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Abstract

We present a general technique for approximating various descriptors of the extent of a setP of n points inRd when the dimensiond is an arbitrary fixed constant. For a given extent
measure� and a parameter" > 0, it computes in timeO(n+ 1="O(1)) a subsetQ � P of size1="O(1), with the property that(1� ")�(P ) � �(Q) � �(P ). The specific applications of our
technique include"-approximation algorithms for (i) computing diameter, width, and smallest
bounding box, ball, and cylinder ofP , (ii) maintaining all the previous measures for a set of
moving points, and (iii) fitting spheres and cylinders through a point setP . Our algorithms are
considerably simpler, and faster in many cases, than previously known algorithms.

1 Introduction

Motivated by a variety of applications, considerable work has been done on measuring various
descriptors of the extent of a setP of n points inRd . We refer to such measures asextent measures
of P . Roughly speaking, an extent measure ofP either computes certain statistics ofP itself or it
computes certain statistics of a (possibly nonconvex) geometric shape (e.g. sphere, box, cylinder,
etc.) enclosingP . Examples of the former include computing thekth largest distance between pairs
of points inP , and the examples of the latter include computing the smallest radius of a sphere (or
cylinder), the minimum volume (or surface area) of a box, andthe smallest width of a slab (or a�Research by the first author is supported by NSF under grants CCR-00-86013, EIA-98-70724, EIA-01-31905, and
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spherical or cylindrical shell) that containP . AlthoughP is assumed to be stationary in most of
the work done so far, there has been some recent work on maintaining extent measures of a set of
moving points [4].

Shape fitting, a fundamental problem in computational geometry, computer vision, machine
learning, data mining, and many other areas, is closely related to computing extent measures. A
widely used shape-fitting problem asks for finding a shape that best fitsP under some “fitting” cri-
terion. A typical criterion for measuring how well a shape
 fitsP , denoted as�(P; 
), is the maxi-
mum distance between a point ofP and its nearest point on
, i.e.,�(P; 
) = maxp2P minq2
 d(p; q).
Then one can define the extent measure ofP to be�(P ) = min
 �(P; 
), where the minimum is
taken over a family of shapes (such as points, lines, hyperplanes, spheres, etc.). For example, the
problem of finding the minimum radius sphere (resp. cylinder) enclosingP is the same as finding
the point (resp. line) that fitsP best, and the problem of finding the smallest width slab (resp. spher-
ical shell, cylindrical shell)1 is the same as finding the hyperplane (resp. sphere, cylinder) that fitsP best.

The exact algorithm for computing extent measures are generally expensive, e.g., the best known
algorithms for computing the smallest volume bounding box containingP in R3 requireO(n3)
time. Consequently, attention has shifted to developing approximation algorithms [10, 34]. Despite
considerable work, no unified theory has evolved for computing extent measures approximately.
Ideally, one would like to argue that for any extent measure� and for any given parameter", there
exists a subsetQ � P of size1="O(1) so that�(Q) � (1� ")�(P ). No such result is known except
in a few special cases. It is known that an arbitrary convex bodyC can be approximated by a convex
polytopeQ so that the Hausdorff distance betweenC andQ is at most" � diam(C) and so thatQ
is either defined as the convex hull of a set of1="O(1) points or the intersection of a set of1="O(1)
halfspaces. If the given extent measure� of P is the same as that ofCH(P ), (e.g., diameter and
width), then one can approximateCH(P ) byQ, compute�(Q), and argue that�(Q) approximates�(P ). Although this approach has been used for computing a few extent measures ofP [10, 16], it
does not work if the extent measure� is defined in terms of a nonconvex shape (such as spherical
shell) containingP .

This paper is a step toward the aforementioned goal of developing a unified theory for approxi-
mating extent measures. We introduce the notion of an"-kernelof a point setP . Roughly speaking,
a subsetQ � P is called an"-kernel ofP if for every slabW containingQ, the expanded slab(1 + ")W containsP . We present anO(n + 1="d�1)-time algorithm for computing an"-kernel
of P of sizeO(1="d�1) or anO(n + 1="3(d�1)=2)-time algorithm for computing an"-kernel of
sizeO(1="(d�1)=2). These algorithms are improved variants of the algorithm described in [10] for
a specific optimization problem. We call an extent measure� faithful if there exists a constant� > 0 such that for any"-kernelQ of P , �(Q) � (1 � �")�(P ). The algorithm for computing
an"-kernel immediately gives anO(n + 1="O(1)) time algorithm for computing faithful measures
approximately. This approach was used previously for some faithful measures [10, 16, 34] and we
merely state it here in a general context. In order to handle unfaithful measures, we introduce the
notion of an"-kernel for a family of functions. LetF be a family of(d� 1)-variate functions. We

1A slabis a region lying between two parallel hyperplanes; aspherical shellis the region lying between two concentric
spheres; acylindrical shellis the region lying between two coaxial cylinders.
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define theextentof F at a pointx 2 Rd�1 to beEF (x) = maxf2F f(x)�minf2F f(x). We call
a subsetG � F an"-kernel ofF if EG(x) � (1 � ")EF (x) for all x 2 Rd�1 . Using our result on"-kernel of points and the linearization technique, we show that we can compute inO(n+1="O(1))
time an"-kernel ofF of sizeO(1="r�) if eachfi is of the formg1=ri , wheregi is a polynomial,r is a positive integer,� = min fd� 1; k=2g, andk is the dimension of linearization forgi’s (see
Section 4 for the definition ofk). Our algorithms for computing"-kernels can be adapted to handle
insertions and deletions of points (or functions) efficiently, see Section 5. If we only insert points,
we can maintain an"-kernel using only(log(n)=")O(1) space.

We show that many extent-measure problems can be formulatedas computingminx EF (x),
whereF is obtained by transforming each input point to a function. Specific applications of our
technique include the following:

Spherical shell problem. Given a pointx in Rd and two real numbers0 � r � R, thespherical
shell�(x; r;R) is the closed region lying between the two concentric spheres of radiir andR withx as their center, i.e., �(x; r;R) = np 2 Rd j r � d(x; p) � Ro ;
whered(x; p) is the Euclidean distance between the pointsp and linex. Thewidth of �(x; r;R) isR�r. In theapproximate spherical shellproblem, we are given a setP of n points and a parameter" > 0, and we want to compute a spherical shell containingP whose width is at most(1 + ") times
the width of the minimum-width spherical shell containingP .

This problem, motivated by applications in computational metrology, has been widely studied;
see [2, 8, 16] and the references therein. The best known exact algorithm runs inO(n3=2+Æ) time inR2 , for anyÆ > 0, and inO(n2) time inR3 . The best known"-approximation algorithm, proposed
by Chan [16], takes aboutO(n + 1="d2=4) time. Our technique leads to anO(n + 1="3d)-time
algorithm for thed-dimensional approximate spherical-shell problem, thereby improving Chan’s
algorithm.

Cylindrical shell problem. Given a linè in Rd and two real numbers0 � r � R, thecylindrical
shell�(`; r; R) is the closed region lying between two co-axial cylinders ofradii r andR with ` as
their axis, i.e., �(`; r; R) = np 2 Rd ��� r � d(`; p) � Ro ;
whered(`; p) is the Euclidean distance between the pointp and line`. Thewidth of �(`; r; R) isR� r.

In theapproximate cylindrical shellproblem, we are given a setP of n points and a parameter" > 0, and we want to compute a cylindrical shell containingP whose width is at most(1 + ")
times the width of the minimum-width cylindrical shell containingP .

Agarwalet al.[3] present an algorithm that computes the exact minimum-width cylindrical shell
for a set ofn points inR3 inO(n5) time. They also present an algorithm that runs in roughlyO(n2)
time and computes a shell whose width is at most26 times the optimal. For this problem, our
technique gives an"-approximation algorithm that runs inO(n+1="O(d2)) time inRd , a significant
improvement over their algorithm.
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Maintaining faithful measures of moving points. Let P be a set ofn points inRd , each point
moving independently. Many applications call for maintaining extent measures ofP as the points
move with time. For example, various indexing structures, which answer range-searching queries
or nearest-neighbor queries onP , need an algorithm for maintaining the smallest axes-parallel box
containingP [1, 31, 32]. Agarwalet al. [4] have described kinetic data structures for maintaininga
number of extent measures of points moving in the plane. Theyalso show that most of these extent
measures are expensive to maintain — the diametral pair of a set of points, each moving with a fixed
velocity in the plane, can change
(n2) times, and no subcubic bound is known on the number of
triples defining the smallest enclosing ball of a set of points moving in the plane. This has raised
the question whether faster approximation algorithms exist for maintaining an extent-measure of a
set of moving points.

For any" > 0, we say that a subsetQ � P is an"-kernel ofP if Q(t) is an"-kernel ofP (t)
for everyt. We show that our techniques can compute an"-kernel of size1="O(1). For instance,
given any setP of points inRd with linear motion, our technique can compute, inO(n + 1="2d)
time, an"-kernelQ � P of sizeO(1="2d). It follows that for any faithful measure�, there exists
a constant� > 0 such that(1 � �")�(P (t)) � �(Q(t)) for everyt. We can simply maintain�
for just the subsetQ. We can thus efficiently maintain an"-approximation to all of the following
measures ofP : diameter, minimum-radius enclosing ball, width, minimum-volume bounding box
of arbitrary orientation, directional width. If we want to maintain an"-approximation to the smallest
axes-parallel box enclosingP , the size ofQ can be reduced toO(1=p"), for any fixed dimension.
These results generalize to algebraic motion and to unfaithful measures such as minimum-width
spherical/cylindrical shell. Our scheme can also allow efficient insertions into and deletions from
the setP . Note that the"-kernel does not change with time unless the trajectory of a point changes.
These results must be contrasted with the schemes for maintaining the exact extent measures, which
require at least quadratic updates.

