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APPROXIMATING CONDITIONAL DISTRIBUTION FUNCTIONS
USING DIMENSION REDUCTION

BY PETERHALL AND QIWEI YAO
Australian National University and London School of Economics

Motivated by applications to prediction and forecasting, we suggest
methods for approximating the conditional distribution function of a random
variableY given a dependent randadnvectorX. The idea is to estimate not
the distribution ofr | X, but that ofY |0 T X, where the unit vectat is selected
so that the approximation is optimal under a least-squares criterion. We show
that® may be estimated roet-consistently. Furthermore, estimation of the
conditional distribution function o', given 67X, has the same first-order
asymptotic properties that it would enjoy df were known. The proposed
method is illustrated using both simulated and real-data examples, showing
its effectiveness for both independent datasets and data from time series.
Numerical work corroborates the theoretical result thatan be estimated
particularly accurately.

1. Introduction. Estimating a conditional distribution function is an impor-
tant feature of many statistical problems, including, for example, regression analy-
sis [see Yin and Cook (2002) and references therein], where a significant problem
is prediction of a response for a given value of a multivariate explanatory variable.
Specific applications include those in economics and finance [e.g., Foresi and
Paracchi (1992), Bond and Patel (2000) and Watanabe (2000)], in signal process-
ing and data mining [e.g., Adali, Liu and Sonmez (1997)] and a wide range of
problems where forecasts are to be made from linear or nonlinear time-series [see,
e.g., Chapter 10 of Fan and Yao (2003), and examples in Section 4 below].

In most of these applications one is interested in estimating the conditional
distribution of a scalar random variable, given a randonyd-vector X. Even
for small values ofd > 2, a conventional nonparametric estimator can suffer
poor accuracy, reflected in slow convergence rates. We suggest a solution to
this difficulty, based on approximating the conditional distribution functiory of
given X by that of Y given#' X, where the unit/-vectoré is selected so that the
approximation is optimal under an appropriate least-squares criterion. In particular,
we avoid the problem of directly estimating the conditional distribution function
of Y givenX.
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Although we are dealing with a dimension-reduction problem, the object
(i.e., the conditional distribution function) to be estimated is a function of both
6Tx andy, while the indexd is a global parameter. This rules out the possibility of
direct application of conventional dimension-reduction ideas, such as projection
pursuit [e.g., Friedman and Stuetzle (1981), Friedman, Stuetzle and Schroeder
(1984) and Huber (1985)] and single-index modeling techniques [e.g., Powell,
Stock and Stoker (1989), Hardle, Hall and Ichimura (1993), Ichimura (1993)
and Klein and Spady (1993)], which would lead to an estimatat dépending
on y. Instead we define a new criterion in terms of an accumulation of squared
differences between the joint probabilities(@f X) and the expected conditional
probabilities ofY given#'X, over a large class of subsets; see (2.2) and (2.4) in
Section 2 below. Our search for the global paraméterbased on leave-one-out
local linear regression estimators for conditional distribution functions. Under very
mild assumptions the resulting estimatois root« consistent and asymptotically
normally distributed.

Of course, our main purpose in computigs so it can be used in a conditional
distribution estimator. The roat-convergence rate achieved by our estimator is so
fast that the estimator of the conditional distribution functioryofjivend' X, is
first-order equivalent to its counterpart that would be used if the true val@e of
were known.

The innovation and novelty of our methodology lie in the fact that we use
dimension-reduction ideas to solve an important class of nonstandard multivariate
nonparametric problems. We achieve this end by proposing new types of
objective functions, with which are associated new theoretical and numerical
properties. There exists an extensive literature on nonparametric estimation of
conditional distributions. It includes work of Bhattacharya and Gangopadhyay
(1990), Sheather and Marron (1990), Yu and Jones (1998) and Cai (2002) on
conditional quantile regression; Rosenblatt (1969), Hyndman, Bashtannyk and
Grunwald (1996), Fan, Yao and Tong (1996), Bashtannyk and Hyndman (2001)
and Hyndman and Yao (2002) on conditional density estimation; and Hall, Wolff
and Yao (1999) on estimation of conditional distribution functions. Dimension
reduction has been discussed extensively in the context of regression and density
approximation; in addition to the references cited earlier we mention the work of
Friedman (1987), Jones and Sibson (1987), Li (1991) and Posse (1995).

