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Abstract. Given an undirected edge-weighted graph G = (V, E), a subgraph G' = 
(IT, E') is a t-spanner of G if, for every u, v ~ V, the weighted distance between u and 
v in G' is at most t times the weighted distance between u and v in G. 

We consider the problem of approximating the distances among points of a 
Euclidean metric space: given a finite set V of points in ~a, we want to construct a 
sparse t-spanner of the complete weighted graph induced by V. The weight of an 
edge in these graphs is the Euclidean distance between the endpoints of the edge. 

We show by a simple greedy argument that, for any t > 1 and any V c R a, a 
t-spanner G of V exists such that G has degree bounded by a function of d and r 
The analysis of our bounded degree spanners improves over previously known upper 
bounds on the minimum number of edges of Euclidean t-spanners, even compared 
with spanners of bounded average degree. Our results answer two open problems, one 
proposed by Vaidya and the other by Keil and Gutwin. 

The main result of the paper concerns the case of dimension d = 2. It is fairly 
easy to see that, for some t (t > 7.6), t-spanners of maximum degree 6 exist for any 
set of points in the Euclidean plane, but it was not known that degree 5 would suffice. 
We prove that for some (fixed) t, t-spanners of degree 5 exist for any set of points in 
the plane. We do not know if 5 is the best possible upper bound on the degree. 

I. Introduction 

Let G = (V, E) be an  edge-weighted  g raph  where the weight  func t ion  w is an  
arbi t rary  func t ion  w: E ---, •§ By the  length of a pa th  (x o, x~,. . . ,  Xk) in G we m e a n  
the sum ~ =  1 w(xi_ lxi). The  G-distance do(x, y) of x, y e V is the length  of the 

---,......_______ 
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shortest path between x and y. We say that a subgraph G' = (V, E') (with the same 
weights on E') is a t-spanner of G if, for every x, y 6 V, 

dG,(x, y) < t" da(x, y). 

The number t is a measure of how well G' approximates G with respect to the 
distances. The construction of t-spanners has received recent attention in several 
works: [2], [3], [5], [8], [9], [11], and [18], among others. 

Given a set V ~ •a the complete Euclidean graph on V is the complete graph 
on V where each edge weight is the Euclidean distance I[x - Y]I. In this paper we 
consider the problem of constructing bounded degree spanners of complete 
Euclidean graphs. For brevity we write t-spanner of V instead of t-spanner of the 
complete Euclidean graph on V. 

Let A(G) denote the maximum degree of a graph G. Dobkin et al. [5] mention 
that Feder and others had shown that, for some fixed t and for any set V of points 
in the Euclidean plane, a t-spanner G of V exists such that A(G) < 7. Then they 
ask what would be the minimum A for which such a result is possible? This paper 
has a partial answer to this question. Our main result (Section 4) is that, for some 
fixed t, t-spanners with A < 5 exist. Nisan [10] has proved the same for A < 6. 

Section 2 contains the basic algorithm used to construct bounded degree 
t-spanners. Although the algorithm has been used before by Althrfer et al. [1] 
and Soares [16] to construct t-spanners for arbitrary graphs, it was not known 
that the algorithm also constructs bounded degree spanners for complete 
Euclidean graphs. 

Section 3 contains a brief analysis of the problem when V is in d-dimensional 
Euclidean space. We show that, for any t > 1 and any V c ~d, a t-spanner G of 
V exists where A(G) is bounded by a function that depends only on d and t. This 
answers a question proposed by Keil and Gutwin in [8]. This bound on the 
maximum degree implies an improvement on the previously known upper bounds 
on the number of edges sufficient to build Euclidean spanners. Then we show that, 
for each dimension d, the least A(G) for which our algorithm constructs Od(1)- 
spanners coincides with the kissing number in dimension d. (Od(1) denotes some 
function of d, i.e., a constant for each d.) 

Section 4 contains our main result, the construction of O(1)-spanners of degree 
5 for any set of points in the Euclidean plane. 

2. The Greedy Algorithm 

Henceforth, all graphs will be embedded in a Euclidean space. Accordingly, metric 
concepts are understood relative to this embedding. The Euclidean distance 
between x and y is denoted by d(x, y). 

We now present the algorithm to construct bounded degree spanners. The input 
of the algorithm is a set V of points in a Euclidean space of dimension d and a 
real number t > 1. We show in Section 3 that the bound on the degree depends 
only on d and t. 
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Greedy Algorithm 

Input: a set V of points in a Euclidean space and a real number  t > 1. 
Output: a t-spanner G = (V, E) of V. 

begin 
sort the pairs x, y ~ V in nondecreasing order of the distances d(x, y); 
E :=  ~ ;  G :=  (V, E); 
for each pair x, y ~ V (from the sorted list) do  

if d~(x, y) > t" d(x, y) then 
e : =  e ~ { x y } ;  
G.-= (v, E); 

output  G = (V, E); 
end. 

Since the algorithm inspects all possible distances among points of V it is clear 
that G is a t-spanner of V. The following proposit ion states that the angle formed 
by any two edges of G incident with the same vertex is not small. This fact allows 
us to bound the maximum degree of G. 

Proposition 2.1. Let G = (V, E) be the output o f  the Greedy Algorithm on input V 
and t. Then the angle formed by any two edges incident with the same vertex is 
larger than 

t - 1  
= 2 arcsin . . . . .  . 

