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Abstract

We present a general technique for approximating variossrig#ors of the extent of a set
P of n points inR¢ when the dimensiod is an arbitrary fixed constant. For a given extent
measure: and a parameter > 0, it computes in time)(n + 1/e°1)) a subse) C P of size
1/e°M, with the property thatl — £)u(P) < u(Q) < u(P). The specific applications of our
technique include-approximation algorithms for (i) computing diameter, thidand smallest
bounding box, ball, and cylinder d@?, (ii) maintaining all the previous measures for a set of
moving points, and (iii) fitting spheres and cylinders ttgba point sef”. Our algorithms are
considerably simpler, and faster in many cases, than prslji&nown algorithms.

1 Introduction

Motivated by a variety of applications, considerable wods tbeen done on measuring various
descriptors of the extent of a sBtof n points inR¢. We refer to such measuresedent measures
of P. Roughly speaking, an extent measurg’oéither computes certain statistics Bfitself or it
computes certain statistics of a (possibly nonconvex) gdomshape (e.g. sphere, box, cylinder,
etc.) enclosing’. Examples of the former include computing #té largest distance between pairs
of points inP, and the examples of the latter include computing the sstaitelius of a sphere (or
cylinder), the minimum volume (or surface area) of a box, Hrasmallest width of a slab (or a
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spherical or cylindrical shell) that contaif. Although P is assumed to be stationary in most of
the work done so far, there has been some recent work on rimitigt@xtent measures of a set of
moving points [4].

Shape fitting, a fundamental problem in computational gdégmeomputer vision, machine
learning, data mining, and many other areas, is closelyeleo computing extent measures. A
widely used shape-fitting problem asks for finding a shapehtést fits/” under some “fitting” cri-
terion. A typical criterion for measuring how well a shapéts P, denoted ag(P, ), is the maxi-
mum distance between a pointBfand its nearest point oy i.e., (P, y) = max,cp minge, d(p, q).
Then one can define the extent measuré’dd be.(P) = min, p(P,~), where the minimum is
taken over a family of shapes (such as points, lines, hyaees| spheres, etc.). For example, the
problem of finding the minimum radius sphere (resp. cylih@giclosingP is the same as finding
the point (resp. line) that fit8 best, and the problem of finding the smallest width slab (rgsper-
ical shell, cylindrical shelf is the same as finding the hyperplane (resp. sphere, cyjitiuarfits
P best.

The exact algorithm for computing extent measures are giyexpensive, e.d., the best known
algorithms for computing the smallest volume bounding bortaining P in R? require O(n?)
time. Consequently, attention has shifted to developimg@pmation algorithms [10, 34]. Despite
considerable work, no unified theory has evolved for conmgugxtent measures approximately.
Ideally, one would like to argue that for any extent meaguesd for any given parametey there
exists a subsep C P of sizel/°() so thatu(Q) > (1 —)u(P). No such result is known except
in a few special cases. It is known that an arbitrary convelytio can be approximated by a convex
polytope( so that the Hausdorff distance betwegrand( is at most: - diam(C') and so that)
is either defined as the convex hull of a settgé®(!) points or the intersection of a set bfe?(1)
halfspaces. If the given extent measuref P is the same as that ¢fH(P), (e.g., diameter and
width), then one can approximafé{(P) by ), computeu(Q), and argue that(Q) approximates
w(P). Although this approach has been used for computing a feenexteasures aP [10, 16], it
does not work if the extent measyids defined in terms of a nonconvex shape (such as spherical
shell) containingP.

This paper is a step toward the aforementioned goal of dgw&ja unified theory for approxi-
mating extent measures. We introduce the notion afkernelof a point set. Roughly speaking,

a subset) C P is called ans-kernel of P if for every slabWW containing@), the expanded slab
(1 + €)W containsP. We present ai®)(n + 1/¢%~1)-time algorithm for computing aa-kernel
of P of sizeO(1/¢% 1) or anO(n + 1/£3(@-1/2)-time algorithm for computing aa-kernel of
sizeO(1/£4=1)/2), These algorithms are improved variants of the algorithstdeed in [10] for

a specific optimization problem. We call an extent meagufaithful if there exists a constant
a > 0 such that for any-kernel @ of P, u(Q) > (1 — ae)u(P). The algorithm for computing
ane-kernel immediately gives a@(n + 1/50(1)) time algorithm for computing faithful measures
approximately. This approach was used previously for saitkeféil measures [10, 16, 34] and we
merely state it here in a general context. In order to hanafeitihful measures, we introduce the
notion of ane-kernel for a family of functions. LeF be a family of(d — 1)-variate functions. We

1A slabis a region lying between two parallel hyperplanespherical shells the region lying between two concentric
spheres; aylindrical shellis the region lying between two coaxial cylinders.



define theextentof  at a pointz € R¥~! to be€x(z) = maxser f(z) — minger f(z). We call
a subset C F ane-kernel of F if €g(z) > (1 — €)€x(z) for all z € R4~1. Using our result on
e-kernel of points and the linearization technique, we shuat e can compute i (n + 1/e°(1)
time ane-kernel of 7 of sizeO(1/e"?) if each f; is of the formgil/r, whereg; is a polynomial,
7 is a positive integefy = min {d — 1,k/2}, andk is the dimension of linearization fay’s (see
Section 4 for the definition af). Our algorithms for computing-kernels can be adapted to handle
insertions and deletions of points (or functions) effidigrgee Section 5. If we only insert points,
we can maintain aa-kernel using only(log(n)/¢)°(") space.

We show that many extent-measure problems can be formudstedmputingmin, €x(z),
where F is obtained by transforming each input point to a functiope@fic applications of our
technique include the following:

Spherical shell problem. Given a pointz in R¢ and two real numberg < r < R, thespherical
shello(z,r, R) is the closed region lying between the two concentric sghefeadiir and R with
z as their center, i.e.,

o(w,r.R) = {p e B! |r < d(z,p) < R},

whered(z, p) is the Euclidean distance between the poingd linez. Thewidth of o(z,r, R) is
R —r. Intheapproximate spherical shgiroblem, we are given a sétof n points and a parameter
e > 0, and we want to compute a spherical shell contaidighose width is at mostl + ¢) times
the width of the minimum-width spherical shell containiRg

This problem, motivated by applications in computationafmology, has been widely studied;
see [2, 8, 16] and the references therein. The best known akggeithm runs inO(n?/21+9) time in
R?, for anyd > 0, and inO(n?) time in R3. The best knowr-approximation algorithm, proposed
by Chan [16], takes abou®(n + 1/¢%°/%) time. Our technique leads to &i(n + 1/£3¢)-time
algorithm for thed-dimensional approximate spherical-shell problem, tyerenproving Chan's
algorithm.

Cylindrical shell problem. Given a line? in R¢ and two real number$ < » < R, thecylindrical
shell X (¢, r, R) is the closed region lying between two co-axial cylindersasfii - and R with £ as
their axis, i.e.,

S(4,r, R) = {p € R

r<d(t,p) SR},

whered(¥, p) is the Euclidean distance between the pgirind line/. Thewidth of (¢, r, R) is
R—r.

In the approximate cylindrical shelproblem, we are given a sét of n. points and a parameter
e > 0, and we want to compute a cylindrical shell containiRgvhose width is at mostl + )
times the width of the minimum-width cylindrical shell cairting P.

Agarwalet al.[3] present an algorithm that computes the exact minimudtwiylindrical shell
for a set ofn points inR? in O(n®) time. They also present an algorithm that runs in roughiy?)
time and computes a shell whose width is at nifstimes the optimal. For this problem, our
technique gives amrapproximation algorithm that runs @(n 4 1/¢°(4°)) time inR%, a significant
improvement over their algorithm.



Maintaining faithful measures of moving points. Let P be a set of: points inR?%, each point
moving independently. Many applications call for maintagnextent measures @ as the points
move with time. For example, various indexing structurekictv answer range-searching queries
or nearest-neighbor queries #h need an algorithm for maintaining the smallest axes-|zabx
containingP [1, 31, 32]. Agarwakt al. [4] have described kinetic data structures for maintair@ng
number of extent measures of points moving in the plane. asgyshow that most of these extent
measures are expensive to maintain — the diametral pairaifaf points, each moving with a fixed
velocity in the plane, can chang¥n?) times, and no subcubic bound is known on the number of
triples defining the smallest enclosing ball of a set of mimbving in the plane. This has raised
the question whether faster approximation algorithmstdgismaintaining an extent-measure of a
set of moving points.

For anye > 0, we say that a subs€ C P is ane-kernel of P if Q(t) is ane-kernel of P(t)
for everyt. We show that our techniques can compute:-&ernel of sizel/eo(l). For instance,
given any setP of points inR? with linear motion, our technique can compute (Oiin. + 1/2%)
time, anes-kernelQ C P of sizeO(1/£%%). It follows that for any faithful measurg, there exists
a constantx > 0 such that(1 — ae)u(P(t)) < u(Q(t)) for everyt. We can simply maintaim
for just the subsef). We can thus efficiently maintain anapproximation to all of the following
measures of?: diameter, minimum-radius enclosing ball, width, minimwolume bounding box
of arbitrary orientation, directional width. If we want tcantain arc-approximation to the smallest
axes-parallel box enclosing, the size of) can be reduced t0(1/+/¢), for any fixed dimension.
These results generalize to algebraic motion and to uifiditheasures such as minimum-width
spherical/cylindrical shell. Our scheme can also allowciffit insertions into and deletions from
the setP. Note that the-kernel does not change with time unless the trajectory afiatghanges.
These results must be contrasted with the schemes for rimaigtahe exact extent measures, which
require at least quadratic updates.