This article is organized as follows. In Section 2 we introduce our method for
estimatingd. Asymptotic properties of estimatoésand F(-|0T X) are presented
in Section 3. Numerical examples involving both simulated models and a real-data
application are given in Section 4. Technical arguments are outlined in Section 5.

2. Methodology.

2.1. Moativation. Assume we observe datX;, Y;), for 1 <i < n, from the
distribution of (X, Y). Here X is ad-vector andY is a scalar. Let® denote the
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set ofd-variate unit vectorg with first nonzero component positive, wriyefor
the density ofX and letFy47x (-|z) represent the distribution df conditional on

67X = z. Given subsetst and B of d-dimensional space and of the real line,
respectively, define

719(,;4»,3)=/AFY|9TX(£|9T)C)f(x)dx, (A, B)=P(X e, Y eB).

If, for some# and allx, Fy|9TX('|9TX) is identical to the distribution of given
thatX = x, then for thisf, my (A, B) = (A, B) for all A, B. We suggest taking
the setsA to bed-variate spheres with differing centers and radii, and the 8ets
to be semi-infinite intervals.

We can estimateFy ryx using nonparametric methods, permitting us to
estimaterny (A, B). Of course, we can estimate(A, B8) as the proportion of
pairs(X;, Y;) that lie inA x 8. Hence, for each triplé?, A, 8) we can estimate
9 (A, B) andx (A, B8) under minimal conditions. (We shall denote estimators of
g andr by 7y ands, resp.) Therefore we can check (or, more formally, test) the
hypothesis thaFYleTX(-wa) is identical to the distribution of conditional on
X = x, for all x, by examining the average value{df; (4, B) — 7 (A, B)}2 over
a range of setgt and 8.

Although exact equality ofr and g is unlikely in practice, the difference-
based criterion noted above can be used to empirically selscich that, in a
global sense, the distribution fgivend " X = 07 x is a good approximation to the
distribution ofY given thatX = x. Indeed, the argument in the previous paragraph
suggests that methodology of this type could be based on the difference measure,

21)  Si10)= / / (76 (Ao Bp) — 7 (A, Bp) 2w (e, B) da dB,

where w is a weight function and the integral is taken over a parameteriza-
tion («, B) of (A, B).

The spheresA = #4, should be such that the densitfry of 87X is
bounded away from zero at all poiniSx with § € ® andx € #4,. Otherwise,
design sparseness problems can arise when nonparametrically estimajing
Considerations of this type suggest taking thg’'s to be d-variate spheres
whose centers confine them to lie inside a larger, bounded region whéese
bounded away from zero. Such restrictions are unnecessary when considering the
intervals 8, except that there is little point in giving emphasis to sets for which
P(Y € B) is low.

For these reasons, when permitti®gg to be the interval(—oo, ) it is
appropriate to takev(a, 8) in (2.1) to be proportional to the density &fat g,
and to not depend oa. We shall achieve this end empirically, by replacing the
double integral in (2.1) by a sum of integrals,

(2.2) S@O)=>" /{ﬁe(m, By,) — 7 (. By,)} de,
j=1
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where 8g denotes(—oo, 8] and the integral is taken over an appropriate set of
sphere centers and radii. In the future we shall use the notatiostead ofs.

When constructing our estimator dfy 47y, which is central to our com-
putation of 7y, we shall use a “leave-one-out” technique, or more accurately,
“leave-two-out.” Our method will employ the empirical distribution ®fX; as
a surrogate for the true distribution 6f X, and so, whe® " X; appears in the ar-
gument offy|9TX, we shall omitX; from the latter. The second omission occurs
because, as formula (2.2) suggests, we shall validat& evhen constructing our
least-squares criterion. Therefore we shall omit bothithand thejth pairs when
calculatingFy o7 x; see (2.3) below.

