F , where it is hoped rele-
vant structure will be revealed, the data X are then mapped to the feature space
F using a mapping Φ : X → F , and then classification, regression, or clustering
is performed in F using traditional methods such as linear SVMs, GPs, or PCA.
If F is chosen to be a dot product space and if one defines the kernel matrix, also
known as the Gram matrix, G ∈ R

n×n as Gij = k(xi, xj) = (Φ(xi), Φ(xj)), then
any algorithm whose operations can be expressed in the input space in terms of
dot products can be generalized to an algorithm which operates in the feature
space by substituting a kernel function for the inner product. In practice, this
means presenting the Gram matrix G in place of the input covariance matrix
XT X. Relatedly, using the kernel k instead of a dot product in the input space
corresponds to mapping the data set into a (usually) high-dimensional dot prod-
uct space F by a (usually nonlinear) mapping Φ : R

m → F , and taking dot
products there, i.e., k(xi, xj) = (Φ(xi), Φ(xj)). Note that for the commonly-used
Mercer kernels, G is a symmetric positive semidefinite (SPSD) matrix.

The generality of this framework should be emphasized. For example, there
has been much work recently on dimensionality reduction for nonlinear manifolds
in high-dimensional spaces. See, e.g., Isomap, local linear embedding, and graph
Laplacian eigenmap [29, 26, 4] as well as Hessian eigenmaps and semidefinite
embedding [9, 30]. These methods first induce a local neighborhood structure
on the data and then use this local structure to find a global embedding of
the manifold in a lower dimensional space. The manner in which these different
algorithms use the local information to construct the global embedding is quite

Approximating a Gram Matrix for Improved Kernel-Based Learning 325

different, but in [22] they are interpreted as kernel PCA applied to specially
constructed Gram matrices.

This “kernel trick” has been quite successful for extracting nonlinear struc-
ture in large data sets when the features are chosen such that the structure
in the data is more manifest in the feature space than in the original space.
Although in many cases the features are chosen such that the Gram matrix
is sparse, in which case sparse matrix computation methods may be used, in
other applications the Gram matrix is dense, but is well approximated by a low-
rank matrix. In this case, calculations of interest (such as the matrix inversion
needed in GP prediction, the quadratic programming problem for SVMs, and
the computation of the eigendecomposition of the Gram matrix) will still gen-
erally take space which is O(n2) and time which is O(n3). This is prohibitive
if n, the number of data points, is large. Recent work in the learning theory
community has focused on taking advantage of this low-rank structure in order
to perform learning tasks of interest more efficiently. For example, in [2], several
randomized methods are used in order to speed up kernel PCA. These meth-
ods have provable guarantees on the quality of their approximation and may
be viewed as replacing the kernel function k by a “randomized kernel” which
behaves like k in expectation. Relatedly, in [33], uniform sampling without re-
placement is used to choose a small set of basis training points, from which
an approximation to the Gram matrix is constructed. Although this algorithm
does not come with provable performance guarantees, it may be viewed as a
special case of our main algorithm, and it was shown empirically to perform
well on two data sets for approximate GP classification and regression. It was
also interpreted in terms of the Nyström method from integral equation theory;
this method has also been applied recently in the learning theory community to
approximate the solution of spectral partitioning for image and video segmen-
tation [20] and to extend the eigenfunctions of a data-dependent kernel to new
data points [5, 23]. Related work taking advantage of low-rank structure includes
[28, 19, 32, 6, 24, 31, 3].

1.2 Summary of Main Result

In this paper, we develop and analyze an algorithm to compute an easily-
interpretable low-rank approximation to an n × n Gram matrix G. Our main
result, the Main Approximation algorithm of Section 3.2, is an algorithm that,
when given as input a SPSD matrix G ∈ R

n×n, computes a low-rank approxi-
mation to G of the form G̃k = CW+

k CT , where C ∈ R
n×c is a matrix formed

by randomly choosing a small number c of columns (and thus rows) of G and
Wk ∈ R

c×c is the best rank-k approximation to W , the matrix formed by the in-
tersection between those c columns of G and the corresponding c rows of G. The
columns are chosen in c independent random trials (and thus with replacement)
according to a judiciously-chosen and data-dependent nonuniform probability
distribution. The nonuniform probability distribution will be carefully chosen
and will be important for the provable bounds we obtain. Let ‖·‖2 and ‖·‖F de-
note the spectral norm and the Frobenius norm, respectively, and let Gk be the

326 P. Drineas and M.W. Mahoney

best rank-k approximation to G. Our main result, presented in a more precise
form in Theorem 1, is that under appropriate assumptions:

∥
∥G − CW+

k CT
∥
∥

ξ
≤ ‖G − Gk‖ξ + ε

n∑

i=1

G2
ii, (1)

in both expectation and with high probability, for both ξ = 2, F , for all k : 0 ≤
k ≤ rank(W). This approximation can be computed in O(n) space and time
after two passes over the data from external storage.