Maintaining faithful measures in a streaming model. Motivated by various applications, the
need for analyzing and processing massive data in real tawdeldl to a flurry of activity related to
performing computations on @ata stream The goal is to maintain a summary of the input data
using little space and processing time, as the data objedtes The efficiency of an algorithm in
this model is measured in terms of the size of the working sspax the time spent on performing
the computation on a new data object. See [18, 23, 24, 26 r2biederences therein for recent algo-
rithms developed in the data-stream model. Our technigundeadapted to maintain various extent
measures approximately in the streaming model. Specificail-kernel of sizeO(l/a(d—1>/2) of
a stream of points ifR¢ can be maintained using a data structure of 6izlg?(n)/c(4=1/2) that
spendsOD(1/e%~1) amortized time to process each new point. The same resuls thal =-kernels
of linear functions. Consequently, we can maintaireapproximation of the width of a stream of
points inR?¢ in amortizedO(1 /% 1) time usingO (log?(n)/(4~1)/2) space. Similar results can be
obtained for various other problems such as maintainingninenum-width spherical or cylindrical
shell containing the point set.

The paper is organized as follows. In Section 2, we forma#lfire c-kernels for points and
functions and make a few simple observations about them.etatid 3 we show that any set of



linear functions has ae-kernel of small size. Section 4 shows that this propertylse &ue for
polynomials and related functions, using linearizatioecti®n 5 shows that our technique can be
dynamized. In Section 6, we apply these ideas to the prohheamgioned above.

Figure 1. (i) Lower and upper envelopes and the extent of a family afdinfunctions; the extent at any point is the
length of the vertical segment connecting lower and uppeelepes. (ii) Ane-kernelG of F; dashed edges denote the
envelopes ofF, and the thick lines denote the envelopesjof

2 Preliminaries

In this section we define the extent of functions, the diceal-width of points, the-kernel of
points and functions, and arrangements. We also estaldisle simple claims that will be useful
later. Table 1 (cf. page 32) summarizes the notation usdusrpaper.

Envelopesand extent. LetF = {f,..., f,} be asetof (d — 1)-variate functions defined over
r = (z1,...,74_1) € R¥"L. Thelower envelopef F is the graph of the functiof » : R?~1 — R
defined asL 7(x) = minscx f(x). Similarly, theupper envelopef F is the graph of the function
Ur : RO — R defined aslz(z) = maxser f(z). Theextent€r : R71 — R of F is defined as

Cr(z) = Ur(z) — Lr(z).

Lete > 0 be a parameter, and |ét be a subset oR¢ 1. We say that a subsét C F is an
e-kernelof F within A if
(1 —e)€x(z) < & (x)
for eachz € A. Obviously,&g(r) < €x(z), asgG C F. If A = R¥~!, we say thag is ane-kernel
of F.

Lemma2l LetF = {fi,..., fn} be afamily of(d — 1)-variate functions(z), 1(z) two other
(d — 1)-variate functions, and > 0 a parameter. Leff;(z) = ¢(z) + ¥ (z)fi(z), and setF =

{fz |1<i< n} If K is ane-kernel of 7 within a regionA C R4 -1, theniC = {ﬁ | fi € IC} is

an e-kernel of £ within A.
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Figure 2. Representing a direction 7.

Proof: For anyx € A,

(1-s(e) = (1-¢) [QaXﬁ(w)—Lnififi(w)]

fieF fieF

— (- eplo) | o) — i )|

< 9(e) | ie) — i 10

Jiek fiek
N %a%(@(x) +1p(a) fi(2)) - ;?Ei%(‘:o(x) + () fi(z))
= Cp(m).
Hencek is ans-kernel of F. _

Directions. We will not distinguish between a vectorRf and the corresponding pointRf. Let

PP denote the hyperplang; = 1 in R?, and letS?~! represent the sphere of directiongrif. For an
arbitrary vector € R¢, we will use¢(v) = v/|jv|| € S¢~! to denote the direction corresponding
to v. Normally, a direction inR? is represented as a point §f~!. Since we will not need to
distinguish between directionsc S¢~! and—z € S?~!, we can represent a directiari € S9!

as a pointu in R?~1, with the interpretation that = (u, 1) € P is the central projection of the unit
vectoru*; see Figure 2. Namely,* = ¢(u). Though this representation has the drawback that the
directions inS?~! lying in the hyperplane:; = 0 are not accounted for, we use this representation
as it will be more convenient for our presentation.

Directional width. We can define the concept of extent for a set of points. For amyzero
vectorz € R and a point seP C R?, we define

(e P) — o
w(z,P) r;lealgdx,p) ggg(aﬁ,p%



Figure 3. A point setP, its e-kernel @ (points with double circles), and their directional wid{ssaled appropriately).

where(-,-) is the inner product. For any sét of points inR? and anyu € R%"!, we define the
directional widthof P in directionu, denoted byv(u, P), to be

w(u, P) =w(a, P).

Itis also called ther-breadthof P, see [22]. Let > 0 be a parameter, and I& C R¢~'. A subset
@ C P is called are-kernelof P within A C R¢1 if for eachu € A,

(1 -¢)w(u,P) <w(u,Q).

Clearly, w(u, Q) < w(u,P). If A = R¥!, we callQ ane-kernel of P. Note thatw(u, Q) >
(1 — e)w(u, P) if and only if for every0 # X € R,

T\, Q) > (1 — )@(AG, P). 1)

Arrangements. Thearrangemenbf a collection7 of m hyperplanes iiR?, denoted as{(7), is
the decomposition of the space into relatively open commecells of dimensions, .. . , d induced
by 7, where each cell is a maximal connected set of points lyinthénintersection of a fixed
subset of7. The complexity of4(7) is defined to be the number of cells of all dimensions in the
arrangement. It is well known that the complexity f.7) is O(m?) [9]. A setJ of hyperplanes
is k-uniformif 7 consists ofk families of either parallel hyperplanes or hyperplanes share a
(d — 2)-flat. In this case, each cell o4(7) has at mosRk facets. The notion of arrangements
can be extended to a family of (hyper-)surface®fh If G is a family of . algebraic surfaces of
bounded maximum degree, then the complexity of the arraageisO (m?).

Lemma 2.2 Foranye > 0, there is ad(d — 1)-uniform set7 consisting ofD(1/¢) hyperplanes in
RI~1 so that for any two points, v lying in the (closure of the) same cell @ 7 ),

|lu* —v*|| <e.



(i) (i

Figure4. (i) Grid drawn on each facet of the unit cuigd = 3). (ii) Lines in 7; thick lines correspond to the grid lines
of the edges of, and solid (resp. dashed, dashed-dotted) lines corredpaté grid on the face normal to theaxis
(resp.y-axis, z-axis). The grid lines parallel to theaxis onC map to the lines passing through the origin, and the grid
lines parallel to the:-axis (respy-axis) map to lines parallel to theaxis (respy-axis).

Proof: Partition the boundary of the hyperculie = [—1,+1]¢ in R? into small (d — 1)-
dimensional “hypercubes” of diameter at mestby laying a uniform(d — 1)-dimensional axis-
parallel grid on each facet @; see Figure 4 (i). Each such grid is formed (a{/— 1) families of
parallel(d —2)-flats. We extend each su¢li— 2)-flat f into a(d— 1)-hyperplanef, by considering
the unique hyperplane that passes through it and the odagahthen intersect it witlk (namely, the
resulting (d — 2)-flat lies on the hyperplan® : z; = 1 in R? and as such can be regarded as a
hyperplane ifR?~!). Because of symmetry, the — 2)-flats z; = —1,z; = ¢ (i.e., the intersection
of hyperplaness; = —1 andz; = J) andz; = 1,z; = —d map to the same hyperplane, so it
suffices to extend thgl — 2)-flats of the grid on the “front” facets @, i.e., the facets with;; = 1
for 1 <i < d. We claim that the resulting set composed af— 1) families of uniform hyperplanes
is the desired set of hyperplanes.

Formally, let# (i, j, ) denote thed — 2)-flatz; = 1,2; = Bin R?. Sety = {\/8/51, and for
integersi, 5,1, let
F={F(i,5,l/7) |1<i#j<d,—y <1<},

For a(d — 2)-flat F € F not passing through origin, let ') be the(d — 2)-hyperplane inR¢—"
defined as
n(F) ={z € R | (z,1) € aff(F U {0}) N P}.

In other wordsy(F) is the (d — 2)-hyperplane irR¢—! corresponding to the intersectionBfwith
the (d — 1)-hyperplaneaff (F U {0}). We set7 = {n(F) | F € F}. See Figure 4(ii). Clearly/
is ad(d — 1)-uniform family of hyperplanes because for any fixed pajr, either all hyperplanes
n(F(¢,7,1/v)) in F are parallel or all of them pass througlida— 3)-flat.

Let u,» € R be any two points on the same cgllof A(J). Letu' (resp.v’) be the
point where the line joining the origin and(resp.v) intersectsdC. Sinceu/,v' € 9C, we have
lu'|I, ||v"]] > 1. Our construction ensures thit’ — v'|| < e. These two facts easily imply that
|lu* — v*|| <e. Hence,A(J4-1) is the required partition. ]

Remark 2.3 An interesting open question is to obtain a tight bound onnti@mum number of



uniform families of hyperplanes needed to achieve thetgartof Lemma 2.2. Agarwal and Ma-
touSek [6] have shown that the number of families is at I2dst 3, and they conjecture this bound
to be tight.

