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	e key nodes in a complex transportation network have a signi
cant in�uence on the safety of tra�c operations, connectivity
reliability, and the performance of the entire network. However, the identi
cation of key nodes in existing urban transportation
networks has mainly focused on nonweighted networks and the network information of the nodes themselves, which do not
accurately re�ect their global status. 	us, the present study proposes a key node identi
cation algorithm that combines tra�c
�ow features and is based on weighted betweenness centrality. 	is study also uses weighted roads to construct an L-space
weighted transportation network and an approximate algorithm for betweenness centrality in order to reduce the complexity of the
calculations.	e results of the simulation indicate that the proposed algorithm is not only capable of identifying the key nodes in a
relatively short amount of time, but it does so with high accuracy.	e 
ndings of this study can be used to provide decision-making
support for road network management, planning, and urban tra�c construction optimization.

1. Introduction

Since Watts and Strogatz [1] developed a general network
with small-world properties and Barabasi and Albert [2]
created a scale-free network, the study of complex networks
has been attracting increasing attention from scholars and
industry professionals [3, 4]. Moreover, previous studies have
suggested that urban transport networks have either small-
world features, scale-free features [5], or both [Ye [6]]. Such
networks typically satisfy the structure and functional char-
acteristics of complex networks. For example, Sienkiewicz
et al. [7] indicated that the degree distribution of an urban
transport network in Poland follows either a power rate
distribution or an exponential distribution.

In general, an urban transport network is composed
of various types of roads that are associated with di�erent
functions, grades, and locationswith a certain density.Within
each network, the nodes are the junctions where two or more
highways converge. Overall, the nodes and the connecting
sections between the nodes are the key components of an
urban tra�c structure. Since the key nodes in an urban

transportation network have a signi
cant in�uence on the
safety, reliability, and overall performance of the network,
the identi
cation of key nodes and the examination of their
complexities have been the subjects of numerous studies
[8, 9]. In addition, by identifying the key nodes in a network,
it can provide accurate and e�ective tra�c control as well as
guidance for existing transport networks. Previous research
has highlighted the importance of nodes [10–13] andprovided
new perspectives and methods for evaluating the node’s
importance in urban complex road networks. For example,
such work may help tra�c operators and managers to better
propose the budget plan of infrastructure development [1].
Song et al. [14] introduced urban �ow intensity indicators
in the evaluation index system to elucidate the importance
of road network nodes. 	ey also used factor analysis to
avoid random subjective values in the node calculations and
the K-means clustering method to distinguish the levels of
each node for further analysis. Wang et al. [15] focused
on tra�c �ow characteristics, travel speeds, delays, and
intersection saturation rate in order to distinguish the key
nodes in tra�c network, which is superior to simply relying
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on tra�c engineers to judge by experience. Moreover, Zuo
et al. [16] used road network e�ectiveness and e�ciency as
evaluation indicators to identify the key nodes as well as links
between them. M. Dreyfuss and Y. Giat [9, 17] proposed a
risk model to identify the key nodes within network that it
can be used to map the critical nodes. Although the above-
mentioned research has made signi
cant contributions to
identify key nodes, a couple of critical issues need to be
further investigated:

(1) the widely used K-means clustering method typically
su�ers from the problem of computational e�ciency
due to the fact that the algorithm needs to constantly
adjust the sample classi
cation and recalculate the
new cluster center;

(2) themost of existing algorithms can only contendwith
the local information of the involved network while
the global information is o�en ignored;

(3) the most of existing studies can only consider the
physical structure of urban road network while some
tra�c-related factors are typically neglected.

To overcome those reviewed limitations, this study proposes
an enhanced Betweenness Centrality (BC) algorithm to bet-
ter identify the key nodes in transport network. Betweenness
Centrality (BC) [18], a well-known index that ranks the
importance of a node, is the ratio of the shortest path number
through the node to all of the shortest path numbers in
the network. In this regard, the higher the BC of the node,
the more important the node is in the network. However,
when the complexity of the BC calculation is high and the
computational complexity greatly restricts the size of the
computable network (e.g., in the case of a complex tra�c
network in a large city), the time required for the algo-
rithm is signi
cant. 	ose barriers would lose its practical
application value. 	erefore, an enhanced BC is proposed,
in which the Ulrik Brandes (UB), a fast algorithm proposed
by Brandes [19], is further embedded into traditional BC
for reducing the complexity of the calculation of BC. 	e
time cost of the algorithm is then able to be greatly reduced,
and the proposed algorithm is capable of dealing with
the case of large urban complex network. 	e enhanced
BC re�ects the role and in�uence of the corresponding
nodes in the whole network. Such the algorithm features an
important global quantity, which can overcome the above-
mentioned research shortcomings. To verify the e�ective-
ness and e�ciency of the proposed study, Nanjing, the
capital city of Jiangsu Province, China, is used as the case
study.

