
Internet Mathematics, 12:281–314, 2016

Copyright © Taylor & Francis Group, LLC

ISSN: 1542-7951 print/1944-9488 online

DOI: 10.1080/15427951.2016.1177802

APPROXIMATING BETWEENNESS CENTRALITY IN
FULLY DYNAMIC NETWORKS

Elisabetta Bergamini and Henning Meyerhenke
Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT),

Karlsruhe, Germany

Abstract Betweenness is a well-known centrality measure that ranks the nodes of a network

according to their participation in shortest paths. Because exact computations are prohibitive

in large networks, several approximation algorithms have been proposed. Besides that, re-

cent years have seen the publication of dynamic algorithms for efficient recomputation of

betweenness in networks that change over time.

In this article, we propose the first betweenness centrality approximation algorithms with

a provable guarantee on the maximum approximation error for dynamic networks. Several

new intermediate algorithmic results contribute to the respective approximation algorithms:

(i) new upper bounds on the vertex diameter, (ii) the first fully dynamic algorithm for updating

an approximation of the vertex diameter in undirected graphs, and (iii) an algorithm with lower

time complexity for updating single-source shortest paths in unweighted graphs after a batch

of edge actions.

Using approximation, our algorithms are the first to make in-memory computation of

betweenness in dynamic networks with millions of edges feasible. Our experiments show that

our algorithms can achieve substantial speedups compared to recomputation, up to several

orders of magnitude. Moreover, the approximation accuracy is usually significantly better than

the theoretical guarantee in terms of absolute error. More importantly, for reasonably small

approximation error thresholds, the rank of nodes is well preserved, in particular for nodes

with high betweenness.

1. INTRODUCTION

The algorithmic analysis of complex networks has become a highly active research

area. One important task in network analysis is to rank nodes by their structural importance

using centrality measures. Betweenness centrality (BC) is among the widely used measures;

it ranks the importance of nodes based on their participation in the shortest paths of the

network. More formally, let the graph G represent a network with n nodes and m edges.

Naming σst the number of shortest paths from a node s to a node t and σst (v), the number

of shortest paths from s to t that go through v, the (normalized) BC of v is defined

as [12]: cB(v) = 1
n(n−1)

∑

s �=v �=t
σst (v)

σst
. Nodes with high betweenness can be important in

routing, spreading processes, and mediation of interactions. Depending on the context, this

Parts of this article have been published in a preliminary form in the Proceedings of the Seventeenth

Workshop on Algorithm Engineering and Experiments (ALENEX 2015) [5] and the Proceedings of the 23rd

Annual European Symposium on Algorithms (ESA 2015) [4].

Address correspondence to Elisabetta Bergamini, Institute of Theoretical Informatics, Karlsruhe Institute of

Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany. Email: elisabetta.bergamini@kit.edu

Color versions of one or more figures in the article can be found online at www.tandfonline.com/uinm.

281

282 BERGAMINI AND MEYERHENKE

can mean, for example, finding the most influential persons in a social network, the key

infrastructure nodes in the internet, or super spreaders of a disease.

Because BC depends on all shortest paths, its exact computation is expensive: the

best known algorithm [7] is quadratic in the number of nodes for sparse networks and cubic

for dense networks, which is prohibitive for networks with hundreds of thousands of nodes.

Many graphs of interest, however, such as web graphs or social networks, have millions or

even billions of nodes and edges. Thus, recent years have seen the publication of several

approximation algorithms that aim to reduce the computational effort, while finding BC

values that are as close as possible to the exact ones. Good results have been obtained in this

regard; in particular, a recent algorithm by Riondato and Kornaropoulos (RK) [25] gives

probabilistic guarantees on the quality of the approximation. It is described in more detail

in Section 3 because we build our algorithms on this method.

Motivation. Large graphs of interest, such as the Web and social networks, change

continuously. Thus, in addition to the identification of important nodes in a static network,

an issue of great interest is the dynamic behavior of centrality values in networks that change

over time. So far, there have been no approximation algorithms that efficiently update BC

scores rather than recomputing them from scratch. Several methods have been proposed

to update the BC values after a graph modification, which for some of the algorithms can

only be one edge insertion and for others can also be one edge deletion. However, all of

these approaches are exact and have a worst-case time complexity, which is the same as

Brandes’s algorithm (BA) [7] on general graphs and a memory footprint of �(n2).

Contribution. In this article, as our main contribution, we present the first approxi-

mation algorithms for BC in graphs that change over time. Such graphs may be directed or

undirected, weighted or unweighted. We consider two dynamic scenarios, an incremental

one (i.e., only edge insertions or weight decreases are allowed) and a fully dynamic one,

which also handles edge deletions or weight increase operations. After each batch of edge

actions, we assert the same guarantee as the static RK algorithm: the approximated BC

values differ by, at most, ǫ from the exact values with probability at least 1 − δ, where ǫ

and δ can be arbitrarily small constants. Running time and memory required depend on

how tightly the error should be bounded.

Besides resampling as few shortest paths as possible, several new intermediate al-

gorithmic results contribute to the speed of the respective new approximation algorithms:

(i) In Section 4 we propose new upper bounds on the vertex diameter (VD) (i.e., number

of nodes in the shortest path(s) with the maximum number of nodes). These bounds vary

depending on the graph type (weighted vs. unweighted, directed vs. undirected). Their

usefulness stems from the fact that the new bounds can often improve the one used in the

RK algorithm [25] and thereby significantly reduce the number of samples necessary for

the error guarantee. (ii) In Section 5, besides detailing the BC approximation algorithms,

we also present the first fully dynamic algorithms for updating an approximation of VD in

undirected graphs. (iii) As part of the BC approximation algorithms, we propose an algo-

rithm with lower time complexity for updating single-source shortest paths in unweighted

graphs after a batch of edge actions.

Our experimental study shows that our algorithms are the first to make in-memory

computation of a betweenness ranking practical for large dynamic networks. With approxi-

mation, we achieve a much improved scaling behavior compared to exact approaches (also

dynamic ones), enabling us to update approximate betweenness scores in a network with

36 million edges in a few seconds on typical workstation hardware. Moreover, process-

ing batches of edge actions, our algorithms yield significant speedups (several orders of

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 283

magnitude) compared to restarting the approximation with RK. Regarding accuracy, our

experiments show that the estimated absolute errors are always lower than the guaranteed

ones. For nodes with high betweenness, the rank of nodes is also well preserved, even when

relatively few shortest paths are sampled.

2. RELATED WORK

Static BC algorithms—exact and approximation. The fastest existing method

for the exact BC computation, BA, requires �(nm) operations for unweighted graphs

and �(nm + n2 log n) for graphs with positive edge weights [7]. BA computes for every

node s ∈ V a slightly modified version of a single-source shortest-path tree (SSSP tree),

producing for each s the directed acyclic graph (DAG) of all shortest paths starting at

s. Using the information contained in the DAGs, BA computes the dependency δs(v) for

each node v, that is, the sum over all nodes t of the fraction of shortest paths between

s and t to which v is internal. The betweenness of each node v is simply the sum over

all sources s ∈ V of the dependencies δs(v). Therefore, we can see the dependency δs(v)

as a contribution that s gives to the computation of cB(v). Based on this concept, some

algorithms for an approximation of BC have been developed. It was proposed [8] propose

to approximate cB(v) by extrapolating it from the contributions of a subset of source nodes,

also called pivots. Selecting the pivots uniformly at random, the approximation can be

proven to be an unbiased estimator for cB(v) (i.e., its expectation is equal to cB(v)). If

the number of samples is O(log(n/δ)/ǫ2), the algorithm guarantees that all estimates are

within ǫ from their actual values, with probability at least 1 − δ. In a subsequent work,

[14] noticed that the approach of [8] can overestimate BC scores of nodes close to the

pivots. To limit this bias, they introduce a scaling function, which gives less importance

to contributions from pivots that are close to the node. However, no theoretical guarantee

has been proven for this approach. The BC of a specific node only was approximated [1],

based on an adaptive sampling technique that reduces the number of pivots for nodes with

high centrality and [9] proposes alternative sampling techniques that try to minimize the

number of samples, when the betweenness of a single node has to be estimated. Different

from the previous approaches is the approximation algorithm by [25], which samples a

single random shortest path at each iteration. This approach allows a theoretical guarantee

on the quality of approximation (see Section 3). Because of this guarantee, we use it as a

building block of our new approach and refer to it as RK.

Exact dynamic algorithms. Dynamic algorithms update the betweenness values of

all nodes in response to a modification on the graph, which might be an edge/node insertion,

an edge/node deletion, or a change in an edge’s weight. The first published approach is

QUBE [20], which relies on the decomposition of the graph into biconnected components.

The approach has been extended to node updates in [15]. The approach proposed by [16]

for unweighted graphs maintains a structure with the previously calculated BC values and

additional information, such as the distance of each node v from every source s ∈ V

and the list of predecessors, i.e., the nodes immediately preceding v in all shortest paths

from s to v. Using this information, it tries to limit the recomputations to the nodes

whose betweenness has actually been affected. The approach by [16] win order to reduce

the memory requirements. Instead of storing the predecessors of each node v from each

possible source, they recompute them every time the information is required.

An existing algorithm for the dynamic APSP problem by [24] was extended by [17]

to also update BC scores. The recent work by [22] contains the first dynamic algorithm for

284 BERGAMINI AND MEYERHENKE

Figure 1 Sampled paths and score update in the RK algorithm.

BC (NPR) which is asymptotically faster than recomputing from scratch on certain inputs.

In particular, when only edge insertions are allowed and the considered graph is sparse

and weighted, their algorithm takes O(n2) operations, whereas BA requires O(n2 log n)

on sparse weighted graphs. Existing fully dynamic APSP algorithms have been extended

[23] with new data structures to update all shortest paths (APASP) and then recompute

dependencies as in BA.

All dynamic algorithms mentioned perform better than recomputation on certain

inputs. Yet, none of them has a worst-case complexity better than BA on all graphs because

all require an update of an APSP problem. For this problem, no algorithm exists that has

better worst-case running time than recomputation [26]. In addition, the problem of updating

BC seems even more difficult than the dynamic APSP problem. Indeed, the dependencies

(and therefore BC) might need to be updated even on nodes whose distance from the source

has not changed, because they could be part of new shortest paths or not be part of old

shortest paths any longer.

Batch dynamic SSSP algorithms. Dynamic SSSP algorithms recompute distances

from a source node after a single edge update or a batch of edge updates. Algorithms for the

batch problem have been published [24, 13, 3] and compared in experimental studies [3, 10].

The experiments show that the tuned algorithm T-SWSF [3] performs well on many types

of graphs and edge updates. Therefore, we use T-SWSF as a building block in our fully

dynamic BC approximation algorithm.

3. RK ALGORITHM

In this section, we briefly describe the static BC approximation algorithm RK [25],

the foundation for our incremental approach. The idea of RK is to sample a set S =

{p(1), . . . , p(r)} of r shortest paths between randomly sampled source-target pairs (s, t).

Then, RK computes the approximated betweenness centrality c̃B(v) of a node v as the

fraction of sampled paths p(k) ∈ S that v is internal to by adding 1
r

to the node’s score for

each of these paths. Figure 1 illustrates an example in which the sampling of two shortest

paths leads to 2
r

and 1
r

being added to the score of u and v, respectively. Each possible

shortest path pst has the following probability of being sampled in each of the r iterations:

πG(pst) = 1
n(n−1)

· 1
σst

(Lemma 7 of [25]).

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 285

The number r of samples required to approximate BC scores with the given error guarantee

is calculated as

r =
c

ǫ2

(

⌊log2 (VD − 2)⌋ + 1 + ln
1

δ

)

, (3.1)

where ǫ and δ are constants in (0, 1), c ≈ 0.5 and VD is the vertex diameter of G, i.e., the

number of nodes in the shortest path of G with maximum number of nodes. In unweighted

graphs, VD coincides with diam+1, where diam is the number of edges in the longest

shortest path. In weighted graphs, VD and the (weighted) diameter diam (i.e., the length

of the longest shortest path) are unrelated quantities. The following error guarantee holds:

Lemma 3.1. [25] If r shortest paths are sampled according to the above-defined proba-

bility distribution πG, then with probability at least 1 − δ the approximations c̃B(v) of the

betweenness centralities are within ǫ from their exact value: Pr(∃v ∈ V s.t.|cB(v)−c̃B(v)| >

ǫ) < δ.