2.2. Estimator of 6. With these principles in mind, lét be a bandwidth and
let K be a kernel function, and define

Ty, _ v. Tey. — v. )k
W o=t 3 K{G (X Xﬁ)}{@(x; Xn>}’
(n—=2h, %, h h

Kﬁ%&—&a}
h

Wig;—i,—j(0) =

0T (X; — Xi))

[2]
(2.3) 1o - 5

[1]
el

ﬁ%ﬁmfxﬁﬁ > m_Hmm<mjﬂ

i1ii1F#LJ

-1

X { Z wil;—i,—j(9)}
i1, ]

Write simply F(y|z) for P(Y < y|9TX =7), and letA be a subset of -variate

space. In this notatiorf_; ,j(y|9 X;) is a local linear estimator of (y|07 X;),

based on data pairs other than ttieand thejth; and

1 = T
1 > FLi_j(e'Xp)
ili#j,X;eA
is an estimator ofry (4, 8) whenB = (—o0, y].

As a rule we takex to be a(d + 1)-vector, its firstd components denoting
the center ofA4, and the last component, say, its radius. We suppose that
r € § = [r1,r2], where 0< r1 < rp < oo and not bothr; andry vanish. In the
casery = r2 the spheres all have the same radius, and &eteould be interpreted
as ad-vector, with integrals over, in our discussion below, ignored. With this
interpretation, our account of methodology applies to the case whakes values
in the continuum as well as to that wherés fixed. Clearly the latter instance can
be generalized to the case of a finite number of discrete radii.
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One approach is to average over all sphetgghat lie entirely within a given,
fixed setR. With this in mind, let@ = {a: A, C R} be the set of sphere centers
(and radii, if is not degenerate). WritE_j(,A, y) for the proportion of thes — 1
values of(X;, Y;), for i # j, that satisty X;, ¥;) € A x (—o0, y]. Put

2

n . 1 .

S, A) = Z{F_,M, Yp-—— ) FLaeTxog,
j=1 =ik XieA

(2.4)

SO) = /@ S0, Aq) da.

The latter represents a particular form$gp) in (2.2). In practice, the integration
overa in (2.4) is typically replaced by a sum over a class of selected balls; see (4.1)
below. In fact the asymptotic theory in Section 3 still holds with this discrete
version ofS(0) if the same replacement is applied wherever appropriate, including
in condition (3.3).

We choosed to minimize S(0) over § € ©. Thus,d may be viewed as an
estimator oo, the minimizer (ovep € ©) of

2.5) So(6) = /@ da f (F(a. ¥) — Go(shas W2 fr () dy,

whereF (A, y) = P{(X,Y) € A x (—00, y]}, fy denotes the density f and
(2.6) Go(A ) = [ FOIOT f(x)dx,

A low-dimensional approximation t&y x (y|X = x) is thereforeF;(y|f x),
where Fy(y|z) is an estimator of?(Y < y|#TX = 6Tx). Denoting byF a local
linear version off’, we define

2.7) Fy(yl6Tx) = {Zwi(x,e)l(n < y)}/{Zwmx,e)},
i=1 i=1

where

Ty — Y. Ty — X
wi(x,0) = K{W}{T[Z](x’g) _ w]‘[ll(x’g)}’

T[k](x’e):%ZK{e (x Xz)He (x Xl)}_
i=1

h h

Our empirical, low-dimensional approximation #yx(y|X = x) is taken to
be F;(y|6Tx), and is of course an estimator B{Y < y|6J X =6]x).
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2.3. Empirical bandwidth choice—a rule of thumb. Two bandwidths need to
be chosen# for estimatingd, and H for estimatingFé(y|éTx) with 6 given.
In such nonstandard problems, conventional bandwidth selection methods for
nonparametric regression are either tedious to apply (as in the case of plug-in
methods), or do not facilitate obvious analogies (e.g., cross-validation and its
variants). Note that witld given, estimation OfFé(yléTx) has been investigated
by, among others, Hall, Wolff and Yao (1999). They proposed a bootstrap method
based on an approximating parametric model to determine the bandwidth, which
we will adopt for estimatingd. Furthermore, we outline a similar empirical
procedure below for determinirig

First we fit the linear model

(2.8) Yi=Bo+ B Xi +e.