2. Key Node Evaluation Model for a Weighted
Urban Complex Transportation Network

2.1. Problem Description. Based on the primal approach [20],
the research problem is represented as � = {�, �}, in which� = {V1, V2 . . . V�} represents the set of nodes in the tra�c
network, the nodes represent the crossroads, the demarcation
section indicates where the geometric factors of the roads
have undergone major changes, and V� represents node �.

Moreover, � = {�1, �2 . . . ��} represents the set of edges
that follows the footprints of actual mapped streets, while ��
represents edge �.
2.2. Definition of Key Nodes in an Urban Complex Transporta-
tion Network. In large-scale complex networks, not all nodes
are equal. 	e most important nodes in a weighted network
are those whose removal results in the greatest increase in
the shortest distance between two speci
ed nodes [21]. In
an urban network, the key nodes play a central role in the
entire network, since they are not only a�ected by the network
topology, but they are also a�ected by the tra�c �ow in
the road network. In terms of structural characteristics, key
nodes also play a pivotal and controlling role in the road
network. In fact, the failure of key nodes will lead to the
loss of local connectivity in the road network and even the
deterioration of global connectivity. In extreme cases, the
overall e�ciency of the transportation network will sharply
decline.

	e nonhomogeneous topology of an urban complex
transportation network also determines the importance of
the nodes in the network. 	e importance of the nodes
usually depends on two aspects: the position of the nodes in
the network (e.g., the center node and the noncenter node)
and the connectivity capability of the nodes. In regard to
the latter aspect, the shorter the path through the node, the
greater the connectivity and importance of the node to the
entire network.

2.3. Evaluation Index. 	e importance of a node is closely
related to its spatial location in the network. As a spatial
network, the urban road network demonstrates a strong
compactness and complexity in two ways. First, the number
of node edges in the urban road network is large, and second,
any two nodes are connected, with each node associated with
multiple edges. 	us, in addition to the characteristics of
the most complex weighted networks, urban road networks
include features that di�er from abstract networks. Such
aspects can help determine the topology of urban transport
networks.

	e key evaluation indicators of complex transportation
networks mainly include the following:

(1) Degree and Degree Distribution of the Nodes. 	e degree
is the simplest and most important concept in regard
to evaluating the characteristics of a node. It is also a
fundamental parameter that describes the local character-
istics of a network. Moreover, the degree of a node is
related to its number of connections. 	us, high-degree
nodes have a greater impact on the entire network. As
for the degree distribution of the nodes, it is the pro-
portion of the nodes with degree � in the entire net-
work.

(2) Average Path Length. 	e average path length, denoted as�, is the average value of the shortest path between any two
nodes in the network. In this case, the average path length is
given by the following equation:
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� = 1	 (	 − 1) ∑�,�∈���� (1)

where	 is the number of nodes in the network and V denotes
the shortest distance between node � and node �. When � = �,��� = 0.
(3) Clustering Coefficient. 	e clustering coe�cient of the
network is de
ned as the average clustering coe�cient for all
of the nodes in the network.	e clustering coe�cient is given
by the following equation:

 = 1	
�∑
�=1
� (2)

where � is the clustering coe�cient of node V�. When
the network is a global coupling network, the clustering
coe�cient is 1. However, when the network does not have any
edges, the clustering coe�cient is 0.

(4) Betweenness Centrality (BC). BC, which is a global
centrality index, is de
ned by the following equation:

	 (V) = ∑

 ̸=� ̸=V

�
� (V)�
� (3)

In this case, �
� represents the shortest path from node � to
node �, while �
�(V) is the shortest path from node � to node �
that goes through node V. Overall, BC can re�ect the role and
in�uence of the nodes in the entire network.