Maintaining faithful measures in a streaming model. Motivated by various applications, the
need for analyzing and processing massive data in real time has led to a flurry of activity related to
performing computations on adata stream. The goal is to maintain a summary of the input data
using little space and processing time, as the data objects arrives. The efficiency of an algorithm in
this model is measured in terms of the size of the working space and the time spent on performing
the computation on a new data object. See [18, 23, 24, 26, 29] and references therein for recent algo-
rithms developed in the data-stream model. Our technique can be adapted to maintain various extent
measures approximately in the streaming model. Specifically, an"-kernel of sizeO(1="(d�1)=2) of
a stream of points inRd can be maintained using a data structure of sizeO(logd(n)="(d�1)=2) that
spendsO(1="d�1) amortized time to process each new point. The same result holds for"-kernels
of linear functions. Consequently, we can maintain an"-approximation of the width of a stream of
points inRd in amortizedO(1="d�1) time usingO(logd(n)="(d�1)=2) space. Similar results can be
obtained for various other problems such as maintaining theminimum-width spherical or cylindrical
shell containing the point set.

The paper is organized as follows. In Section 2, we formally define"-kernels for points and
functions and make a few simple observations about them. In Section 3 we show that any set of
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linear functions has an"-kernel of small size. Section 4 shows that this property is also true for
polynomials and related functions, using linearization. Section 5 shows that our technique can be
dynamized. In Section 6, we apply these ideas to the problemsmentioned above.

x x
EF (x) EG(x)EF (x)

LF (x)UF (x)
Figure 1. (i) Lower and upper envelopes and the extent of a family of linear functions; the extent at any point is the
length of the vertical segment connecting lower and upper envelopes. (ii) An"-kernelG of F ; dashed edges denote the
envelopes ofF , and the thick lines denote the envelopes ofG.

2 Preliminaries

In this section we define the extent of functions, the directional-width of points, the"-kernel of
points and functions, and arrangements. We also establish some simple claims that will be useful
later. Table 1 (cf. page 32) summarizes the notation used in this paper.

Envelopes and extent. LetF = ff1; : : : ; fng be a set ofn (d� 1)-variate functions defined overx = (x1; : : : ; xd�1) 2 Rd�1 . Thelower envelopeof F is the graph of the functionLF : Rd�1 ! R
defined asLF (x) = minf2F f(x): Similarly, theupper envelopeof F is the graph of the functionUF : Rd�1 ! R defined asUF (x) = maxf2F f(x). TheextentEF : Rd�1 ! R of F is defined asEF (x) = UF (x)� LF(x):

Let " > 0 be a parameter, and let� be a subset ofRd�1 . We say that a subsetG � F is an"-kernelof F within � if (1� ")EF (x) � EG(x)
for eachx 2 �. Obviously,EG(x) � EF (x), asG � F . If � = Rd�1 , we say thatG is an"-kernel
of F .

Lemma 2.1 LetF = ff1; : : : ; fng be a family of(d � 1)-variate functions,'(x);  (x) two other(d � 1)-variate functions, and" > 0 a parameter. Letbfi(x) = '(x) +  (x)fi(x), and setbF =nbfi j 1 � i � no. If K is an"-kernel ofF within a region� � Rd�1 , then bK = nbfi j fi 2 Ko is

an "-kernel of bF within �.
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Sd�1 Rd�1~u u�u P : xd = 1
Figure 2. Representing a direction inRd .

Proof: For anyx 2 �,(1� ")E bF (x) = (1� ")"maxbfi2 bF bfi(x)� minbfi2 bF bfi(x)#= (1� ") �maxfi2F('(x) +  (x)fi(x))� minfi2F('(x) +  (x)fi(x))�= (1� ") (x) �maxfi2F fi(x)� minfi2F fi(x)��  (x) �maxfi2K fi(x)� minfi2K fi(x)�= maxfi2K('(x) +  (x)fi(x))� minfi2K('(x) +  (x)fi(x))= EbK(x):
HencebK is an"-kernel of bF .

Directions. We will not distinguish between a vector inRd and the corresponding point inRd . LetP denote the hyperplanexd = 1 in Rd , and letSd�1 represent the sphere of directions inRd . For an
arbitrary vectorv 2 Rd , we will use�(v) = v=jjvjj 2 Sd�1 to denote the direction corresponding
to v. Normally, a direction inRd is represented as a point inSd�1. Since we will not need to
distinguish between directionsx 2 Sd�1 and�x 2 Sd�1, we can represent a directionu� 2 Sd�1
as a pointu in Rd�1 , with the interpretation thateu = (u; 1) 2 P is the central projection of the unit
vectoru�; see Figure 2. Namely,u� = �(eu). Though this representation has the drawback that the
directions inSd�1 lying in the hyperplanexd = 0 are not accounted for, we use this representation
as it will be more convenient for our presentation.

Directional width. We can define the concept of extent for a set of points. For any non-zero
vectorx 2 Rd and a point setP � Rd , we define!(x; P ) = maxp2P hx; pi �minp2P hx; pi ;
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eu
!(u;Q) !(u; P )

Figure 3. A point setP , its "-kernelQ (points with double circles), and their directional widths(scaled appropriately).

whereh�; �i is the inner product. For any setP of points inRd and anyu 2 Rd�1 , we define the
directional widthof P in directionu, denoted by!(u; P ), to be!(u; P ) = !(eu; P ):
It is also called theu-breadthof P , see [22]. Let" > 0 be a parameter, and let� � Rd�1 . A subsetQ � P is called an"-kernelof P within � � Rd�1 if for eachu 2 �,(1� ")!(u; P ) � !(u;Q):
Clearly, !(u;Q) � !(u; P ). If � = Rd�1 , we callQ an "-kernel ofP . Note that!(u;Q) �(1� ")!(u; P ) if and only if for every0 6= � 2 R,!(�eu;Q) � (1� ")!(�eu; P ): (1)

Arrangements. Thearrangementof a collectionJ of m hyperplanes inRd , denoted asA(J ), is
the decomposition of the space into relatively open connected cells of dimensions0; : : : ; d induced
by J , where each cell is a maximal connected set of points lying inthe intersection of a fixed
subset ofJ . The complexity ofA(J ) is defined to be the number of cells of all dimensions in the
arrangement. It is well known that the complexity ofA(J ) isO(md) [9]. A setJ of hyperplanes
is k-uniform if J consists ofk families of either parallel hyperplanes or hyperplanes that share a(d � 2)-flat. In this case, each cell ofA(J ) has at most2k facets. The notion of arrangements
can be extended to a family of (hyper-)surfaces inRd . If G is a family ofm algebraic surfaces of
bounded maximum degree, then the complexity of the arrangement isO(md).
Lemma 2.2 For any" > 0, there is ad(d� 1)-uniform setJ consisting ofO(1=") hyperplanes inRd�1 so that for any two pointsu; v lying in the (closure of the) same cell ofA(J ),ku� � v�k � ":
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(i) (ii)

yx yz x
Figure 4. (i) Grid drawn on each facet of the unit cubeC (d = 3). (ii) Lines inJ ; thick lines correspond to the grid lines
of the edges ofC , and solid (resp. dashed, dashed-dotted) lines correspondto the grid on the face normal to thez-axis
(resp.y-axis,x-axis). The grid lines parallel to thez-axis onC map to the lines passing through the origin, and the grid
lines parallel to thex-axis (resp.y-axis) map to lines parallel to thex-axis (resp.y-axis).

Proof: Partition the boundary of the hypercubeC = [�1;+1℄d in Rd into small (d � 1)-
dimensional “hypercubes” of diameter at most", by laying a uniform(d � 1)-dimensional axis-
parallel grid on each facet ofC ; see Figure 4 (i). Each such grid is formed by(d � 1) families of
parallel(d�2)-flats. We extend each such(d�2)-flat f into a(d�1)-hyperplanef̂ , by considering
the unique hyperplane that passes through it and the origin,and then intersect it withP (namely, the
resulting(d � 2)-flat lies on the hyperplaneP : xd = 1 in Rd and as such can be regarded as a
hyperplane inRd�1 ). Because of symmetry, the(d� 2)-flatsxi = �1; xj = Æ (i.e., the intersection
of hyperplanesxi = �1 andxj = Æ) andxi = 1; xj = �Æ map to the same hyperplane, so it
suffices to extend the(d� 2)-flats of the grid on the “front” facets ofC , i.e., the facets withxi = 1
for 1 � i � d. We claim that the resulting set composed ofd(d�1) families of uniform hyperplanes
is the desired set of hyperplanes.

Formally, letF (i; j; �) denote the(d� 2)-flat xi = 1; xj = � in Rd . Set
 = lpd="m, and for

integersi; j; l, let F = fF (i; j; l=
) j 1 � i 6= j � d;�
 � l � 
g :
For a(d � 2)-flat F 2 F not passing through origin, let�(F ) be the(d � 2)-hyperplane inRd�1
defined as �(F ) = fx 2 Rd�1 j (x; 1) 2 a�(F [ f0g) \ Pg:
In other words,�(F ) is the(d� 2)-hyperplane inRd�1 corresponding to the intersection ofP with
the (d � 1)-hyperplanea�(F [ f0g). We setJ = f�(F ) j F 2 Fg. See Figure 4(ii). ClearlyJ
is ad(d � 1)-uniform family of hyperplanes because for any fixed pairi; j, either all hyperplanes�(F (i; j; l=
)) in F are parallel or all of them pass through a(d� 3)-flat.

Let u; v 2 Rd�1 be any two points on the same cellf of A(J ). Let u0 (resp.v0) be the
point where the line joining the origin andeu (resp.ev) intersects�C . Sinceu0; v0 2 �C , we haveku0k ; kv0k � 1. Our construction ensures thatku0 � v0k � ". These two facts easily imply thatku� � v�k � ". Hence,A(Jd�1) is the required partition.