Duality. Let# = {hy,...,h,} be a family of(d — 1)-variate linear functions and > 0 a
parameter. We defineduality transformation that maps tlié— 1)-variate function (or a hyperplane
in Rd) h:xqg=a1x; +axy+ -+ aqg_124-1 + aqg 10 the pointh* = (al, ag, ... ,ad_l,ad) in
Re. LetH* = {h* | h € H}. The following lemma is immediate from the definition of dtal

Lemma24 LetH = {hy,...,h,} be a family of(d — 1)-variate linear functions and > 0 a
parameter. A subsef* C H* is ane-kernel of#* within a (d — 1)-dimensional regiom\ C R4~}
if and only if K is ane-kernel of{ within A.

3 Approximating the Extent of Linear Functions

In this section we describe algorithms for computing=éeernel of a set of linear functions whose
size depends only anandd. We first show that if we can compute afkernel of a “fat” point set
contained in the unit hyperculie= [—1, +1]¢, then we can also compute askernel of an arbitrary
point set. We then describe fast algorithms for computikgrnels of fat point sets. Finally, we use
Lemma 2.4 to construet-kernels of the extent of linear functions.

Reduction to a fat point set. We begin by proving a simple lemma, which will be crucial for
reducing the problem of computing arkernel for an arbitrary point set to the same problem for a
fat point set.

Lemma3.l LetT(z) = Mz be an affine transformation fro®? to R?, where M € R¥*? is
non-singular, letP be a set of points ifR?, and letA be a(d — 1)-dimensional convex region in
R4—1. Define -
M(A) = {u e R | u* = £p(MT7) for somez € A};
whereu* = ¢(u) as defined above (see Table 1 for notatichg)(Q) C T'(P) is ane-kernel of
T'(P) within A if and only if @ is ane-kernel of P within M (A).
Proof: For any vector: € R?,

(z,Mp) = :vTMp = <MT:v,p> .

Therefore for any € R4 1,
w(z, T = max(z,Mqg) —min (z, M
(.T(Q) = max(Z Mg) — min(Z M)

J— T — 1 T
= pRG R (MT5a)

= w(M'z,Q).

det A* = {u" | uw € A}. If T(A") intersects the equator &, then J/\/[\(A) can consist of two unbounded
regions.




Similarly, we haves(z, T(P)) = w(M*'Z, P).
Suppos€el'(Q) is ane-kernel of T'(P) within A. Consider any, € M (A) and letz € A be
such thatu* = +¢(M?*7). SinceT'(Q) is ane-kernel of T'(P) within A we have

w(z,T(Q)) =z (1 —e)w(z, T(P)).

Hence,

G(M'Z,Q) =5, T(Q)) > (1 —e)w(z,T(P)) = (1 —e)m(M'z, P).
Sinceu* = +¢(M?*7Z), we conclude using (1) that(u,Q) > (1 — &)w(u, P). ThusQ is an
e-kernel of P within M\(A).

Conversely, suppos@ is ane-kernel of P within M\(A). Let K C A be the set of all points
such thatd/”7 lies on the hyperplang; = 0. Note thatK is contained in gd — 2)-dimensional
hyperplane inR?~1. Consider any: € A\K; there is au € M(A) such thatu* = +¢(MT?).
SinceQ is ane-kernel of P within M\(A), we havev(u, Q) > (1 —¢)w(u, P). Thisimplies (along
with (1)) that

G(MTZ,Q) > (1 —e)w(MTZ, P).

Hence
B(ET(Q) =B(M'Z,Q) 2 (1 - fB(M'Z,P) = (1 - )33, T(P)),

which means thal’()) is ane-kernel of T'(P) within A\ K. SinceK is contained in &d — 2)-
dimensional “slice” of thgd — 1)-dimensional regiom\, a standard limit argument implies that
T'(Q) is ane-kernel of T'(P) within K as well. ]

We call P o-fat, for o < 1, if there exists a point € R? and a hypercub& centered at origin
so thatp + C D CH(P) D p + aC.

Lemma 3.2 LetP be a set of, points inR?, and lete be a parameter. We can find ix(n) time an
affine transfornil” such thatl'(P) is a4-fat, wherea, is a constant depending only @n

Proof: Using the algorithm of Barequet and Har-Peled [10], we campuO(n) time two concen-
tric, homothetic boxe®’ and B such that

(a) B is obtained fromB’ by scaling by a factor of at moa};, a constant that depends only én
(b) B' CCH(P) C B.

Let R € R¥¢ be a rotation transform such thR{ B) is an axes-parallel box. Finally, Iétbe the
scaling transform that map3(B) to a translate of®. SetT'(z) = (S - R)z. By construction, the
point setP’ = T'(P) is a4-fat. This completes the proof of the first part of the lemntas basy to
verify that M = S - R is non-singular. [

Lemmas 3.1 and 3.2 imply that it suffices to describe an dlgorfor computing ans-kernel of
ana-fat point set for somer < 1. We assume thaf > P D [—a, a]%; this is no loss of generality
because for any vectere R, if  is ane-kernel of P within {u}, for someu € R?~!, then + ¢
is ane-kernel of P + ¢ within {u}. The following simple lemma, which follows immediately fno
the observation that for any € R? there is a poiny € CH(P) such that(u,q) > a||ul|, will be
useful for our analysis.
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Lemma3.3 Let P C C be a set of. points inR?, which isa-fat. For anyz € R?, w(z, P) >
2ae || z]].

A weaker bound on e-kernel.  Next, we prove a weaker bound on the size ot d®rnel for a fat
point set.

Lemma3.4 Let P be aa-fat point set contained it = [—1, +1]¢, and lete > 0 be a parameter.
Supposée” is a point set with the following property: for anye P, there is ap’ € P’ such that
d(p,p') < ea. Then(l — )@ (x, P) < @(z, P') for anyz € R,

Proof: By Lemma 3.3 (z, P) > 2« ||z||. Letp, ¢ € P be two points such that
w(z,{p,q}) = 0(z, P) > 2a ||z,

and lety’, ¢’ € P’ be two points such thak(p, p’),d(q,¢') < ec.
Letw =p —gandw’ =p' —¢'. Then

|w—=w'|| <llp =2l + llg — ¢'l| < 2¢0n.
Moreover,

oz, {p,q}) = max{(p,z),(q, )} —min{(p,z), (g, z)}
= |(p,z) — (g, 2)| = [ (w,z) .

Similarly, w(z, {p',¢'}) = | (v, z) |.

w(z, P) —w(z,P') < w(z,{p,q}) —w(z, {p',d'})

= |(w,x>|—|<w',x>|

< |<w—w',:c>| < Hw—w'H Nz
< 2ea|z||

< ew(z, P).

Using the above lemma, we can constructdernel of a fat point set as follows.

Lemma 3.5 Let P be aa-fat point set contained ift. For anye > 0, we can compute, i®(n +
1/(ae)?1) time, a subsef) C P of O(1/(ae)?~!) points that constitutes arrkernel of P.

Proof: Let § be the largest value such that< (e/v/d)a and1/6 is an integer. Observe that
§ > (¢/(2v/d))e. We consider thé-dimensional gridZ of sized. That is,

Z:{((S’il,...,(%d)|i1,...,idEZ}.

For each(d — 1)-tuple I = (i, ...,iq—1), letC;" (resp.C, ) be the highest (resp. lowest) cell (in
z4-direction) ofZ of the form[diy, §(iy +1)] X - -+ X [0%g—1,0(ig—1 +1)] x [0, d(r+1)], r € Z, that
contains a point of?; if none of the cells in this column contains a pointffwe defineC, , C;" to
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Figure5. lllustration of the proof of Lemma 3.6 is the farthest vertex @f#(Q") in directionu*; the two double-circles
denoteb(y) (for d = 2).

be the empty set. Lek = |J,(C; UC]). SinceP C CH(B), w(u, P) < w(u,CH(B)) = w(u, B)
for anyw € R, Furthermore, we havg8 C C.

For each(d — 1)-tuple I, we choose one point frof® N C; and another point front‘i?fr npP
(if C;” andC, are not empty) and add both of them@b SinceP C C = [—1,4+1]%, Q| =
O(1/(ag)®1); Q can be constructed iR (n+1/(ae)?!) time, assuming that the ceiling operation
(i.e.,[ 1) can be performed in constant time. For each grid Cethat contributes td3, we have
chosen inQ) one point fromP N C. Therefore for every point € B, there is a poiny € () with
the property thatl(p, ¢) < ea.. Hence, by Lemma 3.4, for anye R? !,

(1 —¢e)w(u,P) < (1—-¢e)w(u,B) <w(u,Q),

thereby implying that) is ans-kernel of P. [

A stronger bound on e-kernel. Dudley [19] and Bronshteyn and Ivanov [13] have shown that
given a convex body”, which is contained in a unit ball iiR?, and a parameter > 0, one can
compute a convex polytop@’ so that the Hausdorff distance betwe&gandC’ is at most. Dudley
represent€” as the intersection ad(1/<(4~1)/2) halfspaces and Bronshteyn and Ivanov represent
C" as the convex hull of a set ¢#(1/(4~1)/2) points. In the next lemma we use a variant of the
construction in [13] to generate a set@f1/¢(?~1)/2) points that forms am-kernel of P.