To sample the shortest paths according to πG, RK first chooses a node pair (s, t)

uniformly at random and performs an SSSP search from s, also keeping track of the number

σsv of shortest paths from s to v and of the list of predecessors Ps(v) for any node v. Then,

one shortest path is selected: starting from t , a predecessor z ∈ Ps(t) is selected with

probability σsz/
∑

w∈Ps (t) σsw = σsz/σst . The sampling is repeated iteratively until node

s is reached. Algorithm 1 is the pseudocode for RK. Function computeExtendedSSSP

is an SSSP algorithm that keeps track of the number of shortest paths and of the list of

predecessors while computing distances, as in BA. Because we are interested only in the

paths from s to t , we can stop the computation of the SSSP once t is reached.

Approximating the vertex diameter. RK uses two upper bounds on VD that can

both be computed in O(n+m). For unweighted undirected graphs, it samples a source node

si for each connected component of G, computes a BFS from each si , and sums the two

shortest paths with maximum length starting in si . The VD approximation is the maximum

of these sums over all components. For directed or weighted graphs, RK approximates

VD with the size of the largest weakly connected component, which can be a significant

overestimation for complex networks, possibly of orders of magnitude. In this article, we

present new approximations for directed and for weighted graphs, described in Section 4.

4. NEW UPPER BOUNDS ON THE VERTEX DIAMETER

4.1. Directed Unweighted Graphs

Let G be a directed unweighted graph. For now, let us assume G is strongly connected.

Let s be any node in G and let u be the node with maximum forward distance from s

(i.e., d(s, u) ≥ d(s, x) ∀x ∈ V). Analogously, let v be the node with maximum backward

distance (i.e., d(v, s) ≥ d(x, s) ∀x ∈ V). Then, naming ṼDSC the sum d(s, u)+d(v, s)+1:

Lemma 4.1. VD ≤ ṼDSC < 2VD .

286 BERGAMINI AND MEYERHENKE

Algorithm 1: RK algorithm

Input : Graph G = (V,E), ǫ, δ ∈ (0, 1)
Output: Approximated BC values ∀v ∈ V

1 foreach node v ∈ V do
2 c̃B (v) ← 0;
3 end
4 VD (G)←getVertexDiameter(G);

5 r ← (c/ǫ2)(⌊log2(VD(G) − 2)⌋ + ln(1/δ));
6 for i ← 1 to r do
7 (si, ti) ← sampleUniformNodePair(V);
8 (dsi

, σsi
, Psi

) ← computeExtendedSSSP(G, si);
// Now one path from si to ti is sampled uniformly at random

9 v ← ti ;
10 p(i) ← empty list;
11 while Psi

(v) �= {si} do
12 sample z ∈ Psi

(v) with Pr = σsi
(z)/σsi

(v);
13 c̃B(z) ← c̃B(z) + 1/r;
14 add z → p(i); v ← z;

15 end

16 end

17 return {(v, c̃B (v)), v ∈ V }

Proof. Let x and y be two nodes such that the number of nodes in the shortest path from x

to y is equal to VD . Due to the triangle inequality, d(x, y) ≤ d(x, s) + d(s, y). Therefore,

d(x, y) ≤ d(v, s) + d(s, u). Since in unweighted graphs d(x, y) = VD − 1, the first

inequality holds. By definition of VD , 2 · VD ≥ (d(v, s) + 1) + (d(s, u) + 1) > ṼDSC.

The upper bound ṼDSC can be computed in O(n + m), simply by running a forward and a

backward BFS from any source node s.

Let us now consider any directed unweighted graph G. We can define the directed

acyclic graph G = (V, E) of strongly connected components (SCCs) (sometimes referred

to as a shrunken graph in the literature) similarly to [6]. In G, the set of vertices is the set

of SCCs of G and there is an edge from C ∈ V to C ′ ∈ V if and only if there is an edge in

E from a node in C to a node in C ′. (Notice that this also means that all the nodes in C ′ are

reachable from the nodes in C.) More generally, the set of nodes reachable from any node

in C is exactly the set of nodes in the SCCs reachable from C in G.

We can now define an algorithm that computes an upper bound on VD for G. For

each C in V , we compute an upper bound ṼDSC(C) on VD in C (i.e., considering only

paths that are contained in C) as described before for strongly connected graphs. This

can be done in linear time by running a backward and a forward BFS from a random

source node s for each SCC and stopping the search when a visited node belongs to a

different SCC from that of s. For each Ci , we know that the nodes reachable from nodes

in Ci are only those in the SCCs Cj such that there is a path in G from Ci to Cj . We can

compute a topological sorting {C1, . . . , Ck} of V (that is, (Ci, Cj) ∈ E ⇒ i < j). Let

Ck be the last component in the topological ordering. Then, we know that no path exists

from a node in Ck to any node that is not in Ck , which means that the node Ck in G has

outdegree 0.

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 287

We call ṼDDIR(C) the upper bound on VD restricted only to those nodes that start in

C (but may end somewhere else). For Ck , ṼDDIR(Ck) is equal to ṼDSC(Ck). For the other

components, we can compute it in the following way: starting from Ck , we process all the

components in reverse topological order and set

ṼDDIR(C) = max
(C,C ′)∈E

ṼDDIR(C ′) + ṼDSC(C).

To get an upper bound on the whole graph, we can take the maximum over all upper bounds

ṼDDIR(C), i.e., we set ṼDDIR := maxC∈V ṼDDIR(C). In other words,

ṼDDIR = max
p∈P(G)

∑

Ci∈p

ṼDSC(Ci).

where P(G) is the set of paths in G.

Proposition 4.2. VD ≤ ṼDDIR < 2 · VD
2.

Proof. Let us prove the first inequality. Let p = (u1, . . . , uVD) be a shortest path in G

whose number |p| of nodes is equal to VD . Say p traverses l SCCs (C1, . . . , Cl). Then, p

can be partitioned in l subpaths pi, i = 1, .., l, such that pi ⊆ Ci and pi is a shortest path

in Ci . By Lemma 4.1, |pi | ≤ ṼDSC(Ci), i = 1, . . . , l. Therefore, |p| =
∑

i=1,...,l |pi | ≤
∑

i=1,...,l ṼDSC(Ci) ≤ ṼDDIR (this last inequality holds by definition of ṼDDIR).

How “bad” can ṼDDIR be in the worst case? Now, let (C1, . . . , Cl) denote the path in

G such that ṼDDIR =
∑

i=1,..,l ṼDSC(Ci). Let l be the number of components in this path.

How large can l be? Because there is at least one node of G in each Ci , there must be at

least a shortest path of size l in G that goes through the components C1, . . . , Cl . Therefore,

l ≤ VD . Also, let k = maxC∈V ṼDSC(C). By Lemma 4.1, k < 2 · VD(Ck), where Ck

is the SCC whose upper bound is equal to k. Clearly, k < 2 · VD . Then, by definition,

ṼDDIR =
∑

i=1,..,l ṼDSC(Ci) ≤ l · k < 2 · VD
2.

Figure 2 clarifies the new upper bound with an example. The upper bound can be computed

in O(n+m). Indeed,G can be computed in O(n+m) by finding the SCCs of G and scanning

the edges in E. Then, the topological sorting and the accumulation of the ṼDDIR(C) of the

different components can be done in O(|V| + |E |) = O(n + m). Notice that our new upper

bound is never larger than the size of the largest weakly connected component, the previous

bound used in RK. Also, although the upper bound can be as bad as 2 · VD
2 in theory, our

experimental results on real-world complex networks show that it is within a factor 4 from

the exact VD and several orders of magnitude smaller than the size of the largest weakly

connected components.

4.2. Undirected Weighted Graphs

Let G be an undirected graph. For simplicity, let G be connected for now. If it is not,

we compute an approximation for each connected component and take the maximum over

all the approximations. Let T ⊆ G be an SSSP tree from any source node s ∈ V . Let pxy

denote a shortest path between x and y in G and let pT
xy denote a shortest path between x

and y in T . Let |pxy | be the number of nodes in pxy and d(x, y) be the distance between

288 BERGAMINI AND MEYERHENKE

Figure 2 Path (C1, . . . , Cl) of the DAG G of SCCs. Each SCC Ci has its own upper bound ˜VDSC(Ci) and
˜VDDIR is computed as

∑

i=1,..,l
˜VDSC(Ci).

x and y in G, and analogously for |pT
xy | and dT (x, y). Let ω and ω be the maximum and

minimum edge weights in G, respectively. Let u and v be the nodes with maximum distance

from s, i.e., d(s, u) ≥ d(s, v) ≥ d(s, x) ∀x ∈ V, x �= u. We define the VD approximation

ṼDW := 1 + d(s,u)+d(s,v)

ω
. Then,

Proposition 4.3. VD ≤ ṼDW < 2 · VD · ω/ω.

Proof. To prove the first inequality, we can notice that dT (x, y) ≥ d(x, y) for all x, y ∈ V ,

since all the edges of T are contained in those of G. Also, since every edge has weight

at least ω, d(x, y) ≥ (|pxy | − 1) · ω. Therefore, dT (x, y) ≥ (|pxy | − 1) · ω, which can

be rewritten as |pxy | ≤ 1 +
dT (x,y)

ω
, for all x, y ∈ V . Thus, VD = maxx,y |pxy | ≤

1 + (maxx,y dT (x, y))/ω ≤ 1 + dT (s,u)+dT (s,v)

ω
= 1 + d(s,u)+d(s,v)

ω
, where the last expression

equals ṼDW by definition.

To prove the second inequality, we first notice that d(s, u) ≤ (|psu| − 1) · ω, and

analogously d(s, v) ≤ (|psv|−1) ·ω. Consequently, ṼDW ≤ 1+(|psu|+|psv|−2) ·ω/ω <

2 · |psu| ·ω/ω, supposing that |psu| ≥ |psv| without loss of generality. By definition of VD ,

|psu| ≤ VD . Therefore, ṼDW < 2 · VD · ω/ω.

To obtain the upper bound ṼDW, we can simply compute an SSSP search from any

node s, find the two nodes with maximum distance and perform the remaining calculations.

Notice that ṼDW extends the upper bound proposed for RK [25] for unweighted graphs:

When the graph is unweighted and thus ω = ω, ṼDW becomes equal to the approximation

used by RK. Complex networks are often characterized by a small diameter and in networks

such as coauthorship, friendship, communication networks, VD and ω/ω can be several

orders of magnitude smaller than the size of the largest component. In this case, the new

bound translates into a substantially improved VD approximation.

4.3. Directed Weighted Graphs

The upper bound for directed weighted graphs can be easily derived from those

described in Sections 4.1 and 4.2. If G is strongly connected, we can define ṼDSCW :=

1 + d(s,u)+d(v,s)

ω
, where s is any node, u is the node with maximum forward distance from

s, v is the node with maximum backward distance, and ω is the minimum edge weight.

It can be easily proved that Proposition 4.3 holds also in this case, considering a forward

SSSP tree from s (where distances are bounded by d(s, u)) and a backward SSSP tree

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 289

Figure 3 Updating shortest paths and BC scores.

(where distances are bounded by d(v, s)). For general directed weighted graphs, we can

use the algorithm described in Section 4.1 using ṼDSCW(C) := 1 + d(s,u)+d(v,s)

ωc
as an

upper bound for each SCC C (where ωc is the minimum edge weight in C). It is easy to

prove that the resulting bound is an upper bound on VD and that it is always smaller than

2 · maxC∈G
ωC

ωC
·VD

2, using Propositions 4.2 and 4.3. Since it requires to compute an SSSP

tree for each SCC, the complexity of computing the bound is O(m + n log n) (the other

operations can be done in linear time, as described in Section 4.1).