Let Bp and # be the estimators derived by, for example, least squares, and let
é1,...,&, denote the centered residuals. We shall compute a bootstrap sample
{Y;,...,Y;} from the model

(2.9) Y= po+ B Xi + ¢,

where{¢]} denotes a conventional bootstrap resample drawn by sampling with
replacement fronfé; }. Then the conditional distribution af*, givenX;, depends

on X; through ATX; alone. LetA* = B*(h) be the estimator obtained in the
same manner ag but with the data(X;,Y;) replaced by their resampled
counterpartgX;, Y*); see Section 2.2. We chook&o minimize

(2.10) My (h) = ETIB* — BIPH(X:, Y.

It is important that the two bandwidthis and H should be different. As we
shall show in Section 3, optimal performance is achievedig of smaller order
than H. The simulation results reported in Section 4 indicate that the bandwidths
selected by the bootstrap methods discussed above produce estimators with good
performance.

3. Theory. For simplicity we discuss only the case where the daa Y;)
are independent. Analogues of our main results, Theorems 3.1 and 3.2, may be
derived for dependent data, in particular for sequences of Q&ity;) that satisfy
sufficiently strong mixing conditions. The case of dependence will be explored
numerically in Section 4.

Let us first define the vector of derivative, of a functiona of 0 € ©.
Let wi, ..., ws—1 be orthonormal vectors all perpendicular&pput w;s = (1 —
82129 4 sw; for a scalaB and set

bi = lim 6~ a(wis) —a(©)},
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assuming the limit exists and is finite. Then

a(@) = Z b,-a),-,

1<i<d-1

a vector in the plane perpendicular&oSimilarly we may define the matrix, of
second derivatives af.
Let (X, Y) have the distribution of a generic p&iX;, ¥;). We shall assume that

the density of(X, Y) has four bounded derivatives,

(3.1) and all moments of are finite.

The bandwidth: will be permitted to vary within a range, effectively fromr1/3

to n~1/4; see (3.4) below. If we were confining attention to the lower end of this
range, then we could reduce the smoothness assumptionin (3.1) from four bounded
derivatives to three derivatives plus a Holder continuity condition. In this sense, the
smoothness required by (3.1) is excessive.

Recall that if sphere radii vary in the continuum, th@menotes a set of sphere
centers and radii, while if there is a single, fixed radius, tieis a set just of
sphere centers. In either case, all sphere&$ are completely contained withiR;
see the definition of in Section 2.2. We shall suppose that

R is an open, bounded set; the densityXbis bounded
away from zero onR; and the content of! is nonzero.

(3.2)

In particular, this and (3.1) ensure that the density of the distributiofaf

is bounded away from zero on the set of poimtsx with x € A C R.
Assumption (3.2) may therefore be viewed as the analogue of the condition,
imposed in more standard problems of nonparametric regression, that the design
density is bounded above zero.

Conditions (3.1) and (3.2) imply a range of smoothness properties of the marg-
inal density f,7y and the conditional distributio (v|z) = P(Y < y|8TX =2).

For example, theth derivative with respect t@, of the koth derivative with
respect toz, of either fyty(z) or F(y|z), is well defined and bounded in
ki+ko<4,y,0 c©®andz=0Tx forx € R.

Recall the definition ofGg(+4, y) in (2.6), and letGg(+4, y) and Gy (4, y)
denote, respectively, the vector of first derivatives and the matrix of second
derivatives of Gy (-, y) with respect tod, with (4, y) held fixed. Note that
0o = arg miny So(0), whereSy is defined in (2.5).

Put

M@®) = /Q da / [Go (A )G (Aas 1)

— (F (g, ¥) — Go(Aqg, ¥)}Go (g, ] fr() dy,
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ad x d matrix. By assuming that

6 = 6 gives a unique global minimum afp(9), and

(3:3) ' M (6p)w > 0 for each nonvanishing vectar_L 6o,

we require an equivalent condition th&h(@) — So(fp) at exactly the rate
16 — g2 as® — 6p. Of the kernelk and bandwidth we shall assume that

K is nonnegative, symmetric and compactly supported, and
(3.4) has a bounded derivative; and, for some- 0, h = h(n)

satisfiesh = 0 (n ¢~y andn=1/3+¢ = O (h) asn — .
The most important aspect of this assumption is that it implieshould lie
between: Y3 andn~1/4, and so should be an order of magnitude smaller than
a conventional bandwidth for estimating a univariate function by nonparametric

regression. A conventional bandwidth would be of sizé/°.
Let ¢y x4 denote the density @' X conditional onX e 4, and define