Lemma3.6 LetP be an-fat point setinC. For anys > 0, we can compute, i@ (n+41/(ae)3(@1)/2)
time, a subsef) C P of O(1/(ae)(@1/2) points that is are-kernel of P.

Proof: Let S be the sphere of radiugd + 1 centered at the center of the unit hypercibe
containingP. Notice that the distance between any point on the spheramygoint within the
unit cube is at least. Using Lemma 3.5, we compute a €@t C P of O(1/(ae)?"!) points that
is ans-kernel of P. Letd§ = /ec/2. We compute a sef of O(1/6471) = O(1/(ce)@=1/2)
points on the spherd such that for any point on sphereS (e.g., using the construction in the
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proof of Lemma 2.2), there is a poigt € Z such that|z — y|| < J§. For each poiny € Z, we
then compute the point(y) on CH(Q') that is closest ta. Using the randomized algorithm of
Gartner [21], this can be done for eaglin expected time) (|Q'|) = O(1/(ae)?1). Gartner in
fact shows that this is an LP-type problem, and therefore aveapply the technique of Chazelle
and MatouSek [17] to obtain a deterministic algorithm withning timeO(|Q’|). These algorithms
in fact returns a subséty) C @' of at mostd points such that(y) is in the convex hull ob(y).
SetQ = U,z b(y). It takesO(1/(ae)**D/2) time to computey), and|Q| = O(1/(ae)!* D/2),
We now argue that) is ane-kernel of P.

Fix a directionu € R?~!, and letu* € S?! be the unit vector(). Leto € Q' be the point
that maximizesu*,¢') over all¢’ € Q)'. Suppose the ray emanating framin direction«* hits
S at a pointz. Theno is the unique point o€ (Q') nearest ta, i.e.,oc = v(z), because the
hyperplane normal to the vecter— = supportCH(Q’) ato and separates from )’. Moreover,

x —v(x) _
|z — v ()]

Pz —v(z)) =dlz—0o)=u" and |z —v(@)||21=]u’. (2

Lety € Z be such thaljz — y|| < §. Sincer(y) is the closest point tg in CH(Q'), the hyperplane
normal toy — v(y) and passing through(y) separateg andv(z), therefore

0 <(y—w(y),vly) —v(z). 3)

See Figure 5. Note that for amyb € R%, 2 (a, b) < ||a||* + ||b]|?, therefore

(a,b) = [Ibl|” < fla)l?. (4)
Now,
0< max (u*,q") — max (u*,q) < (u,0) = (u,v(y)) = (u",v(z) —v(y))
< (z—v(z),v(z) — v(y)) (using (2))
< (z—v(z),v(z) —v(y) +(y — v(y),v(y) — v(z))
(using (3))
< (z—v(z) - (y—v(y),viz) —v(y))
(z —y,v(z) —v(y) — |v(z) — vyl
< Je—yl*  (using (4))
< 6% =ag/2.
Hence, e
max (7, ¢) > max (@,q') = = Il

Similarly, we have

in (@, ¢) < min (7, q) + — |[1]
min u, S Imin u, — ||UW]|| .
qeQ 7 qeqQ’ 7 2
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These two inequalities imply that(a, Q) > w(u, Q') — ac ||u||. Using Lemma 3.3, we obtain

w(u,Q) = w(u,Q)
> w0, Q") — ae||al]
> (1—¢/2)@(@, P) — (¢/2)a(d, P)
> (1-e)@(@, P) = (1 —e)wlu, P).

Combining Lemmas 3.5 and 3.6 with Lemma 3.2, we obtain tHevihg result.

Theorem 3.7 Let P be a point set inRk?, and lete > 0 be a parameter. We can compute in
O(n+1/?1) time ane-kernel of P of sizeO(1/% 1), orin O(n + 1/£3(4-1)/2) time ane-kernel
of P of sizeO(1/el?=1/2),

Proof: Using Lemma 3.2, we compute an affine transformafi6isuch thatV/ ( P) is a4-fat. As
mentioned above, we can assume tdtP) C C. Using Lemma 3.5 or Lemma 3.6, we compute an
e-kernel M (Q) of M (P). Lemma 3.1 (applied td7 ') immediately implies thaP is ane-kernel
of Q. [

Combining this theorem with Lemma 2.4, we obtain the follogyi

Theorem 3.8 Let# be a set ofi (d — 1)-variate linear functions, and let > 0 be a parameter. We
can compute i) (n + 1/¢%~1) time ane-kernel ofH of sizeO(1/%~1), orin O(n + 1/£34=1)/2)
time ane-kernel of sizeD(1/£(4-1)/2),

A decomposition based bound. Next, we show that we can decompd€ ! into cells so that a
pair of points make up asrkernel for the entire point set within each cell of the deposition.

Lemma 3.9 Let P be ana-fat point set contained i, and lete > 0 be a parameter. We can
compute, iND(n 4 1/(ae)34-1/2) time, a set7 of O(1/(«ae)) d(d — 1)-uniform hyperplanes in
RI—1 with the following property: for any cell € A(J), there are two pointga, p/y such that
{pa,p/\} is ane-kernel of P inside A.

Proof: We first use Lemma 3.6 to compute a sub@edf O(1/(ae)(*=1/2) points, which is an
(e/2)-kernel of P. We compute a sef of O(1/(«e)) hyperplanes, using Lemma 2.2, such that for
any two pointsu, v in the same cell 0f4(7),

* * €
Ju =o'l < e

We choose any pointa from each cellA € A(J) and compute the poinisa andp’,, by
examining each point i), that achievanax,cg (u*a,¢) andmingeg (u*a, ¢), respectively. We
associate the poinjsy andp/, with A.

By Lemma 2.2,4(7) can be computed i@ (n+41/(ce)?~1) time. We spend(1/(age)@—1)/2)
time at each celA € A(J) to computepa,p’y. So the total running time of the algorithm is
O(n + 1/(ce)?@=1/2),

14



We now argue thaipa,ps } is ane-kernel of P within A. Letu = ua, p = pa, p' = Pa.
Let v be another point iM\, and letq andq’ be the points inQ) that achievanax,c¢ (v*, ¢) and
mingeq (v*, q), respectively. Sinc€) C C, ||p — q|| < 2V/d.

(v',p) = (u',p)+ (0" —u",p)
= (u',q) + (v" —u’,p)
= (v%,q) — (v" —u'q) + (" —u”,p)
=z (v —lv" —u*[| - [lp — 4
> (v,q) — - 2Vd
4vd
> (vq) =5 = ') — 5 o]l

Therefore(v,p) > (v,q) — (/2) ||0]]. By similar reasoning, we obtain thék, p') < (v,¢') +
(ea/2) ||v]|. Subtracting this from the previous inequality, we get

w(v, {pa,pPa}) > w(v,Q) —ealv]] > (1 —&/2)w(v, P) — (¢/2)w(v, P)
> (1-¢)w(v,P)

This completes the proof of the lemma. [

Theorem 3.10 Let P be a set ofz points inR¢, and lete > 0 be a parameter. We can compute,
in O(n + 1/34=1/2) time, a set7 of O(1/¢) d(d — 1)-uniform hyperplanes ifR*~! with the
following property: for any cellA € A(7), there are two pointga, p/y such that{pa,p's } is an
e-kernel of P inside A.

Proof: By Lemma 3.2, letl’(z) = Mz be the affine transform so thdt(P) is a4-fat. Using
Lemma 3.9, we compute a sBt of O(1/¢) hyperplanes iR?~! so that for any celA € A(H),
there are two point¥'(ga ), T'(¢/y) such thaT'(ga), T'(¢'y) } is ane-kernel of T'(P) within A. For

a hyperplane, € H, leth' be the(d — 1)-hyperplane containing = {Z | = € h} and passing
through origin, and lel, = MZH NP. Letq denote the(d — 1)-hyperplanez; = 0 and let
g=MTg'nP. Weset7 = {h | h € H} U{j}. (We addj because two “antipodal” unbounded
cells in A(H) may get merged into a single cell (7 \ {g}).) Clearly,J \ {g} is ad(d — 1)-
uniform family. It follows from the construction off that.7 is ad(d — 1)-uniform family as well.

It can be argued that arfyl — 1)-dimensional cell” in A(J) is contained inZ/\Z(A) for some cell
Ain A(H). If {T'(ga),T(¢’y)} is ane-kernel of T'(P) within A, we associatga andg’y with C.
Lemma 3.1 implies thafga, ¢/x } is ane-kernel of P within C. For a lower-dimensional celD in
A(J), we choose &d — 1)-dimensional cellC' in A(J) such thatD C 9C. If ¢ andq’ are the
points associated witty, we associate them with as well. A standard limit argument shows that
{q,q'} is ane-kernel of P within D. [ ]

Finally, using Lemma 2.4 we conclude the following.

Theorem 3.11 Given a family#H of n (d — 1)-variate linear functions and a parameter> 0,
we can compute i (n + 1/¢3(¢4=1/2) time a family7 of O(1/¢) d(d — 1)-uniform hyperplanes
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in R~ with the following property: for each celh € A(J), there are two associated linear
functions,h/y , /A € H such that{h/,, '\ } is ane-kernel ofH inside A.

