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Abstract

We present a simple randomized algorithmic framework for
connected facility location problems. The basic idea is as
follows: We run a black-box approximation algorithm for
the unconnected facility location problem, randomly sample
the clients, and open the facilities serving sampled clients in
the approximate solution. Via a novel analytical tool, which
we termcore detouring, we show that this approach signif-
icantly improves over the previously best known approxi-
mation ratios for several NP-hard network design problems.
For example, we reduce the approximation ratio for the con-
nected facility location problem from 8.55 to 4.00 and for the
single-sink rent-or-buy problem from 3.55 to 2.92. We show
that our connected facility location algorithms can be deran-
domized at the expense of a slightly worse approximation
ratio. The versatility of our framework is demonstrated by
devising improved approximation algorithms also for other
related problems.

1 Introduction

We consider network design problems that combine facility
location and connectivity problems. These problems have a
wide range of applications and have recently received con-
siderable attention both in the theoretical computer science
literature (see, e.g., [9, 12, 17, 26]) and in the operationsre-
search literature (see, e.g., [19, 23]).

As an example (see also [1, 26]), consider the problem
of installing a telecommunication network infrastructure.
The network consists of a central high-bandwidthcorewith
unlimited capacity on the links and individual connections
from endnodesto nodes in the core. Among the potential
core nodes, we need to select a subset that we connect with
each other and then route the traffic from each endnode to a
core node. Each core node comes with an installation cost
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and we assume that the cost of installing the high-bandwidth
links in the core is larger than the (per unit) routing cost from
the endnodes to the core.

We can model the scenario above as aconnected facility
location problem(CFL). We are given an undirected graph
G = (V,E) with edge costsc : E → Q+, a set of facilities
F ⊆V, a set of clientsD ⊆V, and a parameterM ≥ 1. Every
facility i ∈ F has an opening costf (i) ∈Q+ and every client
j ∈ D has a demandd( j) ∈ Q+. The goal is to determine a
subsetF ⊆F of the facilities to be opened, assign each client
j ∈ D to some open facilityσ( j) ∈ F and to build a Steiner
treeT connecting the open facilities such as to minimize the
total cost

(1.1) ∑
i∈F

f (i) + M ∑
e∈T

c(e) + ∑
j∈D

d( j)ℓ( j,σ( j)),

whereℓ(v,w) is the shortest path distance between vertices
v,w ∈ V in G (with respect toc). We refer to the first,
second and last term in (1.1) as theopening cost, Steiner cost
andconnection cost, respectively. Subsequently, we assume
that every clientj ∈ D has a unit demandd( j) = 1. This
assumption is without loss of generality as we may replace
j by several copies of co-located unit-demand clients. The
algorithms presented in this paper can easily be adapted in
order to run in polynomial time even if the original demands
are not polynomially bounded in the numbern of vertices;
we refer the reader to [12] for additional details.

The special case whereF = V and all opening costs
are zero is known as thesingle-sink rent-or-buy problem
(SROB). There are various natural extensions ofCFL that
differ with respect to the underlying facility location and
core connectivity problem. For example, in theconnected
k-facility location problem(k-CFL) we can open at most
k facilities. We may alternatively consider the variant of
CFL where the open facilities are connected by a traveling
salesman tour. We call the latter problem thetour-connected
facility location problem(tour-CFL).

1.1 Our Results. We present an algorithmic framework to
devise simple approximation algorithms for connected facil-
ity location problems. Via a novel analytical tool, which we
termcore detouring, we are able to show that this framework
yields approximation algorithms that significantly improve
over the previous best approximation ratios for the prob-



lems mentioned above. From a high level point of view, our
framework works as follows:

1. Compute an approximate solution for the (unconnected)
facility location problem.

2. Randomly sample the clients and open the facilities
serving sampled clients in the approximate solution.

3. Compute an approximate solution for the connectivity
problem on the open facilities and assign clients to the
open facilities.

We remark that in Steps 1 and 3, we can use any approxi-
mation algorithm for the (unconnected) facility location and
core connectivity problem as a black box—this allows us to
use the current best approximation algorithms for the respec-
tive subproblems.

Our framework yields a 4.00-approximation algorithm
for CFL, which improves over the current best primal-
dual 8.55-approximation algorithm by Swamy and Kumar
[25, 26]. In the special case ofSROB, our algorithm pro-
vides a 2.92-approximation, hence improving on the current
best 3.55-approximation algorithm by Gupta et al. [10, 11].
We show that our algorithms forSROB and CFL can be
derandomized using the method of conditional expectations
(see, e.g., [20]) and an idea that van Zuylen and Williamson
[27] used to derandomize theSROBalgorithm of Gupta et
al. [10, 11]; thereby the approximation ratios degrade only
slightly. We eventually demonstrate the versatility of our
framework by applying it to the problemsk-CFL andtour-
CFL, for which we improve the current best known approx-
imation ratios. The results presented in this paper are sum-
marized in Table 1.