Y (A, x1,1,5.0) = {I(y1 < y) — F(y0x1))
PoTxi 40T X)) P(X € A)}

forx©Tx1)

[The ratio in this definition is guaranteed well defined, SIRI& € A)pyTx|4 <
fotx.] Let V denote the Gaussiafivection with zero mean and covariance matrix
equal to that of

(3.5)

x{l(xlea%)—

W=/@da[fw<m,x, Y. y.0)Gay(ohas ) f () dy
4+ {F (g, ¥) — Ggy(Ag, ¥)}Goo (A, Y)} da.

Let| - || denote the Euclidean metric iivariate space, and recall thats defined
to be the global minimizer af(6) in (2.4).

THEOREM 3.1. Assume conditions (3.1)—(3.4).Then 6 — 6o with probabil-
ity 1, and n1/2M (8p) (9 — p) convergesin distributionto V asn — oc.

To appreciate the implications of this result, et denote the projection af
into the planell+ that is perpendicular tég. (Equivalently,d. is the projection
of 6 — 6p into I1+.) The first part of Theorem 3.1 implies thit — 6g|| — O with
probability 1, from which it follows (sincé andép are both unit vectors) that

(3.6) 6 —60=6"%+0(]16 — 6ol

with probability 1. That is, in first-order asymptotic ternés— 6p is completely
describable through the projection of this vector into the plane perpendicéar to
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Note that, by definition of differentiation with respect & the vectorGy
is perpendicular t@. It therefore follows from the definition o¥/ that, with
probability 1,V lies completely infT-. Observe too that, in view of (3.3), there
is a generalized inverse &flo = M (6p) (call it M) that is well defined i1+,
It has the property that

MoMiv=MyMov=v  forallvell .

These results, Theorem 3.1 and (3.6) imply thdt2(@ — ) converges in
distribution toM, V.

Of course, our main purpose in computifiés so it can be used in a conditional
distribution estimator, such & introduced in (2.7). Theorem 3.2 below shows
that the root: consistency achieved by the estimatbrmakes that quantity
so accurate that, from the viewpoint of first-order performance, the estimator
fé(y|éTx) is equivalent to its counterpart which would be employed if the value
of 6p were known. This result has analogues for general choice of the bandwidth
used forFy; they describe a range of circumstances where the leading bias and
variance terms do not include the effect of estimatinglowever, for the sake of
simplicity and brevity we shall treat only the optimal size of bandwidth.

The latter size is:~%/%, and when that is employedy, (y|64x) converges to
its limit at raten—2/%. We shall show in Theorem 3.2 that the difference between
F;(y107x) and Fy, (|64 x) is then of strictly smaller order tharm2/®.

These considerations motivate the following assumption:

the bandwidthH# used to construcky has the property that
n'/5H is bounded away from zero and infinityas> oo; and

the kernel is nonnegative, symmetric, compactly supported
and has a bounded derivative.

(3.7)

Note that H and & are of different orders, the former being of size n=1/° and the
latter of smaller order. We shall reduce the stringency of (3.1), assuming instead
that

the density of(X,Y) has two continuous derivatives,

(3-8) and all moments of are finite.

As the following theorem shows, we do not need the full force of the result that
6 — 60 = 0,(n~1/?); the convergence rate, (n~2/°) suffices.

THEOREM 3.2. Assume (3.2), (3.7), (3.8)that x € R, and that § — 6 =
op(n_2/5) asn — oo. Then for each y,

F;(510Tx) = Foo (7105 x) + 0, (n=2/°).
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It follows from the asymptotic normality of local linear regression estimation
[see, e.g., Theorem 1 of Fan, Heckman and Wand (1995), and Remark 4 of Hall,
Wolff and Yao (1999)] that the estimatd?go(ng x) is asymptotically normally

distributed with convergence rate"%/5. By Theorem 3.2 abovef;(y|d"x)
and Fgo(y|93x) have the same asymptotic distribution.