4 Approximating the Extent for Polynomialsand Thelr Variants

Extent of polynomials. LetF = {fi,..., f,} be a family of(d — 1)-variate polynomials and
e > 0 a parameter. We use the linearization technique [5, 33]nopetes-kernels forF.

Let f(z, a) be a(d+p—1)-variate polynomialy € R¢~! anda € R?, such thatf;(z) = f(z,d?)
for somea’ € RP. There always exists such a polynomial $6r Suppose we can expregér, a)
in the form

f(@,a) = ho(a) +hr(a)p1(z) + - - - + i (a)pr(x), (5)

wherey, . .., 1 arep-variate polynomials ang,, ..., ¢, are(d — 1)-variate polynomials. We
define the mag : Rt — RF

pla) = (pr(z), ..., pr(x)).

Then the imagé’ = {¢(z) | z € R} of R4-1 is a(d — 1)-dimensional surface ik, and for
anya € RP, f(z,a) maps to &-variate linear function

ha(y1, - - yk) = Po(a) +1(a)yr + - -+ + e (a)ye

in the sense that for any € R"!, f(x,a) = hq(e(z)). We refer tok as thedimensionof lin-
earization. The simplest way to express the polynoryijal, a) in the form (5) is to writef as a
sum of monomials iy, ..., z4_; With its coefficients being polynomials iy . .., a,. Then each
monomial in therq, ..., x4 1 corresponds to one functias, and its coefficient is the correspond-
ing function ;. However, this method does not necessarily give a line@oizaof the smallest
dimension. For example, let(x1,z2,a1,a2,a3) be the square of the distance between a point
(z1,z2) € R? and a circle with centefay, a3) and radius:s, which is the 5-variate polynomial

f(z1,m2,a1,a2,a3) = a3 — (z1 — a1)? — (v2 — ag)?.

A straightforward application of the above method yieldgadrization of dimension 4. However,
f can be written in the form

fla1,2,a1,a2,a3) = [a5 — a] — a3] + [2a131] + [2a235] — [2] + 23], (6)

thus, setting

Yo(a) = a3 —a? —a3, 1(a) =2a1, vo(a) =2az, t3(a) = —1,
e1(z) =z1, @o(z) =22, 3(x) =i+ a3,

we get a linearization of dimension 3. It corresponds to tled-lknown “lifting” transform to the
unit paraboloid. Agarwal and MatousSek [5] describe an @iy that computes a linearization of
the smallest dimension.
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Returning to the problem of computing arkernel of 7, let H = {h,: | 1 <i <n}. LetK
be ans-kernel of H within a regionA € R*. Sincef;(z) = hyi(p(z)) for anyz € R, G =
{fi | hy: € K} isane-kernel of F within the regionp ™ (ANT), wherep ! (y) = {z € R | p(z) € v},
for v € R¥, is the pre-image of in R%~!'. Hence, by Theorem 3.8, we obtain the following.

Theorem 4.1 Let F = {fi,..., f,} be a family of(d — 1)-variate polynomials that admits a
linearization of dimensiort, and lete > 0 be a parameter. We can compute @&kernel of 7 of
sizeO(1/£*) in timeO(n 4 1/*), or ane-kernel of sizeD(1/c/2) in time O(n + 1/£3%/2).

For a(k—1)-dimensional hyperplankin R, leth—! denote the pre-image~! (hNT) in R 1,
h~'is a(d — 2)-dimensional algebraic variety, whose degree dependseoméximum degree of a
polynomial inF and ond. Using Theorem 3.11, we can prove the following.

Theorem 4.2 LetF = {f1,..., f,} be afamily of(d — 1)-variate polynomials of bounded max-
imum degree that admits a linearization of dimensigrand lete > 0 be a parameter. We can
compute in time)(n + 1/¢%%/2) a family G of O(1/¢) algebraic varieties, whose degrees depend
on d and the maximum degree of a polynomialZin so that for any cell- of A(G), there are two
polynomialsf,, fL € F such that{ f,, f.} is ane-kernel of F within 7.

Proof: Let H be the linearization ofF of dimensionk. By Theorem 3.11, we can compute in
O(n + 1/£3%/2) time a setC of O(1/¢) k(k — 1)-uniform hyperplanes i such that for any cell
A of A(K), there exist two hyperplanésy, i/, such that{ha, k', } is ans-kernel of H within A.
Setg = {h™! | h € K}. Eachcellr in A(G) is the pre-image>~' (ANT') of some celA € A(H).
For each cellr € A(G), which is the pre-image ah N I, we setf, = hgl andf! = h’gl. Itis
easily seen thaftf,, f.} is ane-kernel of F within 7. |

SincelJ, ¢ 4(g) {f-, [} is ane-kernel of 7 and A(G) hasO(1/¢%~1) cells [9], combining this
observation with Theorem 4.1 we can conclude the following.

Theorem 4.3 Let F = {f1,..., f,} be a family of(d — 1)-variate polynomials that admits a
linearization of dimensioi, and lete > 0 be a parameter. We can compute in tid@: + 1/£3%/2)
ane-kernel of F of sizeO(1/¢?), whereo = min {d — 1, k/2}.

Unlike an arrangement of hyperplanes, it is not known whedinearrangement of. algebraic
surfaces inR?, each of constant degree, can be decomposediite?) Tarski cells> However,
such a decomposition is feasible for the surfaces in The@rdm Indeed, by construction in the
proof of Lemma 2.2, each cell in 4(K) hasO(1) faces, so its pre-image (A NT) also has
O(1) complexity. We can further refine it into(1) Tarski cells. Hence, we can decompo$g/)
into O(1/e4=1) Tarski cells.

Theorem 4.4 Let F = {f1,..., f,} be a family of(d — 1)-variate polynomials that admits a
linearization of dimensioi, and lete > 0 be a parameter. We can compute in tid@: + 1/£3%/2)

a decompositiolE of R4~ into O(1/¢41) Tarski cells with the following property: for each cell
in E, there are two polynomialg;, f. € F such that{ f-, '} is ane-kernel of F within .

A k-dimensional semialgebraic set is calledarski cellif it is homeomorphic to &-dimensional ball and it is
defined by constant number of polynomial inequalities, exchhich has bounded degree.
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Remark 4.5 Note that the results of Theorems 4.3 and 4.4 are somewhaisog. In particular,
it implies that if 7 is a family of polynomials defined over a single variable.(ice= 2), thenF
has are-kernel of sizeD(1/¢). We use this observation in Theorem 6.7.

Fractional powers of polynomials. We now consider the problem of computing &Rkernel of

a family of functionsF = {(f1)'/",...,(f,)"/"}, wherer > 1 is an integer and eacf; is a
polynomial of some bounded degree. This case is consigehatier than handling polynomials
because they can not be linearized directly. In certainiapeases this can be overcome by special
considerations of the functions at hand [2, 16]. We, howgweve here that it is enough to compute
anO(e")-kernel of the polynomials inside the roots. We need thefalhg lemma.

Lemma4.6 Letd < € < 1 be a parameter; > 2 an integer, and leb = (¢/2(r —1))". If we have
0<a<A<B<bandB—-A>(1-6)(b—a),then

Bl/r o Al/r > (1 o 6)(b1/r o a[l/r).
Proof: First, observe that for any, y and for any integer > 0,

"=y =(@—y) @ 2 Py 4y, @)

and forany) < p <1,
a? +yP > (z +y)P. (8)

Using (7),

r—1
Bl/r_Al/r _ (B—A) / <2Ai/rBl—(i+1)/r>
=0

(1=8)(b—a) / (Zl Ai/r31<i+1>/r>

1=0
r—1 r—1
> (1 _ 5)(171/7" _ al/r) (Z ai/rbl—(i-i-l)/r) / <Z Ai/rBl—(i—l—l)/r).
=0 1=0

Therefore, fol) < i < r,

Y

G/l =G+ /r Gi/T gl—(+1)/r

QT Bl-GHD/r 4 sifr gl-l/r _ 5i/r gl-1/r

(@™ + (8B)/ITY B+ V/r _ gilr gi-1/r

(a+ 5B)i/rB17(i+1)/r _gilrgl-1/r
(Using (8) since < r)

Al gl-G+0)/r _ gifr gl-1/r

vV IV IV IV

Y

The last inequality holds because, by our assumption,

B-A>(1-0)b—a)>(1-0)(B—a) = A—a<i(B—a)<iB.
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Hence,

r—1 r—1
Zai/rblf(H»l)/r > Z(Ai/rBlf(H»l)/r _ 5i/rB171/r) + Blfl/r
i=0 i=1
r—1
> ZAi/rBl—(i-i-l)/r + (1 - (’F - 1)51/7“)31—1/7“)
i=1
r—1 ) )
> (1 o (7, o 1)51/r) ZAZ/T‘Bl*(Z‘Fl)/T'.
i=0
Putting everything together,
BYr — AT > (1= 8) (M — a1 = (r — 1)5Y7)
> (1= (/2(r — 1)) (1 —/2) (6" —a'/7)
> (1) —al/r).
]
Hence, by Lemma 4.6, we can obtain the following.
Theorem 4.7 Let F = {f1,..., fn} be a family of(d — 1)-variate polynomials that are non-

negative for every € R4 1, lete > 0 be a parameter, and > 1 be an integer. For any\ C
RI-1if G is an (¢/2(r — 1))"-kernel of F within A, then{(f;)'/" | f; € G} is an e-kernel of
{(f)¥" | f; € F} within A.