A key ingredient in our analysis is that we use a novel
core detouring schemeto bound the expected connection
cost of random sampling algorithms. The basic idea is to
construct (ideally) a sub-optimal connection scheme and to
bound its cost in terms of the optimum cost. In this scheme,
we reassign the clients to open facilities by detouring their
connection paths through the core in the optimum solution.
This construction is set up such that the reassignment is
perfectly symmetric, which allows us to bound the expected
cost of the detoured paths. As a by-product of our analysis,
we obtain a polynomial-time approximation scheme (PTAS)
for the above problems if|D|/M is a constant. This might
be of independent interest.

1.2 Previous and Related Work.The network design
problems considered here are NP-hard [8] and APX-
complete [2, 4, 21], as they contain the Steiner tree problem
or the metric traveling salesman problem as a special case.
Researchers have therefore concentrated on obtaining good
approximation algorithms for them.

CFL andSROBhave recently received considerable at-
tention in the computer science literature. Gupta et al. [9]

Problem This paper Previous best

CFL 4.00⋆ 8.55 Swamy and Kumar [25, 26]
4.23

SROB 2.92⋆ 3.55⋆ Gupta et al. [11, 12]
3.28 4 van Zuylen and

Williamson [27]

k-CFL 6.85⋆ 15.55⋆ Swamy and Kumar [25, 26]
6.98

tour-CFL 4.12⋆ 5.83⋆ Ravi and Salman [22]
(special case only)

Table 1: Improved approximation ratios obtained in this
paper; expected approximation ratios are marked with a star.

obtain a 10.66-approximation algorithm forCFL, based on
rounding an exponential size LP. The current best algorithm
for CFL is a primal-dual 8.55-approximation algorithm by
Swamy and Kumar [25, 26]. Better results are known for
SROB. Gupta et al. [9] give a 9.01-approximation algorithm.
Swamy and Kumar [25, 26] describe a primal-dual 4.55-
approximation algorithm for the same problem. Gupta, Ku-
mar, and Roughgarden [12] propose a simple random sam-
pling algorithm which gives a 3.55-approximation. Gupta,
Srinivasan and Tardos [14] show that this algorithm can be
derandomized to obtain a 4.2-approximation algorithm. In a
recent work, van Zuylen and Williamson [27] present a de-
randomization of the random sampling algorithm that yields
a 4-approximation.

Swamy and Kumar [25, 26] give a 15.55-approximation
algorithm fork-CFL, which is also the current best. Ravi and
Salman [22] consider the special case oftour-CFL, where
F = V and all opening costs are zero, and give a 5.83-
approximation for it.

Most of the existing random sampling algorithms for
connected facility location problems are analyzed by means
of strict cost shares(see, e.g., [10, 12] and in particular
the exposition in [11]), a concept originating from game-
theoretic cost sharing. Basically, these cost shares are used
to relate the expected connection cost of the computed solu-
tion to the cost of the core in the optimum solution. This
concept has been used successfully to obtain simple and
good approximation algorithms for network design prob-
lems, such asSROB [11, 12] andMROB [3, 7, 10], the
multi-commodity counterpart ofSROB. However, its use
failed to prove better bounds for more general connected fa-
cility location problems. In fact, in [12], Gupta et al. leave
open the question whether a randomized sampling approach
can be used to improve the primal-dual approximation al-
gorithm of Swamy and Kumar [25, 26]. In this paper, we



answer this question affirmatively.

1.3 Organization of Paper. In Section 2, we study core
connection games, which form the basis of our core detour-
ing scheme. We present the polynomial-time approximation
scheme for constantD/M in Section 3. Our random facil-
ity sampling framework forCFL andSROBand its analysis
are given in Section 4. The extensions of this framework
to other connected facility location problems are outlinedin
Section 5. Finally, we give some conclusions in Section 6.

2 Core Connection Games

In this section, we study some random games that we call
core connection games. These games form the basis of our
core detouring scheme introduced in Section 4.

Consider the following setting. We are given a setN
of core nodesthat are connected by an undirected cycleC ,
which we call thecore. Every core nodei ∈ N has exactly
oneclient node j∈ D assigned to it, i.e.,|N | = |D|. We
useµ( j) ∈ N to refer to the core node ofj ∈ D. Each client
node j ∈ D has two oppositely directed edges( j, i) and(i, j)
to its respective core nodei = µ( j); see Figure 1. LetHin

be the set of all edges that are directed from client nodes to
core nodes andHout the set of all oppositely directed edges.
Define H = Hin ∪ Hout. Let G = (V ,E) be the resulting
graph andw : E → Q+ a non-negative weight function on
the edges ofG . We slightly abuse notation here by using
C ⊆ E to refer to the set of undirected edges in the cycle. By
w(S) we denote the total weight of all edges inS ⊆ E .

We now consider the following randomcycle-core con-
nection game: We mark one client node uniformly at random
and every other client node independently with probability
p ∈ (0,1). Now, every client nodej ∈ D sends one unit of
(unsplittable) flow to the closest marked client node (with re-
spect to the distances induced byw). We bound the cost of
the total flow sent in this game in the following theorem.

THEOREM 2.1. The cost X of the flow in the cycle-core
connection game satisfiesE[X] ≤ w(H )+w(C )/(2p).