5. FULLY DYNAMIC APPROXIMATION ALGORITHMS

5.1. Path Subsitution

Our algorithms for dynamic BC approximation are composed of two phases: an

initialization phase, which executes RK on the initial graph, and an update phase, which

recomputes the approximated BC scores after a sequence of edge updates. Let us consider

a batch β = {e1, . . . , ek} of edge updates ei = {ui, vi, ω(ui, vi)} applied to a graph G.

Also, let us assume for the moment that β is composed of edge insertions only (or weight

decreases) and β does not increase the vertex diameter of G and, therefore, also the

number r of samples required by RK for the maximum error guarantee. We will discuss the

general case in Section 5.2. Intuitively, our basic idea is to keep the old sampled paths and

update them only when necessary, instead of recomputing r shortest paths from scratch.

Figure 3 shows an example to illustrate this idea: Assume several shortest paths between

s and t exist, of which one has been sampled (with black nodes). An edge insertion

(represented in red) shortens the distance between s and t , creating a new shorter path.

Therefore, we simply subtract 1/r from each node in the old shortest path and add 1/r to

each node in the new one.

From this point on, we give a formal description and consider only edge insertions.

We suppose the graph is undirected, but in this restricted semidynamic setting, our results

can be easily extended to weight decreases and directed graphs. Let G′ = (V,E ∪β) be the

new graph, let d ′
s(t) denote the new distance between any node pair (s, t), and let σ ′

st be the

new number of shortest paths between s and t . Let Sst and S ′
st be the old and the new set

of shortest paths between s and t , respectively. A new set S ′ = {p′
(1), . . . , p

′
(r)} of shortest

paths has to be sampled now in order to let Lemma 3.1 hold for the new configuration;

290 BERGAMINI AND MEYERHENKE

in particular, the probability Pr(p′
(k) = p′

st) of each shortest path p′
st to be sampled must

be equal to πG′(p′
st) = 1

n(n−1)
· 1

σ ′
st

. Clearly, one could rerun RK on the new graph, but we

can be more efficient: we recall that we are assuming that the VD and, therefore, also the

number of samples for G′ is smaller than or equal to that of G. Given any old sampled

path pst , we can keep pst if the set of shortest paths between s and t has not changed and

replace it with a new path between s and t , otherwise. Then, the following lemma holds:

Lemma 5.1. Let S be a set of shortest paths of G sampled according to πG. Let P be

the procedure that creates S ′ by substituting each path pst ∈ S with a path p′
st according

to the following rules: 1. p′
st = pst if d ′

s(t) = ds(t) and σ ′
st = σst . 2. p′

st selected

uniformly at random among S ′
st otherwise. Then, p′

st is a shortest path of G′ and the

probability of any shortest path p′
xy of G′ to be sampled at each iteration is πG′(p′

xy), i.e.,

Pr(p′
(k) = p′

xy) = 1
n(n−1)

· 1
σ ′

xy
, k = 1, . . . , r .

Proof. To see that p′
st is a shortest path of G′, it is sufficient to notice that, if d ′

s(t) = ds(t)

and σ ′
s(t) = σs(t), then all the shortest paths between s and t in G are shortest paths also in

G′.

Let p′
xy be a shortest path of G′ between nodes x and y. Basically, there are two

possibilities for p′
xy to be the kth sample. Naming e1 the event {Sxy = S ′

xy} (the set of shortest

paths between x and y does not change after the edge insertion) and e2 the complementary

event of e1, we can write Pr(p′
(k) = p′

xy) as Pr(p′
(k) = p′

xy ∩ e1) + Pr(p′
(k) = p′

xy ∩ e2).

Using conditional probability, the first addend can be rewritten as Pr(p′
(k) = p′

xy ∩

e1) = Pr(p′
(k) = p′

xy |e1) Pr(e1). As the procedure P keeps the old shortest path when e1

occurs, then Pr(p′
(k) = p′

xy |e1) = Pr(p(k) = p′
xy |e1) = 1

n(n−1)
1

σx (y)
, which is also equal to

1
n(n−1)

1
σ ′

x (y)
, since σx(y) = σ ′

x(y) when we condition on e1. Therefore, Pr(p′
(k) = p′

xy ∩e1) =

1
n(n−1)

1
σ ′

x (y)
· Pr(e1).

Analogously, Pr(p′
(k) = p′

xy ∩ e2) = Pr(p′
(k) = p′

xy |e2) Pr(e2). In this case,

Pr(p′
(k) = p′

xy |e2) = 1
n(n−1)

· 1
σ ′

x (y)
, since this is the probability of the node pair (x, y)

to be the kth sample in the initial sampling and of p′
xy to be selected among other paths in

S ′
xy . Then, Pr(p′

(k) = p′
xy ∩ e2) = 1

n(n−1)
· 1

σ ′
x (y)

· Pr(e2) = 1
n(n−1)

· 1
σ ′

x (y)
· (1 − Pr(e1)).

The probability Pr(p′
(k) = p′

xy) can, therefore, be rewritten as Pr(p′
(k) = p′

xy) =
1

n(n−1)
1

σ ′
x (y)

· Pr(e1)+ 1
n(n−1)

1
σ ′

x (y)
·(1-Pr(e1)) = 1

n(n−1)
1

σ ′
x (y)

.

Since the set of paths is constructed according to πG′ , Theorem 5.2 follows directly from

Lemma 3.1.

Theorem 5.2. Let G = (V,E) be a graph and let G′ = (V,E ∪ β) be the modified

graph after the the batch β. Let V D(G) ≥ V D(G′). Let S be a set of r shortest paths of G

sampled according to πG and r = c
ǫ2

(

⌊log2 (VD(G) − 2)⌋ + 1 + ln 1
δ

)

for some constants

ǫ, δ ∈ (0, 1). Then, if a new set S ′ of shortest paths of G′ is built according to procedure P

and the approximated values of betweenness centrality c̃′
B(v) of each node v are computed

as the fraction of paths of S ′ to which v is internal, then

Pr(∃v ∈ V s.t. |c′
B(v) − c̃′

B(v)| > ǫ) < δ,

where c′
B(v) is the new exact value of betweenness centrality of v after the edge insertion.

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 291

Notice that our guarantee is only probabilistic and it is possible (although with

probability smaller than δ) that at some time step the approximated betweenness of a node

diverges from the exact one for more than ǫ. Because there is dependency between the

approximated values at different time steps, it is possible that this error propagates over the

following time steps. However, it is also possible that the error decreases as a consequence

of some modifications in the graph. Theorem 5.2 tells us that, at each single time step,

the absolute error on the betweenness of each node is smaller than ǫ, with probability

at least 1 − δ. We would also like to point out that, although cases where the maximum

error exceeds ǫ are theoretically possible, this actually never happened in our experiments,

where the measured errors were often orders of magnitude smaller than ǫ (see Section 6).

Algorithm 2 shows the update procedure based on Theorem 5.2. For each sampled node

pair (si, ti), i = 1, . . . , r , we first update the SSSP from si , a step that will be discussed in

Sections 5.3 and 5.4. In the case that the distance or the number of shortest paths between

si and ti has changed, a new shortest path is sampled uniformly, as in RK. This means that
1
r

is subtracted from the score of each node in the old shortest path and the same quantity

is added to the nodes in the new shortest path. Contrarily, if both distances and number of

shortest paths between si and ti have not changed, nothing needs to be updated. Considering

edges in a batch allows us to recompute the BC scores only once instead of doing it after

each single-edge update. Moreover, this allows us to use specific batch algorithms for the

update of the SSSP DAGs, which process the nodes affected by multiple edges of β only

once, instead of for each single edge.

Unlike RK, with our dynamic algorithm we scan the neighbors every time we need

the predecessors instead of storing them (Line 11). This allows us to use �(n) memory per

sample (i.e., �(r · n) in total) instead of �(m) per sample, and our experiments show that

the running time is hardly influenced. The number of samples depends on ǫ, so, in theory,

this can be as large as |V |. However, our experiments show that relatively large values of

ǫ (e.g., ǫ = 0.05) lead to a good ranking of nodes with high BC and, for such values, the

number of samples is typically much smaller than |V |, making the memory requirements

of our algorithms significantly less demanding than those of the dynamic exact algorithms

(�(n2)) for many applications.

5.2. Sampling New Paths

In the previous section, we assumed that VD(G) ≥ VD(G′). Although many real-

world networks exhibit a shrinking-diameter behavior [21], it is clearly possible that VD

increases as a consequence of edge insertions/deletions or weight updates. If this happens,

we can still update the old paths as described in Section 5.1, but we also need to sample

new additional paths, according to the probability distribution π ′
G. The general algorithm

to update the BC scores after a batch β could be described as follows: First, we update

the old shortest paths as described in Section 5.1. Then, we recompute an upper bound on

VD(G′) in linear time, using the algorithms described in Section 4. Using VD(G′), we

compute the number of samples r(G′) defined in (3.1). If r(G′) > r(G), we sample new

r(G′) − r(G) additional paths using RK. For undirected graphs, we also propose two fully

dynamic algorithms (one for weighted and one for unweighted graphs) to keep track of

an upper bound on VD over time (Section 5.5). This saves additional time, allowing for

a quick recomputation of the upper bound after the batch instead of recomputing it from

scratch.

292 BERGAMINI AND MEYERHENKE

Algorithm 2: BC update after a batch β of edge insertions/weight decreases

Input : Graph G = (V,E), source node s, number of iterations r , batch β of
edge insertions/weight decreases

Output: New approximated BC values ∀v ∈ V
1 for i ← 1 to r do

2 dold
i ← dsi

(ti);

3 σ old
i ← σsi

(ti);
4 (dsi

, σsi
) ←UpdateSSSP(G, dsi

, σsi
, β);

5 if dsi
(ti) < dold

i or σsi
(ti) �= σ old

i then
6 foreach w ∈ p(i) do
7 c̃B (w) ← c̃B(w) − 1/r;
8 end
9 v ← ti ;

10 p(i) ← empty list;
11 Psi

(v) ← {u ∈ V |(u, v) ∈ E ∧ dsi
(u) + ω(u, v) = dsi

(v)};
12 while Psi

(v) �= {si} do
13 sample z ∈ Psi

(v) with Pr = σsi
(z)/σsi

(v);
14 c̃B(z) ← c̃B(z) + 1/r;
15 add z to p(i);
16 v ← z;

17 end

18 end

19 end

20 return {(v, c̃B (v)), v ∈ V }

Notice that, if edge deletions are allowed, it is not sufficient to check whether the

distance and the number of shortest paths between two nodes s and t has not changed

(Line 5 of Algorithm 2), because they might remain unchanged even if the set of shortest

paths is actually different. In this case, we always replace the old shortest path with a new

one (we basically remove the if statement in Line 5).

In the following, we present the fully dynamic algorithms (for weighted and un-

weighted graphs) needed to update the shortest paths (updateSSSP in Algorithm 2) and

the fully dynamic algorithm that recomputes an upper bound on VD for undirected graphs.

Finally, we show how these algorithms can be combined to obtain an even faster algorithm

(than the one described in this section) for dynamic BC approximation in undirected graphs

(Section 5.6).

5.3. SSSP Update in Weighted Graphs

Our SSSP update is based on T-SWSF [3], which recomputes distances from a

source node s after a batch β of weight updates (or edge insertions/deletions). For our

purposes, we need two extensions of T-SWSF: an algorithm that also recomputes the

number of shortest paths between s and the other nodes (updateSSSP-W) and one that

also updates a VD approximation for the connected component of s (updateApprVD-W)

(the latter is used in the fully dynamic VD approximation for undirected graphs, described in

Section 5.5). The VD approximation is computed as described in Sections 3 and 4.2. Thus,

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 293

updateApprVD-W keeps track of the two maximum distances d ′ and d ′′ from s and the

minimum edge weight ω.

We call affected nodes those nodes whose distance (or also whose number of shortest

paths, in updateSSSP-W) from s has changed as a consequence of β. Basically, the idea

is to put the set A of affected nodes w into a priority queue Q with priority p(w) equal to

the candidate distance of w. When w is extracted, if there is actually a path of length p(w)

from s to w, the new distance of w is set to p(w), otherwise w is reinserted into Q with a

higher candidate distance. In both cases, the affected neighbors of w are inserted into Q.