Combining this with Theorem 4.1 and Theorem 4.3, we can piloedollowing:

Corollary 4.8 LetF = {(f1)/",...,(f.)"/"} be afamily of(d — 1)-variate functions (oves =
(z1,...,24_1) € RI™1), wherer > 2 is an integer and eaclf is a polynomial that is non-negative
for everyz € R¥~!, and lete > 0 be a parameter. Suppoggs admit a linearization of dimension
k. We can compute artkernel of F of sizeO(1/e"%) in time O(n + 1/&"%), or ane-kernel of size
O(1/€"7), whereo = min {d — 1,k/2},in O(n + 1/£%7%/2) time.

Similarly, by Theorem 4.4, we can prove the following.

Theorem 4.9 LetF = {(f1)'/",...,(f,)"/"} be a family of(d — 1)-variate functions (oves =
(z1,...,24_1) € RI™1), wherer > 2is an integer and eaclf is a polynomial that is non-negative
for everyz € R¥~!, and lete > 0 be a parameter. Suppoggs admit a linearization of dimension
k. We compute i) (n 4 1/37%/2) time, a decompositioB of R* ! into O(1/¢"(?~ 1)) Tarski cells
with the following property: for each celt in =, there are two associated functiorfs, f. € F
such that{ f-, '} is ane-kernel of F within 7.
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5 Dynamization

In this section we show that we can adapt our algorithm fomta@ing anc-kernel of a set of
points or a set of linear functions under insertions andtibels. We describe the algorithm for a
set P of points inR%. We assume the existence of an algorithnthat can compute &kernel of

a subsetS C P of sizeO(1/6%) in time O(|S| + Ta(0)); obviouslyTy (§) > 1/6*. We will use

A to maintain are-kernel dynamically. We first describe a dynamic data stmecbf (near) linear
size that handles both insertions and deletions. Next, werib® another data structure that uses
O((log(n)/)°(M) space and handles each insertiowif{1/¢)°(})) amortized time.

A fully dynamic data structure. We assume that each pointihhas a unique id. Using this id
as the key, we storP in a 2-4-tre€T of height at mos® log, n; each point ofP is stored at a leaf of
T. Some of the leaves & may be empty, i.e., they do not store any poinibfT is periodically
reconstructed, but otherwise the structur&'as static—only the information stored at the nodes is
updated as points are inserted and deleted.

For a nodey € T, let P, C P be the subset of points stored at the leaves in the subtrésdroo
atv. We also associate a subggf C P, with v, which is defined recursively, as follows. Set
d = ¢/3h, whereh is the height ofI'. If v is a leaf, ther®, = P,. For an internal node with w
andz as its children), is ad-kernel ofQ,, U @, of sizeO(1/6*), computed using algorithm.
Our construction ensures that for a node at heigletaves have heiglt), @, is an(ei/(2h))-kernel
of P, since(1 + ¢/3h)* < (1 + €i/(2h)). Therefore the subs€l,.; associated with the root @
is an(e/2)-kernel of P of sizeO(1/6*). Finally, we maintain arfe/3)-kernel Q of Q.. Of size
O(1/€*) using algorithma; @ is ane-kernel of P.

Suppose we want to delete a paojptfrom P. We find the leak that storew;, deletep from
that leaf and make that leaf empty. If the number of point®ibecomes at most one-fourth the
number of leaves, we reconstriEtwith half as many leaves as in the current tree, so that hatfeof
leaves in the new tree are empty. Otherwise, we recompyi all ancestors of z in a bottom-up
manner. At each ancestoywith z andw as its children, we compute, ®(7 (§)) time, ad-kernel
of Q. U Q. using algorithmA. Finally, we recompute, in tim@((1/6) + Ty (¢)), an(e/2)-kernel
Q of Qo0t- The total time spent is thus(T (0) log n). (In fact, one can stop this traversal up the
tree when we encounter the first nodesuch that), does not contaip;.) Next, suppose we want
to insert a poinp. If there is an empty leaf, we inserfp into z and update the information stored at
the ancestors of. If there is no empty leaf, we first reconstriEtwith twice as many leaves as the
current tree, so that half of the leaves in the new tree ardyeriye now inserip into some empty
leaf and proceed as before.

SinceT is reconstructed after at leasf/2 updates, where, is the number of points i when
it was last updated, the reconstruction c@3{g, (¢/6 log n)) amortized time per update operation.
Hence, we obtain the following.

Theorem 5.1 Let P be a set of points iiR?, and lets > 0 be a parameter. Suppose we can compute
ane-kernel of a subse$ C P of sizeO(1/£*) in time O(|S| + Ty (¢)) time. Then we can maintain
ane-kernel of P of sizeO(1 /) under insertion/deletion in amortized tim¥ T} (/6 log n) logn)

per update operation.
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Remark 5.2 A weakness of our approach is that insertion or deletion obiatpcan change the
e-kernel completely. It would be desirable to develop a dyicatiata structure that causéx1)
change in the-kernel after insertion or deletion of a point.

Corollary 5.3 LetF be a set of functions, and let> 0 be a parameter. Suppose we can compute
ane-kernel of a subsef C F of sizeO(1/¢*) in time O(|G| + Ta(e)) time, then we can maintain
ane-kernel ofF of sizeO(1/¢*) under insertion/deletion in amortized tint§ T} (¢/6 log n) logn)

per update operation.

An insertion-only data structure. Suppose we are receiving a stream of pointgs, . . . in RY.
Given a parameter > 0, we wish to maintain as-kernel of then points received so far. Note
that our analysis is in term of, the number of points inserted into the data structure. Kewe
n does not need to be specified in advance. In particulat,i$f specified in advance, a slightly
simpler solution arises using the techniques describedealWe assume without loss of generality
that1/e is an integer. We use the dynamization technique of BentieySaxe [12], as follows: Let
P = (p1,...,pn) be the sequence of points that we have received so far. Feyerrg; > 1, let
p; = €/ci?, wherec > 0 is a constant, and séf = ]_[f:l(l + p;) — 1. We partitionP into subsets
Py, Py, ..., P, whereu = |log, c¥n| + 1, as follows.| )| = n mod 1/£¥, and forl < i < u, if
theith rightmost bit in the binary expansion pf*n | is 1, then|P;| = 21 /¥, otherwisg P;| = 0.
Furthermore, if0 < ¢ < j < u, the points inP; arrived before any point i’;. These conditions
uniquely specifyP, ..., P,. We refer toi as therank of P;. Note that for; > 1, there is at most
one non-empty subset of ramnk

Unlike the standard Bentley-Saxe technique, we do not rmiaiachp; explicitly. Instead, for
each non-empty subs&}, we maintain a&;-kernelQ; of P;; if P, = (), we setQ; = () as well. We
also letQ)y = Py. Since

2

14 9; =H<1~I—%> Sexp(Z%) :eXp<%le?> gexp<ﬂ6—§> < 1+§, (9)

providedc is chosen sufficiently large); is an(e/3)-kernel of ;. Therefore|J;" , Q; is an(e/3)-
kernel of P. We define theaank of a setQ); to bei. Fori > 1, if P; is non-empty,|Q;| will be
O(1/pF); note thatQo| = | Py| < 1/£*.

Foreach > 0, we also maintain ap/3-kernel K; of |J;,; @;, as follows. Let, = |log, (eFn) |+
1 be the largest value affor which P; is non-empty. We hav&, = @Q,, and forl < i < u, K;
is ap;-kernel of K; 11 U ;. Finally, Ky = Qo U K;. The argument in (9) implies that; is an
(¢/3)-kernel of J,~; @;, and thusKj is the requirect-kernel of P. The size of the entire data
structure is

u

Z(|Qz’| + | Ki)

1=0

IN

Qo + | Ko + > O(1/pf)
=1
Llog2gknJ+1 ok 1 2%k-+1
= oM+ Y o(';_k>:o<¥>.

=1
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At the arrival of the next poinp,, .1, the data structure is updated as follows. We pgld, to
Qo (and conceptually td%). If |Qo| < 1/£* then we are done. Otherwise, we prom@tgto have
rank 1. Next, if there are twa@;-kernelsQ,, Q, of rankj, for somej < [log2 6k(n + 1)J + 1, we
compute ;. 1-kernel Q. of @, U @, using algorithmA, set the rank of), to j + 1, and discard
the sets(), and@,. By construction,); is ad;i-kernel of P, = P, U P, of size O(l/pf+1)
and |P,| = 2//¢F. We repeat this step until the ranks of @ll’'s are distinct. Supposg is the
maximum rank of a; that was reconstructed, then we recompiite. . ., K in that order. That
is, for ¢ > ¢ > 1, we compute a;-kernel of K;1; U @; and set this to beg;; finally, we set
KO == K1 U Qo.

For any fixedi > 1, Q; and K; are constructed after eve®y—! /¥ insertions, therefore the
amortized time spent in updatirfg after inserting a point is

Llog;2 EkTLJ +1 gk @’2’9 . Llogg 6knJ +1 gk -
2 %O(?+TA(W—-2>>:O< 2 21'——1“(072))'
i=1 i=1
If T, (z) is bounded by a polynomial i/, then the above expression is boundedgy* T} (¢)).