Remark 2.3 An interesting open question is to obtain a tight bound on theminimum number of
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uniform families of hyperplanes needed to achieve the partition of Lemma 2.2. Agarwal and Ma-
toušek [6] have shown that the number of families is at least2d� 3, and they conjecture this bound
to be tight.

Duality. Let H = fh1; : : : ; hng be a family of(d � 1)-variate linear functions and" > 0 a
parameter. We define aduality transformation that maps the(d�1)-variate function (or a hyperplane
in Rd ) h : xd = a1x1 + a2x2 + � � � + ad�1xd�1 + ad to the pointh? = (a1; a2; : : : ; ad�1; ad) inRd . LetH? = fh? j h 2 Hg. The following lemma is immediate from the definition of duality.

Lemma 2.4 LetH = fh1; : : : ; hng be a family of(d � 1)-variate linear functions and" > 0 a
parameter. A subsetK� � H� is an"-kernel ofH� within a (d� 1)-dimensional region� � Rd�1
if and only ifK is an"-kernel ofH within �.

3 Approximating the Extent of Linear Functions

In this section we describe algorithms for computing an"-kernel of a set of linear functions whose
size depends only on" andd. We first show that if we can compute an"-kernel of a “fat” point set
contained in the unit hypercubeC = [�1;+1℄d, then we can also compute an"-kernel of an arbitrary
point set. We then describe fast algorithms for computing"-kernels of fat point sets. Finally, we use
Lemma 2.4 to construct"-kernels of the extent of linear functions.

Reduction to a fat point set. We begin by proving a simple lemma, which will be crucial for
reducing the problem of computing an"-kernel for an arbitrary point set to the same problem for a
fat point set.

Lemma 3.1 Let T (x) = Mx be an affine transformation fromRd to Rd , whereM 2 Rd�d is
non-singular, letP be a set of points inRd , and let� be a(d � 1)-dimensional convex region inRd�1 . Define 
M (�) = fu 2 Rd�1 j u� = ��(MT ez) for somez 2 �g;
whereu� = �(eu) as defined above (see Table 1 for notations).2 T (Q) � T (P ) is an "-kernel ofT (P ) within � if and only ifQ is an"-kernel ofP within 
M(�).

Proof: For any vectorx 2 Rd ,hx;Mpi = xTMp = 
MTx; p� :
Therefore for anyz 2 Rd�1 ,!(ez; T (Q)) = maxq2Q hez;Mqi �minq2Q hez;Mqi= maxq2Q 
MT ez; q��minq2Q 
MT ez; q�= !(MT ez;Q):

2let �� = fu� j u 2 �g. If T (��) intersects the equator ofSd�1, then
M(�) can consist of two unbounded
regions.
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Similarly, we have!(ez; T (P )) = !(MT ez; P ).
SupposeT (Q) is an"-kernel ofT (P ) within �. Consider anyu 2 
M (�) and letz 2 � be

such thatu� = ��(MT ez). SinceT (Q) is an"-kernel ofT (P ) within � we have!(ez; T (Q)) � (1� ")!(ez; T (P )):
Hence, !(MT ez;Q) = !(ez; T (Q)) � (1� ")!(ez; T (P )) = (1� ")!(MT ez; P ):
Sinceu� = ��(MT ez), we conclude using (1) that!(u;Q) � (1 � ")!(u; P ). ThusQ is an"-kernel ofP within 
M(�).

Conversely, supposeQ is an"-kernel ofP within 
M(�). LetK � � be the set of all pointsz
such thatMT ez lies on the hyperplanexd = 0. Note thatK is contained in a(d � 2)-dimensional
hyperplane inRd�1 . Consider anyz 2 �nK; there is au 2 
M(�) such thatu� = ��(MT ez).
SinceQ is an"-kernel ofP within 
M(�), we have!(u;Q) � (1� ")!(u; P ). This implies (along
with (1)) that !(MT ez;Q) � (1� ")!(MT ez; P ):
Hence !(ez; T (Q)) = !(MT ez;Q) � (1� ")!(MT ez; P ) = (1� ")!(ez; T (P ));
which means thatT (Q) is an"-kernel ofT (P ) within �nK. SinceK is contained in a(d � 2)-
dimensional “slice” of the(d � 1)-dimensional region�, a standard limit argument implies thatT (Q) is an"-kernel ofT (P ) within K as well.

We callP �-fat, for � � 1, if there exists a pointp 2 Rd and a hypercubeC centered at origin
so thatp+ C � CH(P ) � p+ �C .

Lemma 3.2 LetP be a set ofn points inRd , and let" be a parameter. We can find inO(n) time an
affine transformT such thatT (P ) is �d-fat, where�d is a constant depending only ond.

Proof: Using the algorithm of Barequet and Har-Peled [10], we compute inO(n) time two concen-
tric, homothetic boxesB0 andB such that

(a) B is obtained fromB0 by scaling by a factor of at mostad, a constant that depends only ond,

(b) B0 � CH(P ) � B.

LetR 2 Rd�d be a rotation transform such thatR(B) is an axes-parallel box. Finally, letS be the
scaling transform that mapsR(B) to a translate ofC . SetT (x) = (S � R)x. By construction, the
point setP 0 = T (P ) is ad-fat. This completes the proof of the first part of the lemma. It is easy to
verify thatM = S �R is non-singular.

Lemmas 3.1 and 3.2 imply that it suffices to describe an algorithm for computing an"-kernel of
an�-fat point set for some� < 1. We assume thatC � P � [��; �℄d; this is no loss of generality
because for any vectort 2 Rd , if Q is an"-kernel ofP within fug, for someu 2 Rd�1 , thenQ+ t
is an"-kernel ofP + t within fug. The following simple lemma, which follows immediately from
the observation that for anyu 2 Rd there is a pointq 2 CH(P ) such thathu; qi � � kuk, will be
useful for our analysis.
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Lemma 3.3 Let P � C be a set ofn points inRd , which is�-fat. For anyx 2 Rd , !(x; P ) �2� kxk.
A weaker bound on "-kernel. Next, we prove a weaker bound on the size of an"-kernel for a fat
point set.

Lemma 3.4 LetP be a�-fat point set contained inC = [�1;+1℄d, and let" > 0 be a parameter.
SupposeP 0 is a point set with the following property: for anyp 2 P , there is ap0 2 P 0 such thatd(p; p0) � "�. Then(1� ")!(x; P ) � !(x; P 0) for anyx 2 Rd .

Proof: By Lemma 3.3,!(x; P ) � 2� kxk. Let p; q 2 P be two points such that!(x; fp; qg) = !(x; P ) � 2� kxk ;
and letp0; q0 2 P 0 be two points such thatd(p; p0); d(q; q0) � "�.

Letw = p� q andw0 = p0 � q0. Then

w �w0

 � kp� p0k+ kq � q0k � 2"�:
Moreover, !(x; fp; qg) = max fhp; xi ; hq; xig �min fhp; xi ; hq; xig= jhp; xi � hq; xij = j hw; xi j:
Similarly,!(x; fp0; q0g) = j hw0; xi j.!(x; P ) � !(x; P 0) � !(x; fp; qg)� !(x;�p0; q0	)= j hw; xi j � j 
w0; x� j� j 
w � w0; x� j � 

w � w0

 � kxk� 2"� kxk� "!(x; P ):

Using the above lemma, we can construct an"-kernel of a fat point set as follows.

Lemma 3.5 LetP be a�-fat point set contained inC . For any" > 0, we can compute, inO(n+1=(�")d�1) time, a subsetQ � P ofO(1=(�")d�1) points that constitutes an"-kernel ofP .

Proof: Let Æ be the largest value such thatÆ � ("=pd)� and1=Æ is an integer. Observe thatÆ � ("=(2pd))�. We consider thed-dimensional gridZZ of sizeÆ. That is,ZZ = f(Æi1; : : : ; Æid) j i1; : : : ; id 2 Zg :
For each(d � 1)-tupleI = (i1; : : : ; id�1), letC+I (resp.C�I ) be the highest (resp. lowest) cell (inxd-direction) ofZZ of the form[Æi1; Æ(i1+1)℄�� � �� [Æid�1; Æ(id�1+1)℄� [Ær; Æ(r+1)℄, r 2 Z, that
contains a point ofP ; if none of the cells in this column contains a point ofP , we defineC�I ; C+I to
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� = �(x) x
yS

�(y)� �(x)�(y) x� �y � �(y)CH(Q0)
u�

Figure 5. Illustration of the proof of Lemma 3.6;� is the farthest vertex ofCH(Q0) in directionu�; the two double-circles
denoteb(y) (for d = 2).

be the empty set. LetB = SI(C�I [C+I ). SinceP � CH(B), !(u; P ) � !(u; CH(B)) = !(u;B)
for anyu 2 Rd�1 . Furthermore, we haveB � C .

For each(d � 1)-tuple I, we choose one point fromP \ C�I and another point fromC+I \ P
(if C+I andC�I are not empty) and add both of them toQ. SinceP � C = [�1;+1℄d, jQj =O(1=(�")d�1);Q can be constructed inO(n+1=(�")d�1) time, assuming that the ceiling operation
(i.e., d e) can be performed in constant time. For each grid cellC that contributes toB, we have
chosen inQ one point fromP \ C. Therefore for every pointp 2 B, there is a pointq 2 Q with
the property thatd(p; q) � "�. Hence, by Lemma 3.4, for anyu 2 Rd�1 ,(1� ")!(u; P ) � (1� ")!(u;B) � !(u;Q);
thereby implying thatQ is an"-kernel ofP .