Proof. We bound the cost of the following sub-optimal flow
routing scheme: Every clientj ∈ D sends its flow unit to
a closest marked client, with respect to unit edge weights
(breaking ties uniformly at random); see Figure 1. The
symmetry properties of this routing scheme make it easier to
bound its expected cost. Letf (e) be the flow on edgee∈ E
and letY denote the total cost of this flow (with respect to
the original weights). Clearly,E[X] ≤ E[Y].

By linearity of expectation, the cost of this flow is

E[Y] = ∑
e∈H

E[ f (e)] ·w(e)+ ∑
e∈C

E[ f (e)] ·w(e).

Note that f (e) ≤ 1 holds deterministically for every edge

C

j i = µ( j)

Figure 1: Core connection game instance. Marked client
nodes are drawn in bold. The flow ofj in the routing scheme
is indicated by the bold path.

e∈ Hin. By symmetry reasons,E[ f (e)] ≤ 1 for all edges
e∈ Hout.

It remains to bound the expected flow on the edges of the
cycle. Again exploiting the symmetry of the routing scheme,
it is sufficient to consider an arbitrary edgee∈ C . Let Xj be
the number of edges of the cycle crossed by the flow-path of
a given client nodej. Clearly,

∑
e∈C

f (e) = ∑
j∈D

Xj .

By symmetry, we can conclude thatE[ f (e)] = E[Xj ]. Let us
call a core nodei = µ( j) by-sampledif j is sampled. We now
observe thatXj > k if and only if i and the firstk nodes ofC to
the left and right ofi are not by-sampled. As a consequence

Pr(Xj > k) < (1− p)2k+1,

where the strict inequality is due to the fact that at least one
core node is by-sampled by assumption. We conclude that

E[ f (e)] = E[Xj ] = ∑
k≥0

Pr(Xj > k) ≤
1− p

1− (1− p)2 ≤
1

2p
.

The theorem follows.

We can modify the cycle-core connection game in a way
which is better suited for our purposes. Suppose the core is
given by an (undirected) Steiner treeT on the core nodes
in N instead of a cycle. The treeT may contain some
other non-core nodes. As before, every client nodej ∈ D
is assigned to exactly one core nodeµ( j). Let µ−1(i) be the
set of client nodes assigned to a core nodei ∈N . However, a
core nodei ∈ N might now have more than one client node
assigned to it, i.e., we have|µ−1(i)| ≥ 1 for every i ∈ N .
The rest of the construction remains the same as before. We



define atree-core connection gameanalogously to the cycle-
core connection game.

COROLLARY 2.1. The cost X of the flow in the tree-core
connection game satisfiesE[X] ≤ w(H )+w(T )/p.

Proof. We transform the Steiner treeT into a cycleC using
the following standard arguments: We replace every edge
of the tree by two oppositely directed edges and compute
a Eulerian tour on the resulting graph. Starting from an
arbitrary core node inN , we traverse this tour and shortcut
all nodes that do not belong toN or have been visited before.
Let the resulting cycle on the core nodesN be C ′. By
triangle inequality,w(C ′) ≤ 2w(T ).

We now replace every core nodei in C ′ by a path of
|µ−1(i)| copies ofi and assign every client nodej in µ−1(i)
to a unique random copy, i.e., compute a random matching
between the client nodes and the copies. The weights of the
edges in this replacement path are set to zero. Denote the
cycle obtained in this way byC . We finally add the two
oppositely directed edges between every client nodej and
its unique copy inC . Let Y be the cost of the flow in the
cycle-core connection game. It is not difficult to see that
X ≤Y holds deterministically. The claim now follows from
Theorem 2.1 and the fact thatw(C ) = w(C ′) ≤ 2w(T ).

3 Polynomial-time Approximation Schemes for
Constant |D|/M

In this section, we present polynomial-time approximation
schemes (PTAS) for the connected facility location problems
considered in this paper if|D|/M is upper bounded by a
constant. These PTAS will help to improve our analysis for
the general case; but might also be of independent interest.

Recall thatℓ(v,w) denotes the shortest path distance
between verticesv andw in the graphG= (V,E) with respect
to c. We also defineℓ(v,W) = minw∈W ℓ(v,w) for a given
subsetW ⊆ V. Let c(S) = ∑e∈Sc(e) denote the total cost of
all edges in a subsetS⊆ E.

THEOREM 3.1. If |D|/M = O(1), there is a PTAS fork-
CFL.

Proof. Let OPT= (F∗,T∗,σ∗) be an optimal solution fork-
CFL. We useZ∗, O∗, S∗ andC∗ to refer to its total, opening,
Steiner, and connection cost, respectively. Ifk is a constant,
we can trivially compute an optimum solution in polynomial
time. Letm≥ 1 be an arbitrary integral constant and assume
k≥ 2m. Consider the following algorithm:

1. For all possible choices ofF ⊆ F with |F | ≤ 2mdo:

(a) Compute an optimal Steiner treeT overF.

(b) Assign every clientj ∈ D to its closest facility
σ( j) in F.

2. Output a minimum cost solution(F,T,σ) obtained.

In Step 1(a), we use, for example, the algorithm by Dreyfus
and Wagner [6]. Note that the algorithm outputs a feasible
solution, since 2m≤ k, and runs in polynomial time.