Theorem 5.4 Let P be a stream of points iiR?, and lete > 0 be a parameter. Suppose that for
any subsef C P, we can compute astkernel ofS of sizeO(1/¢*) in O(|S| + Ta(e)) time, where
Ty (e) > 1/€* is bounded by a polynomial ib/e. Then we can maintain asrkernel of P of size
O(1/€*) using a data structure of siz@(log?***(n)/e¥). The amortized time to insert a point is
O(e*Ty (¢)), and the worst case time @((log?* 1 n)/e* + Ty (g/log? n) logn).

Remark 5.5 The exponen2k + 1 in the bounds of the above theorem can be improvédita + 9,
for any¢é > 0, by being more careful, but we feel this improvement is nottiwthe effort.
The following is an immediate corollary of Theorems 3.7 antl 5

Corollary 5.6 Let P be a stream of points iiR?, and lets > 0 be a parameter. We can maintain
an e-kernel of P of sizeO(1/e(?~1)/2) using a data structure of siz@(log?(n)/c(¢~1/2). The
amortized time spent at each pointig1/e471).

6 Applications

In this section we present a few specific applications of #selts ons-kernels obtained in Sec-
tions 3 and 4. We begin by describing approximation algorghfor computing faithful extent
measures, and then showing that our technique can be egtemdeintaining faithful measures of
moving points. Next, we describe approximation algoritHorscomputing two nonfaithful mea-
sures, namely the minimum width of spherical and cylindriteells that contain a set of points.

6.1 Approximating faithful extent measures

A function y(-) defined over a finite sét of points is called daithful measuréf (i) for any P C R?,
w(P) >0, and (ii) there exists a constant (dependingupmr > 0, so that for any:-kernel @ of P,
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(1 —ce)p(P) < u(Q) < pu(P). Examples of faithful measures are common and include di&me
width, radius of the smallest enclosing ball, volume of themimum bounding box, volume of
CH(P), and surface area @f{(P). A common property of all these measures is th@P) =
w(CH(P)). For a given point seP, a faithful measure:, and a parameter > 0, we can compute
avaluer, (1 —e)u(P) < < u(P) by first computing arie/c)-kernel @ of P and then using an
exact algorithm for computing(Q). Using Theorems 3.7 and 5.1 we obtain the following.

Theorem 6.1 Given a setP of n points inR?, a faithful measure: that can be computed in®
time, and a parameter > 0, we can compute, in tim@(n+ f(¢)), a valueg so that(1 —e)u(P) <
i < pu(P), wheref () = min {1/e(@=1) 1/e3(d=1/2 41 /e2(d=1)/2} Moreover,P can be stored
in a dynamic data structure that can updatén amortized time

. | log?n 1 log3d/ 212y 1
e A +€o¢(d—1)’ 23(d—1)/2 +€a(d—1)/2

if a point is inserted into or deleted from.

For example, since the diameter of a £ebf points inR¢ can be trivially computed 9 (n?)
time, we can compute anapproximation of the diameter @f in O(n + 1/£3(¢-1/2) time. Simi-
larly, we can compute i0)(n+1/£%) time anc-approximation of the volume of the smallest box en-
closing a set of: points inR?, as the exact algorithms for these problems t@ke?) time [10, 30].
For all of the measures mentioned in the beginning of thit@ecalgorithms with similar running
time (even slightly better in some cases) are already kn@@nl6]. However, our technique is gen-
eral and does not require us to carefully inspect the prolalehand to develop an approximation
algorithm.

We can use Corollary 5.6 for maintaining faithful extent sw@as of a stream of points R
using O(log?(n)/e(@=1)/2) space. For instance, applying a result of Duncan et al. [24)] ane-
approximation to the width of a set @f points inR? can be computed i®(m /(¢ 1/2) time, we
can conclude the following.

Theorem 6.2 Given a parametee > 0, we can maintain am-approximation of the width of a
stream of points iR? usingO(log?(n)/4~1)/2) space and spendin@(1/¢%~") amortized time
at each incoming point.

6.2 Maintaining faithful measures of moving points

Next we show that our technique can be extended to maintaiougextent measures of a set
of moving points. LetP = {pi,...,p,} be a set ofn points in R?, each moving indepen-
dently. Letp;(t) = (pir(t),...,piq(t)) denote the position of point; at timet. SetP(t) =
{pi(t) | 1 <i <n}. If eachp;; is a polynomial of degree at mostwe say that the motion aP
hasdegreer. We call the motion of” linear if » = 1 andalgebraicif = is bounded by a constant.
Given a parameter > 0, we call a subsef) C P ane-kernelof P if for any directionu € R?1,

(1 - e)w(u, P(t) <w(u,Q(t)) forallt e R.
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We first show that a smadl-kernel of P can be computed efficiently and then discuss how to
use it to maintain a faithful measure &f approximately as the points move, assuming that the
trajectories of points are algebraic and do not change aver. tFinally, we show how to update
the e-kernel if we allow the trajectories of points to change owé allow points to be inserted or
deleted.

Computing an e-kernel.  First let us assume that the motion®fis linear, i.e.p;(t) = a; + bst,

for 1 <i < n,whereq;, b; € R%. For adirections = (uy,...,uq_) € R™!, we define al-variate
polynomial
filu,t) = (pi(t),u) = (a; + bit, u)
d-1 d-1
= Z QiU + Z bij . (tu]-) + ajq + bidt.

SetF ={fi,..., fn}. Then
w(u, P(t)) = max (pi(t),u) — miin (pi(t),u) = max filu,t) — miin filu,t) = €x(u,t).

SinceF is a family of d-variate polynomials, which admits a linearization of dimm®n2d — 1
(there ard — 1 monomials), using Theorem 4.1, we conclude the following.

Theorem 6.3 Given a setP of n points inR?, each moving linearly, and a parameter> 0, we
can compute am-kernel of P of sizeO(1/¢2¢=1) in O(n + 1/¢2¢~1) time, or ane-kernel of size
01/ Y2y in O(n + 1/£3(¢-1/2)) time.

If the degree of motion oPf isr > 1, we can write thel-variate polynomialf;(u, t) as:
filu,t) = (pi(t), ) = <Zaijtﬂ7a> = (ait!, @)
j=0 J=0

wherea;; € R?. A straightforward extension of the above argument shows ftfs admit a lin-
earization of dimensiofr + 1)d — 1. Using Theorems 4.1 and 4.3, we obtain the following.

Theorem 6.4 Given a setP of n moving points inR? whose motion has degree > 1 and a
parameters > 0, we can compute asrkernel of P of sizeO(1/e"t1)4=1) in O(n 4 1/e(r+1Dd-1)
time, or of sizeD(1/¢%) in O(n + 1/£3("+1d-1)/2) time,

Remark 6.5 By Corollary 5.3, if we can compute in tim@(n + Tx(e)) an e-kernel of size

O(1/€*) of a setP of n moving points inR?, then we can update it in tim@(((logn)/e)¥ +
T ((logn)/e) log n) per insertion/deletion of a point.
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Kinetic data structures. As in Section 6.1, we can use arkernel of P to maintain various
faithful extent measure aP approximately as the points iR move. Namely, we first compute an
e-kernel Q of P and then maintain the desired measure@or Note that() does not depend on
the underlying measure. Agarwel al. [4] have described kinetic data structures for maintaining
various extent measures, including diameter, width, avegpérimeter) of the smallest enclosing
rectangle, of a set of points moving algebraically in thenplaPlugging their technique ap, we
can, for example, construct a kinetic data structure of 6igé€)|) that maintains a paifg, ¢’') with

the property that

d(q(t),q () = diam(Q(¢)) = (1 — ¢) diam(P(t)).

The pair(q, ¢') is updated)(|Q|?*?) times, for anys > 0, and the data structure can be updated in
O(log |Q|) time at each such event. Similar bounds hold for width, afeheosmallest enclosing
rectangle, etc. Applying Theorem 6.3 for linear motion am@drem 6.4 for higher-degree motion,
we obtain the following:

Theorem 6.6 Let P be a set of, points moving in the plane, and let> 0 be a parameter. 1P is
moving linearly, then afte®©(n + 1/59/2) preprocessing, we can construct a kinetic data structure
of sizeO(1/£%/?) so that anc-approximation of diameter, width, or the area (or periniptaf the
smallest enclosing rectangle &f can be maintained. The data structure procesSgs/s319)
events, for an arbitrarily small constait> 0, and each such event requir€glog(1/e)) time. If

the motion ofP has degree, then the preprocessing time@yn + 1/%+3/2), the size of the data
structure isO(1/£%), and the number of events@y1/¢*1?).

In some cases, the size of thiékernel that we use to maintain a faithful measure can beaugat
by reducing the problem to a lower dimensional problem. kanwle, let3(t) = B(P(t)) denote
the smallest orthogonal box containifitf¢), and letB%(¢) = (1 — 2¢) B(t), scaled with respect to
the center of3(t). We call a boxB(t) ane-approximation of3(t) if B¢(t) C B(t) C B(t). LetQ
be ane-kernel of P, thenB®(t) C B(Q(t)) C B(t), therefore we can compute arkernel of size
O(l/ed_1/2) (if points are moving linearly) and maintain its boundingkbélowever, one can do
better using the following observation.

Forl <i < d, letP/(t) = {p;j(t) |1 <i<n}. ThenB(t) = Bi(t) x --- x Bu(t), where
B;(t) is the smallest interval containing’(t). Hence, the problem of maintainin§)(t) reduces
to maintaining the smallest interval containi®j(¢), for each; < d (see also Remark 4.5). We
thus compute an-kernel )’ of eachP’/ and maintain the smallest interval containij¢; the latter
can be accomplished by maintaining the maximum and minimu@¥ pusing a kinetic tournament
tree described in [11]. The data structure proceé¥é®’ | log |’|) events, and each event requires
O(log? |@7]) time. SinceP7(t) is a set ofn points moving inR, using Theorem 6.4 and putting
everything together, we obtain the following.