A stronger bound on "-kernel. Dudley [19] and Bronshteyn and Ivanov [13] have shown that
given a convex bodyC, which is contained in a unit ball inRd , and a parameter" > 0, one can
compute a convex polytopeC 0 so that the Hausdorff distance betweenC andC 0 is at most". Dudley
representsC 0 as the intersection ofO(1="(d�1)=2) halfspaces and Bronshteyn and Ivanov representC 0 as the convex hull of a set ofO(1="(d�1)=2) points. In the next lemma we use a variant of the
construction in [13] to generate a set ofO(1="(d�1)=2) points that forms an"-kernel ofP .

Lemma 3.6 LetP be a�-fat point set inC . For any" > 0, we can compute, inO(n+1=(�")3(d�1)=2)
time, a subsetQ � P ofO(1=(�")(d�1)=2) points that is an"-kernel ofP .

Proof: Let S be the sphere of radius
pd + 1 centered at the center of the unit hypercubeC

containingP . Notice that the distance between any point on the sphere andany point within the
unit cube is at least1. Using Lemma 3.5, we compute a setQ0 � P of O(1=(�")d�1) points that
is an "2 -kernel ofP . Let Æ = p"�=2. We compute a setI of O(1=Æd�1) = O(1=(�")(d�1)=2)
points on the sphereS such that for any pointx on sphereS (e.g., using the construction in the
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proof of Lemma 2.2), there is a pointy 2 I such thatjjx � yjj � Æ. For each pointy 2 I, we
then compute the point�(y) on CH(Q0) that is closest toy. Using the randomized algorithm of
Gärtner [21], this can be done for eachy in expected timeO(jQ0j) = O(1=(�")d�1). Gärtner in
fact shows that this is an LP-type problem, and therefore we can apply the technique of Chazelle
and Matoušek [17] to obtain a deterministic algorithm withrunning timeO(jQ0j). These algorithms
in fact returns a subsetb(y) � Q0 of at mostd points such that�(y) is in the convex hull ofb(y).
SetQ = Sy2I b(y). It takesO(1=(�")3(d�1)=2) time to computeQ, andjQj = O(1=(�")(d�1)=2).
We now argue thatQ is an"-kernel ofP .

Fix a directionu 2 Rd�1 , and letu� 2 Sd�1 be the unit vector�(eu). Let � 2 Q0 be the point
that maximizeshu�; q0i over all q0 2 Q0. Suppose the ray emanating from� in directionu� hitsS at a pointx. Then� is the unique point onCH(Q0) nearest tox, i.e., � = �(x), because the
hyperplane normal to the vector� � x supportsCH(Q0) at� and separatesx fromQ0. Moreover,x� �(x)kx� �(x)k = �(x� �(x)) = �(x� �) = u� and jjx� �(x)jj � 1 = jju�jj: (2)

Let y 2 I be such thatjjx� yjj � Æ. Since�(y) is the closest point toy in CH(Q0), the hyperplane
normal toy � �(y) and passing through�(y) separatesy and�(x), therefore0 � hy � �(y); �(y)� �(x)i : (3)

See Figure 5. Note that for anya; b 2 Rd , 2 ha; bi � kak2 + kbk2, thereforeha; bi � kbk2 � kak2 : (4)

Now,0 � maxq02Q0 
u�; q0��maxq2Q hu�; qi � hu�; �i � hu�; �(y)i = hu�; �(x)� �(y)i� hx� �(x); �(x) � �(y)i (using (2))� hx� �(x); �(x) � �(y)i+ hy � �(y); �(y)� �(x)i
(using (3))� hx� �(x)� (y � �(y)); �(x) � �(y)i= hx� y; �(x)� �(y)i � k�(x)� �(y)k2� kx� yk2 (using (4))� Æ2 = �"=2:

Hence, maxq2Q heu; qi � maxq02Q0 
eu; q0�� �"2 keuk :
Similarly, we have minq2Q heu; qi � minq2Q0 heu; qi+ �"2 keuk :
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These two inequalities imply that!(eu;Q) � !(eu;Q0)� �" keuk. Using Lemma 3.3, we obtain!(u;Q) = !(eu;Q)� !(eu;Q0)� �" keuk� (1� "=2)!(eu; P )� ("=2)!(eu; P )� (1� ")!(eu; P ) = (1� ")!(u; P ):
Combining Lemmas 3.5 and 3.6 with Lemma 3.2, we obtain the following result.

Theorem 3.7 Let P be a point set inRd , and let " > 0 be a parameter. We can compute inO(n+1="d�1) time an"-kernel ofP of sizeO(1="d�1), or inO(n+1="3(d�1)=2) time an"-kernel
of P of sizeO(1="(d�1)=2).

Proof: Using Lemma 3.2, we compute an affine transformationM such thatM(P ) is�d-fat. As
mentioned above, we can assume thatM(P ) � C . Using Lemma 3.5 or Lemma 3.6, we compute an"-kernelM(Q) of M(P ). Lemma 3.1 (applied toM�1) immediately implies thatP is an"-kernel
of Q.

Combining this theorem with Lemma 2.4, we obtain the following.

Theorem 3.8 LetH be a set ofn (d�1)-variate linear functions, and let" > 0 be a parameter. We
can compute inO(n+ 1="d�1) time an"-kernel ofH of sizeO(1="d�1), or inO(n+ 1="3(d�1)=2)
time an"-kernel of sizeO(1="(d�1)=2).
A decomposition based bound. Next, we show that we can decomposeRd�1 into cells so that a
pair of points make up an"-kernel for the entire point set within each cell of the decomposition.

Lemma 3.9 Let P be an�-fat point set contained inC , and let" > 0 be a parameter. We can
compute, inO(n + 1=(�")3(d�1)=2) time, a setJ of O(1=(�")) d(d � 1)-uniform hyperplanes inRd�1 with the following property: for any cell� 2 A(J ), there are two pointsp�; p0� such thatfp�; p0�g is an"-kernel ofP inside�.

Proof: We first use Lemma 3.6 to compute a subsetQ of O(1=(�")(d�1)=2) points, which is an("=2)-kernel ofP . We compute a setJ of O(1=(�")) hyperplanes, using Lemma 2.2, such that for
any two pointsu; v in the same cell ofA(J ),ku� � v�k � "4pd�:

We choose any pointu� from each cell� 2 A(J ) and compute the pointsp� andp0�, by
examining each point inQ, that achievemaxq2Q hu��; qi andminq2Q hu��; qi, respectively. We
associate the pointsp� andp0� with �.

By Lemma 2.2,A(J ) can be computed inO(n+1=(�")d�1) time. We spendO(1=(�")(d�1)=2)
time at each cell� 2 A(J ) to computep�; p0�. So the total running time of the algorithm isO(n+ 1=(�")3(d�1)=2).
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We now argue thatfp�; p0�g is an"-kernel ofP within �. Let u = u�, p = p�, p0 = p0�.
Let v be another point in�, and letq andq0 be the points inQ that achievemaxq2Q hv�; qi andminq2Q hv�; qi, respectively. SinceQ � C , kp� qk � 2pd.hv�; pi = hu�; pi+ hv� � u�; pi� hu�; qi+ hv� � u�; pi= hv�; qi � hv� � u�; qi+ hv� � u�; pi� hv�; qi � kv� � u�k � kp� qk� hv�; qi � "�4pd � 2pd� hv�; qi � "�2 = hv�; qi � "�2 kv�k :
Thereforehev; pi � hev; qi � ("�=2) kevk. By similar reasoning, we obtain thathev; p0i � hev; q0i +("�=2) kevk. Subtracting this from the previous inequality, we get!(v;�p�; p0�	) � !(v;Q)� "� kevk � (1� "=2)!(v; P ) � ("=2)!(v; P )� (1� ")!(v; P )
This completes the proof of the lemma.

Theorem 3.10 Let P be a set ofn points inRd , and let" > 0 be a parameter. We can compute,
in O(n + 1="3(d�1)=2) time, a setJ of O(1=") d(d � 1)-uniform hyperplanes inRd�1 with the
following property: for any cell� 2 A(J ), there are two pointsp�; p0� such thatfp�; p0�g is an"-kernel ofP inside�.

Proof: By Lemma 3.2, letT (x) = Mx be the affine transform so thatT (P ) is �d-fat. Using
Lemma 3.9, we compute a setH of O(1=") hyperplanes inRd�1 so that for any cell� 2 A(H),
there are two pointsT (q�); T (q0�) such thatfT (q�); T (q0�)g is an"-kernel ofT (P ) within �. For
a hyperplaneh 2 H, let h0 be the(d � 1)-hyperplane containingeh = fex j x 2 hg and passing
through origin, and let̂h = MTh0 \ P. Let g0 denote the(d � 1)-hyperplanexd = 0 and letĝ = MT g0 \ P. We setJ = fĥ j h 2 Hg [ fĝg. (We addĝ because two “antipodal” unbounded
cells inA(H) may get merged into a single cell inA(J n fĝg).) Clearly,J n fĝg is ad(d � 1)-
uniform family. It follows from the construction ofH thatJ is ad(d� 1)-uniform family as well.
It can be argued that any(d � 1)-dimensional cellC in A(J ) is contained in
M(�) for some cell� in A(H). If fT (q�); T (q0�)g is an"-kernel ofT (P ) within �, we associateq� andq0� with C.
Lemma 3.1 implies thatfq�; q0�g is an"-kernel ofP within C. For a lower-dimensional cellD inA(J ), we choose a(d � 1)-dimensional cellC in A(J ) such thatD � �C. If q andq0 are the
points associated withC, we associate them withD as well. A standard limit argument shows thatfq; q0g is an"-kernel ofP within D.

Finally, using Lemma 2.4 we conclude the following.

Theorem 3.11 Given a familyH of n (d � 1)-variate linear functions and a parameter" > 0,
we can compute inO(n + 1="3(d�1)=2) time a familyJ of O(1=") d(d � 1)-uniform hyperplanes

15



in Rd�1 with the following property: for each cell� 2 A(J ), there are two associated linear
functions,h0�; h00� 2 H such thatfh0�; h00�g is an"-kernel ofH inside�.