4. Numerical properties. We approximate the integral in (2.4) by a series,

(4.1) SO) == 25(9 i),

i=1
where theA;’s are spheres of radiuscontained withinR. In practice one would
select a value ofB that permitted the calculations to be completed within a
reasonable time, and compute estimates for that value as well as for substantially
smaller ones, say half and three-quarters of the inRigProvided there was little
variation in the results, the larg@ would be appropriate. The results reported in
this section show that choice 8f has little effect on final results.

In the numerical examples below we searcheddfdwith & fixed) using the
downhill simplex method; see Section 10.4 of Press, Teukolsky, Vetterling and
Flannery (1992). Using the Epanechnikov kernel, the bandwidths were sought
among valueg; = 0.1 x 1.2-lfori=1,...,15, based on the bootstrap methods
outlined in Section 2.3. We used sample sizes 200 and 400. Each setting was
replicated 50 times. Throughout Examples 1 and 2 below we Xpplande; to be
totally independent KD, 1) random variables.

ExaMPLE 1. Here we consider the model
Yi =01Xi1+02Xi2+ 03Xi3+ 60aXia+ ¢,

where 0T = (61, ...,04) = (1,2,0,3)/+/14. Thus, the conditional distribution
of Y, givenX = (X1,..., X4)", is N(@TX, 1). We let the radius be = 1, and
sphere centers be pointsy, x2, x3, x4), where each; ranged over either five or
seven grid points betweenl.5 and 15, with spacing /5 or Q5, respectively,
resulting inB = 625 or B = 2401.

Figure 1(a)—(c) presents boxplots of the inner proddét, where, respectively,
the bandwidth: was computed by minimizing (2.10), or taken equal to the latter
value multiplied by 1.5 or 0.7. Since bothandé are unit vectorsgTd = 1 if
and only if6 = §. We see from Figure 1(a)—(c) that the estimate$ dfecome
steadily more accurate as sample size increases. Moreover, the algorithm is largely
insensitive to the bandwidths used in the search; the estimatéswoth the
three different bandwidths differ only a little. Furthermore, the algorithm is also
insensitive to the value a8.
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(a) Inner product with h (b) Inner product with 1.5h (c) Inner product with 0.7h
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Fic. 1. Smulation results for Example 1. Boxplots of the inner product 76, with bandwidth /
taken equal to (a) i, (b) 15, and (c) 0.7/; and of (d) i, (e) H, and (f) average absolute errors of
estimated conditional distribution of Y given 6T X with either 0 = (denoted by “E”) or 6 equal to
itstrue value (denoted by “T").

Figure 1(d) and (e) displays boxplots of the bandwidthsobtained by
minimizing M1 in (2.10), andH, defined by the method of Hall, Wolff and Yao
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(1999). As expected, empirical bandwidth is a decreasing function of sample size.
Note too that selected’s are in general noticeably smaller than the choggn
which is in agreement with the asymptotic orderd@nd H.

We also calculated values of the local linear estimator defined in (2.7) with
bandwidthH . Figure 1(f) gives average absolute errors, computed using a regular
grid (with adjacent points distant 0.05 apart) in théX, ¥)-plane. For the sake of
comparison we also report the errors for the estimators based on tife Glearly,
accuracy increases with sample size, and estimators base@mnless accurate
than those based on the traeHowever, the deficit due to errors in estimatihg
is not great whem = 200, and is negligible whem = 400. Choice of radius is
not critical either; results with = 0.5 and 1.5 are similar to those fer= 1, and
therefore are not reported here.

ExAMPLE 2. Next we consider the model
Y; = 3(sinX;1 + SinXi2 + Sin X3 + SinX;a) + &;.

Now the conditional distribution of givenX = (X1, ..., X4)" no longer depends

on a linear combination aX. The true value of is (0.5, 0.5, 0.5, O.5)T; note the
symmetry of the model. We selected the spheres in the same way as in Example 1.
The numerical results are presented in Figure 2, which displays a similar pattern
to Figure 1 although the estimates in general are not as accurate as in Example 1.
This is due to the fact that we were estimating the least-squares approximation, in
the sense of minimizing (4.1), of the conditional distributionrofiven X, rather

than the conditional distribution itself. Figure 2(a)—(c) shows that the estimation
for 0 is still accurate, even for the sample size- 200, and is steadily improved
whenn is increased to 400.