2t 

Before proving this proposit ion we prove a stronger property concerning the 
angle formed by edges in G. We need this property in Section 4. 

Proposition 2.2. Let G = (V, E) be the output o f  the Greedy Algorithm on input V 
and t. Let x, y, z ~ V be such that xy, xz ~ E (see Fig. 1). Let r = d(x, z)/d(x, y), 

= L yxz. Then 

 rl( :2) 1 c o s T < : : -  1 -  + . 
t 

y 

~g Iz 

e 

~ O  
z 

Fig. 1. Illustration for Proposition 2.2. 



216 J. Soares 

Proof Let a = d(x, z), b = d(x, y), and c --- d(y, z). Since the value of the expression 
(1/2r)(1 - 1/t 2) + 1/t decreases when r = a/b increases, it is enough to prove the 
proposi t ion for a > b. F rom now on we assume that a > b and r > 1. 

By a basic geometric fact we have that 

C 2 = a 2 + b 2 - -  2 a b  c o s  7. (1) 

First we suppose that a < c. Then 

a 2 < r = a 2 + b 2 _ 2ab cos 

and we have that 

b l l 2 r t - 1  1 (  ~ ) 1  
cos y < - -  = - -  < + - 1 -- + - ,  

- 2a 2r 2r 2rt 2 2r t 

as desired. 
Now, we suppose that a > c. This implies that the pair y, z was inspected before 

the pair x, z by the Greedy Algorithm. We infer that  in the partially constructed 
graph G a yz-path existed that did not  use the edge xz  and had length at most 
tc. Since a > b, we may assume without  loss of  generality that the pair x, y comes 
before the pair x, z in the ordering of  pairs considered by the Greedy Algorithm. 
Thus we also infer that  the edge xy is present in the partially constructed graph 
at the time the pair  x, z was being inspected. Since xz  was added to E, we deduce 
that b + tc > ta, or 

b 
c > a - - .  (2) 

t 

F r o m  (2) and (1) we obtain 

a 2 + b  2 - 2 a b c o s T >  a - -  o r  1 ( ~ 2 )  1 
cos  ~ < f r  1 -  + i '  

as desired. [3 

Proof  o f  Proposition 2.1. Let x, y, z e V be such that  xy, xz  ~ E, a = d(x, z), 
b = d(x, y), c = d(y, z), r = a/b, and ~ = L y x z  (see Fig. 1). Without  loss of gen- 
erality assume that  the pair x, y comes before the pair x, z in the ordering 
considered by the Greedy Algori thm (d(x, y) < d(x, z)). We know from Proposit ion 
2.2 that 

I ( ~ 2 )  1 
c o s y < ~ r  1 -  + - ' t  

We want to prove that ? > ~ = 2 arcsin((t - 1)/2 0. 
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Since d(x, y) < d(x, z) we have that r > 1. This implies that 

1 ( ~ )  1 1 ( ~ )  1 
cos <  1 -  1 -  +-'t 

Substituting t = 1/(1 - 2 sin(cq2)) in the expression above we obtain 

cos < - ~ 2 + s in (~)  1 2 s i n 2 ( ~ )  y �89 ( 1 - 2 s i n ( ~ ) ) )  1 - 2  = - 

implying that ~ > a, as desired. 

COS ~, 

217 

[ ]  

3. The Results for the d-Dimensional Case 

Let A(d, ~) be the maximum number of rays (half-lines) from a point in d- 
dimensional Euclidean space such that each pair of rays forms an angle at least 
a. It follows from Proposit ion 2.1 that A(d, a) is an upper bound on the degree of 
the t-spanner constructed by the Greedy Algorithm, where ~ = 2 arcsin((t - 1)/20. 

Let at d denote the unit sphere with center v in R a. A finite set of points on ad 
is called a spherical code. It is easy to see that A(d, ~) is the maximum cardinality 
of a spherical code V such tha t /_  xvy  > ~ for each x r y e V. This packing problem 
has been extensively studied [4]. We mention an upper bound due to Rankin [12]: 

A(d, ~) <_ (�89 a cos ~)1/2 sin (1 + o(1)). 

(Other known bounds are stronger than this for certain ranges of values of(d, c0.) 
Since in our  case sin(~/2) = (t - 1)/2t, we obtain the following theorem. 

Theorem 3.1. Given a set V of  points in the d-dimensional Euclidean space and a 
real number t > 1, a t-spanner G = (V, E) of  V exists such that 

A(G) = O d 3/2 

For  dimension 2, we have that A(2, ~) = L2n/~_]. It follows that: 

Corollary 3.2. Given a set V o f  points in the Euclidean plane and a real number 
t > 1, a t-spanner G = (V, E) of  V exists such that 

where ~ = 2 arcsin((t - 1)/20. 
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3.1. Comparison with Previous Results 

The algorithms discovered by Salowe [14] and Vaidya [18] to build t-spanners 
are similar to each other. Both are based on Vaidya's algorithm to solve the 
all-nearest-neighbor problem [17]. Also both require that 1 < t < 2. Salowe's 
construction leads to a t-spanner with O((16dt/(t - l))dn) edges, while Vaidya's 

requires O(2~(3 + 12x//d/(t-  1))dn) edges. Vaidya has asked [18] whether the 
superexponential growth can be reduced as a function of the dimension d. Our 
bound answers this question in the affirmative. 