Theorem 6.7 Let P be a set of: points moving irR?, and lets > 0 be a parameter. I is moving
linearly, then afterO(n + 1/¢3/2) preprocessing, we can construct a kinetic data structursizs
O(1/4/¢) that maintains ar-approximation of the smallest orthogonal box containifighe data
structure processe®((1/+/€)log(1/¢)) events, and each event tak@g¢log*(1/¢)) time. If the
motion of P has degree- > 1, then the preprocessing timen + 1/¢%/?), the size of the data
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structure isO(1/¢), the number of events @((1/¢) log(1/¢)), and each event tak&g(log?(1/¢))
time.

The data structures described above assume that the drégscof each point is specified in
the beginning and it remains fixed. However in most of the iappbns, we know only a part of
the trajectory, and it changes with time. We can handledtajg updates using the dynamization
technique described in Section 5. Since tHeernel Q of P being maintained by our algorithm
can change significantly after an update operation, we gimgglonstruct the kinetic data structure
on (. If we can prove a bound on how muéhchanges after an update operation, a kinetic data
structure that supports efficient updates can improve fi@ezfcy of our algorithm.

6.3 Minimum-width spherical shell

Let P = {p1,...,p,} be a set ofs points inR?. As defined in Section 1, a spherical shell is (the
closure of) the region bounded by two concentric sphereswildth of the shell is the difference
of their radii. Letd(z,p) be the Euclidean distance betweeandp, and letf,(z) = d(z,p). Set

F =A{fp, | pi € P}. Letw(z,S) denote the width of the thinnest spherical shell centeradtiaat
containsS, and letw* = w*(S) = min, g« w(z, S) be the width of the thinnest spherical shell
containingS. Then

w(z, S) = max d(z,p) — ggg d(z,p) = max fo(z) — ;;leir;fp(x) = Cx(x).

Thereforew* = min,cra €5 (). It thus suffices to compute arkernel of 7. Set

9p(@) = fp(@)? = |lz|I* = 2 (z,p) + Ipill*-

As shown in Section 4 (foil = 2), G = {g,, | p; € P} admits a linearization of dimensiah+ 1.
However, letg!(z) = g,,(z) — ||z||>. By Lemma 2.1, an-kernel ofG' = {g/ ... 4.} is also an
e-kernel ofG. SinceG’ admits a linearization of dimensieh we can use Theorem 4.7 (with= 2)

and Theorem 4.3 to compute arkernel Q of F of sizeO(1/£%) in O(n + 1/3?) time and then
computew*(Q) in time 1/50(‘12) [2]. However, we can do better using Theorem 4.4. We coristruc
in O(n + 1/£3¢) time a decompositio of R? into O(1/2?) Tarski cells along with two functions
fa, fA foreachA € E such that{ fa, f4 } is an(e/2)-kernel of F within A. For each celA € E,

we computewy = mingena |fa(z) — fi ()|, and then comput® = mina w} as well as a point
z* € R? that realizegs. We return the smallest spherical shell centeredt ahat contains”. Note
thatw* > w > (1 — ¢/2)&p(z*). Therefore

er(a) < W< (Lt e,

1—¢/2
Hence, we obtain the following.

Theorem 6.8 Given a setP of n points inR?, and a parameter > 0, we can find irO(n + 1/£3¢9)
time a spherical shell containing whose width is at mostl + ¢)w*(P). We can also compute

within the same time bound a sub&gtC P of sizeO(1/£%) so that for anyz € R?, w(z, Q) >
(1 —e)w(z, P).
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Figure6. Parametrization of a linéin R?* and its distance from a poitit the small hollow circle ot is the point closest
toé&.

6.4 Minimum-width cylindrical shell

Let P = {p1,...,p,} be a set ofn points inR?, and a parameter > 0. Letw* = w*(P)
denote the width of the thinnest cylindrical shell, the ogglying between two co-axial cylinders,
containing P. Let d(¢,p) denote the distance between a pgint R? and a line/ ¢ R?. If
we fix a line ¢, then the width of the thinnest cylindrical shell with axisand containingP is
w(l, P) = maxyecp d(£, p) — minyep d(¢,p). Aline £ € R? not parallel to the hyperplane, = 0
can be represented by(2d — 2)-tuple (1, . .., z9q_9) € R242:

t={p+tq|teR},

wherep = (z1,...,24-1,0) is the intersection point of with the hyperplaner; = 0 andq =
(xg,-..,T2q 2,1) is the orientation of (i.e., ¢ is the intersection point of the hyperplang = 1
with the line parallel to/ and passing through the origin). The lines parallel to thpehglane
x4 = 0 can be handled separately by a simpler algorithm. The distrtweer? and a point
is the same as the distance of the lthe= {(p — &) +tq | t € R} from the origin; see Figure 6.
The pointy on ¢ closest to the origin satisfies= (p — &) + tq for somet, and at the same time
(y,q) = 0, which implies that

lp—& Mg
lqlI*

Define f;(¢) = d(¢,p;), and setF = {f; | p; € P}. Thenw* = min,crea—2 Ex(z). (We assume
for simplicity that the axis of the optimal shell is not paehlto the hyperplaner; = 0.) Let
fi(z) = |lg|)* - fi(z), and setF" = {f,..., f.}. By Lemma 2.1, it suffices to compute atkernel
of F'. Defineg; = f!(z)?, and letG = {g, ..., gn}. Theng; is a(2d — 2)-variate polynomial and
hasO(d?) monomials. Thereforg admits a linearization of dimensian(d?). Now, proceeding as
in the case of spherical shell but using Corollary 4.8 andofém 4.9, we can compute ((n +
1/e90@)) time a setQ C P of 1/¢°(@) points so that for any ling, w(¢,P) > w(/,Q) >
(1 —e)w(4, P) as well as a cylindrical shell of width at mast+ ¢)w* (P) that contains”. Hence,
we conclude the following.

7

e, = ol = -6 -

Theorem 6.9 Given a set” of n points inR? and a parametee > 0, we can compute i)(n +
1/£9(@)) time a cylindrical shell containing® whose width is at most + ¢)w* (P). We can also
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compute within the same time bound a sutiet P of sizeO(1/¢°(4")) so that for any line’ in
R?, we havew (4, Q) > (1 — e)w(¢, P).

7 Conclusions

In this paper, we have presented a general technique forwamggextent measures approximately.
The new technique shows that for many extent meagurese can compute in tim@(n+1/°(1)

a subset) (called anc-kernel) of sizel/eo(l) and then simply computg(®). Such a subsep)

is computed by combining convex-approximation techniquék duality and linearization tech-
niques. Specific applications of our technique include Hlieaar approximation algorithms for
computing minimum-width spherical and cylindrical shelisgeneral technique for approximating
faithful measures of stationary as well as moving pointgerkstingly enough, the dynamization
and streaming techniques presented in Section 5 are gematiseem to apply without too many
additional assumptions whenever a smallernel exists. We believe that there are numerous other
applications of our technique.

To some extent, our algorithm is the ultimate approximatdgorithm for such problems: It
has linear dependency en and a polynomial dependency ofe. The existence of such a general
(and fast) approximation algorithm is quite surprisingb&eguent to our work, several geometric
approximation algorithms have been developed that comgpstéset that shares some properties
of ane-kernel for specific problems. The teroore-setis now commonly used to refer to such a
subset [7, 14, 15, 25, 27, 28].

We conclude by mentioning a few open problems and recenta@vents in this area.

(i) Our algorithms compute artkernel whose size is exponentialdnRecently a few algorithms
have been proposed that compute a core-set of(dvzgo(l) for specific problems such as
the smallest enclosing sphere or ellipsoid [14, 15, 27, 28wever it is not clear whether
these algorithms can be extended to a more general setting.

(i) A possible direction for future research is to investig how practical is this technique, and to
improve/simplify it further. In particular, it seems thaister algorithms should exist for the
problems of approximating the diameter and width of a pa#tt s

(iii) Recently, Agarwalet al. [7] used thes-kernel technique for computing congruent cylin-
ders of the minimum radius that contain a point seRfn Whether similar techniques can
be developed for other projective-clustering problemsightdimensions remains an open
problem.

(iv) Another interesting direction for further researchd&xtend this technique to handle outliers.
Some progress in this direction is recently made in [25]. duld also be interesting to
develop algorithms for shape-fitting when the quality of fitds measured by the sum of
squares of distances (instead of the maximum distance assipdper). There are efficient
algorithms if the shape is a linear subspace but little seerhe known for other shapes.
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Appendix: Summary of Notations

Rd
Sd—l

d-dimensioanl Euclidean space

Unit sphere inR?

(d — 1)-dimensional hyperplane; = 1
d-dimensional unit hypercubje-1, +1]¢
Upper envelope af

Lower envelope ofF

Extent of 7

Arrangement of7

Convex hull of§

v/llvll, v € R?

(u,1) € P,u € RI™!

(u) € ST u e RITL,

max,cp (z,p) — minyep (z,p), z € R4, P C R
w(u, P),u € R, P CR?

Table 1. Summary of notations used in the paper.
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