ExaMPLE 3. Finally we illustrate our method witlly;, 1 <t < 176} the
guarterly growth rates of US real GNP between February 1947 and January 1991.
The data series is plotted in Figure 3. This dataset has been analyzed by, for
example, Tiao and Tsay (1994). LEt = (Y;_1, Y;_2)". We estimated the value
of 8 = (61, 62) T for which the conditional distribution of;, givend' X;, was the
best approximation for the conditional distribution %f given X, in the sense
that S(0), defined at (4.1), was minimized. We first standardized the data
Sphere centers were taken to be the poktgso thatB = n), with radiusr = 1.

The resulting estimate = (0.580, —0.815)".

Once § was obtained we constructed the adjusted Nadaraya—Watson es-
timator F(-|z) [see Hall, Wolff and Yao (1999)] of the conditional distri-
bution of ¥,, given 67X, = z. The resulting quantile prediction interval is
[F1(3alz), F~3(1 - Jal2)], for « € (0, 1). To check on performance we used

the first 166 data points to estimateand F(-|z), and employed the last ten data
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FiG. 2. Smulation results for Example 2. Panels show the same information asin Figure 1.

points to validate the predicted values. Results with 0.1 are reported in Table 1.
Note that withd = (0.580, —0.815)7, the predictor is (80Y;_1 — 0.815Y;_». For
comparison we also report prediction intervals using a single predigtar and
a two-dimensional predictdaiy; 1, Y;_2).
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0 50 100 150
FiG. 3. Predictionintervalsfor USquarterly GNP growth X; based on, respectively, three different
predictors 0.580X;_1 — 0.815X;_», X;_1 and (X;_1, X;_2).

All the intervals in the table contain the corresponding true values. Prediction
intervals based on two predictoi$_; and Y;_ are more accurate, in general,
than those based on a single predicifr;, since the average length of the
prediction intervals is reduced from 3.51 to 3.21. It is interesting to see that
the average length of the prediction intervals based on the selected single
predictor 0580Y;_1 — 0.815Y;_» is 3.22, which is almost the same as that based
on (Y;_1, Y;_2). Note too that our method does not use multivariate smoothing
techniques, which are susceptible to the “curse of dimensionality.” Predictions
based ond = 3 and 4 did not lead to significant improvements, and therefore
are omitted. The absence of improvement is in agreement with results of Tiao
and Tsay (1994), who proposed nonlinear, second-order autoregressive models for
this dataset.

TABLE 1

Truevalue 0.580X,_71 — 0.815X;_» Xi 1 (X¢_1,X¢_2)
0.67 [—0.99 232 [-0.99232] [-0.623.1]]
0.89 [-0.91,2.32] [—0.88,2.34 [—-0.592.28]
0.40 [—0.99,2.20] [—1.56,2.54] [—0.862.34]
0.43 [—0.91,2.34] [-0.99,232] [-0.623.1]]
0.09 [—0.91,2.28] [—0.882.34 [-0.592.21]
0.42 [ —0.99 2.20] [—156,254] [—1.17,2.34]
0.11 [—0.88,2.32] [-0.99232] [-0.622.32]
0.36 [—0.91,2.34] [—0.88,2.34 [-0.59212]
—0.40 [—0.99, 2.34] [—1.56,254] [—0.86 2.54]
—0.65 [-0.81,2.32] [-0.91,232] [-0.91,2.32

Average length 3.22 3.51 3.21
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5. Outlines of technical arguments.

OUTLINE PROOF OF THEOREM 3.1. Our argument has two main stages,
showing, respectively, that

(5.1) 10 =60l = 0,(n*~?)  foreache > 0,
SO) =T + (0 —60)" Mo(® — 6o) — 26 — o) (V1 + V)
+ 0,16 = 60l®) + 0, (D" 16 — 6ol"n="7),
whereT does not depend ah ¢ > 0 is fixed,

(5.2)

V= / dE(y) fﬁ Gy (e ¥)n (A v, 60) d,

V= / dF(y) /R Doy (@, ) Ggy (A ) da,

1 n
En(A,y,0) =~ D W (A, Xi, Yi, y,0) — E{ (A, X, Y, y,0)}],
i=1

¥ is asin (3.5), and, (X" |16 — 6ol|*n~V~¢) denotes a quantity which uniformly
in 6 is of order no more than that of the sum|®f— 6p||“n~"~¢ over a fixed, finite
set of pairg(u, v), where in each case, v > 0 and%u +v>1.