Algorithm 3 describes the SSSP update for weighted undirected graphs. The extension

to directed graphs is trivial. The pseudocode updates both the VD approximation for the

connected component of s and the number of shortest paths from s, so it basically includes

both updateSSSP-W and updateApprVD-W. Initially, we scan the edges e = {u, v} in

β and, for each e, we insert the endpoint with greater distance from s into Q (w.l.o.g., let v

be such endpoint). The priority p(v) of v represents the candidate new distance of v. This

is the minimum between the d(v) and d(u) plus the weight of the edge {u, v}. Notice that

we use the expression “insert v into Q” for simplicity, but this can also mean update p(v) if

v is already in Q and the new priority is smaller than p(v). When we extract a node w from

Q, we have two possibilities: (i) there is a path of length p(w) and p(w) is actually the new

distance, or (ii) there is no path of length p(w) and the new distance is greater than p(w).

In the first case (Lines 9–23), we set d(w) to p(w) and insert the neighbors z of w such

that d(z) > d(w) + ω({w, z}) into Q (to check if new shorter paths to z that go through w

exist). In the second case (Lines 24–40), there is no shortest path between s and w known

any longer, so that we set d(w) to ∞. We compute p(w) as min{v,w}∈E d(v) + ω(v,w) (the

new candidate distance for w) and insert w into Q. Also, its neighbors could have lost one

(or all of) their old shortest paths, so we insert them into Q as well. The update of ω can be

done while scanning the batch and of d ′ and d ′′ when we update d(w).

The pseudocode also updates a global variable vis(w) that keeps track, for each node

w, of the number of source nodes from which w is reachable. This is necessary for the

fully dynamic VD approximation and will be explained in Section 5.5. In particular, we

decrease vis(w) when updating d(w) in the case that the old d(w) was equal to ∞ (i.e., w

has become reachable) and we decrease vis(w) when we set d(w) to ∞ (i.e., w has become

unreachable). We update the number of shortest paths after updating d(w), as the sum of

the shortest paths of the predecessors of w (Lines 16–18). In updateApprVD-W, d ′ and

d ′′ are recomputed while updating the distances (Line 10) and ω is updated while scanning

β (Line 5). Let |β| represent the cardinality of β and let ||A|| represent the sum of the nodes

in A and of the edges that have at least one endpoint in A. Then, the following complexity

derives from feeding Q with the batch and inserting into/extracting from Q the affected

nodes and their neighbors.

Lemma 5.3. The time required by updateApprVD-W (updateSSSP-W) to update the

distances and ṼD (the number of shortest paths) is O(|β| log |β| + ||A|| log ||A||).

Proof. In the initial scan of the batch (Lines 2–4), we scan the nodes of the batch and insert

the affected nodes into Q (or update their value). This requires at most one heap operation

(insert or decrease-key) for each element of β, therefore, O(|β| log |β|) time. When we

extract a node w from Q, we have two possibilities: (i) con(w) = p(w) (Lines 9–23) or (ii)

con(w) > p(w) (Lines 24–40). In the first case, we scan the neighbors of w and perform at

294 BERGAMINI AND MEYERHENKE

most one heap operation for each of them (Lines 19–21). In the second case, we scan only

if d(w) �= ∞. Therefore, we can perform up to one heap operation per incident edge of w,

for each extraction of w in which d(w) �= ∞ or con(w) = p(w). How many times can an

affected node w be extracted from Q with d(w) �= ∞ or con(w) = p(w)? If the first time

we extract w, con(w) is equal to p(w) (case (i)), then the final value of d(w) is reached

and w is not inserted into Q anymore. If the first time we extract w, con(w) is greater than

p(w) (case (ii)), then w can be inserted into the queue again. However, its distance is set to

Algorithm 3: SSSP update for weighted graphs (updateSSSP-W)

Input : Graph G = (V,E), vector d of distances from s, vector σ of number of shortest
paths from s, batch β

Output: New values of d(v) and σ (v) ∀v ∈ V
1 Q ← empty priority queue;
2 foreach e = {u, v} ∈ β, d(u) < d(v) do
3 Q ← insertOrDecreaseKey(v, p(v) = min{d(u) + ω({u, v}), d(w)});

4 end
5 ω ← min{ω, ω(e) : e ∈ β};
6 while there are nodes in Q do
7 {w,p(w)} ← extractMin(Q);
8 con(w) ← minz:(z,w)∈E d(z) + ω(z,w);
9 if con(w) = p(w) then

10 update d ′ and d ′′;
11 if d(w) = ∞ then
12 vis(w) ← vis(w) + 1;
13 end
14 d(w) ← p(w); σ (w) ← 0;
15 foreach incident edge (z, w) do
16 if d(w) = d(z) + ω(z,w) then
17 σ (w) ← σ (w) + σ (z);

18 end
19 if d(z) ≥ d(w) + ω(z,w) then
20 Q ← insertOrDecreaseKey(z, p(z) = d(w) + ω(z,w));

21 end

22 end

23 end
24 else
25 if d(w) �= ∞ then
26 vis(w) ← vis(w) − 1;
27 if vis(w)=0 then
28 insert w into U ;
29 end
30 if con(w) �= ∞ then
31 Q ←insertOrDecreaseKey(w, p(w) = con(w));
32 foreach incident edge (z, w) do
33 if d(z) = d(w) + ω(w, z) then
34 Q ←insertOrDecreaseKey(z, p(z) = d(w) + ω(z,w));
35 end

36 end
37 d(w) ← ∞;

38 end

39 end

40 end

41 end

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 295

∞ and, therefore, no additional operations are performed, until d(w) becomes less than ∞.

But this can happen only in case (i), after which d(w) reaches its final value. To summarize,

each affected node w can be extracted from Q with d(w) �= ∞ or con(w) = p(w) at most

twice and, every time this happens, at most one heap operation per incident edge of w is

performed. The complexity is therefore O(|β| log |β| + ||A|| log ||A||).

5.4. SSSP Update in Unweighted Graphs

For unweighted graphs, we basically replace the priority queue Q of

updateApprVD-W and updateSSSP-W with a list of queues. Each queue represents

a level (distance from s) from 0 (to which only the source belongs) to the maximum dis-

tance d ′. The levels replace the priorities and, in this case, also represent the candidate

distances for the nodes. Algorithm 4 describes the pseudocode for unweighted graphs. As

in Algorithm 3, we first scan the batch (Lines 3–5) and insert the nodes in the queues. Then

(Lines 6–44), we scan the queues in order of increasing distance from s, in a fashion similar

to that of a priority queue. In order not to insert a node in the queues multiple times, we

use colors: initially we set all the nodes to white and then we set a node w to black only

when we find the final distance of w (i.e., when we set d(w) to k) (Line 15). Black nodes

extracted from a queue are then skipped (Line 10). At the end we reset all nodes to white.

The replacement of the priority queue with the list of queues decreases the complexity of

the SSSP update algorithms for unweighted graphs, which we call updateApprVD-U and

updateSSSP-U, in analogy with those for weighted graphs.

Lemma 5.4. The time required by updateApprVD-U (updateSSSP-U) to update the

distances and ṼD (the number of shortest paths) is O(|β| + ||A|| + dmax), where dmax is

the maximum distance from s reached during the update.

Proof. The complexity of the initialization (Lines 3–5) of Algorithm 4 is O(|β|), because

we have to scan the batch. In the main loop (Lines 6–44), we scan the list of all queues,

whose final size is dmax. Every time we extract a node w whose color is not black, we scan

all the incident edges, therefore, this operation is linear in the number of neighbors of w. If

the first time we extract w (say at level k) con(w) is equal to k, then w will be set to black

and will not be scanned again. If the first time we extract w, con(w) is, instead, greater

than k, w will be inserted into the queue at level con(w) (if con(w) < ∞). Also, other

inconsistent neighbors of w might insert w in one of the queues. However, after the first

time w is extracted, its distance is set to ∞, so its neighbors will not be scanned unless

con(w) = k, in which case they will be scanned again, but for the last time, since w will

be set to black. To summarize, each affected node and its neighbors can be scanned at most

twice. The complexity of the algorithm is, therefore, O(|β| + ‖A‖ + dmax).

5.5. Fully Dynamic VD Approximation

The algorithm keeps track of a VD approximation for an undirected graph G, i.e.,

for each connected component of G. It is composed of two phases. In the initialization,

we compute an SSSP from a source node si for each connected component Ci . During the

SSSP search from si , we also compute a VD approximation ˜VD i for Ci , as described in

Sections 3 and 4.2. In the update, we recompute the SSSPs and the VD approximations

with updateApprVD-W (or updateApprVD-U). Because components might split or

296 BERGAMINI AND MEYERHENKE

Algorithm 4: SSSP update for unweighted graphs (updateSSSP-U)

Input : Graph G = (V,E), vector d of distances from s, vector σ of number of shortest
paths from s, batch β

Output: New values of d(v) and σ (v) ∀v ∈ V
1 Assumption: color(w) = white ∀w ∈ V ;
2 Q[] ← array of empty queues;
3 foreach e = {u, v} ∈ β, d(u) < d(v) do
4 k ← d(v) + 1; enqueue v → Q[k];

5 end
6 k ← 1;
7 while there are nodes in Q[j], j ≥ k do
8 while Q[k] �= ∅ do
9 dequeue w ← Q[k];

10 if color(w) = black then continue;
11 con(w) ← minz:(z,w)∈E d(z) + 1;
12 if con(w) = k then
13 update d ′ and d ′′;
14 if d(w) = ∞ then vis(w) ← vis(w) + 1;
15 d(w) ← k; σ (w) ← 0; color(w) ← black;
16 foreach incident edge (z,w) do
17 if d(w) = d(z) + 1 then
18 σ (w) ← σ (w) + σ (z);

19 end
20 if d(z) > k then
21 enqueue z → Q[k + 1];

22 end

23 end

24 end
25 else
26 if d(w) �= ∞ then
27 d(w) ← ∞;
28 vis(w) ← vis(w) − 1;
29 if vis(w)=0 then
30 insert w into U ;
31 end
32 if con(w) �= ∞ then
33 enqueue w → Q[con(w)];
34 foreach incident edge (z, w) do
35 if d(z) > k then
36 enqueue z → Q[k + 1];
37 end

38 end

39 end

40 end

41 end

42 end
43 k ← k + 1;

44 end
45 Set to white all the nodes that have been in Q;

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 297

merge, we might need to compute new approximations, in addition to updating the old

ones. To do this, for each node, we keep track of the number vis(v) of times it has been

visited. This way we discard source nodes that have already been visited and compute a

new approximation for components that have become unvisited. Algorithm 5 describes the

initialization. Initially, we put all the nodes in a queue and compute an SSSP from the nodes

we extract (Line 18). During the SSSP search, we increase the number of visits vis(v) for

all the nodes we traverse (Line 24). When extracting the nodes, we skip those that have

already been visited (Line 8): this avoids computing multiple approximations for the same

component.

In the update (Algorithm 6), we recompute the SSSPs and the VD approximations

with updateApprVD-W (or updateApprVD-U) (Line 7). Since components might split,

we might need to add VD approximations for some new subcomponents, in addition to

recomputing the old ones. Also, if components merge, we can discard the superfluous

approximations. To do this, we update vis(v) for each node within updateApprVD-W

(or updateApprVD-U). Before the update, all the nodes are visited exactly once. While

updating an SSSP from si , we increase (decrease) by one vis(v) of the nodes v that become

reachable (unreachable) from si . This way, we can skip the update of the SSSPs from nodes

that have already been visited (Line 8). After the update, for all nodes v that have become

unvisited (vis(v) = 0), we compute a new VD approximation from scratch (Lines 11–18).

The complexity of the update of the VD approximation derives from the ṼD update in the

single components, using updateApprVD-W and updateApprVD-U.