We have shown that the bound on the degree of the t-spanner constructed by 
the Greedy Algorithm is related to a sphere-packing problem. Other schemes 
obtain spanners whose bound on the number of edges is related to a sphere- 
covering problem. That  is the case for the algorithms described by Alth6fer et al. 
[2] and Ruppert and Seidel [13], where the bound on the number of edges is 
O(d 3/2 log d ' (2"  t/(t - 1)) a" n). 

We remark that none of these algorithms construct bounded degree spanners 
for fixed dimension; only their average degree is bounded. 

3.2. An Upper Bound on A(G) 

We now analyze the least A(G) for which the Greedy Algorithm outputs an 
On(1)-spanner. The function A(d, ~) gives us a bound on A(G) that depends on d 
and ~. Since this function decreases when ~ increases, we want to choose a large 
value for ~. However, cr = 2 arcsin((t - 1)/2t), hence ~ < n/3. So, the smallest value 
of A(G) cannot be less than A(d, zr/3). On the other hand, for each d > 2 a positive 
constant 6d exists such that A(d, 7r/3) = A(d, 1r/3 - 6d). Since for large values of t 
we can make ~ arbitrarily close to re/3, we have the following proposition: 

Proposition 3.3. Given a set V of points in d-dimensional Euclidean space, a 
t-spanner G = (V, E) of V exists such that A(G) _< A(d, re/3), and 

1 
t <  

- 1 - 2 sin((n/3 - 6d)/2 ) ' 

The number A(d, n/3) is 
of spheres that can touch 
following upper bound for 

known as the kissin9 number: the maximum number 
one sphere, all spheres having the same radius. The 
A(d, n/3) is from [6]: 

A(d, 3 )  < 2~176176 +~ 

Some values of A(d, r~/3) are: 6, 12, 24 - 25, 40 - 46, 72 - 82, 126 - 140, 240, 
corresponding to d = 2, 3 . . . . .  8, respectively. A range indicates that the exact value 
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for A(d, n/3) is not known. These numbers were compiled by Conway and Sloane 
[4], a good reference for both spherical codes and kissing numbers. 

For dimension 2, we may apply Proposition 3.3 using n / 3 -  6z = 0.898 to 
obtain the following: 

Corollary 3.4. Every set of points in the Euclidean plane has a 7.6-spanner with 
maximum degree at most 6. 

4. The Main Result 

Corollary 3.4 shows that degree 6 graphs suffice to approximate planar distances 
within a 7.6 factor. It is much more difficult to obtain a reasonable approximation 
with maximum degree A(G) _< 5. This section is dedicated to the proof that this 
is possible. The main theorem is a direct consequence of Proposition 4.8(v). 

Theorem 4.1 (Main Theorem). Every set of points in the Euclidean plane has a 
t-spanner with maximum degree at most 5, where { is an absolute constant. 

We briefly describe the strategy to construct G, the {-spanner of the given set 
V c R z. Our analysis showed that, for a convenient t > 7.6, the Greedy Algorithm 
outputs a t-spanner of maximum degree at most 6. Indeed, there are sets of points 
in the plane for which degree 6 will actually occur. We first characterize such 
configurations, which we call bad configurations. The algorithm to build the 
t-spanner G with A(G)< 5 will carefully remove points from the given set V 
(destroying the bad configurations), obtaining a set V' for which the Greedy 
Algorithm builds a (-spanner G' with maximum degree at most 5. Then we show 
how to construct the spanner G from G' by connecting the points in V\V'  to 
points in V', adding or removing edges if necessary. 

4.1. Characterizin9 a Bad Configuration 

We want to characterize the configurations which cause the Greedy Algorithm to 
output a t-spanner with maximum degree equal to 6. Consider a t-spanner 
G = (V, E) obtained by the Greedy Algorithm on input V and t > 7.6. By Corollary 
3.4 we know that A(G) < 6. Suppose that a vertex v e V that has degree 6 exists. 
Let v 1 :/: v be such that dG(v, vl) is minimum. Let v 2, v3 . . . . .  o 6 be the remaining 
vertices connected to v in clockwise order (see Fig. 2). We observe that since the 
algorithm examines short distances first, we have that 

da(v, v l ) =  min {d(v, x)}. 
x~V\{v} 

This implies that no vertex, except v, can be interior to the circle of center v and 
radius d(v, vl). 
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A possible bad configuration. 

By Proposi t ion 2.1 the angle formed by any two edges incident with v is greater 
than a. Thus, clearly the angle formed by any two consecutive (clockwise order) 
edges is less than fl -- 2r~ - 5~. The next proposit ion shows that, for sufficiently 
large t, the quotient d(v, v~)/d(v, v j) cannot  be arbitrarily large. 

Proposition 4.2. Le t  t > 13, let V be a set  o f  points in the plane, let ct = 
2 arcsin((t - 1)/2t), and let fl = 2~ - 5~. Suppose that  the Greedy Algor i thm builds 
a t -spanner G = (1I, E) which has m a x i m u m  degree A(G) = 6. Le t  v ~ V be a ver tex  
wi th  degree 6 and let {vl, rE, . . . ,  v6} be the vert ices connected to v in c lockwise  order 
(see Fig. 2). Then 

d(v, v j) t 2 - 1 

d(v, vi) 2t(t  cos fl - 1) 

f o r  [i - J l  = 1 mod  4 (v i and vj are consecut ive vertices). 