1.3 Technical Report

In the interests of space, several sections have not been included in this extended
abstract. For more details and discussion related to the results presented here, see
the associated technical report [18]. In particular, [18] contains a discussion of the
relationship between our work, recent work on Nyström-based kernel methods
[33, 31, 20], and the low-rank approximation algorithm of Frieze, Kannan, and
Vempala [21, 14].

2 Review of Relevant Linear Algebra

For the review of the linear algebra used in this paper, see the associated technical
report [18]. Recent work in the theory of randomized algorithms has focused on
matrix problems [21, 10, 1, 2, 11, 12, 13, 14, 15, 16, 17, 25]. In particular, our previ-
ous work has applied random sampling methods to the approximation of several
common matrix computations such as matrix multiplication [13], the computa-
tion of low-rank approximations to a matrix [14], the computation of the CUR
matrix decomposition [15], and approximating the feasibility of linear programs
[16, 17]. For the review of two results from this random sampling methodology
that will be used in this paper, see the associated technical report [18].

3 Approximating a Gram Matrix

Consider a set of n points in R
m, denoted by X(1), . . . , X(n), and let X be the

m×n matrix whose i-th column is X(i). These points may be either the original
data or the data after they have been mapped into the feature space. Then,
define the n × n Gram matrix G as G = XT X. Thus, G is a SPSD matrix and
Gij = (X(i),X(j)) is the dot product between the data vectors X(i) and X(j).
If G is dense but has good linear structure, i.e., is well-approximated by a low-
rank matrix, then a computation of a easily-computable and easily-interpretable
low-rank approximation to G, with provable error bounds, is of interest. In this
section, two algorithms are presented that compute such an approximation to a
Gram matrix G.

Approximating a Gram Matrix for Improved Kernel-Based Learning 327

3.1 A Preliminary Nyström-Based Algorithm

In [33], a method to approximate G was proposed that, in our notation, chooses
c columns from G uniformly at random and without replacement, and constructs
an approximation of the form G̃ = CW−1CT , where the n × c matrix C con-
sists of the c chosen columns and W is a matrix consisting of the intersection
of those c columns with the corresponding c rows. Analysis of this algorithm
and issues such as the existence of the inverse were not addressed in [33], but
computational experiments were performed and the procedure was shown to
work well empirically on two data sets [33]. This method has been referred to
as the Nyström method [33, 31, 20] since it has an interpretation in terms of the
Nyström technique for solving linear integral equations [8]. See [18] for a full
discussion.

In Algorithm 1, the Preliminary Approximation algorithm is presented.
It is an algorithm that takes as input an n × n Gram matrix G and returns as
output an approximate decomposition of the form G̃ = CW+CT , where C and
W are as in [33], and where W+ is the Moore-Penrose generalized inverse of W .
The c columns are chosen uniformly at random and with replacement. Thus, the
Preliminary Approximation algorithm is quite similar to the algorithm of
[33], except that we sample with replacement and that we do not assume the
existence of W−1. Rather than analyzing this algorithm (which could be done
by combining the analysis of Section 3.3 with the uniform sampling bounds of
[13]), we present and analyze a more general form of it, for which we can obtain
improved bounds, in Section 3.2. Note, however, that if the uniform sampling
probabilities are nearly optimal, in the sense that 1/n ≥ βG2

ii/
∑n

i=1 G2
ii for

some positive β ≤ 1 and for every i = 1, . . . , n, then bounds similar to those in
Theorem 1 will be obtained for this algorithm, with a small β-dependent loss in
accuracy; see [13, 18].

Data : n × n Gram matrix G and c ≤ n.

Result : n × n matrix G̃.
• Pick c columns of G in i.i.d. trials, uniformly at random with replacement; let I
be the set of indices of the sampled columns.
• Let C be the n × c matrix containing the sampled columns.
• Let W be the c × c submatrix of G whose entries are Gij , i ∈ I, j ∈ I.
• Return G̃ = CW+CT .