(5) Road Network Connectivity. Road network connectivity
is the ratio of the number of the shortest paths between all
of the nodes in the road network (a�er node V� loses its
e�ectiveness) to the number of the shortest paths between all
of the nodes in the normal road network. It is de
ned by the
following equation:

�� = �� (4)

where � is the number of the shortest paths between all
of the nodes in a normal road network, � is the number
of the shortest paths between all of the nodes in the road
network (a�er node V� loses e�ectiveness), and �� refers to
the connectivity reliability of the road network.

3. Key Node Identification Model for a
Weighted Urban Transportation Network
That Integrates Road Network Traffic
Characteristics

An urban transport network is a physical network with
mileage and tra�c capacity. It also includes both the charac-
teristics of complex networks and distinctive tra�c charac-
teristics. 	us, this study proposes a key node identi
cation
model for a weighted urban complex road network that
integrates the network topology structure and tra�c network
characteristics. For this purpose, the weighted tra�c network

includes weighted indicators of the road grades, which can be
used to distinguish the important nodes in the transportation
network. It also introduces an approximate algorithm for BC
in order to reduce the complexity of the calculations.

In related research of urban road networks, BC and node
degree indicate the importance of the nodes. Since BC re�ects
the impact of the nodes on the entire urban transportation
network, it is an important quanti
cation method for study-
ing the characteristics of the network structure.

Overall, BC is an important global geometry, but its
calculation must traverse the shortest path between any pair
of nodes in the graph as well as record the route of the
shortest path. 	is calculation can be di�cult, since the
computational complexity restricts the size of the computable
network. Moreover, when the scale of the network is large, it
is not feasible to employ conventional calculation methods.
	us, scholars, both at home and abroad, have conducted
extensive and in-depth research on the estimation of BC.
In 2001, Brandes presented [22] an e�cient algorithm for
calculating BC, in which the complexity of the algorithm in
the weightless network was �(�, �), � was the number of
nodes, and � was the number of edges. Tang Jintao et al. [23]
proposed an approximate calculation method, CDZ, based
on local centrality, while Bergamini and Meyerhenke [24]
presented a fully dynamic algorithm for BC approximation
in weighted and unweighted graphs, which indicated that the
algorithm can achieve substantial speedups.

	e BC algorithm proposed by Brandes was the fastest
algorithm at the time. 	e core idea of the algorithm was
to select any node as the source node, use the depth-
rst
algorithm to 
nd the shortest path from the source node to
the other nodes in the network, and calculate the BC of all of
the nodes that correspond to the shortest path. In this case,
the accumulation of BC in each node, as the source node, is
the BC for all of the nodes in the network.

According to the BC algorithm by Brandes, the number
of nodes in the network is set as �. 	en, taking node V�
as the source node, a depth-
rst traversal of the network is
performed.	e shortest path from node V� to the other nodes
in the network corresponds to the centrality of node V, as
shown in the following equation:

�� (V) = �� ∗ (V) (5)

	e BC of node V is as follows:

� (V) = ∑�� (V) (6)

A�er node V is selected at random, set the BC of node V

corresponding to the shortest path of the other nodes in
the network as �� = ��(V) in order to obtain the following
equations:

�1 + �2 + ⋅ ⋅ ⋅ + �� = � (V) (7)

� (��) = �� (8)

	us, the approximate BC formula of node V is as follows:

� = �� (
�∑
�=1
��) (9)
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Overall, this algorithm signi
cantly reduces the computa-
tional complexity of BC.More speci
cally, since the complex-
ity in the unweighted network is �(� �) and the complexity

in the weighted network is �(�� + �2 log �), the calculation
can be completed rather quickly, even in a large-scale urban
transport network.

Hence, the proposed algorithm in this study integrates
the characteristics of an urban transportation network and
uses weighted roads to construct an L-space weighted trans-
portation network. Moreover, Wang et al.’s analysis regarding
the vulnerability of a road network [25] indicated that one
of the key factors that a�ect the importance of nodes is road
grade.	us, the identi
cation model in the present study not
only integrates the characteristics of an urban transportation
network, but also constructs a weighted network according
to road grade. In this case, the BC of node V is expressed as
follows:

	 (V) = �V� (V) (10)

where �
V
is the weight of node V.

In general, road class is divided into freeways, trunk
roads, secondary roads, and branch roads, according to road
width and speed limit, among other characteristics. Each
class was assigned a value to denote its signi
cance; this is
the value of �

V
in (10). According to the literature [25],

the values of d are suggested to be set as 10, 8, 5, and 3,
respectively. In addition, di�erent intersections in an urban
tra�c network have di�erent e�ects on tra�c. For example,
the tra�c �ow at the intersections of freeways or trunk roads
is obviously higher than that at the intersections of secondary
roads or branch roads. Accordingly, once the intersections of
the former become congested, it is easy to cause a network-
level tra�c congestion.