4 Approximating the Extent for Polynomials and Their Variants

Extent of polynomials. Let F = ff1; : : : ; fng be a family of(d � 1)-variate polynomials and" > 0 a parameter. We use the linearization technique [5, 33] to compute"-kernels forF .
Letf(x; a) be a(d+p�1)-variate polynomial,x 2 Rd�1 anda 2 Rp , such thatfi(x) � f(x; ai)

for someai 2 Rp . There always exists such a polynomial forF . Suppose we can expressf(x; a)
in the form f(x; a) =  0(a) +  1(a)'1(x) + � � �+  k(a)'k(x); (5)

where 0; : : : ;  k arep-variate polynomials and'1; : : : ; 'k are(d � 1)-variate polynomials. We
define the map' : Rd�1 ! Rk '(x) = ('1(x); : : : ; 'k(x)):
Then the image� = �'(x) j x 2 Rd�1	 of Rd�1 is a(d � 1)-dimensional surface inRk , and for
anya 2 Rp , f(x; a) maps to ak-variate linear functionha(y1; : : : ; yk) =  0(a) +  1(a)y1 + � � �+  k(a)yk
in the sense that for anyx 2 Rd�1 , f(x; a) = ha('(x)). We refer tok as thedimensionof lin-
earization. The simplest way to express the polynomialf(x; a) in the form (5) is to writef as a
sum of monomials inx1; : : : ; xd�1 with its coefficients being polynomials ina1 : : : ; ap. Then each
monomial in thex1; : : : ; xd�1 corresponds to one function'i, and its coefficient is the correspond-
ing function i. However, this method does not necessarily give a linearization of the smallest
dimension. For example, letf(x1; x2; a1; a2; a3) be the square of the distance between a point(x1; x2) 2 R2 and a circle with center(a1; a2) and radiusa3, which is the 5-variate polynomialf(x1; x2; a1; a2; a3) = a23 � (x1 � a1)2 � (x2 � a2)2 :
A straightforward application of the above method yields a linearization of dimension 4. However,f can be written in the formf(x1; x2; a1; a2; a3) = [a23 � a21 � a22℄ + [2a1x1℄ + [2a2x2℄� [x21 + x22℄ ; (6)

thus, setting 0(a) = a23 � a21 � a22;  1(a) = 2a1;  2(a) = 2a2;  3(a) = �1;'1(x) = x1; '2(x) = x2; '3(x) = x21 + x22;
we get a linearization of dimension 3. It corresponds to the well-known “lifting” transform to the
unit paraboloid. Agarwal and Matoušek [5] describe an algorithm that computes a linearization of
the smallest dimension.
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Returning to the problem of computing an"-kernel ofF , let H = fhai j 1 � i � ng. Let K
be an"-kernel ofH within a region� 2 Rk . Sincefi(x) = hai('(x)) for anyx 2 Rd�1 , G =ffi j hai 2 Kg is an"-kernel ofF within the region'�1(�\�), where'�1(
) = �x 2 Rd�1 j '(x) 2 
	,
for 
 2 Rk , is the pre-image of
 in Rd�1 . Hence, by Theorem 3.8, we obtain the following.

Theorem 4.1 Let F = ff1; : : : ; fng be a family of(d � 1)-variate polynomials that admits a
linearization of dimensionk, and let" > 0 be a parameter. We can compute an"-kernel ofF of
sizeO(1="k) in timeO(n+ 1="k), or an"-kernel of sizeO(1="k=2) in timeO(n+ 1="3k=2).

For a(k�1)-dimensional hyperplaneh in Rk , leth�1 denote the pre-image'�1(h\�) in Rd�1 ;h�1 is a(d� 2)-dimensional algebraic variety, whose degree depends on the maximum degree of a
polynomial inF and ond. Using Theorem 3.11, we can prove the following.

Theorem 4.2 LetF = ff1; : : : ; fng be a family of(d � 1)-variate polynomials of bounded max-
imum degree that admits a linearization of dimensionk, and let" > 0 be a parameter. We can
compute in timeO(n + 1="3k=2) a familyG of O(1=") algebraic varieties, whose degrees depend
on d and the maximum degree of a polynomial inF , so that for any cell� of A(G), there are two
polynomialsf� ; f 0� 2 F such thatff� ; f 0�g is an"-kernel ofF within � .

Proof: Let H be the linearization ofF of dimensionk. By Theorem 3.11, we can compute inO(n+ 1="3k=2) time a setK of O(1=") k(k � 1)-uniform hyperplanes inRk such that for any cell� of A(K), there exist two hyperplanesh�; h0� such thatfh�; h0�g is an"-kernel ofH within �.
SetG = �h�1 j h 2 K	. Each cell� inA(G) is the pre-image'�1(�\�) of some cell� 2 A(H).
For each cell� 2 A(G), which is the pre-image of� \ �, we setf� = h�1� andf 0� = h0�1� . It is
easily seen thatff� ; f 0�g is an"-kernel ofF within � .

Since
S�2A(G) ff� ; f 0�g is an"-kernel ofF andA(G) hasO(1="d�1) cells [9], combining this

observation with Theorem 4.1 we can conclude the following.

Theorem 4.3 Let F = ff1; : : : ; fng be a family of(d � 1)-variate polynomials that admits a
linearization of dimensionk, and let" > 0 be a parameter. We can compute in timeO(n+1="3k=2)
an "-kernel ofF of sizeO(1="�), where� = minfd� 1; k=2g.

Unlike an arrangement of hyperplanes, it is not known whether an arrangement ofm algebraic
surfaces inRd , each of constant degree, can be decomposed intoO(md) Tarski cells.3 However,
such a decomposition is feasible for the surfaces in Theorem4.1. Indeed, by construction in the
proof of Lemma 2.2, each cell� in A(K) hasO(1) faces, so its pre-image'�1(� \ �) also hasO(1) complexity. We can further refine it intoO(1) Tarski cells. Hence, we can decomposeA(G)
intoO(1="d�1) Tarski cells.

Theorem 4.4 Let F = ff1; : : : ; fng be a family of(d � 1)-variate polynomials that admits a
linearization of dimensionk, and let" > 0 be a parameter. We can compute in timeO(n+1="3k=2)
a decomposition� ofRd�1 intoO(1="d�1) Tarski cells with the following property: for each cell�
in �, there are two polynomialsf� ; f 0� 2 F such thatff� ; f 0�g is an"-kernel ofF within � .

3A k-dimensional semialgebraic set is called aTarski cell if it is homeomorphic to ak-dimensional ball and it is
defined by constant number of polynomial inequalities, eachof which has bounded degree.
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Remark 4.5 Note that the results of Theorems 4.3 and 4.4 are somewhat surprising. In particular,
it implies that ifF is a family of polynomials defined over a single variable (i.e., d = 2), thenF
has an"-kernel of sizeO(1="). We use this observation in Theorem 6.7.

Fractional powers of polynomials. We now consider the problem of computing an"-kernel of
a family of functionsF = �(f1)1=r; : : : ; (fn)1=r	, wherer � 1 is an integer and eachfi is a
polynomial of some bounded degree. This case is considerably harder than handling polynomials
because they can not be linearized directly. In certain special cases this can be overcome by special
considerations of the functions at hand [2, 16]. We, however, prove here that it is enough to compute
anO("r)-kernel of the polynomials inside the roots. We need the following lemma.

Lemma 4.6 Let0 < " < 1 be a parameter,r � 2 an integer, and letÆ = ("=2(r � 1))r. If we have0 � a � A � B � b andB �A � (1� Æ)(b � a), thenB1=r �A1=r � (1� ")(b1=r � a1=r):
Proof: First, observe that for anyx; y and for any integerr � 0,xr � yr = (x� y)(xr�1 + xr�2y + � � �+ xyr�2 + yr�1); (7)

and for any0 � p � 1, xp + yp � (x+ y)p: (8)

Using (7),B1=r �A1=r = (B �A) . �r�1Xi=0 Ai=rB1�(i+1)=r�� (1� Æ)(b � a)� �r�1Xi=0 Ai=rB1�(i+1)=r�� (1� Æ)(b1=r � a1=r)�r�1Xi=0 ai=rb1�(i+1)=r� � �r�1Xi=0 Ai=rB1�(i+1)=r�:
Therefore, for0 � i < r,ai=rb1�(i+1)=r � ai=rB1�(i+1)=r� ai=rB1�(i+1)=r + Æi=rB1�1=r � Æi=rB1�1=r� (ai=r + (ÆB)i=r)B1�(i+1)=r � Æi=rB1�1=r� (a+ ÆB)i=rB1�(i+1)=r � Æi=rB1�1=r

(Using (8) sincei < r)� Ai=rB1�(i+1)=r � Æi=rB1�1=r:
The last inequality holds because, by our assumption,B �A � (1� Æ)(b � a) � (1� Æ)(B � a) ) A� a � Æ(B � a) � ÆB:
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Hence, r�1Xi=0 ai=rb1�(i+1)=r � r�1Xi=1(Ai=rB1�(i+1)=r � Æi=rB1�1=r) +B1�1=r� r�1Xi=1 Ai=rB1�(i+1)=r + (1� (r � 1)Æ1=r)B1�1=r)� (1 � (r � 1)Æ1=r) r�1Xi=0 Ai=rB1�(i+1)=r:
Putting everything together,B1=r �A1=r � (1� Æ)(b1=r � a1=r)(1� (r � 1)Æ1=r)� (1� ("=2(r � 1))r)(1� "=2)(b1=r � a1=r)� (1� ")(b1=r � a1=r):

Hence, by Lemma 4.6, we can obtain the following.