Theorem 5.5. The time required to update the VD approximation is O(nc · |β| log |β| +
∑nc

i=1 ||A(i)|| log ||A(i)||) in weighted graphs and O(nc · |β| +
∑nc

i=1 ||A(i)|| + d (i)
max) in

unweighted graphs, where nc is the number of components in G before the update and A(i)

is the sum of affected nodes in Ci and their incident edges.

Proof. In the first part (Lines 2–9 of Algorithm 6), we update an SSSP with

updateApprVD-W or updateApprVD-U for each source node si such that vis(si)

is not greater than 1. Therefore, the complexity of the first part is O(nc · |β| log |β| +
∑nc

i=1 ||A(i)|| log ||A(i)||) in weighted graphs and O(nc · |β| +
∑nc

i=1 ||A(i)|| + d (i)
max) in

unweighted, by Lemmas 5.3 and 5.4. Only some of the affected nodes (those whose

distance from a source node becomes ∞) are inserted into the queue U . Therefore,

the cost of scanning U in Lines 11–18 is O(
∑nc

i=1 ||A(i)||). New SSSP searches are

computed for new components that are not covered by the existing source nodes any

longer. However, such searches involve only the affected nodes, and each affected

node (and its incident edges) is scanned at most once during the search. Therefore,

the total cost is O(nc · |β| log |β| +
∑nc

i=1 ||A(i)|| log ||A(i)||) for weighted graphs and

O(nc · |β| +
∑nc

i=1 ||A(i)|| + d (i)
max) for unweighted graphs.

Lemma 5.6. At the end of Algorithm 5, vis(v) = 1 for all v ∈ V , and exactly one VD

approximation is computed for each connected component of G.

Proof. Let v be any node. Then v must be scanned by at least one source node si in the

while loop (Lines 6–13): In fact, either v is visited by some si before v is extracted from

U , or vis(v) = 0 at the moment of the extraction and v becomes a source node itself. This

implies that vis(v) ≥ 1, ∀v ∈ V . However, vis(v) cannot be greater than 1. In fact, let

us assume by contradiction that vis(v) > 1. This means that there are at least two source

298 BERGAMINI AND MEYERHENKE

nodes si and sj (i < j , w.l.o.g.) that are in the same connected component as v. Then, si

and sj are also in the same connected component, and sj is visited during the SSSP search

from si . Then, vis(sj) = 1 before sj is extracted from U and sj cannot be a source node.

Therefore, vis(v) is exactly equal to 1 for each v ∈ V , which means that exactly one VD

approximation is computed for each connected component of G.

Proposition 5.7. Let C ′ = {C ′
1, . . . , C

′
n′

c
} be the set of connected components of G after

the update. Algorithm 6 updates or computes exactly one VD approximation for each

C ′
i ∈ C ′.

Proof. Let C = {C1, . . . , Cnc
} be the set of connected components before the update. Let

us consider three basic cases (then it is straightforward to see that the proof holds also

for combinations of these cases): (i) Ci ∈ C is also a component of C ′, (ii) Ci ∈ C and

Cj ∈ C merge into one component C ′
k of C ′, (iii) Ci ∈ C splits into two components C ′

j

and C ′
k of C ′. In case (i), the VD approximation of Ci is updated exactly once in the for

loop (Lines 2–9). In case (ii), (assuming i < j , w.l.o.g.) the VD approximation of C ′
k is

updated in the for loop from the source node si ∈ Ci . In its SSSP search, si also visits

sj ∈ Cj , increasing vis(sj). Therefore, sj is skipped and exactly one VD approximation is

computed for C ′
k . In case (iii), the source node si ∈ Ci belongs to one of the components

(say C ′
j) after the update. During the for loop, the VD approximation is computed for C ′

j

via si . Also, for all the nodes v in C ′
k , vis(v) is set to 0 and v is inserted into U . Then,

some source node s ′
k ∈ C ′

k must be extracted from U in Line 12 and a VD approximation

is computed for C ′
k . Because all the nodes in C ′

k are set to be visited during the search, no

other VD approximations are computed for C ′
k .

5.6. Combined Dynamic BC Approximation

Let G be an undirected graph with nc connected components. In Section 5.2, we

described an algorithm to update the betweenness approximations in fully dynamic graphs.

If the graph is undirected, we can use the fully dynamic VD approximation to recompute

ṼD after a batch, instead of recomputing it from scratch. Then, we could update the

r sampled paths with updateSSSP and, if ṼD (and therefore r) increases, we could

sample new paths. However, since updateSSSP and updateApprVD share most of

the operations, we can “merge” them and update at the same time the shortest paths

from a source node s and the VD approximation for the component of s. We call this

hybrid function updateSSSPVD. Instead of storing and updating nc SSSPs for the VD

approximation and r SSSPs for the BC scores, we recompute a VD approximation for

each of the r samples while recomputing the shortest paths with updateSSSPVD. This

way, we do not need to compute an additional SSSP for the components covered by the r

sampled paths (i.e., the components in which the paths lie), saving time and memory. Only

for components that are not covered by any of them (if they exist), we compute and store a

separate VD approximation. We refer to such components as R′ (and to |R′| as r ′).

In the initialization (Algorithm 7), we first compute the r SSSP, like in RK (Lines 4–

18). However, we also check which nodes have been visited, as in Algorithm 5. While we

compute the r SSSPs, in addition to the distances and number of shortest paths, we also

compute a VD approximation for each of the r source nodes and increase vis(v) of all the

nodes we visit during the sources with initApprVD (Line 8). Because it is possible that

the r shortest paths do not cover all the components of G, we compute an additional VD

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 299

approximation for nodes in the unvisited components, such as in Algorithm 5 (Lines 21–28).

Basically, we can divide the SSSPs into two sets: the set R of SSSPs used to compute the

r shortest paths and the set R′ of SSSPs used for a VD approximation in the components

that were not scanned by the initial R SSSPs. We call r ′ the number of the SSSPs in R′.

Algorithm 5: Dynamic VD approximation (initialization)

Input : Graph G = (V,E)
Output: Upper bound on VD

1 U ← [];
2 foreach node v ∈ V do
3 vis(v) ← 0; insert v into U ;
4 end
5 i ← 1;
6 while U �= ∅ do
7 extract s from U ;
8 if vis(s) = 0 then
9 si ← s;

10 ṼDi ← initApprVD(G, si);
11 i ← i + 1;

12 end

13 end
14 nC ← i − 1;

15 ṼD ← maxi=1,...,nC
˜VD i ;

16 return ṼD ;

// initApprVD computes ˜VD and adds 1 to vis(v) of the nodes it
visits

17 Function initApprVD(G, s)
18 SSSP(G, s);
19 d ′ ← max{d(s, u)|u ∈ V, d(u, v) �= ∞};
20 d ′′ ← max{d(s, v)|v ∈ V, v �= u, d(s, v) �= ∞};
21 ω ← min{ω(x, y)|(x, y) ∈ E};

22 ˜VD ← 1 + d ′+d ′′

ω
;

23 foreach node w ∈ V s.t. d(s, w) �= ∞ do
24 vis(w) ← vis(w) + 1;
25 end

26 return ˜VD ;

The BC update after a batch is described in Algorithm 8. First (Lines 2–19), we

recompute the shortest paths like in Algorithm 2: we update the SSSPs from each source

node s in R and we replace the old shortest path with a new one (subtracting 1/r from

the nodes in the old shortest path and adding 1/r to those in the new shortest path). To

update the SSSPs, we use the fully-dynamic updateSSSPVD that updates also the VD

approximation and keeps track of the nodes that become unvisited. Then (Lines 24–31),

we add a new SSSP to R′ for each component that has become unvisited (by both R

and R′). After this, we have at least a VD approximation for each component of G. We

take the maximum over all these approximations and recompute the number of samples r

(Lines 32–33). If r has increased, we need to sample new paths and, therefore, new SSSPs

to add to R. Finally, we normalize the BC scores, i.e., we multiply them by the old value of

r divided by the new value of r (Line 37). We refer to the algorithm for unweighted graphs

as DA and the one for weighted as DAW. The difference between DA and DAW is the way

300 BERGAMINI AND MEYERHENKE

the SSSPs and the VD approximation are updated: in DA we use updateApprVD-U and

in DAW updateApprVD-W.

Theorem 5.8. Algorithm 8 preserves the guarantee on the maximum absolute error,

i.e., naming c′
B(v) and c̃′

B(v) the new exact and approximated BC values, respectively,

Pr(∃v ∈ V s.t. |c′
B(v) − c̃′

B(v)| > ǫ) < δ.

Proof. Let G be the old graph and G′ be the modified graph after the batch of edge

updates. Let p′
xy be a shortest path of G′ between nodes x and y. To prove the theoretical

guarantee, we need to prove that the probability of any sampled path p′
(i) is equal to

p′
xy (i.e., that the algorithms adds 1/r ′ to the nodes in p′

xy) is 1
n(n−1)

1
σ ′

x (y)
. Algorithm 8

replaces the first r shortest paths with other shortest paths p′
(1), . . . , p

′
(r) between the

same node pairs (Lines 12–18), using Algorithm 2, for which we already proved that

Pr(p′
(k) = p′

xy) = 1
n(n−1)

1
σ ′

x (y)
(Lemma 5.1). The additional
r shortest paths (Line 35) are

recomputed from scratch with RK, therefore, also in this case Pr(p′
(k) = p′

xy) = 1
n(n−1)

1
σ ′

x (y)

by Lemma 7 of [25].

Algorithm 6: Dynamic VD approximation (updateApprVD)

Input : Graph G = (V,E), vector vis
Output: New VD approximation

1 U ← [];
2 foreach si do
3 if vis(si) > 1 then

4 remove si and ṼD i ; decrease nC ;
5 end
6 else

// updateApprVD updates vis, inserts all v for which vis(v) = 0

into U and recomputes a VD approximation ˜VD i

7 ṼDi ← updateApprVD(G, si) ;

8 end

9 end
10 i ← nC ;
11 while U �= ∅ do
12 extract s ′ from U ;
13 if vis(s ′) = 0 then
14 s ′

i ← s ′;

15 ṼDi ← initApprVD(G, s ′
i);

16 i ← i + 1; nC ← nC + 1;

17 end

18 end
19 reset vis(v) to 1 for nodes v such that vis(v) > 1;

20 ˜VD ← maxi=1,...,nC
ṼD i ;

21 return ˜VD

5.7. Complexity of the Dynamic BC Algorithms

In this section we presented different algorithms for updating BC approximations after

batches of edge updates. Algorithm 2 can be used on graphs for which we can be sure that the

vertex diameter cannot increase after a batch of edge updates. This includes, for example,

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 301

unweighted connected graphs on which only edge insertions are allowed. We refer to the

unweighted version of this algorithm as incremental approximation (IA) and to the weighted

version as incremental approximation weighted (IAW). On general directed graphs, we can

use the algorithms described in Section 5.2. We name the unweighted version dynamic

approximation directed (DAD) and the weighted one DADW. Finally, for undirected graphs,

we can use the optimized algorithms presented in Section 5.6 (Algorithm 8), to which

we refer as DA and DAW. Theorem 5.9 presents the complexities of all the BC update

algorithms. In the following, we name ||A(i)|| the sum of affected nodes and their incident

edges in the ith sampled SSSP. We also name r the number of samples. In case we need to

sample new additional paths after the update (in DAD, DADW, DA and DAW), we refer

to the difference between the value of r before and after the batch as
r . In DA and DAW,

we call r ′ the number of additional samples necessary for the VD approximation.

Theorem 5.9. Given a graph G = (V,E) with n nodes and m edges, the times required

by the different algorithms to update the BC approximations after a batch β are as follows:

(i) IA: O(r · |β| +
∑r

i=1(||A(i)|| + d (i)
max)

(ii) IAW: O(r · |β| log |β| +
∑r

i=1 ||A(i)|| log ||A(i)||)

(iii) DAD: O(r · |β| +
∑r

i=1(||A(i)|| + d (i)
max) + (
r + 1)(n + m))

(iv) DADW: O((r · |β| log |β| +
∑r

i=1 ||A(i)|| log ||A(i)|| + (
r + 1)(n log n + m))

(v) DA: O((r + r ′)|β| +
∑r+r ′

i=1 (||A(i)|| + d (i)
max) +
r(n + m))

(vi) DAW: O((r + r ′)|β| log |β| +
∑r+r ′

i=1 ||A(i)|| log ||A(i)|| +
r(n log n + m))

Proof. We prove each case separately.