It is sufficient to show that there is a proper choice of
F which satisfies the claim. Let us constructF as follows:
Initially, set F := {i∗}, wherei∗ is an arbitrary facility in
F∗. Then, while there exists a facilityi ∈ F∗ with ℓ(i,F) >
c(T∗)/m, addi to F . Note that this way, we ensure that the
following two properties hold for the final setF :

1. For any two facilitiesi, i′ ∈ F , ℓ(i, i′) > c(T∗)/m.

2. For every facilityi ∈ F∗, there is a facilityi′ in F such
thatℓ(i, i′) ≤ c(T∗)/m.

We first show that|F | ≤ 2m. To see this, double the
edges ofT∗, compute an Eulerian tourE∗ on the resulting
graph, and shortcut the vertices not inF . The cost of the
resulting tour onF is at least|F| · c(T∗)/m due to Property
1. Moreover, the cost of the Eulerian tour isc(E∗)≤ 2c(T∗).
Thus,|F | ·c(T∗)/m≤ 2c(T∗), which implies that|F | ≤ 2m.

We next bound the costZ of the solution APX =
(F,T,σ) for our particular choice ofF . Clearly, c(T) ≤
c(T∗), sinceF ⊆ F∗ and we compute an optimum Steiner
treeT overF . Therefore,

Z = ∑
i∈F

f (i)+Mc(T)+ ∑
j∈D

ℓ( j,σ( j))

≤ ∑
i∈F∗

f (i)+Mc(T∗)+ ∑
j∈D

ℓ( j,σ∗( j))+ ∑
j∈D

ℓ(σ∗( j),F)

≤ O∗ +S∗+C∗ + |D| ·
c(T∗)

m
= Z∗ +

|D|

M
·
Mc(T∗)

m

= Z∗ +O(1) ·
S∗

m
≤

(

1+
O(1)

m

)

Z∗.

For the second inequality, we exploit the fact that
ℓ(σ∗( j),F) ≤ c(T∗)/m by Property 2. Since we can choose
marbitrarily large, the claim follows.

COROLLARY 3.1. If |D|/M = O(1), there is a PTAS for
CFL.

Using essentially the same arguments as above, it is
not hard to obtain a PTAS fortour-CFL under the same
assumptions. We state the following theorem without proof.

THEOREM 3.2. If |D|/M = O(1), there is a PTAS fortour-
CFL.

4 Connected Facility Location

Due to the results obtained in the previous section, we can
assume thatM/|D| ≤ ε for a sufficiently small constant
ε > 0. We also assume without loss of generality thatn≫ 1.
For a given assignmentσ of clients to facilities, we letσ−1(i)
denote the set of clients assigned to facilityi.



4.1 Random Facility Sampling. Let α ∈ (0,1] be a con-
stant parameter which will be fixed later. Our algorithm
randCFL for CFL works as follows:

1. Compute aρfl-approximate solutionU = (FU,σU) for
the (unconnected) facility location instance induced by
the input instance.

2. Choose a clientj∗ ∈ D uniformly at random and mark
it. Mark every other clientj independently with proba-
bility α/M. Let D be the set of marked clients.

3. Open facility i ∈ FU if there is at least one marked
client in σ−1

U (i). Let F be the (non-empty) set of open
facilities.

4. Compute aρst-approximate Steiner tree onD. Augment
this tree by adding the shortest path between every
j ∈ D and the corresponding open facilityσU( j) ∈ F .
Extract a treeT spanningF from the resulting multi-
graph.

5. OutputAPX = (F,T,σ), whereσ assigns each client
j ∈ D to a closest open facility inF .

In Step 4 we might alternatively construct a Steiner tree
directly on the open facilities inF; however, this would lead
to a worse approximation factor.

We use the following notation. An optimal solution is
denoted byOPT = (F∗,T∗,σ∗). We useZ∗, O∗, S∗ and
C∗ to refer to its total, opening, Steiner, and connection
cost, respectively. Similarly, we useZ, O, S and C to
refer to the respective costs ofAPX. We let OU and
CU be the opening and connection cost, respectively, of
the approximate solutionU = (FU,σU) for the unconnected
instance computed in Step 1.

LEMMA 4.1. The opening cost ofAPX satisfies O≤ OU.

Proof. We open a subset of the facilities inFU, which costs
at mostOU.

The following bound on the Steiner cost is inspired by
[12]. We recall that we assumeM/|D| ≤ ε.

LEMMA 4.2. The Steiner cost ofAPX satisfies E[S] ≤
ρst(S∗+(α+ ε)C∗)+ (α+ ε)CU.

Proof. We obtain a feasible Steiner tree on the marked
clients inD by augmenting the optimal Steiner treeT∗ by
the shortest paths from each client inD to T∗. This Steiner
tree has expected cost at most

∑
e∈T∗

c(e)+ ∑
j∈D

(

α
M

+
1
|D|

)

ℓ( j ,F∗) =
1
M

S∗ +

(

α
M

+
1
|D|

)

C∗.

Thus the expected cost of theρst-approximate Steiner tree
overD computed in Step 4 is at most

ρst

M
S∗ + ρst

(

α
M

+
1
|D|

)

C∗.