Proof.  Let r = d(v, vj)/d(v, vi). Let y = /_ vivvj.  From Proposi t ion 2.2 we have that 

c o s T < ~ -  1 -  + - .  
t 

Observing that  t cos fl - 1 > 0 for t >_ 13, and that fl > 7, the proposi t ion follows 
immediately. [ ]  

We are now ready to give the desired characterization of  bad configurations. 

Definition 4.3. Let V be a set of points in the plane, and let t > 13. Let 0t = 
2 arcsin((t - 1)/2t), fl = 2~ - 5a, and r = (t 2 - 1)/2t(t cos fl - 1). The 7-tuple B of 
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points (v, vl, v2 . . . . .  v6) in V is a bad configuration with respect to t if the following 
three conditions hold: 

(i) d(v, vt) = minx~v\tvl{d(v, x)}. 
(ii) ~ < L_vivvj <_ fl for ] i - - j [  = 1 m o d 4  (vi and vj are consecutive points in 

the bad configuration). 
(iii) d(v, v j) <_ rd(v, vi) for ]i - j [  -- 1 mod 4. 

The point v is the center of the bad configuration, and d(v, vl) is its radius, denoted 
by radius(B). The real number t will be implicit when we write "bad configuration" 
instead of "bad  configuration with respect to t." 

Informally, the points of a bad configuration form a hexagon with a center. As 
t increases, the angles mentioned in the definition tend to n/3, and the quotient 
d(v, vj)/d(v, vl) tends to 1. Therefore, for large enough t, the hexagon will be 
arbitrarily close to a regular hexagon. 

It should be clear that: 

Proposition 4.4. If, on input V and t > 13, the Greedy Algorithm outputs a graph 
G = (V, E) with A(G) = 6, then V has a bad configuration with respect to t. 

4.2. Removing Points f rom V 

Let V be a set of points in the plane. To obtain the i-spanner G of V with A(G) < 5 
we determine a set V' _ V that does not have bad configurations with respect to 
some fixed t'. The set V' and t' are the input of the Greedy Algorithm, yielding a 
t '-spanner G' = (V', E') with A(G') < 5. The graph G is constructed from G' by 
considering the points in V \ V '  and conveniently adding new edges to or removing 
edges from E'. The algorithm that constructs V' is described below. 

Algorithm 4.5 

Input: a set V of points in the plane and a real number t > 13. 
Output: a set V' that does not have bad configurations with respect to t. 

begin 
V' := V; 
while there is a bad configuration with respect to t in V' do 

let v be the center of a bad configuration of minimum radius; 
V' := V'\{v}; {we say that v is deleted} 

output V' ; 
end. 

Next we prove some properties concerning the output of this algorithm. These 
properties are useful for constructing the spanner of V from a spanner of V'. In 
particular, the vertex vl of a bad configuration B is the vertex that connects the 
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center of B to the remainder of the points in the spanner. To prove the proposit ion 
we again need to increase the value of t. 

Proposition 4.6. I f  t >_ 116, then for any V the following holds with respect to 
Algorithm 4.5: 

(i) The sequence of  minimum radii induced by the algorithm is a nondecreasing 
sequence. 

(ii) Let v be a point which is deleted by Algorithm 4.5 (v~ V\V') .  Let B = 
(v, v l, v2 . . . . .  v6) be the corresponding bad configuration. Then {Vl, v2, v6} - 
V'. In other words, i f  the center of  a bad configuration is deleted the points 
vl, v2, and v6 will not be deleted thereafter. 

(iii) Suppose that (v, vl, v2 . . . . .  v6) and (v', vl, v'2 . . . . .  v'6) are two distinct bad 
configurations sharing the same point v 1. Also, suppose that v and 
v' are deleted by the algorithm. Then /_VVlV'> 2 n - 5 c c = f l ,  where 

= 2 arcsin((t - 1)/2t). 

Proof  Let T be the set of points corresponding to V' in an arbitrary step of 
Algorithm 4.5. Let v be the center of a bad configuration B = (v, v 1 . . . . .  v6) of 
minimum radius d(v, vl) in T. Suppose that  v is about  to be deleted. Let B' be a 
bad configuration in T\{v} .  We are going to show that the radius of B' is at least 
radius(B) = d(v, vx). 

Since the algorithm chose the center v to be deleted, it follows that if B' is a 
bad configuration in T, then radius(B') > radius(B), and we are done. 

So, suppose that B' is not  a bad configuration in T and B' becomes one in 
T\{v} .  Since the removal of v from T caused B' to become a bad configuration, 
condit ion (i) of Definition 4.3 has changed: the deletion of points cannot  make 
Definitions 4.3(ii) or 4.3(iii) true. Let w be the center of B'. By the previous 
observation we have that  min{d(w, x) lx  ~ T \ {v ,  w}} > min{d(w, x) lx  e T\{w}}. 
Thus, v is the unique point  nearest to w in T and d(v, w) < radius(B'). By the 
definition of  a bad configuration (item (i)) radius(B) < d(v, w). Combining the last 
two inequalities we finish the proof  of (i). 

Th roughou t  the remainder of the p roof  we consider the following numerical 
values and variables definitions. The meaning of  some variables and expressions 
will be clear later. 

The numerical values follow from the assumption that t > 116. 