Algorithm 1: The Preliminary Approximation algorithm

3.2 The Main Algorithm and the Main Theorem

In [13, 14, 15, 16, 17], we showed the importance of sampling columns and/or
rows of a matrix with carefully chosen nonuniform probability distributions in
order to obtain provable error bounds for a variety of common matrix opera-
tions. In Algorithm 2, the Main Approximation algorithm is presented. It is a
generalization of the Preliminary Approximation algorithm that allows the
column sample to be formed using arbitrary sampling probabilities. The Main

328 P. Drineas and M.W. Mahoney

Approximation algorithm takes as input an n × n Gram matrix G, a proba-
bility distribution {pi}n

i=1, a number c ≤ n of columns to choose, and a rank
parameter k ≤ c. It returns as output an approximate decomposition of the form
G̃k = CW+

k CT , where C is an n × c matrix consisting of the chosen columns
of G, each rescaled in an appropriate manner, and where Wk is a c × c matrix
that is the best rank-k approximation to the matrix W , which is a matrix whose
elements consist of those elements in G in the intersection of the chosen columns
and the corresponding rows, each rescaled in an appropriate manner.

Data : n× n Gram matrix G, {pi}n
i=1 such that

∑n
i=1 pi = 1, c ≤ n, and k ≤ c.

Result : n × n matrix G̃.
• Pick c columns of G in i.i.d. trials, with replacement and with respect to the
probabilities {pi}n

i=1; let I be the set of indices of the sampled columns.
• Scale each sampled column (whose index is i ∈ I) by dividing its elements by√

cpi; let C be the n × c matrix containing the sampled columns rescaled in this
manner.
• Let W be the c × c submatrix of G whose entries are Gij/(c

√
pipj), i ∈ I, j ∈ I.

• Compute Wk, the best rank-k approximation to W .
• Return G̃k = CW+

k CT .

Algorithm 2: The Main Approximation algorithm

To implement this algorithm, two passes over the Gram matrix G from
external storage and O(n), i.e. sublinear in O(n2), additional space and time
are sufficient (assuming that the sampling probabilities of the form, e.g., pi =
G2

ii/
∑n

i=1 G2
ii or pi =

∣
∣G(i)

∣
∣
2
/ ‖G‖2

F or pi = 1/n are used). Thus, this algorithm
is efficient within the framework of the Pass-Efficient model; see [13] for more
details. Note that if the sampling probabilities of the form pi = G2

ii/
∑n

i=1 G2
ii

are used, as in Theorem 1 below, then one may store the m × n data matrix X
in external storage, in which case only those elements of G that are used in the
approximation need to be computed.

In the simplest application of this algorithm, one could choose k = c, in
which case Wk = W , and the decomposition is of the form G̃ = CW+CT ,
where W+ is the exact Moore-Penrose generalized inverse of the matrix W . In
certain cases, however, computing the generalized inverse may be problematic
since, e.g., it may amplify noise present in the low singular values. Note that,
as a function of increasing k, the Frobenius norm bound of Theorem 2 of [18] is
not necessarily optimal for k = rank(C). Also, although the bounds of Theorem
1 for the spectral norm for k ≤ rank(W) are in general worse than those for
k = rank(W), the former are of interest since our algorithms hold for any input
Gram matrix and we make no assumptions about a model for the noise in the
data.

The sampling matrix formalism of [13] is used in the proofs of Theorem 1 in
Section 3.3, and thus we introduce it here. Let us define the sampling matrix S ∈
R

n×c to be the zero-one matrix where Sij = 1 if the i-th column of A is chosen

Approximating a Gram Matrix for Improved Kernel-Based Learning 329

in the j-th independent random trial and Sij = 0 otherwise. Similarly, define
the rescaling matrix D ∈ R

c×c to be the diagonal matrix with Dtt = 1/
√

cpit
.

Then, the n × c matrix
C = GSD

consists of the chosen columns of G, each of which has been rescaled by 1/
√

cpit
,

where it is the label of the column chosen in the t-th independent trial. Similarly,
the c × c matrix

W = (SD)T GSD = DST GSD

consists of the intersection between the chosen columns and the corresponding
rows, each element of which has been rescaled by with 1/c

√
pit

pjt
. (This can also

be viewed as forming W by sampling a number c of rows of C and rescaling. Note,
however, that in this case the columns of A and the rows of C are sampled using
the same probabilities.) In Algorithm 3, the Main Approximation is restated
using this sampling matrix formalism. It should be clear that Algorithm 3 and
Algorithm 2 yield identical results.