Theorem 4.7 Let F = ff1; : : : ; fng be a family of(d � 1)-variate polynomials that are non-
negative for everyx 2 Rd�1 , let " > 0 be a parameter, andr � 1 be an integer. For any� �Rd�1 , if G is an ("=2(r � 1))r-kernel ofF within �, then

�(fi)1=r j fi 2 G	 is an "-kernel of�(fi)1=r j fi 2 F	 within �.

Combining this with Theorem 4.1 and Theorem 4.3, we can provethe following:

Corollary 4.8 LetF = �(f1)1=r; : : : ; (fn)1=r	 be a family of(d� 1)-variate functions (overx =(x1; : : : ; xd�1) 2 Rd�1 ), wherer � 2 is an integer and eachfi is a polynomial that is non-negative
for everyx 2 Rd�1 , and let" > 0 be a parameter. Supposefi’s admit a linearization of dimensionk. We can compute an"-kernel ofF of sizeO(1="rk) in timeO(n+ 1="rk), or an"-kernel of sizeO(1="r�), where� = min fd� 1; k=2g, in O(n+ 1="3rk=2) time.

Similarly, by Theorem 4.4, we can prove the following.

Theorem 4.9 LetF = �(f1)1=r; : : : ; (fn)1=r	 be a family of(d � 1)-variate functions (overx =(x1; : : : ; xd�1) 2 Rd�1 ), wherer � 2 is an integer and eachfi is a polynomial that is non-negative
for everyx 2 Rd�1 , and let" > 0 be a parameter. Supposefi’s admit a linearization of dimensionk. We compute inO(n+1="3rk=2) time, a decomposition� ofRd�1 intoO(1="r(d�1)) Tarski cells
with the following property: for each cell� in �, there are two associated functionsf� ; f 0� 2 F
such thatff� ; f 0�g is an"-kernel ofF within � .
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5 Dynamization

In this section we show that we can adapt our algorithm for maintaining an"-kernel of a set of
points or a set of linear functions under insertions and deletions. We describe the algorithm for a
setP of points inRd . We assume the existence of an algorithmA that can compute aÆ-kernel of
a subsetS � P of sizeO(1=Æk) in timeO(jSj + TA (Æ)); obviouslyTA (Æ) � 1=Æk . We will useA to maintain an"-kernel dynamically. We first describe a dynamic data structure of (near) linear
size that handles both insertions and deletions. Next, we describe another data structure that usesO((log(n)=")O(1)) space and handles each insertion inO((1=")O(1)) amortized time.

A fully dynamic data structure. We assume that each point inP has a unique id. Using this id
as the key, we storeP in a 2-4-treeT of height at most2 log2 n; each point ofP is stored at a leaf ofT. Some of the leaves ofT may be empty, i.e., they do not store any point ofP . T is periodically
reconstructed, but otherwise the structure ofT is static—only the information stored at the nodes is
updated as points are inserted and deleted.

For a nodev 2 T, let Pv � P be the subset of points stored at the leaves in the subtree rooted
at v. We also associate a subsetQv � Pv with v, which is defined recursively, as follows. SetÆ = "=3h, whereh is the height ofT. If v is a leaf, thenQv = Pv. For an internal nodev with w
andz as its children,Qv is aÆ-kernel ofQw [ Qz of sizeO(1=Æk), computed using algorithmA .
Our construction ensures that for a node at heighti (leaves have height0),Qv is an("i=(2h))-kernel
of Pv since(1 + "=3h)i � (1 + "i=(2h)). Therefore the subsetQroot associated with the root ofT
is an("=2)-kernel ofP of sizeO(1=Æk). Finally, we maintain an("=3)-kernelQ of Qroot of sizeO(1="k) using algorithmA ; Q is an"-kernel ofP .

Suppose we want to delete a pointpi from P . We find the leafz that storespi, deletep from
that leaf and make that leaf empty. If the number of points inP becomes at most one-fourth the
number of leaves, we reconstructTwith half as many leaves as in the current tree, so that half ofthe
leaves in the new tree are empty. Otherwise, we recomputeQv at all ancestorsv of z in a bottom-up
manner. At each ancestorv, with x andw as its children, we compute, inO(TA (Æ)) time, aÆ-kernel
of Qw [Qx using algorithmA . Finally, we recompute, in timeO((1=Æ)k +TA (")), an("=2)-kernelQ of Qroot. The total time spent is thusO(TA (Æ) log n). (In fact, one can stop this traversal up the
tree when we encounter the first nodez, such thatQz does not containpi.) Next, suppose we want
to insert a pointp. If there is an empty leafz, we insertp into z and update the information stored at
the ancestors ofz. If there is no empty leaf, we first reconstructT with twice as many leaves as the
current tree, so that half of the leaves in the new tree are empty. We now insertp into some empty
leaf and proceed as before.

SinceT is reconstructed after at leastn0=2 updates, wheren0 is the number of points inTwhen
it was last updated, the reconstruction costsO(TA ("=6 log n)) amortized time per update operation.
Hence, we obtain the following.

Theorem 5.1 LetP be a set of points inRd , and let" > 0 be a parameter. Suppose we can compute
an"-kernel of a subsetS � P of sizeO(1="k) in timeO(jSj+ TA (")) time. Then we can maintain
an"-kernel ofP of sizeO(1="k) under insertion/deletion in amortized timeO(TA ("=6 log n) log n)
per update operation.
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Remark 5.2 A weakness of our approach is that insertion or deletion of a point can change the"-kernel completely. It would be desirable to develop a dynamic data structure that causesO(1)
change in the"-kernel after insertion or deletion of a point.

Corollary 5.3 LetF be a set of functions, and let" > 0 be a parameter. Suppose we can compute
an "-kernel of a subsetG � F of sizeO(1="k) in timeO(jGj + TA (")) time, then we can maintain
an"-kernel ofF of sizeO(1="k) under insertion/deletion in amortized timeO(TA ("=6 log n) log n)
per update operation.

An insertion-only data structure. Suppose we are receiving a stream of pointsp1; p2; : : : in Rd .
Given a parameter" > 0, we wish to maintain an"-kernel of then points received so far. Note
that our analysis is in term ofn, the number of points inserted into the data structure. However,n does not need to be specified in advance. In particular, ifn is specified in advance, a slightly
simpler solution arises using the techniques described above. We assume without loss of generality
that1=" is an integer. We use the dynamization technique of Bentley and Saxe [12], as follows: LetP = hp1; : : : ; pni be the sequence of points that we have received so far. For integersi � 1, let�i = "=
i2, where
 > 0 is a constant, and setÆi = Qil=1(1 + �l)� 1. We partitionP into subsetsP0; P1; : : : ; Pu, whereu = �log2 "kn�+ 1, as follows.jP0j = n mod 1="k, and for1 � i � u, if
theith rightmost bit in the binary expansion of

�"kn� is 1, thenjPij = 2i�1="k, otherwisejPij = 0.
Furthermore, if0 � i < j � u, the points inPj arrived before any point inPi. These conditions
uniquely specifyP0; : : : ; Pu. We refer toi as therank of Pi. Note that fori � 1, there is at most
one non-empty subset of ranki.

Unlike the standard Bentley-Saxe technique, we do not maintain eachPi explicitly. Instead, for
each non-empty subsetPi, we maintain aÆi-kernelQi of Pi; if Pi = ;, we setQi = ; as well. We
also letQ0 = P0. Since1 + Æi = iYl=1�1 + "
l2� � exp� iXl=1 "
l2� = exp�"
 iXl=1 1l2� � exp��2"6
 � � 1 + "3 ; (9)

provided
 is chosen sufficiently large,Qi is an("=3)-kernel ofPi. Therefore,
Sui=0Qi is an("=3)-

kernel ofP . We define therank of a setQi to be i. For i � 1, if Pi is non-empty,jQij will beO(1=�ki ); note thatjQ0j = jP0j < 1="k.
For eachi � 0, we also maintain an"=3-kernelKi of

Sj�iQj, as follows. Letu = �log2("kn)�+1 be the largest value ofi for whichPi is non-empty. We haveKu = Qu, and for1 � i < u, Ki
is a�i-kernel ofKi+1 [ Qi. Finally, K0 = Q0 [ K1. The argument in (9) implies thatKi is an("=3)-kernel of

Sj�iQj, and thusK0 is the required"-kernel ofP . The size of the entire data
structure isuXi=0(jQij+ jKij) � jQ0j+ jK0j+ uXi=1 O(1=�ki )= O(1="k) + blog2 "kn
+1Xi=1 O� i2k"k � = O log2k+1 n"k ! :
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At the arrival of the next pointpn+1, the data structure is updated as follows. We addpn+1 toQ0 (and conceptually toP0). If jQ0j < 1="k then we are done. Otherwise, we promoteQ0 to have
rank1. Next, if there are twoÆj-kernelsQx; Qy of rankj, for somej � �log2 "k(n+ 1)�+ 1, we
compute a�j+1-kernelQz of Qx [Qy using algorithmA , set the rank ofQz to j + 1, and discard
the setsQx andQy. By construction,Qz is a Æj+1-kernel ofPz = Px [ Py of sizeO(1=�kj+1)
and jPzj = 2j="k. We repeat this step until the ranks of allQi’s are distinct. Suppose� is the
maximum rank of aQi that was reconstructed, then we recomputeK�; : : : ;K0 in that order. That
is, for � � i � 1, we compute a�i-kernel ofKi+1 [ Qi and set this to beKi; finally, we setK0 = K1 [Q0.