Construct a complex topological tra�c network of Nan-
jing, represented by � = (�, �, �), the set of nodes in the
network is represented by � = {V1, V2, ⋅ ⋅ ⋅ V�}, the number
of network nodes is N, the set of edges in the network is
represented by � = {�1, �2, ⋅ ⋅ ⋅ ��}, and � = {���} refers to
the weight of the edge between the node and the node itself.
Let  be the adjacency matrix of �, while Nanjing’s weighted
tra�c networkmap information is stored as adjacencymatrix (!�,�). In this case, !�,� = 1 indicates that the nodes are
directly connected, whereas !�,� = 0 indicates that the nodes
are not directly connected.

	e key node identi
cation steps are as follows:

(1) Construct a topology of the Nanjing’s tra�c network
and number the nodes in the network.

(2) Each node was assigned weighted value �
V
to denote

its signi
cance.

(3) Generate adjacency matrix  .
(4) Calculate the"(�), clustering coe�cient, and shortest

path length and analyze network characteristics.

(5) Calculate the 	(V).
(6) Synthesize the above to identify the key nodes.

	e algorithm in this study is presented in Algorithm 1.

(1) For 1: N
(2) Input �

V

(3) Input weighted network adjacency matrix  (!�,�)
(4) Calculate "(�)
(5) Calculate 	(V)
(6) Integrate (4), (5)
(7) Select Top-k

Algorithm 1

Figure 1: Nanjing’s Transportation Network (source: Baidu Map).

4. Experiment Analysis

	e city of Nanjing is surrounded by mountains on three
sides, with the Yangtze River running from north to south.
During the period of the Republic of China (1912–1949),
Zhongshan Road, known as the “National Meridian,” was
used as the main axis of the road network structure. A�er
years of construction and development, the city of Nanjing
completed its chessboard-style transportation network (see
Figure 1). As shown in the Figure 1, the major highway
network of Nanjing is composed of 15 freeways and a beltway.
Known as “Longitude Six Latitude Nine,” they form the
fast-moving road network, which includes an inner ring
and two outer rings with peripheral freeways that span in
all directions. 	e total length of the overall network is
approximately 325 kilometers.

Overall, Nanjing’s transportation network is well-
planned, compared to the networks of Jinan, Harbin, Beijing,
and other large cities. However, the congestion during the
morning and evening peak travel periods at some key nodes
has been di�cult to resolve. According to the China Urban
Tra�c Analysis Report [26], during the 
rst quarter of 2017,
Nanjing’s Congestion Index was ranked 20th in China. 	us,
tra�c congestion, especially in Nanjing and other large cities
in China, remains the subject of focus among transportation
experts.

According to the characteristics of transportation net-
work in Nanjing, its spatial relationship between road inter-
sections have been meticulously designed. 	is inventive
method was adopted to abstract the intersections of the road
segments as nodes and to establish an L-space weighted
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Figure 2: Topology of Nanjing’s tra�c network.
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Figure 3: Degree distribution of nodes.

complex network. For the purpose of this study, the smaller
streets with less tra�c have been ignored. 	e topology
of Nanjing’s tra�c network, based on the aforementioned
conditions, is illustrated in Figure 2.

All of the results in this study are only applicable to the
data provided in Figure 2. According to the results of adja-
cency matrix = (!�,�)�×�, the average clustering coe�cient
of Nanjing’s tra�c network is 0.0439, and the average path
length is 6.46. 	e 
ndings show that the network is a small-
world network that includes some properties of a random

network. 	e degree distribution of the network, based on
adjacency matrix  = (!�,�)�×�, is presented in Figure 3.

As shown in Figure 3, the degree distribution includes a
certain power distribution in the double logarithmic coor-
dinate system, indicating that the nodes in the network are
heterogeneous. Moreover, since the majority of the degree
of the nodes is concentrated near the average degree of the
network, the overall network structure is reasonable and the
connectivity of the road network is acceptable. However,
although such a network is robust to random attacks, it is still
vulnerable to malicious attacks. In this regard, the key nodes
in the network are e�ectively identi
ed andmonitored, which
ensures the overall performance of the network.