Additionally, the expected cost of adding the shortest paths
from each clientj ∈ D to the corresponding open facility
σU( j) ∈ FU is at most

∑
j∈D

(

α
M

+
1
|D|

)

ℓ( j,FU) =

(

α
M

+
1
|D|

)

CU.

Altogether we obtain

E[S] ≤ M

(

ρst

M
S∗ + ρst

(

α
M

+
1
|D|

)

C∗ +

(

α
M

+
1
|D|

)

CU

)

≤ ρst(S
∗ +(α+ ε)C∗)+ (α+ ε)CU.

4.2 Core Detouring Scheme.We next introduce our new
core detouring schemeto bound the expected connection
cost ofAPX. Note that since the clients are assigned to their
closest open facility inF , it suffices to bound the total cost of
connecting every clientj ∈ D to someopen facility inF. To
this aim, we use the tree-core connection game introduced in
Section 2.

We let the tree-coreT in the game be the treeT∗ in
the optimum solution and setw(e) = c(e) for every edge
e in the tree. The client nodes simply correspond to the
clients in D. We define the mappingµ as the assignment
σ∗ of OPT. For every client nodej ∈ D, the weight of the
directed edge( j,µ( j))∈Hin is defined as the connection cost
ℓ( j,σ∗( j)); the weight of the directed edge(µ( j), j) ∈ Hout

is ℓ(σ∗( j), j) + ℓ( j,σU( j)). The sampling probabilityp is
set top = α/M.

The key-insight now is the following: Fix an outcome
of the random sampling. For every flow-path from a client
node j ∈ D to a marked clientj ′ ∈ D in G , there is a
corresponding path betweenj and the open facilityσU( j ′)
in the original graph; moreover, the costs of these paths
are equal. Thus, for every fixed outcome of the random
sampling, the connection costC is at most the costX of
the flow in the tree-core connection game. Since this holds
true for every fixed outcome of the random sampling, it also
holds true unconditionally. We can thus bound the expected
connection cost by the expected cost ofX; for the latter,
we derived an upper bound in Section 2. The proof of the
following lemma now follows easily.

LEMMA 4.3. The connection cost ofAPX satisfiesE[C] ≤
2C∗ +CU +S∗/α.

Proof. Note that the total weight of the tree-coreT is S∗/M.
From the discussion above and Corollary 2.1 it follows

E[C] ≤ E[X] ≤ w(H )+
1
p
·w(T )

= 2 ∑
j∈D

ℓ( j,σ∗( j))+ ∑
j∈D

ℓ( j,σU ( j))+
M
α

·
S∗

M

= 2C∗+CU +
S∗

α
.



Now we have all the ingredients to prove the main result
of this paper. The following theorem relies on the current
best approximation factors for Steiner tree and facility loca-
tion, which areρst < 1.55 [24] andρfl < 1.52 [18], respec-
tively.

THEOREM 4.1. For a proper choice ofα, randCFL is an
expected4.55-approximation algorithm forCFL.

Proof. By Lemmas 4.1, 4.2, and 4.3,

E[Z] ≤ OU + ρst(S
∗+(α+ ε)C∗)+ (α+ ε)CU +2C∗

+CU +S∗/α.

The optimum solution to the facility location problem in-
duced by the input instance is a lower bound on(C∗ + O∗).
As a consequence,CU +OU ≤ ρfl (C∗ +O∗). We thus obtain

E[Z] ≤ ρst(S
∗+(α+ ε)C∗)+2C∗+S∗/α

+(1+ α+ ε)ρfl (C∗ +O∗)

≤ (C∗ +O∗)(ρst(α+ ε)+2+ ρfl(1+ α+ ε))
+S∗(ρst+1/α).

Choosingε sufficiently small and balancing the coefficients
of (C∗ + O∗) andS∗, we obtain the claimed approximation
ratio forα = 0.334.

In the special case ofSROB, we can assume without
loss of generality that the facility location approximation
algorithm used in Step 1 ofrandCFL opens all the facilities.
As a consequence,randCFL opens a facility at every marked
client. By imposingOU = O∗ = CU = 0 in the analysis
of Theorem 4.1 and choosingα accordingly, we obtain the
following corollary.

COROLLARY 4.1. For a proper choice ofα, randCFL is an
expected3.05-approximation algorithm forSROB.

4.3 Refinements.We can improve the approximation ra-
tio of randCFL by combining the following techniques.

(a) Bifactor facility location. We obtain a better approxi-
mation ratio if we run a (proper) bifactor approximation al-
gorithm on the induced facility location instance in Step 1.
An algorithm for the facility location problem is a(ρO,ρC)-
approximation algorithm if for every feasible solution with
opening costOand connection costC, the cost of the solution
computed by the algorithm is at mostρOO+ρCC. Mahdian,
Ye, and Zhang [18] give a(1.11,1.78)-approximation algo-
rithm. Moreover, they (essentially) show that any(ρO,ρC)-
approximation algorithm can be converted into a(ρO +
lnδ,1+(ρC−1)/δ)-approximation algorithm for anyδ ≥ 1.