(i) IA updates each sampled path with updateSSSP-U. Therefore, the total complexity

is the sum of the times required to update each of the r paths, i.e., O(r · |β| +
∑r

i=1(||A(i)|| + d (i)
max).

(ii) Same as (i), with the only difference, that we use updateSSSP-W for weighted

graphs.

(iii) In DAD, we need to update the existing r samples, exactly as in IA. In addition to that,

we might need to sample new
r additional paths using a BFS, whose complexity is

O(n+m). Also, we need to recompute the upper bound on VD , whose complexity is

also O(n + m) (see Section 4.1). Therefore, in this case, we have to add an additional

O((
r + 1)(n + m)) term to the complexity of IA.

(iv) Similarly to (iii), we need to sample
r additional paths, but in weighted graphs

the cost of an SSSP is O(n log n + m). Also, the VD approximation described in

Section 4.3 requires O(n log n + m) time.

(v) Let
r ′ be the difference between the values of r ′ before and after the batch. After

processing β, we might need to sample new paths for the betweenness approximation

(
r > 0) and/or sample paths in new components that are not covered by any of the

sampled paths (
r ′ > 0). Then, the complexity for the betweenness approximation

update is O(r · |β|+
∑r

i=1(||A(i)||+d (i)
max))+O(
r(n+m)). The VD update requires

O(r ′ · |β| +
∑r ′

i=1(||A(i)|| + d (i)
max)) to update the VD approximation in the already

covered components and
∑
r

i=1(|Vi |+|Ei |) for the new ones, where Vi and Ei are nodes

and edges of the ith component, respectively. From this derives the total complexity.

(vi) Same as (v), using updateSSSP-W, approxVD-W.

302 BERGAMINI AND MEYERHENKE

Algorithm 7: BC initialization

Input : Graph G = (V,E), source node s, number of iterations r , batch β
Output: Approximated BC values ∀v ∈ V

1 foreach node v ∈ V do
2 c̃B (v) ← 0; vis(v) ← 0;
3 end

4 ˜VD ←getApproxVertexDiameter(G);

5 r ← (c/ǫ2)(⌊log2(˜VD − 2)⌋ + ln(1/δ));
6 for i ← 1 to r do
7 (si, ti) ← sampleUniformNodePair(V);

8 ˜VD i ← initApprVD(G, si,);
9 v ← ti ;

10 p(i) ← empty list;
11 Psi (v) ← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};
12 while Psi (v) �= {si} do
13 sample z ∈ Psi (v) with probability σsi (z)/σsi (v);
14 c̃B (z) ← c̃B (z) + 1/r;
15 add z → p(i); v ← z;
16 Psi (v) ← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};

17 end

18 end
19 U ← V ;
20 i ← r + 1;
21 while U �= ∅ do
22 extract s ′ from U ;
23 if vis(s ′) = 0 then
24 s ′

i ← s ′;

25 ṼD i ← initApprVD(G, s ′
i);

26 i ← i + 1;

27 end

28 end
29 r ′ ← r − i − 1;

30 return {(v, c̃B (v)) : v ∈ V }

Notice that, if ṼD does not increase,
r = 0 and the complexities of DA and

DAD (DAW and DADW, respectively) are the same as the only incremental algorithm IA

(IAW, respectively). This case includes, for example, connected graphs subject to a batch

of only edge insertions, or any batch that neither splits the graph into more components

nor increases VD . Also, notice that in the worst case the complexity can be as bad as

recomputing from scratch, or even slightly worse. Indeed, ||A(i)|| can be as large as m,

for i = 1, . . . , r , and d (i)
max can be as large as n. Assuming β = �(m) as a worst-case

batch size, the running times of IA and IAW are then O(r · (m + n)) and O(r · (m log m)),

respectively. Analogously, the complexities of DAD and DADW are O((r +
r) · (n+m))

and O((r +
r) · (m log m)), where we recall that (r +
r) is the number of samples

required after the batch. In the optimized versions DA and DAW, the worst-case running

time is even longer: O((r +
r +nc) · (n+m)) and O((r +
r +nc) · (m log m)), where nc

is the number of connected components of the graph. However, these worst-case running

times are not observed in our experiments. Indeed, in the next section, we will show that

our dynamic algorithms perform very well in practice. Also, notice that no dynamic SSSP

(and so, probably, also no BC approximation) algorithm exists that is asymptotically faster

than recomputation on all graphs.

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 303

Algorithm 8: Dynamic update of BC approximation (DA)

Input : Graph G = (V,E), source node s, number of iterations r , batch β
Output: New approximated BC values ∀v ∈ V

1 U ← [];
2 for i ← 1 to r do

3 dold
i ← dsi (ti);

4 σ old
i ← σsi (ti);

// updateSSSPVD updates vis, inserts all v : vis(v) = 0 into U and
updates the VD approximation

5 ˜VD i ← updateSSSPVD(G, si, β);
// we replace the shortest path between si and ti

6 foreach w ∈ p(i) do
7 c̃B (w) ← c̃B (w) − 1/r;
8 end
9 v ← ti ;

10 p(i) ← empty list;
11 Psi (v) ← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};
12 while Psi (v) �= {si} do
13 sample z ∈ Psi (v) with probability = σsi (z)/σsi (v);
14 c̃B (z) ← c̃B (z) + 1/r;
15 add z to p(i);
16 v ← z;
17 Psi (v) ← {z : {z, v} ∈ E ∩ dsi (v) = dsi (z) + ω({z, v})};

18 end

19 end
20 for i ← r + 1 to r + r ′ do

21 ˜VD i ← updateApprVD(G, si, β);

22 end
23 i ← r + r ′ + 1;
24 while U �= ∅ do
25 extract s ′ from U ;
26 if vis(s ′) = 0 then
27 s ′

i ← s ′;

28 ˜VD i ← initApprVD(G, s ′
i);

29 i ← i + 1; r ′ ← r ′ + 1;

30 end

31 end
// compute the maximum over all the VD i computed by updateApprVD

32 ṼD ← maxi=1,...,r+r ′ ṼD i ;

33 rnew ← (c/ǫ2)(⌊log2(˜VD − 2)⌋ + ln(1/δ));
34 if rnew > r then
35 sample new paths;
36 foreach v ∈ V do
37 c̃B (v) ← c̃B (v) · r/rnew

38 end
39 r ← rnew;

40 end

41 return {(v, c̃B (v)) : v ∈ V }

304 BERGAMINI AND MEYERHENKE

Graph Type Nodes Edges Type

ca-GrQc coauthorship 5 242 14 496 Unweighted, Undirected

p2p-Gnutella09 file sharing 8 114 26 013 Unweighted, Directed

ca-HepTh coauthorship 9 877 25 998 Unweighted, Undirected

PGPgiantcompo social / web of trust 10 680 24 316 Unweighted, Undirected

as-22july06 internet 22 963 48 436 Unweighted, Undirected

Table I Overview of small real-world networks used in the experiments.

6. EXPERIMENTS

Implementation and settings. For an experimental comparison, we implemented

our six approaches IA, IAW, DAD, DADW, DA, DAW, as well as the static approximation

RK [25]. In addition to that, we implemented the static exact BA and the dynamic exact

algorithms GMB [16] and KDB [18], which were shown to have the best speedups on un-

weighted graphs. For a comparison on weighted graphs, we also implemented the algorithm

by [22] (NPR). In the implementation of RK, we used the optimization proposed in [25],

stopping all the SSSP searches once the target node had been found. Also, we computed

the number of samples, using our new bounds on VD the presented in Section 4. We im-

plemented all algorithms in C++, building on the open-source NetworKit framework [27].

In all experiments, we fix δ to 0.1 while the error bound ǫ varies. The machine we employ

is used for its 256 GB RAM–the comparison to exact approaches requires a substantial

amount of memory. Of the machine’s 2 x 8 Intel(R) Xeon(R) E5-2680 cores running at 2.7

GHz, we use only one; all computations are sequential to make the comparison to previous

work more meaningful.

Datasets. We use both real-world and synthetic networks. For our experiments on

the accuracy and for comparison with the exact algorithms, we use relatively small net-

works, on which the nonscalable algorithms can also be executed. These networks are

summarized in Table I and are publicly available from the collection compiled for the 10th

DIMACS Challenge1 and from the SNAP2 collection. Due to a shortage of actual dynamic

networks in this size range, we simulate dynamics by removing a small fraction of random

edges and adding them back in batches. We also use synthetic networks obtained with

the Dorogovtsev–Mendes generator, a simple model for networks with power-law degree

distribution [11].

To compare the running times of the scalable algorithms (RK and our dynamic al-

gorithms), we use real dynamic networks, taken from The Koblenz Network Collection

(KONECT) [19] and summarized in Table II. All the edges of the KONECT graphs are

characterized by a time of arrival. In the case of multiple edges between two nodes, we

extract two versions of the graph: one unweighted, where we ignore additional edges, and

one weighted, where we replace the set Est of edges between two nodes with an edge

of weight 1/|Est | (more tightly coupled nodes receive a smaller distance). In our experi-

ments, we let the batch size vary from 1 to 1024 and for each batch size, we average the

running times over 10 runs. Because the networks do not include edge deletions, we imple-

ment additional simulated dynamics. In particular, we consider the following experiments.

1http://www.cc.gatech.edu/dimacs10/downloads.shtml [2].
2http://snap.stanford.edu

http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://snap.stanford.edu

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 305

Graph Type Nodes Edges Type

repliesDigg communication 30,398 85,155 Weighted

emailSlashdot communication 51,083 116,573 Weighted

emailLinux communication 63,399 159,996 Weighted

facebookPosts communication 46,952 183,412 Weighted

emailEnron communication 87,273 297,456 Weighted

facebookFriends friendship 63,731 817,035 Unweighted

arXivCoauthors coauthorship 28,093 3,148,447 Unweighted

englishWikipedia hyperlink 1,870,709 36,532,531 Unweighted

Table II Overview of real dynamic graphs used in the experiments.3

(i) Real dynamics. We remove the x edges with the highest timestamp from the network

and we insert them back in batches, in the order of timestamps. (ii) Random insertions

and deletions. We remove x edges from the graph, chosen uniformly at random. To create

batches of both edge insertions and deletions, we add back the deleted edges with probabil-

ity 1/2 and delete other random edges with probability 1/2. (iii) Random weight changes. In

weighted networks, we choose x edges uniformly at random and we multiply their weight

by a random value in the interval (0, 2).

To study the scalability of the methods, we also use synthetic graphs obtained with a

generator based on a unit-disk graph model in hyperbolic geometry [28], where edge inser-

tions and deletions are obtained by moving the nodes in the hyperbolic plane. The networks

produced by the model were shown to have many properties of real complex networks,

such as small diameter and power-law degree distribution (for details and references the

interested reader is referred to [28]). We generate seven networks, with |E| ranging from

about 2 · 104 to about 2 · 107 and |V | approximately equal to |E|/10.

We also compare our new upper bound on VD for directed graphs presented in

Section 4.1 with the one used in RK. For this, we use directed real-world graphs of

different sizes taken from the SNAP collection.

6.1. Accuracy

We consider the accuracy of the approximated centrality scores both in terms of

absolute error and, more importantly, the preservation of the ranking order of nodes. Because

we only replace the samples without changing their number, our dynamic algorithm has

exactly the same accuracy as RK. The authors of [25] also study the behavior of RK

experimentally, considering the average and maximum estimation error on a small set of

real graphs. We study the experimental errors on additional graphs. For our tests we use

the networks summarized in Table I and Dorogovtsev–Mendes graphs of several sizes. Our

results confirm those of [25] in the sense that the measured absolute errors are always

below the guaranteed maximum error ǫ and the measured average error is often orders of

magnitude smaller than ǫ. Table III shows the measured errors for the real networks. We

also study the relative rank error introduced by [14] (i.e., max{ρ, 1/ρ}, denoting ρ the ratio

between the estimated rank and the true rank), which we consider the most relevant measure

of the quality of the approximations. Figure 4 shows the results for PGPgiantcompo, a

3Taken from http://konect.uni-koblenz.de/.