For any fixedi � 1, Qi andKi are constructed after every2i�1="k insertions, therefore the
amortized time spent in updatingQ after inserting a point isblog2 "kn
+1Xi=1 "k2i�1O� i2k"k + TA � "
i2�� = O�blog2 "kn
+1Xi=1 "k2i�1TA � "
i2��:
If TA (x) is bounded by a polynomial in1=x, then the above expression is bounded byO("kTA (")).
Theorem 5.4 LetP be a stream of points inRd , and let" > 0 be a parameter. Suppose that for
any subsetS � P , we can compute an"-kernel ofS of sizeO(1="k) in O(jSj+TA (")) time, whereTA (") � 1="k is bounded by a polynomial in1=". Then we can maintain an"-kernel ofP of sizeO(1="k) using a data structure of sizeO(log2k+1(n)="k). The amortized time to insert a point isO("kTA (")), and the worst case time isO((log2k+1 n)="k + TA ("= log2 n) logn).
Remark 5.5 The exponent2k+1 in the bounds of the above theorem can be improved tok+1+Æ,
for anyÆ > 0, by being more careful, but we feel this improvement is not worth the effort.

The following is an immediate corollary of Theorems 3.7 and 5.4.

Corollary 5.6 LetP be a stream of points inRd , and let" > 0 be a parameter. We can maintain
an "-kernel ofP of sizeO(1="(d�1)=2) using a data structure of sizeO(logd(n)="(d�1)=2). The
amortized time spent at each point isO(1="d�1).
6 Applications

In this section we present a few specific applications of the results on"-kernels obtained in Sec-
tions 3 and 4. We begin by describing approximation algorithms for computing faithful extent
measures, and then showing that our technique can be extended to maintaining faithful measures of
moving points. Next, we describe approximation algorithmsfor computing two nonfaithful mea-
sures, namely the minimum width of spherical and cylindrical shells that contain a set of points.

6.1 Approximating faithful extent measures

A function�(�) defined over a finite setP of points is called afaithful measureif (i) for any P � Rd ,�(P ) � 0, and (ii) there exists a constant (depending on�) 
 � 0, so that for any"-kernelQ of P ,
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(1 � 
")�(P ) � �(Q) � �(P ). Examples of faithful measures are common and include diameter,
width, radius of the smallest enclosing ball, volume of the minimum bounding box, volume ofCH(P ), and surface area ofCH(P ). A common property of all these measures is that�(P ) =�(CH(P )). For a given point setP , a faithful measure�, and a parameter" > 0, we can compute
a value�, (1 � ")�(P ) � � � �(P ) by first computing an("=
)-kernelQ of P and then using an
exact algorithm for computing�(Q). Using Theorems 3.7 and 5.1 we obtain the following.

Theorem 6.1 Given a setP of n points inRd , a faithful measure� that can be computed inn�
time, and a parameter" > 0, we can compute, in timeO(n+f(")), a value� so that(1�")�(P ) �� � �(P ), wheref(") = min�1="�(d�1); 1="3(d�1)=2 + 1="�(d�1)=2	. Moreover,P can be stored
in a dynamic data structure that can update� in amortized timemin( logd n"d�1 + 1"�(d�1) ; log3d=2�1=2 n"3(d�1)=2 + 1"�(d�1)=2)
if a point is inserted into or deleted fromP .

For example, since the diameter of a setP of points inRd can be trivially computed inO(n2)
time, we can compute an"-approximation of the diameter ofP in O(n+ 1="3(d�1)=2) time. Simi-
larly, we can compute inO(n+1="3) time an"-approximation of the volume of the smallest box en-
closing a set ofn points inR3 , as the exact algorithms for these problems takeO(n3) time [10, 30].
For all of the measures mentioned in the beginning of this section, algorithms with similar running
time (even slightly better in some cases) are already known [10, 16]. However, our technique is gen-
eral and does not require us to carefully inspect the problemat hand to develop an approximation
algorithm.

We can use Corollary 5.6 for maintaining faithful extent measures of a stream of points inRd
usingO(logd(n)="(d�1)=2) space. For instance, applying a result of Duncan et al. [20] that an"-
approximation to the width of a set ofm points inRd can be computed inO(m="(d�1)=2) time, we
can conclude the following.

Theorem 6.2 Given a parameter" > 0, we can maintain an"-approximation of the width of a
stream of points inRd usingO(logd(n)="(d�1)=2) space and spendingO(1="d�1) amortized time
at each incoming point.

6.2 Maintaining faithful measures of moving points

Next we show that our technique can be extended to maintain various extent measures of a set
of moving points. LetP = fp1; : : : ; png be a set ofn points in Rd , each moving indepen-
dently. Letpi(t) = (pi1(t); : : : ; pid(t)) denote the position of pointpi at time t. SetP (t) =fpi(t) j 1 � i � ng. If eachpij is a polynomial of degree at mostr, we say that the motion ofP
hasdegreer. We call the motion ofP linear if r = 1 andalgebraicif r is bounded by a constant.

Given a parameter" > 0, we call a subsetQ � P an"-kernelof P if for any directionu 2 Rd�1 ,(1� ")!(u; P (t)) � !(u;Q(t)) for all t 2 R :
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We first show that a small"-kernel ofP can be computed efficiently and then discuss how to
use it to maintain a faithful measure ofP approximately as the points move, assuming that the
trajectories of points are algebraic and do not change over time. Finally, we show how to update
the"-kernel if we allow the trajectories of points to change or ifwe allow points to be inserted or
deleted.

Computing an "-kernel. First let us assume that the motion ofP is linear, i.e.,pi(t) = ai + bit,
for 1 � i � n, whereai; bi 2 Rd . For a directionu = (u1; : : : ; ud�1) 2 Rd�1 , we define ad-variate
polynomial fi(u; t) = hpi(t); eui = hai + bit; eui= d�1Xj=1 aijuj + d�1Xj=1 bij � (tuj) + aid + bidt:
SetF = ff1; : : : ; fng. Then!(u; P (t)) = maxi hpi(t); eui �mini hpi(t); eui = maxi fi(u; t)�mini fi(u; t) = EF (u; t):
SinceF is a family of d-variate polynomials, which admits a linearization of dimension2d � 1
(there are2d� 1 monomials), using Theorem 4.1, we conclude the following.

Theorem 6.3 Given a setP of n points inRd , each moving linearly, and a parameter" > 0, we
can compute an"-kernel ofP of sizeO(1="2d�1) in O(n + 1="2d�1) time, or an"-kernel of sizeO(1="d�1=2) in O(n+ 1="3(d�1=2)) time.

If the degree of motion ofP is r > 1, we can write thed-variate polynomialfi(u; t) as:fi(u; t) = hpi(t); eui = � rXj=0 aijtj ; eu� = rXj=0 
aijtj ; eu�
whereaij 2 Rd . A straightforward extension of the above argument shows that fi’s admit a lin-
earization of dimension(r + 1)d � 1. Using Theorems 4.1 and 4.3, we obtain the following.

Theorem 6.4 Given a setP of n moving points inRd whose motion has degreer > 1 and a
parameter" > 0, we can compute an"-kernel ofP of sizeO(1="(r+1)d�1) in O(n+ 1="(r+1)d�1)
time, or of sizeO(1="d) in O(n+ 1="3((r+1)d�1)=2) time.

Remark 6.5 By Corollary 5.3, if we can compute in timeO(n + TA (")) an "-kernel of sizeO(1="k) of a setP of n moving points inRd , then we can update it in timeO(((log n)=")k +TA ((log n)=") log n) per insertion/deletion of a point.
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Kinetic data structures. As in Section 6.1, we can use an"-kernel ofP to maintain various
faithful extent measure ofP approximately as the points inP move. Namely, we first compute an"-kernelQ of P and then maintain the desired measure forQ. Note thatQ does not depend on
the underlying measure. Agarwalet al. [4] have described kinetic data structures for maintaining
various extent measures, including diameter, width, area (or perimeter) of the smallest enclosing
rectangle, of a set of points moving algebraically in the plane. Plugging their technique onQ, we
can, for example, construct a kinetic data structure of sizeO(jQj) that maintains a pair(q; q0) with
the property that d(q(t); q0(t)) = diam(Q(t)) � (1� ") diam(P (t)):
The pair(q; q0) is updatedO(jQj2+Æ) times, for anyÆ > 0, and the data structure can be updated inO(log jQj) time at each such event. Similar bounds hold for width, area of the smallest enclosing
rectangle, etc. Applying Theorem 6.3 for linear motion and Theorem 6.4 for higher-degree motion,
we obtain the following:

Theorem 6.6 LetP be a set ofn points moving in the plane, and let" > 0 be a parameter. IfP is
moving linearly, then afterO(n+ 1="9=2) preprocessing, we can construct a kinetic data structure
of sizeO(1="3=2) so that an"-approximation of diameter, width, or the area (or perimeter) of the
smallest enclosing rectangle ofP can be maintained. The data structure processesO(1="3+Æ)
events, for an arbitrarily small constantÆ > 0, and each such event requiresO(log(1=")) time. If
the motion ofP has degreer, then the preprocessing time isO(n+ 1="3r+3=2), the size of the data
structure isO(1="2), and the number of events isO(1="4+Æ).

In some cases, the size of the"-kernel that we use to maintain a faithful measure can be improved
by reducing the problem to a lower dimensional problem. For example, letB(t) = B(P (t)) denote
the smallest orthogonal box containingP (t), and letB"(t) = (1 � 2")B(t), scaled with respect to
the center ofB(t). We call a boxB̂(t) an"-approximation ofB(t) if B"(t) � B̂(t) � B(t). LetQ
be an"-kernel ofP , thenB"(t) � B(Q(t)) � B(t), therefore we can compute an"-kernel of sizeO(1="d�1=2) (if points are moving linearly) and maintain its bounding box. However, one can do
better using the following observation.

For 1 � i � d, let P j(t) = fpij(t) j 1 � i � ng. ThenB(t) = �1(t) � � � � � �d(t), where�j(t) is the smallest interval containingP j(t). Hence, the problem of maintainingB(t) reduces
to maintaining the smallest interval containingP j(t), for eachj � d (see also Remark 4.5). We
thus compute an"-kernelQj of eachP j and maintain the smallest interval containingQj ; the latter
can be accomplished by maintaining the maximum and minimum of Qj , using a kinetic tournament
tree described in [11]. The data structure processesO(jQj j log jQj j) events, and each event requiresO(log2 jQj j) time. SinceP j(t) is a set ofn points moving inR, using Theorem 6.4 and putting
everything together, we obtain the following.