1.037 < ~ = 2 arcsin - -  < < fl = 2 n -  5ar < 1.097, cos > 0.853, 
2t 

t 2 - -  1 
r = 2t(t cos fl _ l) < l . l l 7 ,  s = ~ / l  + r(r - 2 cos fl) < l.109, (3) 

r6s 2 -t- r 2 - -  1 

r 2 - -  1 < 0.247, < 0.852, 
2ras 

1 - cos �9 > 0.491, 
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b 
0 

Wtt 

Fig. 3. Illustration for Proposit ion 4.6(ii). 

r 2 -  1 
~ >  sin :t > 0.861, - . . . . .  < 0.124, 7r - ct < 2.105, 

2 2 

- 3 f l  
r - cos ~ < 0.609, - - >  -0 .075 .  

2 

(3) 

N o w  we prove (ii). Actually,  we prove the slightly s t ronger  s ta tement:  after the 
delet ion of v, no poin t  in the set {vl, v2, v6} can become a center of a bad  
configuration.  By contradic t ion,  suppose that  after the delet ion of v, w is the first 
point  in the set {vl, v2, v6} that  becomes a center of a bad  configurat ion B'. Let 
T be the set of points  cor responding  to V' in a step of the a lgor i thm in which B' 
is a bad  configurat ion.  

Consider  the conf igurat ion shown in Fig. 3, where w' and w" are two consecutive 
points  of B' such that  w' and  w" are in different semiplanes defined by the line 
containing v and w. Let a = d(v, w'), b = d(v, w), c = d(w, w'). 7t = / vww', 72 = 
Z_vww", R = radius(B), and R ' =  radius(B'). We prove that  ";1 + 72 > ft. This 
contradic ts  i tem (ii) of Defini t ion 4.3, showing that  B' is not  a bad configuration.  
Wi thou t  loss of  general i ty suppose  that  7t < 72. 

We have that  a 2 = b 2 + c 2 - 2bc cos 71 or 

b 2 + c 2 _ a 2 
cos 71 - (4) 

2bc 

Since w ~ {v t, U2, U6} it follows from Definit ion 4.3(iii) that  

b < max{d(v, vO, d(v, v2), d(v, v6)} < rR. 

By Defini t ion 4.3(i) we have that  a > R and b > R. Using these inequalit ies in (4) 
we obta in  

r .~_ r 2 R  2 _ R 2 c 2 + R 2 ( r  2 - -  1) 
cos ~,~ < = (5) 

2Rc  2Rc 
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W e  n o w  inspect  two cases: 

Case 1: c 2 < R2(r 2 - 1). F r o m  (5) we o b t a i n  

2RZ(r z - 1) R(r 2 - 1) 
cos ~1 -< - (6) 

2Rc c 

By (i) radius(B') >_ radius(B), a n d  by the def in i t ion  of  the rad ius  we have tha t  
c >_ R',  imp ly ing  tha t  c > R. Thus ,  

cos 71 < -- r2 -- 1 < cos . 
- -  R 

To o b t a i n  the last i nequa l i ty  we have used the num er i ca l  values  ca lcula ted  in 

(3). Thus ,  ~i > ill2, imp ly ing  tha t  71 + 72 > fl- AS observed  before, this con t rad ic t s  
Def in i t ion  4.3(ii). 

Case 2: c 2 > R E ( r  2 - -  1). W e  beg in  d e t e r m i n i n g  a n  uppe r  b o u n d  for c. Since the 

po in t s  v 1, v 2, v 6 are in T, a n d  w is one  of these points ,  we have  by Def in i t ion  4.3(i) 
tha t  radius(B') <_ max{d(vl ,  rE), d(vl, v6)}. W i t h o u t  loss of general i ty ,  suppose  that  

d(vl, v2) _> d(Vl, v6). Let  ~ = /__VlVV 2. T h e n  

R '2 --< d2(Vl, v2) = d2(v, vl) + d2(v, v2) - 2d(v, rOd(v, v2) cos 7 

= R 2 + d2(v, v2) - 2Rd(v, v2) cos 7. 

By Def in i t i on  4.3(iii) d(v, v2) < rR. U s i n g  that  7 < fl, a n d  tha t  

d(v, v2) -- 2R cos fl > 0, 

we o b t a i n  

R '2 < R 2 + d2(v,  02) - 2Rd(v, v2) cos fl < R 2 + d(v, Vz)(d(v, v2) - 2R cos fl) 

< R 2 + rR(rR -- 2R cos fl) < R2(1 + r(r - 2 cos fl)), 

or  

R' < sR, where  s = x /1  + r(r - 2 cos fl). (7) 

By i tem (iii) of  Def in i t ion  4.3 of  a b a d  c o n f i g u ra t i on  we have tha t  c < r3R '. Using  
this i nequa l i t y  in  (7) we have  tha t  c < rasR. Then ,  f rom (5) and  the  a s s u m p t i o n  
that  s ~_~ R 2 ( r  2 _ 1), we o b t a i n  

r6s2R2 + R 2 ( r 2 - 1 )  r6s2 + r 2 - 1  ( ~ )  
cos 71 < 2rasR 2 - 2ras < cos . 
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To obtain the last inequality we have used the numerical values calculated in 
(3). Thus,  y~ > fl/2, implying that  ~ + Y2 > fl- Again, this contradicts  Definition 
4.3(ii), finishing the proof  of (ii). 