Note that an optimum solutionOPT for CFL induces a
feasible solution for the underlying facility location problem

with opening costO∗ and connection costC∗. Exploiting
this, we obtain

CU +OU ≤ (1.11+ lnδ)O∗ +(1+0.78/δ)C∗.

We can now optimize the parameterδ so as to balance the
coefficients of the connection and opening costs; while the
parameterα is used to balance the Steiner and connection
costs.

(b) Flow canceling.We can refine Corollary 2.1, and hence
the bound on the connection cost given in Lemma 4.3, by
means of flow canceling. Consider a given edgeeof T in the
tree-core connection game and lete1 ande2 be the two edges
of C associated toe (because of shortcutting, it might be
e1 = e2). If the flows alonge1 ande2 in C are equally directed
(ande1 6= e2), this means that we are sending two oppositely
directed flows alonge in T . In this case, it is possible to
cancel the difference of the two flows (independently for
eache∈ T ) by redirecting the flow paths in a proper way.
The somewhat technical proof of the following lemma is
given in the Appendix.

THEOREM 4.2. For |D| ≫ 1/p, the cost X of the flow
in the tree-core connection game satisfiesE[X] ≤ w(H ) +
0.807w(T )/p.

In particular, since by assumption|D|/M ≫ 1 andα is a
constant, this implies the following refined bound on the
connection cost:

E[C] ≤ 2C∗ +CU +0.807S∗/α.

Combining Techniques (a) and (b), we obtain the fol-
lowing theorem.

THEOREM 4.3. There is an expected4.00-approximation
algorithm forCFL. In the special case ofSROB, the expected
approximation ratio can be reduced to2.92.

Proof. Let us adapt the proof of Theorem 4.1. Combining
(a) and (b), we obtain

E[Z] ≤ OU + ρst(S
∗ +(α+ ε)C∗)+ (α+ ε)CU +2C∗+CU

+0.807S∗/α
≤ ρst(S

∗ +(α+ ε)C∗)+2C∗+0.807S∗/α
+(1+ α+ ε)((1.11+ lnδ)O∗ +(1+0.78/δ)C∗)

= C∗(ρst(α+ ε)+2+(1+ α+ ε)(1+0.78/δ))

+S∗(ρst+0.807/α)+O∗((1+ α+ ε)(1.11+ lnδ))

α=0.330, δ=6.657
< 4.00Z∗.

The analysis above can be adapted toSROB by imposing
CU = OU = O∗ = 0. Forα = 0.591, this yields

E[Z] ≤ ρst(S
∗ +(α+ ε)C∗)+2C∗+0.807S∗/α < 2.92Z∗.



4.4 Derandomization. We can derandomize our algo-
rithm for CFL using the method of conditional expectation
(see, e.g., [20]) and an idea by van Zuylen and Williamson
[27]. Consider any possible choice of a clientj1. Intuitively,
j1 is the client j∗ that we sample uniformly at random. Let
j2, j3, . . . , j|D| be the remaining clients, in an arbitrary order.
Initially, we mark j1. In iterationk≥ 2, we decide whether to
markor unmarkclient jk. LetDk−1 be the subset of clients in
{ j1, j2 . . . , jk−1} that we already marked. Ideally, we would
like to mark clientjk if and only if

E[Z |Dk = Dk−1∪{ jk}] ≤ E[Z |Dk = Dk−1].

This would ensure, for a proper choice ofj1, that the cost of
the final solution is at most 4.00Z∗.

It is not difficult to see that we can efficiently compute
the expected opening cost and connection cost, givenDk.
The same holds for the expected augmentation cost in Step
4. The problem is that we do not know how to compute
the conditioned expected cost of the Steiner tree overD.
However, as it is shown by van Zuylen and Williamson
[27], we can compute an estimate of this cost if we use a
primal-dual 2-approximation algorithm for the Steiner tree
computation instead. In our analysis, we essentially only
need to replaceρst < 1.55 byρst = 2, which gives a slightly
larger (but deterministic) approximation ratio.

THEOREM 4.4. There is a deterministic4.23-approxima-
tion algorithm for CFL. In the special case ofSROB, the
approximation ratio can be reduced to3.28.

5 Extensions

Our approach is flexible enough to be adapted to several
natural variants ofCFL. In this section we sketch two such
applications.

5.1 Connected k-Facility Location. An algorithm fork-
CFL is obtained by modifyingrandCFL in the following
way:

• In Step 1, compute aρkfl-approximate solutionU =
(FU,σU) for the (unconnected)k-facility location in-
stance induced by the input instance.

This algorithm can be refined using Technique (b). The
following theorem relies on the current best approximation
ratio for thek-facility location problem, which isρkfl ≤ 4
[15, 16] (see also [28]).

THEOREM 5.1. There is an expected6.85-approximation
algorithm fork-CFL.

Proof. By adapting the proof of Theorem 4.3, we obtain

E[Z] ≤ ρst(S
∗ +(α+ ε)C∗)+2C∗+0.807S∗/α

+(1+ α+ ε)ρkfl(C
∗ +O∗)

≤ (C∗ +O∗)(ρst(α+ ε)+2+ ρkfl(1+ α+ ε))

+S∗(ρst+0.807/α)
α=0.1524

< 6.85Z∗.