Data : n× n Gram matrix G, {pi}n
i=1 such that

∑n
i=1 pi = 1, c ≤ n, and k ≤ c.

Result : n × n matrix G̃.

• Define the (n × c) matrix S = 0n×c;
• Define the (c × c) matrix D = 0c×c;
• for t = 1, . . . , c do

Pick it ∈ [n], where Pr(it = i) = pi;
Dtt = (cpit)

−1/2;
Sitt = 1;

end
• Let C = GSD and W = DST GSD.
• Compute Wk, the best rank-k approximation to W .
• Return G̃k = CW+

k CT .

Algorithm 3: The Main Approximation algorithm, restated

Before stating our main theorem, we wish to emphasize the structural sim-
plicity of our main result. If, e.g., we choose k = c, then our main algorithm
provides a decomposition of the form G̃ = CW+CT :

⎛

⎝ G

⎞

⎠ ≈
⎛

⎝ G̃

⎞

⎠ =

⎛

⎝C

⎞

⎠
(
W

)+ (
CT

)

. (2)

Up to rescaling, the Main Approximation algorithm returns an approximation
G̃ which is created from two submatrices of G, namely C and W . In the uniform
sampling case, pi = 1/n, the diagonal elements of the rescaling matrix D are all
n/c, and these all cancel out of the expression. In the nonuniform sampling case,
C is a rescaled version of the columns of G and W is a rescaled version of the
intersection of those columns with the corresponding rows. Alternatively, one

330 P. Drineas and M.W. Mahoney

can view C as consisting of the actual columns of G, without rescaling, and W
as consisting of the intersection of those columns with the corresponding rows,
again without rescaling, in the following manner. Let Ĉ = GS, let Ŵ = ST GS,
and let

Ŵ+ = Ŵ+
D2,D−2 = D

(

DŴD
)+

D (3)

be the {D2,D−2}-weighted-{1, 2}-generalized inverse of Ŵ . Then, G ≈ G̃ =
ĈŴ+ĈT .

The following theorem states our main result regarding the Main Approx-
imation algorithm. Its proof may be found in Section 3.3.

Theorem 1. Suppose G is an n × n SPSD matrix, let k ≤ c be a rank param-
eter, and let G̃k = CW+

k CT be constructed from the Main Approximation
algorithm of Algorithm 2 by sampling c columns of G with probabilities {pi}n

i=1

such that

pi = G2
ii/

n∑

i=1

G2
ii. (4)

Let r = rank(W) and let Gk be the best rank-k approximation to G. In addition,
let ε > 0 and η = 1 +

√

8 log(1/δ). If c ≥ 64k/ε4, then

E
[∥
∥
∥G − G̃k

∥
∥
∥

F

]

≤ ‖G − Gk‖F + ε

n∑

i=1

G2
ii (5)

and if c ≥ 64kη2/ε4 then with probability at least 1 − δ

∥
∥
∥G − G̃k

∥
∥
∥

F
≤ ‖G − Gk‖F + ε

n∑

i=1

G2
ii. (6)

In addition, if c ≥ 4/ε2 then

E
[∥
∥
∥G − G̃k

∥
∥
∥

2

]

≤ ‖G − Gk‖2 + ε
n∑

i=1

G2
ii (7)

and if c ≥ 4η2/ε2 then with probability at least 1 − δ

∥
∥
∥G − G̃k

∥
∥
∥

2
≤ ‖G − Gk‖2 + ε

n∑

i=1

G2
ii. (8)

Several things should be noted about this result. First, if k ≥ r = rank(W)
then Wk = W , and an application of Theorem 2 of [18] leads to bounds of
the form

∥
∥
∥G − G̃r

∥
∥
∥

2
≤ ε

∑n
i=1 G2

ii, in expectation and with high probabil-
ity. Second, the sampling probabilities used in Thoerem 1 may be written as
pi =

∣
∣X(i)

∣
∣
2
/ ‖X‖2

F , which only depend on dot products from the data ma-
trix X. This is useful if X consists of the data after it has been mapped to

Approximating a Gram Matrix for Improved Kernel-Based Learning 331

the feature space F . Finally, if the sampling probabilities were of the form
pi =

∣
∣G(i)

∣
∣
2
/ ‖G‖2

F then they would preferentially choose data points that are
more informative (in the sense of being longer) and/or more representative of
the data (in the sense that they tend to be more well correlated with more data
points). Instead the probabilities (4) ignore the correlations. As discussed in [18],
this leads to somewhat worse error bounds. To the best of our knowledge, it is
not known how to sample with respect to correlations while respecting the SPSD
property and obtaining provably good bounds with improved error bounds. This
is of interest since in many applications it is likely that the data are approxi-
mately normalized by the way the data are generated, and it is the correlations
that are of interest. Intuitively, this difficulty arises since it is difficult to identify
structure in a matrix to ensure the SPSD property, unless, e.g., the matrix is di-
agonally dominant or given in the form XT X. As will be seen in Section 3.3, the
proof of Theorem 1 depends crucially on the decomposition of G as G = XT X.