We now prove  (iii). Let R = d(v, v 0 and R' = d(v', v O. Without  loss of generality 
suppose that  v was deleted before v' by the algorithm. This implies that  

R _< R'. (8) 

We may  also suppose that  v' and v 2 are in the same semiplane defined by the line 
containing vvt (if this is not true, interchange the roles of v 2 and v6 in the proof). 
Thus, we assume that  

0<_~2<-~,  (9) 

where ~ 2  = / - - V l V V "  

Let a = d ( v ' , v 2 ) ,  b = d ( v ,  v2), c = d ( v , v ' ) ,  7 1 =  / v v l v ' ,  y 3 =  / v v ' v l ,  and 
0 = + / _  v'vv2. Figure 4 illustrates these measures.  The sign of 0 is positive if the 
points v~, v2, and v' appear  in clockwise order considering v as a center (Fig. 4(a)). 
The sign of 0 is negative otherwise (Fig. 4(b)). 

We want  to prove that  7~ > ft. By contradiction, suppose that  

Ya ~ ft. (10) 

We have that  

a2 = b 2 + c2 _ 2bc cos O, 

R '2 = R 2 + C 2 - -  2Rc cos 72. 

I/1 

v b v2 

v t 

(a) 

Fig. 4. 

7) 1 

s  

V2 

(b) 

Illustration for Proposition 4.6{iii). 

V t 
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By (ii) we have that  when the point v' was deleted by the algorithm, the point v 2 
was in the set V'. Thus, by the definition of  radius of a bad configuration we have 
that a > R'. Thus, 

a 2 = b 2 4- c 2 - 2 b c  c o s  0 >__ R '2  = g 2 4- C 2 - -  2 R c  c o s  72  

o r  

b 2 _ R 2 

2c 
- - 2  b cos 0 -  R cos )12. 

By the definition of  a bad configuration we have that c > R and b < rR .  Thus, 

R r  2 - R 

- - ~  b cos 0 - R cos )12. 

By the definition of  a bad configuration we have that  ct < /__ v lvv2  -- 72 - -  0. Using 
these inequalities we obtain that 72 > 0 + ec Thus, 

R r  2 - -  R 
- - > b c o s 0 - R c o s ( 0 + c t ) = ( b - R c o s c t ) c o s 0 + R s i n ~ s i n 0 .  (11) 

We have also used above that, by (9),)12 < 7r. 
We now inspect two cases: 

C a s e  1 : 0  < ~/2. Since, by (8), R < R', we have that )12 > )13. Thus, using (10), 
= )11 "4- '~2 4- )Y3 -~ f l  "]- 2)12 o r  )12 >- (n - -  fl)/2. By the definition of a bad configura- 

tion we have that Z_vlvv  2 = ~2 - -  0 ~ f t .  Using these inequalities we obtain that 

- 3fl 
0 > -  > -0 .075 .  (12) 

- 2 

In  the last inequality we have used the numerical values calculated in (3). 
Also, by  the definition of  radius of  a bad configuration, b > R. Thus, for 

re/2 > 0 > -0 .075 ,  we have from (11) that  

R r  2 - R 
- - ~  ( R - -  R cos ~)cos 0 + R sin ~ sin 0 

o r  

r 2 - -  1 

2 
- -  > (1 - cos 0t) cos 0 + sin 0t sin 0 > 0.491 cos 0 + sin 0t sin 0. (13) 

In  the last inequality we have used the numerical values calculated in (3). 
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F o r  ~/2 _> 0 _> -0 .075 ,  the min imum of 0.491 cos 0 + sin c~ sin 0 is a t ta ined 

for 0 = -0 .075 .  Thus, 0.419 cos 0 + sin ~ sin 0 > 0.419 cos 0 + x//3/2 sin 0 > 0.42. 
On the other hand,  by (3) we have that  0.124 > (r z - 1)/2. These values cont radic t  
inequali ty (13). 

Case 2 : 0  > zt/2. By the definit ion of a bad  conf igurat ion we have that  ~ < 
Z_vlvv2 = 72 - 0. Using this inequal i ty  and (9) we obta in  that  

0 ~ 72 - -  O( _~ ~ - -  0~. (14) 

Considering tha t  by the definit ion of a bad  configurat ion b <_ Rr, and that  
n/2 < 0 < ~ --  e we obta in  from (11) that  

R r  2 - R 
- -  >_ (rR -- R cos c~) cos 0 + R sin c~ sin 0 

o r  

r 2 -  1 

2 
- -  >_ (r - cos c0 cos 0 + sin c~ sin 0 > 0.609 cos 0 + 0.861 sin 0. (15) 

In the last inequal i ty  we have used the numerical  values calculated in (3). 
F o r  7~/2 < 0 _< g - ~t, the min imum of 0.609 cos 0 + 0.861 sin 0 is a t ta ined  for 

0 = 7z - ~ < 2.105. Thus, 0.609 cos 0 + 0.861 sin 0 > 0.43. On the other  hand,  by 
(3) we have tha t  0.124 > (r 2 - 1)/2. These values contradic t  inequal i ty  (15). [ ]  

4.3. The A lgor i thm f o r  A <_ 5 

The next a lgor i thm uses Algor i thm 4.5 and the Greedy  Algor i thm to construct  G 
with A(G) _< 5. 