Also in this case the algorithm can be derandomized by
applying the technique by van Zuylen and Williamson [27].

COROLLARY 5.1. There is a deterministic6.98-approxima-
tion algorithm fork-CFL.

5.2 Tour-Connected Facility Location. We obtain an al-
gorithm fortour-CFL by adaptingrandCFL in the following
way:

• In Step 4, compute aρtsp-approximate TSP-tour onD.
Then augment the tour by addingtwo shortest paths
between every client inD and the corresponding open
facility in F . Eventually, compute an Euler tour on the
resulting multi-graph and shortcut it to obtain a TSP-
tourT of F.

The algorithm above can be improved by means of Tech-
nique (a). The following result relies on Christofides’ 1.5-
approximation algorithm for metric TSP [5].

THEOREM 5.2. There is an expected4.12-approximation
algorithm fortour-CFL.

Proof. (Sketch)We adapt the analysis of Section 4. Trivially,
O≤ OU. Taking into account the duplication of the shortest
paths fromD to F and using a similar duplication to bound
the cost of the optimumTSP-tour overD, we obtain

E[S] ≤ ρtsp(S
∗ +2(α+ ε)C∗)+2(α+ ε)CU.

We can easily adapt Corollary 2.1 to this case, thus obtaining
E[X] ≤ w(H )+w(T )/(2p). It follows that

E[C] ≤ 2C∗ +CU +S∗/(2α).

Altogether

E[Z] ≤ OU + ρtsp(S
∗ +2(α+ ε)C∗)+2(α+ ε)CU +2C∗

+CU +S∗/(2α)

≤ ρtsp(S
∗ +2(α+ ε)C∗)+2C∗+S∗/(2α)

+ (1+2(α+ ε))((1+0.78/δ)C∗+(1.11+ lnδ)O∗)

= C∗(2ρtsp(α+ ε)+2+(1+2(α+ ε))(1+0.78/δ))

+S∗(ρtsp+1/(2α))+O∗((1+2(α+ ε))(1.11+ lnδ))

α=0.19084, δ=6.5004
≤ 4.12Z∗.



6 Conclusions

We described a simple algorithmic framework, based on
random facility sampling, to solve connected facility loca-
tion problems. Our novel core detouring scheme provides
a means of obtaining much better approximation algorithms
for the problems considered in this paper.

We leave open the question whether core detouring can
also be used to obtain significantly better approximation al-
gorithms forMROB and the single-sink buy-at-bulk prob-
lem. The major difficulty here is that the optimum solution
does not exhibit a single central core. While a small improve-
ment seems nonetheless possible for the single-sink buy-at-
bulk problem, the situation is less clear forMROB.

There is a strong relation between random sampling
algorithms and the boosted sampling framework for two-
stage stochastic optimization with recourse by Gupta et
al. [13]. It is a very interesting open question whether our
core detouring scheme also leads to improved approximation
algorithms in that framework.
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Appendix

Proof. (Theorem 4.2)Our client sampling process is equiva-
lent to:

(1) Mark each client independently with probabilityp.

(2) Choose a clientj∗ (either marked or not) uniformly at
random, and mark it.

Consider the following modified sampling process:

(a) Run (1).

(b) If no client is marked in Step (a), run (2).

Let Y denote the cost of the flow in the tree-connection
game with respect to the modified sampling scheme. By a
simple coupling argument, it is easy to see thatE[X]≤ E[Y].
Intuitively, sampling less clients can only make the cost of
the flow larger (in expectation). Hence it is sufficient to
boundE[Y].

Let Q denote the event that in Step (b) of the modified
game we run (2). By elementary probability theory,

E[Y] = Pr(Q)E[Y |Q]+Pr(Q̄)E[Y |Q̄].

Trivially, Pr(Q) = (1− p)|D|. Moreover,

E[Y |Q] ≤ w(H )+ |D|w(T )

We will next show that

(6.2) E[Y |Q̄] ≤ w(H )+0.8067w(T )/p.

From (6.2) we can conclude that

E[Y] ≤ w(H )+w(T )((1− p)|D||D|+0.8067/p)

≤ w(H )+w(T )(e−p|D||D|+0.8067/p)

≤ w(H )+0.807w(T )/p,

where we used the assumption|D| ≫ 1/p.
It remains to prove (6.2). Subsequently, we assume that

the eventQ̄ holds. It is clear thatE[ f (e)] ≤ 1 holds for every
e∈ H . Thus it is sufficient to show thatE[ f (e)] ≤ 0.8067/p
for any givene∈ T . Let e1 ande2 be the two edges ofC

associated toe. We assume by definition that the flowf (ei)
alongei in C is positive if it goes clockwise and negative
otherwise.

If e1 = e2, E[ f (e)] = E[| f (e1)|]≤ 1/(2p) by essentially
the standard analysis. Hence, let us assumee1 6= e2. In this
case,F := f (e) = | f (e1)− f (e2)| by flow canceling. The
value ofE[F ] is a (complicated) function ofp, m= |D|, and
the distancek, 0≤ k≤ m/2−1, betweene1 ande2 in C .