3.3 Proof of Theorem 1

Since G = XT X it follows that both the left and the right singular vectors of
G are equal to the right singular vectors of X and that the singular values of G
are the squares of the singular values of X. More formally, let the SVD of X be
X = UΣV T . Then,

G = V Σ2V T = XUUT XT . (9)

Now, let us consider CX = XSD ∈ R
m×c, i.e., the column sampled and rescaled

version of X, and let the SVD of CX be CX = ÛΣ̂V̂ T . Thus, in particular, Û
contains the left singular vectors of CX . We do not specify the dimensions of Û
(and in particular how many columns Û has) since we do not know the rank of
CX . Let Ûk be the m × k matrix whose columns consist of the singular vectors
of CX corresponding to the top k singular values. Instead of exactly computing
the left singular vectors U of X, we can approximate them by Ûk, computed
from a column sample of X, and use this to compute an approximation G̃ to G.

We first establish the following lemma, which provides a bound on
∥
∥
∥G − G̃k

∥
∥
∥

ξ

for ξ = 2, F .

Lemma 1. If G̃k = CW+
k CT then

∥
∥
∥G − G̃k

∥
∥
∥

F
=

∥
∥
∥XT X − XT ÛkÛkX

∥
∥
∥

F
(10)

∥
∥
∥G − G̃k

∥
∥
∥

2
=

∥
∥
∥X − ÛkÛT

k X
∥
∥
∥

2

2
. (11)

Proof: Recall that C = GSD and W = (SD)T GSD = CT
XCX . Thus, W =

V̂ Σ̂2V̂ and Wk = V̂ Σ̂2
kV̂ T , where Σ̂k is the diagonal matrix with the top k

singular values of CX on the diagonal and the remainder set to 0. Then since

332 P. Drineas and M.W. Mahoney

CX = XSD = ÛΣ̂V̂ T and W+
k = V̂ Σ̂−2

k V̂ T

G̃k = GSD (Wk)+ (GSD)T (12)

= XT ÛΣ̂V̂ T
(

V̂ Σ̂2
kV̂ T

)+

V̂ Σ̂ÛT X (13)

= XT ÛkÛT
k X, (14)

where ÛkÛT
k is a projection onto the space spanned by the top k singular vectors

of W . (10) then follows immediately, and (11) follows since

XT X − XT ÛkÛT
k X =

(

X − ÛkÛT
k X

)T (

X − ÛkÛT
k X

)

and since ‖Ω‖2
2 =

∥
∥ΩT Ω

∥
∥

2
for any matrix Ω. 	

By combining (11) with Theorem 2 of [18], we see that
∥
∥
∥G − G̃k

∥
∥
∥

2
≤ ‖X − Xk‖2

2 + 2
∥
∥XXT − CXCT

X

∥
∥

2

≤ ‖G − Gk‖2 + 2
∥
∥XXT − CXCT

X

∥
∥

2
.

Since the sampling probabilities (4) are of the form pi =
∣
∣X(i)

∣
∣
2
/ ‖X‖2

F , this
may be combined with Theorem 1 of [18], from which, by choosing c appropri-
ately, the spectral norm bounds (7) and (8) of Theorem 1 follow.

To establish the Frobenius norm bounds, define E = XXT XXT −
CXCT

XCXCT
X . Then, we have that:

∥
∥
∥G − G̃k

∥
∥
∥

2

F
=

∥
∥XT X

∥
∥

2

F
− 2

∥
∥
∥XXT Ûk

∥
∥
∥

2

F
+

∥
∥
∥ÛT

k XXT Ûk

∥
∥
∥

2

F
(15)

≤∥
∥XT X

∥
∥

2

F
−2

(
k∑

t=1

σ4
t (CX)−

√
k ‖E‖F

)

+
k∑

t=1

σ4
t (CX)+

√
k ‖E‖F(16)

=
∥
∥XT X

∥
∥

2

F
−

k∑

t=1

σ4
t (CX) + 3

√
k ‖E‖F (17)