Algorithm 4.7 

Input: a set V of points  in the plane and a real number  t > 1 t6. 
Output: a graph G = (V, E). 

begin 
Let  V' be the ou tput  of Algor i thm 4.5 on input  V and t; 
Let  G' = (V', E') be the ou tpu t  of the Greedy  Algor i thm on input  V' and  t; 
E : =  E'; 

:=  2 arcsin((t - 1)/20; 
fl :=  27r - 5~; 
for each v E  V \ V '  do {Loop 1} 
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let (v, v 1, v2 . . . . .  /)6) be  the b a d  c o n f i g u r a t i o n  tha t  caused  v to  be  de le ted  
by  A l g o r i t h m  4.5; 
if v l w E E '  exists  such t ha t  / v v l w  < fl 

then  m a r k / ) l w  (we say  t ha t  v~w is m a r k e d  nea r  v~ a n d  t ha t  v caused  
v~w to  be m a r k e d  near / )1) ;  

else E : =  E u {vvl}; 
whi le  a m a r k e d  edge  x y  ~ E exists  d o  {Loop 2} 

let  X = {x l, x2} ___ V be cen te rs  of  b a d  c o n f i g u r a t i o n s  t ha t  caused  xy  
to  be m a r k e d  n e a r  x;  

let Y = {y~, Y2} --- V be centers  of  b a d  c o n f i g u r a t i o n s  t ha t  caused  xy  
to  be  m a r k e d  nea r  y;  

if  [XI = 1 ([Y[ = 1) then  c o n s i d e r  x l  = x2 (Yl = Y2); 
if X = ~ (Y = ~ )  then  cons ide r  x = x l  = x2 (y = Yl = Y2); 
re labe l  the po in t s  in X and  Y to m a k e  d(xl, x ) <_ d(x2, x ) and  

d(Yl, Y) ~ d(y2, Y); 
{see Fig.  5(a)} 

E : =  (E\{xy})  u {x lx ,  x l x2 ,  YlY, Y~Y2, x~yl};  
o u t p u t  G = (V, E); 
end. 

Proposition 4.8. Let G --- (V, E) be the output o f  Algorithm 4.7 on input V and tl, 
where V i s a  set o f  points in the plane and t 1 = 116. Then the following hold: 

(i) An edge x y  ~ E' is marked near x at most twice. 
(ii) A(G) < 5. 

(iii) I f  v causes the edge xy  to be marked near x, then do(x, v) < t2d(x, v), where 
t2 = 2.78. 

(iv) do(x , y) < t l t3d(x , y) for each pair x, y ~  V', where t 3 = 4.15. 
(v) da(x, y) < (3 t i t  3 + 2t2)d(x, y) < 2000d(x, y) for  each pair x, y e  V. 

X 

X. 2 v 

\ 7 2  ~. 

Y 

(a) (b) 

Fig. 5. Illustration for Algorithm 4.7 and Proposition 4.8. 

Z1 
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Proof Let ct = 2 a r c s i n ( ( t -  1)/2t) and fl = 2 n -  5~ = 62.7. Taking into con- 
sideration that  if a point  v causes the edge xy to be marked  near x, then /_ vxy < fl, 
item (i) is an easy consequence of Proposi t ion 4.6(iii). This proper ty  was used in 
the algori thm to assume that  IXI, I Y] < 2. 

To  prove (ii) observe that: 

(1) Whenever  an edge VVx is added to E during the execution of Loop  1, then 
Lvv~w > 3 for each v ~ w e E  such that  v ~ w. This is true by construction 
if vlw ~ E', and by Proposi t ion 4.6(iii) if v~w e E\E'.  Thus, adding the facts 
that  A(G') _< 5 and that G' satisfies Proposi t ion 2.1, we conclude that  when 
the a lgori thm exits Loop  1 it is still true that  A(G) _< 5. 

(2) In Loop  2 the degree in G of vertices in V' stays the same. 
(3) The degree in G of a vertex v ~ VkV' is at most  3. 

We now prove (iii). If xy is marked  near  x exactly once, then do(x, v) = d(x, v). 
So, suppose that  two points, x~ and x 2, caused xy  to be marked  near x (by (i), at  
most two such vertices exist). Consider Fig. 5(b). Since the edge was marked  in 
Loop 1 we have that  01 < fl, 02 _< ft. By Loop  2 we have that  d(xl, x) < d(x2, x), 
x2x ~, x~x e E. So, if v = xl  there is nothing to prove. So, we assume that  v = x 2. 
From the above observat ions we have that  

do(x, x2) < dG(x2, Xl) + dc,(Xl, x) = d(x2, Xl) + d(x1, x). 

On the other hand, 

d2(xl, x2) = d2(x, x:)  + d2(x, x l )  - 2 cos(02 + 01)d(x, x2)d(x, xl) 

< da(x, x2) + d2(x, xl)  - 2 cos(2fl)d(x, x2)d(x, Xl) 

< 2d2(x, x2)(1 - cos(2fl)) 

= 4d2(x, x2) sin a 13. 

Using the previous two inequalities we obtain 

do(v, x) < 2d(v, x) sin fl + d(Xl, x) ~ (2 sin fl + 1)d(v, x) < 2.79d(v, x) = t2d(v, x). 

We now prove  (iv). 

Case 1: xyE E'. I f x y  is never marked  near  x (y) by Algori thm 4.7, then let xl  = x 
(Yl = Y). Otherwise,  let xl  (Yl) be such that  d(x 1, x) (d(yl, y)) is min imum for the 
points which marked  xy  near  x (y). 

By construct ion we have that  

da(x, y) < d(x, x~) + d(x~, y~) + d(yl, y). (16) 

If x I and yl are in the same semiplane defined by the line containing xy, we may  
switch x~ (or x2) to the other semiplane without changing the absolute value of 
)'1. In this modified configurat ion the distance in the graph between x and y is 
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larger than the original distance. Thus, we assume the worst  case, i.e., x 1 and Yl 
are not in the same semiplane defined by the line containing xy (see Fig. 5(a)). 