We first need some notation. LetI be the shortest path
(in terms of number of hops) betweene1 ande2 alongC ; we
havek = |I |. Without loss of generality, we assumee1 is on
the left side ofI . Let I ′ be the complement ofI ∪ {e1,e2}
with respect toC andk′ := |I ′| = m−k−2.

Recall that each node ofC is by-sampled with probabil-
ity p, but under the event̄Q that at least one (random) node
is by-sampled. Letq = 1− p. We distinguish three eventsA,
B, andC, which partition the probability space considered:

(A) No node selected in I, at least one node selected in I′. The
value ofF is deterministicallyk+1. In fact, if h flow-paths
alongI are directed to the left and the otherk+ 1−h to the
right (eventA′), thenF1 = −h, F2 = k+1−h, and altogether
E[F |A′] = E[|(−h)− (k+1−h)|] = k+1. Otherwise (event
A′′), the flow one1 ande2 must go in the same direction,
say from left to right, and it must bef (e2) = f (e1)+ k+ 1
(e2 collects the same flow ase1 plus the flow alongI ). Then
E[F |A′′] = E[| f (e1)− ( f (e1)+k+1)|] = k+1. Since event
A happens with probabilityqk+1(1− qk′+1)/(1− qm), the
overall contribution of this case to the total expected flow
is

FA = Pr(A)E[F |A] =
qk+1(1−qk′+1)

1−qm (k+1).

(B) No node selected in I′, at least one node selected in I.By
essentially the same argument as in case(A), we obtain

FB = Pr(B)E[F |B] =
qk′+1(1−qk+1)

1−qm (k′ +1).

(C) At least one node selected in both I and I′. If we
denote byLi (Ri) the distance betweenei and the first by-
sampled node to its left (right), thenE[ f (ei)] = (Li −Ri)/2.
VariablesL1, R1, L2, andR2 can be interpreted as random
geometric variables of parameterp, under the constraint that
X = L2 + R1 ≤ k andX′ = L1 + R2 ≤ k′. Let us study the
random variablesX andX′. Note thatE[F |C] = 1

2E[|X′ −
X|]. Moreover,X andX′ are independent. It is not hard to
show that

Pr(X = i) =







(i +1) p2qi

1−qk+1 if i ∈ [0,k−1];

(k+1) pqk

1−qk+1 if i = k.



Analogously,

Pr(X′ = j) =







( j +1) p2q j

1−qk′+1 if j ∈ [0,k′−1];

(k′ +1) pqk′

1−qk′+1 if j = k′.

Note that∑k
i=0Pr(X = i) = ∑k′

j=0Pr(X′ = j) = 1. The contri-
bution of this case to the overall flow is

FC = Pr(C)E[F |C]

=
(1−qk+1)(1−qk′+1)

2(1−qm)

k

∑
i=0

k′

∑
j=0

|i − j|Pr(X = i)Pr(X′ = j).

Recall that E[F ] = Pr(A)E[F |A] + Pr(B)E[F |B] +
Pr(C)E[F |C] = FA + FB + FC. After a simple (but very long
and tedious) computation, we obtain

E[F ] =
−2(k+1)qm

1−qm +
2q(1+q+q2)

p(1−qm)(1+q)3

+
q2k+2(k2(1−q2)2 +k(1−q2)(3−q2)+(2−2q(1+q)2))

p(1−qm)(1+q)3

≤
2q(1+q+q2)

p(1− ε)(1+q)3

+
q2k+2(k2(1−q2)2 +k(1−q2)(3−q2)+(2−2q(1+q)2))

p(1− ε)(1+q)3 ,

where ε > 0 is an arbitrarily small constant. In the last
inequality we used the assumptions thatα is a positive
constant andm= |D| ≫ 1/p. Consider the function

R(q,k) :=
2q(1+q+q2)

(1+q)3 +
R′(q,k)
(1+q)3 ,

where

R′(q,k) = q2k+2(k2(1−q2)2 +k(1−q2)(3−q2)

+(2−2q(1+q)2)).

It is sufficient to show thatR(q,k) ≤ 0.8066< 0.8067 for
anyq andk. Fixing q and maximizing overk,

max
0≤k≤k′

{R(q,k)} ≤
2q(1+q+q2)

(1+q)3 +
1

(1+q)3 max
0≤k≤k′

{R′(q,k)}

≤
2q(1+q+q2)

(1+q)3 +
1

(1+q)3 max
x≥0

{R′(q,x)}.

By an elementary analysis of functionR′(q,x), we found that
it has a maximum (either feasible or not) for

x = x(q) :=
q2−3

2(1−q2)
−

1
2lnq

−

√

(1+8q+10q2+8q3+q4) ln2q+(1−q2)2

2(1−q2) lnq
.

Then, by the constraintx ≥ 0, the functionR′(q,x) is maxi-
mized forx= 0 if x(q) < 0, and forx= x(q) otherwise. That
is,

max
x≥0

{R′(q,x)} = R′(q,max{0,x(q)}).

It follows that

max
0≤k≤k′

{R(q,k)} ≤
2q(1+q+q2)

(1+q)3 +
R′(q,max{1,x(q)})

(1+q)3 .

We found numerically that the right-hand side is upper
bounded by 0.8066 for any feasible value ofq. This con-
cludes the proof of the theorem.