≤ ∥
∥XT X

∥
∥

2

F
−

k∑

t=1

σ2
t (XT X) + 4

√
k ‖E‖F , (18)

where (15) follows by Lemmas 1 and 2, (16) follows by Lemmas 3 and 4, and
(18) follows by Lemma 5. Since

∥
∥XT X

∥
∥

2

F
−

k∑

t=1

σ2
t (XT X) = ‖G‖2

F −
k∑

t=1

σ2
t (G) = ‖G − Gk‖2

F ,

it follows that
∥
∥
∥G − G̃k

∥
∥
∥

2

F
≤ ‖G − Gk‖2

F + 4
√

k
∥
∥XXT XXT − CXCT

XCXCT
X

∥
∥

F
. (19)

Approximating a Gram Matrix for Improved Kernel-Based Learning 333

Since the sampling probabilities (4) are of the form pi =
∣
∣X(i)

∣
∣
2
/ ‖X‖2

F , this
may be combined with Lemma 6 and Theorem 1 of [18]. Since (α2+β2)1/2 ≤ α+β
for α, β ≥ 0, by using Jensen’s inequality, and by choosing c appropriately, the
Frobenius norm bounds (5) and (6) of Theorem 1 follow.

The next four lemmas are used to bound the right hand side of (10).

Lemma 2. For every k : 0 ≤ k ≤ rank(W) we have that:
∥
∥
∥XT X − XT ÛkÛT

k X
∥
∥
∥

2

F
=

∥
∥XT X

∥
∥

2

F
− 2

∥
∥
∥XXT Ûk

∥
∥
∥

2

F
+

∥
∥
∥ÛT

k XXT Ûk

∥
∥
∥

2

F

Proof: Define Y = X − ÛkÛT
k X. Then,

∥
∥
∥XT X − XT ÛkÛT

k X
∥
∥
∥

2

F
=

∥
∥Y T Y

∥
∥

2

F

= Tr
(

Y T Y Y T Y
)

=
∥
∥XT X

∥
∥

2

F
− 2Tr

(

XXT ÛkÛT
k XXT

)

+Tr
(

ÛT
k XXT ÛkÛT

k XXT Ûk

)

,

where the last line follows by multiplying out terms and since the trace is sym-
metric under cyclic permutations. The lemma follows since ‖Ω‖2

F = Tr
(

ΩΩT
)

for any matrix Ω. 	
Lemma 3. For every k : 0 ≤ k ≤ rank(W) we have that:

∣
∣
∣
∣
∣

∥
∥
∥XXT Ûk

∥
∥
∥

2

F
−

k∑

t=1

σ4
t (CX)

∣
∣
∣
∣
∣
≤

√
k

∥
∥XXT XXT − CXCT

XCXCT
X

∥
∥

F

Proof: Since σt(CXCT
X) = σ2

t (CX) and since Û is a matrix consisting of the
singular vectors of CX = XSD, we have that
∣
∣
∣
∣
∣

∥
∥
∥XXT Ûk

∥
∥
∥

2

F
−

k∑

t=1

σ4
t (CX)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

k∑

t=1

∣
∣
∣XXT Û (t)

∣
∣
∣

2

−
k∑

t=1

∣
∣
∣CXCT

X Û (t)
∣
∣
∣

2
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

k∑

t=1

Û (t)T (

XXT XXT − CXCT
XCXCT

X

)

Û (t)

∣
∣
∣
∣
∣

≤
√

k

(
k∑

t=1

(

Û (t)T(

XXT XXT−CXCT
XCXCT

X

)

Û (t)
)
2

)1/2

,

where the last line follows from the Cauchy-Schwartz inequality. The lemma then
follows. 	
Lemma 4. For every k : 0 ≤ k ≤ rank(W) we have that:

∥
∥
∥ÛT

k XXT Ûk

∥
∥
∥

2

F
−

k∑

t=1

σ4
t (CX) ≤

√
k

∥
∥XXT XXT − CXCT

XCXCT
X

∥
∥

F

334 P. Drineas and M.W. Mahoney

Proof: Recall that if a matrix U has orthonormal columns then
∥
∥UT Ω

∥
∥

F
≤

‖Ω‖F for any matrix Ω. Thus, we have that

∥
∥
∥ÛT

k XXT Ûk

∥
∥
∥

2

F
−

k∑

t=1

σ4
t (CX) ≤

∥
∥
∥XXT Ûk

∥
∥
∥

2

F
−

k∑

t=1

σ4
t (CX)