306 BERGAMINI AND MEYERHENKE

ca- ca- PGP as- p2p-

Graph GrQc HepTh giantcompo 22july06 Gnutella09

max. error (ǫ = 0.1) 1.70e-02 1.69e-02 3.10e-02 3.22e-02 1.56e-02

max. error (ǫ = 0.05) 9.12e-03 7.62e-03 1.38e-02 1.60e-02 6.55e-03

max. error (ǫ = 0.01) 1.67e-03 1.41e-03 2.99e-03 3.45e-03 1.23e-03

avg. error (ǫ = 0.1) 4.55e-04 3.87e-04 4.56e-04 8.55e-05 5.92e-04

avg. error (ǫ = 0.05) 2.42e-04 2.10e-04 2.54e-04 5.35e-05 3.15e-04

avg. error (ǫ = 0.01) 4.63e-05 4.29e-05 5.10e-05 1.33e-05 6.55e-05

Table III Maximum and average absolute errors on real networks for different values of ǫ (δ = 0.1). The values

are averaged over 10 runs.

similar trend can be observed on our other test instances as well. On the left, we see

the errors for the whole set of nodes (ordered by exact rank) and, on the right, we focus

on the top 100 nodes. The straight lines in the plot on the left correspond to nodes with

betweenness 0, which are therefore undistinguishable. The plots show that for a small value

of ǫ (0.01), the ranking is very well preserved over all the positions. With higher values of ǫ,

the rank error of the nodes with low betweenness increases, because they are more difficult

to approximate. However, the error remains small for the nodes with highest betweenness,

the most important ones for many applications.

6.2. New Upper Bound on VD for Directed Graphs

We compute the new upper bound on VD for directed graphs presented in Section 4.1

and compare it with the upper bound used in RK [25], i.e., the size of the largest weakly

connected component. All the networks used in the experiment are real directed graphs.

Since finding VD exactly would be expensive in most of the graphs we used, we also

compute a lower bound on VD by sampling nodes in the graph, computing their eccentricity

(i.e., the maximum distance reachable from the node), and adding 1 to it. In Table IV, we

report this lower bound (VD
⋆), our new upper bound (ṼD), and the one used in RK

(ṼDRK). The results show that ṼD is always several orders of magnitude smaller than

ṼDRK and never more than a factor 4 from the lower bound VD
⋆ (and, therefore, also from

VD). This difference is mitigated by the logarithm in the number of samples required for

the approximation (3.1). However, Table IV shows that ṼD is almost always more than

Figure 4 Relative rank error on PGPgiantcompo for nodes ordered by rank. Left: relative errors of all nodes.

Right: relative errors of the 100 nodes with highest betweenness.

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 307

Graph Nodes Edges VD
⋆

ṼD ṼDRK

p2p-Gnutella24 26 518 65 369 20 47 26 498

soc-Epinions1 75 879 508 837 13 41 75 877

slashdot081106 77 356 516 575 14 39 77 349

twitter-comb 81 306 1 768 149 9 34 81 306

slashdot090216 81 870 545 671 14 40 81 866

amazon0302 262 111 1 234 877 71 183 262 111

email-EuAll 265 214 420 045 9 23 224 832

Table IV Lower bound on VD (VD
⋆) and upper bounds (our new bound ˜VD and the one proposed in RK,

˜VDRK) on real-world networks.

210 times smaller than ṼDRK, resulting in at least 10 times fewer samples required for the

theoretical guarantee.

6.3. Running Times

In this section, we discuss the running times of all the algorithms, the speedups of the

exact incremental approaches (GMB, KDB) on BA, and the speedups of our algorithms on

RK. (Note that the term speedup is used in this study to compare different algorithms, not

sequential vs. parallel execution.)

In all of our tests on relatively small graphs (Table I), KDB performs worse than

GMB, therefore, we report only the results of GMB. Figure 5 shows the behavior of the

four algorithms on PGPgiantcompo. Because the graph is connected and we are considering

batches of edge insertions, IA and DA are identical in this case (therefore, in Figure 5 we

refer to our algorithm as IA). On the left, the figure shows the running times of the four

algorithms, whereas the plot on the right reports the speedups of GMB on BA and of IA

on RK. GMB can process edges one by one only, therefore, its running time increases

linearly with the batch size, becoming slower than the static algorithm already with a batch

size of 64. Our algorithm shows much better speedups and proves to be significantly faster

than recomputation even with a batch of size 1024. The reasons for our high speedup

are mainly two: First, we process the updates in a batch, processing only once the nodes

affected by multiple edge insertions. Second, our algorithm does not need to recompute the

dependencies, in contrast to all dynamic algorithms based on BA (i.e., all existing dynamic

Figure 5 Running times and speedups on PGPgiantcompo, with ǫ = 0.05 and with batches of different sizes.

Left: Running times of static exact (BA), static approximation (RK), incremental exact (GMB) and our incremental

approximation IA. Right: Speedups of GMB on BA (exact) and of IA on RK (approximation).

308 BERGAMINI AND MEYERHENKE

Figure 6 Speedups on Dorogovtsev-Mendes synthetic graphs (m = 40k), with ǫ = 0.05 with batches of different

sizes. Left: comparison of the speedups of GMB on BA (exact) and of IA on RK (approximation). Right: speedups

of IA on GMB.

Figure 7 Speedups of DA on RK, with ǫ = 0.05 and with batches of different sizes. Left: real unweighted

networks using real dynamics. Right: hyperbolic unit-disk graphs of different sizes.

exact algorithms). For each SSSP, the dependencies need to be recomputed not only for

nodes whose distance or number of shortest paths from the source have changed after the

edge insertion(s), but also for all the intermediate nodes in the old shortest paths, even if

their distance and number of shortest paths are not affected. This number is significantly

higher, because for every node that changes its distance or increases its number of shortest

paths, the dependencies of all the nodes in all the old shortest paths are affected.

Results on the other small graphs and on synthetic Dorogovtsev–Mendes graphs are

analogous to those shown in Figure 5. Figure 6 (left) shows the speedups of IA on RK

and of GMB on BA, averaged over 10 synthetic graphs. We see in Figure 6 (right) that

our algorithm is significantly faster than GMB, and the speedup of IA on GMB clearly

increases with the batch size. We also compared NPR with IAW on small weighted graphs.

Since NPR performs very poorly on all tested instances, we do not report the results here,

however, they can be found in our conference article [5]. GMB and NPR also have very high

memory requirements (�(n2 + mn)), which makes the algorithms unusable on networks

with more than a few thousand edges. The memory requirement is the same, also, for

Figure 8 Left: speedups of DA on RK in real unweighted graphs under random updates. Right: Speedups of

DAD on RK on the facebookPosts directed graph, using real dynamics.

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 309

R
ea

l
R

an
d
o
m

T
im

e
[s

]
S

p
ee

d
u
p
s

T
im

e
[s

]
S

p
ee

d
u
p
s

G
ra

p
h

|β
|
=

1
|β

|
=

1
0
2
4

|β
|
=

1
|β

|
=

1
0
2
4

|β
|
=

1
|β

|
=

1
0
2
4

|β
|
=

1
|β

|
=

1
0
2
4

r
e
p
l
i
e
s
D
i
g
g

0
.0

7
8

1
.0

2
8

7
6
.1

1
5
.4

2
0
.0

0
8

0
.8

3
2

9
4
.0

0
4
.7

6

e
m
a
i
l
S
l
a
s
h
d
o
t

0
.0

4
3

1
.0

5
5

2
1
9
.0

2
9
.9

1
0
.0

3
8

1
.1

5
1

2
6
3
.8

9
2
8
.8

1

e
m
a
i
l
L
i
n
u
x

0
.0

4
9

1
.4

1
2

1
0
8
.2

8
3
.5

9
0
.0

5
1

2
.1

4
4

7
2
.7

3
1
.3

3

f
a
c
e
b
o
o
k
P
o
s
t
s

0
.0

2
3

1
.4

1
6

5
2
7
.0

4
9
.8

6
0
.0

1
5

1
.5

2
0

7
4
5
.8

6
8
.2

1

e
m
a
i
l
E
n
r
o
n

0
.3

6
8

1
.2

7
9

8
3
.5

9
1
3
.6

6
0
.2

0
3

1
.6

4
0

9
9
.4

5
9
.3

9

f
a
c
e
b
o
o
k
F
r
i
e
n
d
s

0
.4

4
7

1
.9

4
6

9
4
.2

3
1
8
.7

0
0
.4

4
8

2
.1

8
4

9
5
.9

1
1
8
.2

4

a
r
X
i
v
C
o
a
u
t
h
o
r
s

0
.0

3
8

0
.1

8
6

2
2
8
7
.8

4
4
0
0
.4

5
0
.0

2
5

1
.5

2
0

2
1
8
8
.7

0
2
8
.8

1

e
n
g
l
i
s
h
W
i
k
i
p
e
d
i
a

1
.0

7
8

6
.7

3
5

3
2
2
6
.1

1
6
1
7
.4

7
0
.8

7
7

5
.9

3
7

2
8
3
3
.5

7
7
0
3
.1

8

T
a

b
le

V
T

im
es

an
d

sp
ee

d
u

p
s

o
f

D
A

o
n

R
K

in
u

n
w

ei
g

h
te

d
re

al
g

ra
p

h
s

u
n

d
er

re
al

d
y

n
am

ic
s

an
d

ra
n

d
o

m
u

p
d

at
es

,
fo

r
b

at
ch

si
ze

s
o

f
1

an
d

1
0

2
4

.

310 BERGAMINI AND MEYERHENKE

R
ea

l
R

an
d
o
m

T
im

e
[s

]
S

p
ee

d
u
p
s

T
im

e
[s

]
S

p
ee

d
u
p
s

G
ra

p
h

|β
|
=

1
|β

|
=

1
0
2
4

|β
|
=

1
|β

|
=

1
0
2
4

|β
|
=

1
|β

|
=

1
0
2
4

|β
|
=

1
|β

|
=

1
0
2
4

r
e
p
l
i
e
s
D
i
g
g

0
.0

5
3

3
.0

3
2

6
0
5
.1

8
1
4
.2

4
0
.0

4
9

3
.0

4
6

6
5
8
.1

9
1
4
.1

7

e
m
a
i
l
S
l
a
s
h
d
o
t

0
.7

9
0

5
.3

8
7

5
0
.8

1
1
6
.1

2
0
.7

1
6

5
.8

6
6

5
6
.0

0
1
4
.8

1

e
m
a
i
l
L
i
n
u
x

0
.3

2
4

2
4
.8

1
6

5
7
8
0
.4

9
7
5
.4

0
0
.3

4
4

2
4
.8

5
7

5
4
5
4
.1

0
7
5
.2

8

f
a
c
e
b
o
o
k
P
o
s
t
s

0
.0

2
9

6
.6

7
2

2
8
6
3
.8

3
1
1
.4

2
0
.0

2
9

6
.5

3
4

2
9
1
0
.3

3
1
1
.6

6

e
m
a
i
l
E
n
r
o
n

0
.0

5
0

9
.9

2
6

3
4
8
6
.9

9
2
4
.9

1
0
.0

4
6

5
0
.4

2
5

3
7
6
2
.0

9
4
.9

0

T
a

b
le

V
I

T
im

es
an

d
sp

ee
d

u
p

s
o

f
D

A
W

o
n

R
K

in
w

ei
g

h
te

d
re

al
g

ra
p

h
s

u
n

d
er

re
al

d
y

n
am

ic
s

an
d

ra
n

d
o

m
u

p
d

at
es

,
fo

r
b

at
ch

si
ze

s
o

f
1

an
d

1
0

2
4

.