In order to verify the proposed algorithm, the algorithms
in [15, 16] were compared with the algorithm in the present
study. Table 1 presents a comparison of the top 10 key nodes
among the three algorithms.

As shown in Table 1, some of the key nodes in the three
algorithms are the same, but ranked di�erently. As a result,
the proposed weighted network algorithm that integrates the
characteristics of the tra�c network in this study is more
accurate.Moreover, based on actual road network operations,
these nodes are consistent with the nodes in heavy tra�c,
indicating that they play an important supporting role in
the connectivity of the road network. According to Nanjing
Big Data, Nanjing’s peak morning tra�c period is between
7:10 a.m. and 9:30 a.m. 	us, the tra�c patterns during this
time period are the subjects of focus. Overall, the 
ndings are
consistent with the actual situation. For example, during peak
hours, various nodes, such as 46, 49, 98, 221, 288, 299, 309,
and 560, experience the heaviest tra�c. Figure 4(a) presents
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(a) (b)

Figure 4: Morning peak tra�c periods (source: Nanjing big data).

Table 1: Performance comparison.

No. Proposed algorithm Ref. [15] Ref. [16]

1 299 46 52

2 309 28 287

3 46 49 309

4 288 310 313

5 52 48 81

6 218 218 86

7 93 221 560

8 225 218 299

9 313 309 391

10 150 225 138

real-time data for the peak morning tra�c period on January
17, while Figure 4(b) shows real-time data for the same tra�c
period on March 19.

As shown in Figure 2, the intersections of the peak
morning tra�c period in Nanjing are mainly concentrated
in nodes 46, 93, 150, 288, 225, 299, 52, 313, 560, etc. 	us,
these nodes have been identi
ed in the proposed algorithm.
However, some of the key nodes in the network have not
been identi
ed in [15, 16]. Meanwhile, the accuracy between
[15, 16] is somewhat similar. For instance, nodes 93, 288,
150, 52, and 313 have a low degree of node capability (which
was not identi
ed in [15]), since the characteristics of the
road network do not fully re�ect the role of the node in the
network. Moreover, the identi
cation of nodes 93, 46, 225,
and 288 in [16] is inaccurate. Although the e�ciency of the
overall road network and the e�ciency of these nodes are not
high, the locations of these nodes in the network still play a
pivotal role.

Overall, the proposed algorithm in this study makes up
for the shortcomings of the algorithms in [15, 16], since
it can accurately identify the key nodes in an urban road

network. 	ese key nodes are important for focusing on
future expansion and reconstruction projects, while consid-
ering the locations that are most susceptible to heavy tra�c
congestion.

In order to further analyze the performance of the
proposed algorithm in this study and its e�ect on Nanjing’s
transportation network, these critical nodes are invalidated
in descending order of importance (see Figure 5).

According to Figure 5, when the number of key node
failures is less than 10, the network performance of the three
algorithms is somewhat similar. However, with a further
increase in the number of key node failures, the perfor-
mance of the proposed algorithm decreases signi
cantly. For
example, when the number of key node failures reaches 30,
the network e�ciency drops to 10%. 	is indicates that the
proposed algorithm can e�ectively identify key nodes in a
complex urban transportation network.Moreover, when they
fail, they will cause the node itself (and many local nodes) to
become unreachable. In sum, the key nodes identi
ed by this
algorithm are more accurate and reasonable than the other
two algorithms.
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Figure 5: Comparison of Nanjing’s transportation network based
on the three algorithms and the key node failures.

5. Conclusion

	e key nodes in an urban tra�c network have a signif-
icant in�uence on the safety and reliability of the entire
road network structure. 	erefore, the present study ana-
lyzed the characteristics of Nanjing’s transportation network,
abstracted the actual road network as a complex network,
established an L-space weighted complex network according
to road grade, and proposed a weighted complex network
key node identi
cation model suitable for this particular
network. Moreover, it introduced an approximate algorithm
for BC in order to reduce the complexity of the calcula-
tions. In order to verify the performance of the proposed
algorithm, it was compared with the algorithms presented
in [15, 16]. Based on the results, the key nodes identi
ed
by the proposed algorithm were more accurate and the
sorting wasmore reasonable. An analysis of Nanjing Big Data
also indicated that the results of this study are consistent
with real-life situations. 	e 
ndings of this study can be
used to provide decision-making support for road network
management, planning, and urban tra�c construction opti-
mization.
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