Since the points  x, y are in V', at  the t ime that  xl  was deleted the vertex y was 
in the set V'. This implies by the definition of a bad configurat ion that  d(xl, x) < 
d(xl, y). Similarly, it is true that  d(yl, y) < d(yl, x). This implies that  

As in the proof  of (iii) we have that  

/'c 
])3 ~ - .  (17) 

2 

71 < f l  and Y2~f l .  (18) 

Let z the point  defined by the intersection of  the lines xy and x ly  1. F r o m  (16) 
we obtain 

do(x, y) < d(x, xl)  + d(xx, z) + d(z, Yl) + d(yl, y). 

Observe that  d(x, z) sin ])1 = d(Xl, z) sin(n - ])1 - Y3) and 

Thus,  

d(x, z) sin ~3 = d(x, xt) sin(rt - 71 - 73)- 

d(x, x l ) + d ( x  1, z ) = d ( x ,  z) 
sin ])1 + sin 73 

sin(])1 + ])3) 

(19) 

The  m a x i m u m  of the function (sin 71 + sin y3)/sin(71 + ])3) subject to (17) and (18) 
occurs when ])3 = n/2 and 71 = fl, implying that  

Similarly 

d(x, xl) + d(xx, z) < d(x, z) 

d(y, Yl) + d(Yl, z) < d(y, z) 

Using the last two inequalities in (19) we obtain 

s i n f l + l  s i n f l +  1 
ddx, y) _< d(x, z) + d(y, z) 

cos/~ cos/~ 

sin fl + 1 

cos fl 

sin fl + 1 

cos fl 

- d ( x ,  y) 

= t3 d(x, y). 

sin fl + 1 
< 4.18d(x, y) 

COS fl 
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Case 2: xy r E'. Then, since G' is the output of the Greedy Algorithm, there is a 
path P in G' that has total length < tld(x, y). By the previous case, for each edge 
vw in P there is a path in G such that de(v, w) < t3d(v, w). Therefore, the quotient  
between the length of an xy-path in G and the distance between x and y is less 
than t i t  3 . 

We now prove (v). If x (y )e  V', then let vl = x (/)'1 = Y). Otherwise, let vl (/)'1) 
be the point nearest to x (y) in the bad configuration that caused x (y) to be 
deleted. Either way we have that /)1, v'l e V' (in the last case, this follows from 
Proposit ion 4.6(ii)). It follows from (iv) that 

d~(/)l, /)'l) < tltsd(/)l, v'l). (20) 

It follows from (iii) that 

do( x, /)1) < tzd(x, /)1) and do(y, v'l) < t2d(Y, v'l). (21) 

It follows from Definition 4.3(i) that 

d(x, /)1) < d(x, y). (22) 

It also follows from Definition 4.3(i) that d(y, v'l) <- d(y, vl). Using this inequality, 
the triangle inequality property,  and (22) it follows that 

d(y, /)'1) <- d(y, vl) <- d(x, y) + d(x, vl) <_ 2d(x, y). (23) 

Using (20)-(23) and the triangle inequality property we have that 

do(x, Y) <- da(x, vl) + do(v1, v'O + da(v'l, Y) 

< tzd(x, /)1) + tlt3d(vl, v'l) + t2d(/)'l, y) 

< t2d(x, y) + tlt3(d(v x, x) + d(x, y) + d(y, v'O) + 2tzd(x, Y) 

<_ tzd(x , y) + 4tltsd(x, y) + 2 t j ( x ,  y) 

_< (4tit3 + 3t2)d(x, y) < 2000d(x, y). [ ]  

Remark 4.9. Many  bounds in the proofs are not the best possible. Since we could 
not obtain the final constant less than a 100, we would rather simplify the proof  
than obtain a tighter bound. 

5. Open Problems 

1. It remains open whether or not A = 4 or 3 suffices to approximate planar 
distances within a constant factor. Dobkin  et al. [5] observed that for A = 2 such 
a result is impossible. 
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2. Find better upper bounds on the number of edges sufficient to approximate 
d-dimensional Euclidean distances. 

3. Also considering the d-dimensional Euclidean space, nontrivial lower bounds 
are not known either for A or for the number of edges necessary to the 
approximation. 

4. Consider that we are allowed to, at our convenience, add extra points to the 
given set of points. (A concept similar to Steiner trees.) Would we be able to prove 
better upper bounds on the number of edges sufficient to approximate Euclidean 
distances? 

5. What is the complexity of the following problem: 

Ins tance:  V c R a, t, m >_ 1. 
Question: Does V have a t-spanner with at most m edges? 

We observe that Peleg and Sch/iffer [11] have proved that this problem is 
NP-complete in the case that V is from an arbitrary metric space. 

6. Find a polynomial-time algorithm d to build t-spanners such that d has 
"performance guarantees," i.e., on every input V c Ra, ~r builds a t-spanner 
G = (V, E) such that [El _< c" eopt, where c is a constant and eop t is the minimum 
number of edges over all t-spanners of K 

Remark 5.1. After the submission of this paper, the author received a preprint 
by Salowe [15] who proved that, for any fixed dimension d, a constant t exists 
such that any set of points in the d-dimensional Euclidean space has a t-spanner 
with maximum degree 4. 
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