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 311

Hyperbolic

Time [s] Speedups

Number of edges |β| = 1 |β| = 1024 |β| = 1 |β| = 1024

m = 20000 0.005 0.195 99.83 2.79

m = 50000 0.002 0.152 611.17 10.21

m = 200000 0.015 0.288 422.81 22.64

m = 500000 0.012 0.339 1565.12 51.97

m = 2000000 0.049 0.498 2419.81 241.17

m = 5000000 0.083 0.660 4716.84 601.85

m = 20000000 0.006 0.401 304338.86 5296.78

Table VII Times and speedups of DA on RK in hyperbolic unit-disk graphs, for batch sizes of 1 and 1024.

all other existing dynamic algorithms, with the exception of KDB, which requires �(n2)

memory, still impractical for large networks.

Because the exact algorithms are not scalable, for the comparison on larger networks

(Table II) we used only RK and our algorithms. Figure 7 (left) reports the speedups of DA

on RK in real graphs using real dynamics. Although some fluctuations can be noticed, the

speedups tend to decrease as the batch size increases. We can attribute fluctuations to two

main factors: First, different batches can affect areas of G of varying sizes, influencing

also the time required to update the SSSPs. Second, changes in the VD approximation

can require to sampling new paths and therefore increasing the running time of DA (and

DAW). Nevertheless, DA is significantly faster than recomputation on all networks and

for every tested batch size. Analogous results are reported in Figure 8 (left) for random

dynamics. Table V summarizes the running times of DA and its speedups on RK with

batches of size 1 and 1024 in unweighted graphs, under both real and random dynamics.

Even on the larger graphs (arXivCoauthors and englishWikipedia) and on large

batches, DA requires at most a few seconds to recompute the BC scores, whereas RK

requires about one hour for englishWikipedia. The results on weighted graphs are

shown in Table VI. In both real dynamics and random updates, the speedups vary between

≈ 50 and ≈ 6 · 103 for single-edge updates and between ≈ 5 and ≈ 75 for batches of size

1024.

On hyperbolic graphs (Figure 7, right), the speedups of DA on RK increase with the

size of the graph. Table VII contains the precise running times and speedups on batches of

1 and 1024 edges. The speedups vary between ≈ 100 and ≈ 3 · 105 for single-edge updates

and between ≈ 3 and ≈ 5 · 103 for batches of 1024 edges.

Some graphs of Table II can also be interpreted as directed (i. e., repliesDigg,

emailSlashdot, emailLinux, facebookPosts, emailEnron, arXivCoauthors).

Therefore, we test DAD on the directed version of the networks, using real dynamics.

Also on directed networks, using DAD is always faster than recomputation with RK, by

orders of magnitude on small batches. Figure 8 (right) shows the speedups of DAD on RK

on the facebookPosts graph.

To summarize, our results show that our dynamic algorithms are faster than recompu-

tation with RK in all the tested instances, even when large batches of 1024 edges are applied

to the graph. With small batches, the algorithms are always orders of magnitude faster than

RK, often with running times of fractions of seconds or seconds compared to minutes or

hours. Such high speedups are made possible by the efficient update of the sampled shortest

312 BERGAMINI AND MEYERHENKE

paths, which limits the recomputation to the nodes that are actually affected by the batch.

Also, processing the edges in batches, we avoid updating multiple times those nodes that

are affected by several edges of the batch.

7. CONCLUSIONS

Because betweenness centrality considers all shortest paths between pairs of nodes,

its exact computation is out of reach for the large complex networks that come up in

many applications today. However, approximate scores obtained by sampling paths are

often sufficient to identify the most important nodes and rank nodes in an order that is very

similar to exact BC. Since many applications are concerned with rapidly evolving networks,

we have explored whether a dynamic approach–which updates paths when a batch of

edges arrives or is deleted from the network–is more efficient than recomputing BC scores

from scratch. We introduce the first dynamic betweenness approximation algorithms with

provable error guarantee. They work for weighted, unweighted, directed, and undirected

graphs. Our theoretical results are confirmed by experiments on a diverse set of real-world

networks with both real and simulated dynamics, which show the effectiveness of our

approach.

The dynamic updating of paths implies a higher memory footprint, but also enables

significant speedups compared to recomputation (e.g., factor 100 for a batch of 1024

edge insertions). The scalability of our algorithms is primarily limited by the available

memory. Each sampled path requires O(n) memory and the number of required samples

grows quadratically as the error bound ǫ is tightened. This leaves the user with a trade-off

between running time and memory consumption on the one hand and BC score error on the

other hand. However, our experiments indicate that even a relatively high error bound (e.g.,

ǫ = 0.1) for the BC scores preserves the ranking for the more important nodes reasonably

well.

We studied sequential implementations for simplicity and comparability with related

work, but parallelization is possible, part of future work, and can yield further speedups

in practice. Our implementations are based on NetworKit4, the open-source framework

for large-scale network analysis. Most of the source code used for this article is al-

ready available in NetworKit; the remaining code will follow in upcoming releases of the

package.

An interesting open problem that remains is the update of BC approximations in

scenarios where nodes can also be inserted and deleted. The presence of a new node (or the

remotion of an existing one) would modify the probability distribution that regulates the

path sampling, introducing the necessity of new techniques.

ACKNOWLEDGMENTS

We thank Moritz von Looz for providing the synthetic dynamic networks and

the numerous contributors to the NetworKit project. We also thank Matteo Riondato

for his constructive comments on earlier versions of the material presented in this

article.

4http://networkit.iti.kit.edu

http://networkit.iti.kit.edu

APPROXIMATING BETWEENNESS CENTRALITY IN FULLY DYNAMIC NETWORKS 313

FUNDING

This work is partially supported by DFG grant ME-3619/3-1 (FINCA) within the

SPP 1736 Algorithms for Big Data and by DFG grant ME-3619/2-1 (TEAM).

REFERENCES

[1] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. “Approximating Betweenness Centrality.”

In 5th Workshop on Algorithms and Models for the Web-Graph (WAW ’07), pp. 124–137, LNCS

4863. Berlin, Heidelberg: Springer, 2007.

[2] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. “Benchmarking

for Graph Clustering and Partitioning.” In Encyclopedia of Social Network Analysis and Mining,

edited by R. Alhajj and J. Rokne, pp. 73–82. New York, NY: Springer, 2014.

[3] R. Bauer and D. Wagner. “Batch Dynamic Single-Source Shortest-Path Algorithms: An Ex-

perimental Study.” In 8th Int. Symp. on Experimental Algorithms (SEA ’09), pp. 51–62, LNCS

5526. Berlin, Heidelberg: Springer, 2009.

[4] E. Bergamini and H. Meyerhenke. “Fully-Dynamic Approximation of Betweenness Centrality.”

In Algorithms - ESA 2015 - 23rd Annual European Symposium, Proceedings, edited by N. Bansal

and I. Finocchi, pp. 155–166. Berlin, Heidelberg: Springer, 2015.

[5] E. Bergamini, H. Meyerhenke, and C. Staudt. “Approximating Betweenness Centrality in Large

Evolving Networks.” In 17th Workshop on Algorithm Engineering and Experiments, ALENEX

2015, pp. 133–146. SIAM, 2015.

[6] M. Borassi, P. Crescenzi, and A. Marino. “Fast and Simple Computation of Top-k Closeness

Centralities.” Available online (http://arxiv.org/abs/1507.01490), 2015.

[7] U. Brandes. “A Faster Algorithm for Betweenness Centrality.” Journal of Mathematical Soci-

ology 25 (2001), 163–177.

[8] U. Brandes and C. Pich. “Centrality Estimation in Large Networks.” I. J. Bifurcation and Chaos

17:7 (2007), 2303–2318.

[9] M. H. Chehreghani. “An Efficient Algorithm for Approximate Betweenness Centrality Com-

putation.” Comput. J. 57:9 (2014), 1371–1382.

[10] A. D’Andrea, M. D’Emidio, D. Frigioni, S. Leucci, and G. Proietti. “Experimental Evaluation

of Dynamic Shortest Path Tree Algorithms on Homogeneous Batches.” In 13th Int. Symp. on

Experimental Algorithms (SEA ’14), pp. 283–294, LNCS 8504. Berlin, Heidelberg: Springer,

2014.

[11] S. N. Dorogovtsev and J. F. Mendes. Evolution of Networks: From Biological Nets to the Internet

and WWW. Oxford, UK: Oxford University Press, 2003.

[12] L. C. Freeman. “A Set of Measures of Centrality Based on Betweenness.” Sociometry 40:1

(1977), 35–41.

[13] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. “Semi-Dynamic Algorithms for Main-

taining Single-Source Shortest Path Trees.” Algorithmica 22 (2008), 250–274.

[14] R. Geisberger, P. Sanders, and D. Schultes. “Better Approximation of Betweenness Centrality.”

In 10th Workshop on Algorithm Engineering and Experiments (ALENEX ’08), pp. 90–100.

SIAM, 2008.

[15] K. Goel, R. R. Singh, S. Iyengar, and S. Gupta. “A Faster Algorithm to Update Betweenness

Centrality after Node Alteration.” Internet Mathematics 11:4-5 (2015), 403–420.

[16] O. Green, R. McColl, and D. A. Bader. “A Fast Algorithm for Streaming Betweenness Central-

ity.” In SocialCom/PASSAT, pp. 11–20. IEEE, 2012.

[17] M. Kas, M. Wachs, K. M. Carley, and L. R. Carley. “Incremental Algorithm for Updat-

ing Betweenness Centrality in Dynamically Growing Networks.” In Advances in Social

Networks Analysis and Mining 2013 (ASONAM ’13), pp. 33–40. New York, NY: ACM,

2013.

http://arxiv.org/abs/1507.01490

314 BERGAMINI AND MEYERHENKE

[18] N. Kourtellis, G. D. F. Morales, and F. Bonchi. “Scalable Online Betweenness Centrality in

Evolving Graphs.” IEEE Trans. Knowl. Data Eng. 27:9 (2015), 2494–2506.

[19] J. Kunegis. “KONECT: The Koblenz Network Collection.” In 22nd Int. World Wide Web Conf.,

WWW ’13, pp. 1343–1350. WWW, 2013.

[20] M. Lee, J. Lee, J. Y. Park, R. H. Choi, and C. Chung. “QUBE: A Quick Algorithm for Updating

Betweenness Centrality.” In Proceedings of the 21st World Wide Web Conference 2012, WWW

2012, edited by A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab, editors, pp.

351–360. New York, NY: ACM, 2012.

[21] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. “Graphs Over Time: Densification Laws,

Shrinking Diameters and Possible Explanations.” In 11th Int. Conf. on Knowledge Discovery

and Data Mining, pp 177–187. New York, NY: ACM, 2005.

[22] M. Nasre, M. Pontecorvi, and V. Ramachandran. “Betweenness Centrality - Incremental and

Faster.” In Mathematical Foundations of Computer Science 2014 - 39th Int. Symp., MFCS 2014,

pp. 577–588, LNCS 8635. Berlin, Heidelberg: Springer, 2014.

[23] M. Pontecorvi and V. Ramachandran. “A Faster Algorithm for Fully Dynamic Betweenness

Centrality.” CoRR, abs/1506.05783, 2015.

[24] G. Ramalingam and T. Reps. “An Incremental Algorithm for a Generalization of the Shortest-

Path Problem.” Journal of Algorithms 21 (1992), 267–305.

[25] M. Riondato and E. M. Kornaropoulos. “Fast Approximation of Betweenness Centrality

Through Sampling.” Data Mining and Knowledge Discovery 30:2 (2016), 438–475.

[26] L. Roditty and U. Zwick. “On Dynamic Shortest Paths Problems.” Algorithmica 61:2 (2011),

389–401.

[27] C. Staudt, A. Sazonovs, and H. Meyerhenke. “NetworKit: An Interactive Tool Suite for High-

Performance Network Analysis.” (http://arxiv.org/abs/1403.3005), 2014.

[28] M. von Looz, H. Meyerhenke, and R. Prutkin. “Generating Random Hyperbolic Graphs in

Subquadratic Time.” In Proc. 26th Int’l Symp. on Algorithms and Computation (ISAAC 2015),

LNCS. Berlin, Heidelberg: Springer, 2015. To appear.

http://arxiv.org/abs/1403.3005