Theorem 6.7 LetP be a set ofn points moving inRd , and let" > 0 be a parameter. IfP is moving
linearly, then afterO(n + 1="3=2) preprocessing, we can construct a kinetic data structure ofsizeO(1=p") that maintains an"-approximation of the smallest orthogonal box containingP ; the data
structure processesO((1=p") log(1=")) events, and each event takesO(log2(1=")) time. If the
motion ofP has degreer > 1, then the preprocessing time isO(n+ 1="3r=2), the size of the data
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structure isO(1="), the number of events isO((1=") log(1=")), and each event takesO(log2(1="))
time.

The data structures described above assume that the trajectories of each point is specified in
the beginning and it remains fixed. However in most of the applications, we know only a part of
the trajectory, and it changes with time. We can handle trajectory updates using the dynamization
technique described in Section 5. Since the"-kernelQ of P being maintained by our algorithm
can change significantly after an update operation, we simply reconstruct the kinetic data structure
onQ. If we can prove a bound on how muchQ changes after an update operation, a kinetic data
structure that supports efficient updates can improve the efficiency of our algorithm.

6.3 Minimum-width spherical shell

Let P = fp1; : : : ; png be a set ofn points inRd . As defined in Section 1, a spherical shell is (the
closure of) the region bounded by two concentric spheres: the width of the shell is the difference
of their radii. Letd(x; p) be the Euclidean distance betweenx andp, and letfp(x) = d(x; p). SetF = ffpi j pi 2 Pg. Letw(x; S) denote the width of the thinnest spherical shell centered atx that
containsS, and letw� = w�(S) = minx2Rd w(x; S) be the width of the thinnest spherical shell
containingS. Thenw(x; S) = maxp2P d(x; p)�minp2P d(x; p) = maxfp2F fp(x)� minfp2F fp(x) = EF (x):
Therefore,w� = minx2Rd EF (x). It thus suffices to compute an"-kernel ofF . Setgp(x) = fp(x)2 = kxk2 � 2 hx; pi+ kpik2 :
As shown in Section 4 (ford = 2), G = fgpi j pi 2 Pg admits a linearization of dimensiond + 1.
However, letg0i(x) = gpi(x) � kxk2. By Lemma 2.1, an"-kernel ofG0 = fg01 : : : g0ng is also an"-kernel ofG. SinceG0 admits a linearization of dimensiond, we can use Theorem 4.7 (withr = 2)
and Theorem 4.3 to compute an"-kernelQ of F of sizeO(1="d) in O(n + 1="3d) time and then
computew�(Q) in time 1="O(d2) [2]. However, we can do better using Theorem 4.4. We construct
in O(n+1="3d) time a decomposition� of Rd intoO(1="2d) Tarski cells along with two functionsf�; f 0� for each� 2 � such thatff�; f 0�g is an("=2)-kernel ofF within �. For each cell� 2 �,
we computew�� = minx2� jf�(x) � f 0�(x)j, and then computew = min� w�� as well as a pointx� 2 Rd that realizesw. We return the smallest spherical shell centered atx� that containsP . Note
thatw� � w � (1� "=2)EF (x�). ThereforeEF (x�) � 11� "=2w � (1 + ")w�:
Hence, we obtain the following.

Theorem 6.8 Given a setP ofn points inRd , and a parameter" > 0, we can find inO(n+1="3d)
time a spherical shell containingP whose width is at most(1 + ")w�(P ). We can also compute
within the same time bound a subsetQ � P of sizeO(1="d) so that for anyx 2 Rd , w(x;Q) �(1� ")w(x; P ).
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�`0` xd = 1xd = 0 � � poq p
Figure 6. Parametrization of a linèin R3 and its distance from a point�; the small hollow circle oǹ is the point closest
to �.

6.4 Minimum-width cylindrical shell

Let P = fp1; : : : ; png be a set ofn points inRd , and a parameter" > 0. Let w� = w�(P )
denote the width of the thinnest cylindrical shell, the region lying between two co-axial cylinders,
containingP . Let d(`; p) denote the distance between a pointp 2 Rd and a line` � Rd . If
we fix a line `, then the width of the thinnest cylindrical shell with axis` and containingP isw(`; P ) = maxp2P d(`; p) �minp2P d(`; p). A line ` 2 Rd not parallel to the hyperplanexd = 0
can be represented by a(2d� 2)-tuple(x1; : : : ; x2d�2) 2 R2d�2 :` = fp+ tq j t 2 Rg ;
wherep = (x1; : : : ; xd�1; 0) is the intersection point of̀ with the hyperplanexd = 0 andq =(xd; : : : ; x2d�2; 1) is the orientation of̀ (i.e., q is the intersection point of the hyperplanexd = 1
with the line parallel tò and passing through the origin). The lines parallel to the hyperplanexd = 0 can be handled separately by a simpler algorithm. The distance betweeǹ and a point�
is the same as the distance of the line`0 = f(p� �) + tq j t 2 Rg from the origin; see Figure 6.
The pointy on ` closest to the origin satisfiesy = (p � �) + tq for somet, and at the same timehy; qi = 0, which implies thatd(`; �) = kyk = 



(p� �)� [hp� �; qi℄qkqk2 



 ;
Definefi(`) = d(`; pi), and setF = ffi j pi 2 Pg. Thenw� = minx2R2d�2 EF (x). (We assume
for simplicity that the axis of the optimal shell is not parallel to the hyperplanexd = 0.) Letf 0i(x) = kqk2 � fi(x), and setF 0 = ff 01; : : : ; f 0ng. By Lemma 2.1, it suffices to compute an"-kernel
of F 0. Definegi = f 0i(x)2, and letG = fg1 : : : ; gng. Thengi is a(2d � 2)-variate polynomial and
hasO(d2) monomials. ThereforeG admits a linearization of dimensionO(d2). Now, proceeding as
in the case of spherical shell but using Corollary 4.8 and Theorem 4.9, we can compute inO(n +1="O(d2)) time a setQ � P of 1="O(d2) points so that for any linè, w(`; P ) � w(`;Q) �(1� ")w(`; P ) as well as a cylindrical shell of width at most(1+ ")w�(P ) that containsP . Hence,
we conclude the following.

Theorem 6.9 Given a setP of n points inRd and a parameter" > 0, we can compute inO(n +1="O(d2)) time a cylindrical shell containingP whose width is at most(1 + ")w�(P ). We can also
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compute within the same time bound a subsetQ � P of sizeO(1="O(d2)) so that for any linè inRd , we havew(`;Q) � (1� ")w(`; P ).
7 Conclusions

In this paper, we have presented a general technique for computing extent measures approximately.
The new technique shows that for many extent measures�, one can compute in timeO(n+1="O(1))
a subsetQ (called an"-kernel) of size1="O(1) and then simply compute�(Q). Such a subsetQ
is computed by combining convex-approximation techniqueswith duality and linearization tech-
niques. Specific applications of our technique include near-linear approximation algorithms for
computing minimum-width spherical and cylindrical shells, a general technique for approximating
faithful measures of stationary as well as moving points. Interestingly enough, the dynamization
and streaming techniques presented in Section 5 are genericand seem to apply without too many
additional assumptions whenever a small"-kernel exists. We believe that there are numerous other
applications of our technique.

To some extent, our algorithm is the ultimate approximationalgorithm for such problems: It
has linear dependency onn, and a polynomial dependency on1=". The existence of such a general
(and fast) approximation algorithm is quite surprising. Subsequent to our work, several geometric
approximation algorithms have been developed that computea subset that shares some properties
of an "-kernel for specific problems. The termcore-setis now commonly used to refer to such a
subset [7, 14, 15, 25, 27, 28].

We conclude by mentioning a few open problems and recent developments in this area.

(i) Our algorithms compute an"-kernel whose size is exponential ind. Recently a few algorithms
have been proposed that compute a core-set of size(d=")O(1) for specific problems such as
the smallest enclosing sphere or ellipsoid [14, 15, 27, 28].However it is not clear whether
these algorithms can be extended to a more general setting.

(ii) A possible direction for future research is to investigate how practical is this technique, and to
improve/simplify it further. In particular, it seems that faster algorithms should exist for the
problems of approximating the diameter and width of a point set.

(iii) Recently, Agarwalet al. [7] used the"-kernel technique for computingk congruent cylin-
ders of the minimum radius that contain a point set inRd . Whether similar techniques can
be developed for other projective-clustering problems in high dimensions remains an open
problem.

(iv) Another interesting direction for further research isto extend this technique to handle outliers.
Some progress in this direction is recently made in [25]. It would also be interesting to
develop algorithms for shape-fitting when the quality of thefit is measured by the sum of
squares of distances (instead of the maximum distance as in this paper). There are efficient
algorithms if the shape is a linear subspace but little seemsto be known for other shapes.
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Appendix: Summary of NotationsRd d-dimensioanl Euclidean spaceSd�1 Unit sphere inRdP (d� 1)-dimensional hyperplanexd = 1C d-dimensional unit hypercube[�1;+1℄dUF Upper envelope ofFLF Lower envelope ofFEF Extent ofFA(J ) Arrangement ofJCH(S) Convex hull ofS�(v) v=kvk, v 2 Rdeu (u; 1) 2 P, u 2 Rd�1u� �(eu) 2 Sd�1, u 2 Rd�1 .!(x; P ) maxp2P hx; pi �minp2P hx; pi, x 2 Rd ; P � Rd!(u; P ) !(eu; P ), u 2 Rd�1 , P � Rd
Table 1. Summary of notations used in the paper.
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