≤
∣
∣
∣
∣
∣

∥
∥
∥XXT Ûk

∥
∥
∥

2

F
−

k∑

t=1

σ4
t (CX)

∣
∣
∣
∣
∣

The remainder of the proof follows that of Lemma 3. 	
Lemma 5. For every k : 0 ≤ k ≤ rank(W) we have that:

∣
∣
∣
∣
∣

k∑

t=1

σ4
t (CX) − σ2

t (XT X)

∣
∣
∣
∣
∣
≤

√
k

∥
∥XXT XXT − CXCT

XCXCT
X

∥
∥

F

Proof:
∣
∣
∣
∣
∣

k∑

t=1

σ4
t (CX) − σ2

t (XT X)

∣
∣
∣
∣
∣
≤

√
k

(
k∑

t=1

(

σ4
t (CX) − σ2

t (XT X)
)2

)1/2

=
√

k

(
k∑

t=1

(

σt(CXCT
XCXCT

X)−σt(XXT XXT)
)2

)1/2

≤
√

k
∥
∥XXT XXT − CXCT

XCXCT
X

∥
∥

F
,

where the first inequality follows from the Cauchy-Schwartz inequality and the
second inequality follows from matrix perturbation theory. 	

The following is a result of the BasicMatrixMultiplication algorithm
that is not found in [13], but that will be useful for bounding the additional
error in (19). We state this result for a general m × n matrix A.

Lemma 6. Suppose A ∈ R
m×n, c ∈ Z

+ such that 1 ≤ c ≤ n, and {pi}n
i=1 are

such that pk =
∣
∣A(k)

∣
∣
2
/ ‖A‖2

F . Construct C with the BasicMatrixMultipli-
cation algorithm of [13]. Then,

E
[∥
∥AAT AAT − CCT CCT

∥
∥

F

] ≤ 2√
c
‖A‖4

F . (20)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

8 log(1/δ). Then, with probability at
least 1 − δ,

∥
∥AAT AAT − CCT CCT

∥
∥

F
≤ 2η√

c
‖A‖4

F . (21)

Proof: First note that:

AAT AAT − CCT CCT = AAT AAT − AAT CCT + AAT CCT − CCT CCT

= AAT
(

AAT − CCT
)

+
(

AAT − CCT
)

CCT .

Approximating a Gram Matrix for Improved Kernel-Based Learning 335

Thus, by submultiplicitivity and subadditivity we have that for ξ = 2, F :
∥
∥AAT AAT − CCT CCT

∥
∥

F
≤ ‖A‖2

F

∥
∥AAT − CCT

∥
∥

F
+

∥
∥AAT − CCT

∥
∥

F
‖C‖2

F .

The lemma follows since ‖C‖2
F = ‖A‖2

F when pk =
∣
∣A(k)

∣
∣
2
/ ‖A‖2

F , and by ap-
plying Theorem 1 of [18]. 	

4 Conclusion

We have presented and analyzed an algorithm that provides an approximate de-
composition of an n×n Gram matrix G which is of the form G ≈ G̃k = CW+

k CT

and which has provable error bounds of the form (1). A crucial feature of this
algorithm is the probability distribution used to randomly sample columns.
We conclude with two open problems related to the choice of this distribu-
tion.

First, it would be desirable to choose the probabilities in Theorem 1 to be
pi =

∣
∣G(i)

∣
∣
2
/ ‖G‖2

F and to establish bounds of the form (1) in which the scale
of the additional error was ‖G‖F =

∥
∥XT X

∥
∥

F
rather than

∑n
i=1 G2

ii = ‖X‖2
F .

This would entail extracting linear structure while simultaneously respecting
the SPSD property and obtaining improved scale of error. This would likely be
a corollary of a CUR decomposition [15] for a general m × n matrix A with
error bounds of the form found in [15] and in which U = W+

k , where W is now
the matrix consisting of the intersection of the chosen columns and (in general
different) rows; see [18]. This would simplify considerably the form of U found
in [15] and would lead to improved interpretability. Second, we should also note
that if capturing coarse statistics over the data is not of interest, but instead
one is interested in other properties of the data, e.g., identifying outliers, then
probabilities that depend on the data in some other manner, e.g., inversely with
respect to their lengths squared, may be appropriate. We do not have provable
bounds in this case.

Acknowledgments. We would like to thank Ravi Kannan for many fruitful
discussions and the Institute for Pure and Applied Mathematics at UCLA for
its generous hospitality.