To give an appreciation of the origin of the terms which make upahé - -)
remainder in (5.2), we note that the contributions to the remainder come from
different steps in a Taylor expansion ). In particular, terms of the following
orders arise in that way:

16— 6ollh® 116 —6oll(nh®*) " nf, 16— Golln~ =2,
(5.3)
[ ROV R ' S

where in each case the bound is valid foralt 0 and some > 0. Noting that,

by (3.4),n1~1/3) < h < n=2=1/% for constantsy, z» > 0, and using the upper

of these bounds whein appears with a positive exponent in (5.3), and the lower
whenh appears with a negative exponent, we see that each of the quantities in (5.3)
may be written ag|® — 6p||“n—?~¢ for some¢ > 0 and someu, v) such that

%u +v>1.

More detailed proofs of (5.1) and (5.2) can be found in Hall and Yao (2002). To
illustrate the use of the regularity conditions (3.1)—(3.4), we mention that (3.1)
is employed to guarantee adequate smoothnesg @fhen Taylor-expanding
F(Yj|0Tx) and related functions; that (3.1) and (3.2) together ensure that the
effective design density is bounded away from zero, which allows us to deal with
the denominator of_i,_j (Y; |67 X;) via a stochastic Taylor expansion; that (3.3)
guarantees that the minimum 6f0) is attained in the usual quadratic way, or
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equivalently that the matrid (6g) is of full rank in the (d — 1)-dimensional
space of vectors perpendicularég and that one of the applications of (3.4) was
described in the previous paragraph.

Taking 6 = 0 in (5.2), and noting (5.37), we see that the remainder term
in (5.2) may be written a0, (> n~®/2~v=¢). Since u + v > 1 for each
pair (u, v) contributing to the series, and singe- 0, then thisO,, (- - -) remainder
equals()p(nfl). Theorem 3.1 follows from this form of (5.2), and from the fact
thatnl/2(Vy + V) converges in distribution t&, the latter defined a little before
the statement of the theorem]

OUTLINE PROOF OFTHEOREM 3.2. Let®, denote the set of all € © that
satisfy |6 — 6o < 8(n)n—%/°, wheres(n) | 0 asn — co. The theorem follows
from the following result.

LEMMA. Assume(3.2), (3.7), (3.8and that x € R. Then for each y

sup| By (v107x) — Foo(y163 )| = 0, (n=%/5).
0e®,

We outline the proof of the lemma. Trea} as the ratio expressed in (2.7),
although multiply top and bottom there liyh) 1 [here (nH)~1, since we take
the bandwidth to beH] in order to ensure that neither the numerator nor
the denominator converges to zero or diverges to infinity. The numerator and
denominator are now each in the forfaT, — 7374, where eachl; is linear
in functions of the dataX; and has a proper limit ag diverges. Additively
decompose eacl; into its expected value (or mean), and the difference between
it and its mean. Each mean is of course purely deterministic. In the remainder of
this section we shall outline the technique, starting from this decomposition, for
treatingTy andT>; a similar argument may be given in the casg'ebr 7;.

The expected value @ or 7> may be written as itsH — 0 limit,” plus a term
that equals? multiplied by a function of, plus a remainder that equalsH?)
uniformly in 6. The “H — 0 limit,” evaluated atf, equals the same quantity
evaluated a®g rather than a®, plus a remainder of orde©{8(n)n=2/°} =
o(n~2/%), uniformly in 6 € ®,; and similarly, the coefficients df 2 (for  andép,
resp.) are identical, up to aterm that converges to 0 uniformfydr®,, asn — oo.
These arguments require only Taylor expansion, and prove that the mean of each
of the T;’s equals its counterpart whehis replaced by, plus terms that are of
sizeo(n~?/°) uniformly in 6 € ®,. A longer argument [see Hall and Yao (2002)]
can be used to show that the same property is enjoyed bylgaclk (7';), not just
by eachE(T;). The theorem follows from these properties.]

Acknowledgments. We are grateful to an Editor and two reviewers for helpful
comments.
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