References

1. D. Achlioptas and F. McSherry. Fast computation of low rank matrix approxima-
tions. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 611–618, 2001.

2. D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling techniques for kernel
methods. In Annual Advances in Neural Information Processing Systems 14: Pro-
ceedings of the 2001 Conference, pages 335–342, 2002.

336 P. Drineas and M.W. Mahoney

3. Y. Azar, A. Fiat, A.R. Karlin, F. McSherry, and J. Saia. Spectral analysis of data.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 619–626, 2001.

4. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396, 2003.

5. Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet.
Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral cluster-
ing. In Annual Advances in Neural Information Processing Systems 16: Proceedings
of the 2003 Conference, pages 177–184, 2004.

6. C.J.C. Burges. Simplified support vector decision rules. In Proceedings of the 13th
International Conference on Machine Learning, pages 71–77, 1996.

7. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, Cam-
bridge, 2000.

8. L.M. Delves and J.L. Mohamed. Computational Methods for Integral Equations.
Cambridge University Press, Cambridge, 1985.

9. D.L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding tech-
niques for high-dimensional data. Proc. Natl. Acad. Sci. USA, 100(10):5591–5596,
2003.

10. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large
graphs and matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 291–299, 1999.

11. P. Drineas and R. Kannan. Fast Monte-Carlo algorithms for approximate matrix
multiplication. In Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 452–459, 2001.

12. P. Drineas and R. Kannan. Pass efficient algorithms for approximating large ma-
trices. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 223–232, 2003.

13. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algo-
rithms for matrices I: Approximating matrix multiplication. Technical Report
YALEU/DCS/TR-1269, Yale University Department of Computer Science, New
Haven, CT, February 2004.

14. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix. Technical Report
YALEU/DCS/TR-1270, Yale University Department of Computer Science, New
Haven, CT, February 2004.

15. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for ma-
trices III: Computing a compressed approximate matrix decomposition. Technical
Report YALEU/DCS/TR-1271, Yale University Department of Computer Science,
New Haven, CT, February 2004.

16. P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of het-
erogeneous Max-Cut problems and approximation algorithms. Technical Report
YALEU/DCS/TR-1283, Yale University Department of Computer Science, New
Haven, CT, April 2004.

17. P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of hetero-
geneous Max-Cut problems and approximation algorithms. In Proceedings of the
22nd Annual International Symposium on Theoretical Aspects of Computer Sci-
ence, pages 57–68, 2005.

18. P. Drineas and M.W. Mahoney. On the Nyström method for approximating a
Gram matrix for improved kernel-based learning. Technical Report 1319, Yale
University Department of Computer Science, New Haven, CT, April 2005.

Approximating a Gram Matrix for Improved Kernel-Based Learning 337

19. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243–264, 2001.

20. C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the
Nyström method. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26(2):214–225, 2004.

21. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding
low-rank approximations. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, pages 370–378, 1998.

22. J. Ham, D.D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimension-
ality reduction of manifolds. Technical Report TR-110, Max Planck Institute for
Biological Cybernetics, July 2003.

23. S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University,
2004.

24. E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support
vector machines. In Proceedings of the 1997 IEEE Workshop on Neural Networks
for Signal Processing VII, pages 276–285, 1997.

25. L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective
clustering via iterative sampling. manuscript.

26. S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by local linear
embedding. Science, 290:2323–2326, 2000.

27. B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

28. A.J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine
learning. In Proceedings of the 17th International Conference on Machine Learning,
pages 911–918, 2000.

29. J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

30. K.Q. Weinberger, F. Sha, and L.K. Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In Proceedings of the 21st International Conference on
Machine Learning, pages 839–846, 2004.

31. C.K.I. Williams, C.E. Rasmussen, A. Schwaighofer, and V. Tresp. Observations on
the Nyström method for Gaussian process prediction. Technical report, University
of Edinburgh, 2002.

32. C.K.I. Williams and M. Seeger. The effect of the input density distribution on
kernel-based classifiers. In Proceedings of the 17th International Conference on
Machine Learning, pages 1159–1166, 2000.

33. C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In Annual Advances in Neural Information Processing Systems 13: Pro-
ceedings of the 2000 Conference, pages 682–688, 2001.

	Introduction
	Background
	Summary of Main Result
	Technical Report

	Review of Relevant Linear Algebra
	Approximating a Gram Matrix
	A Preliminary Nystr\"{o}m-Based Algorithm
	The Main Algorithm and the Main Theorem
	Proof of Theorem 1

	Conclusion
	References

