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Abstract — We develop theorems that place limits on the point wise approximation of the 

responses of filters, both linear shift-invariant (LSI) and linear shift-variant (LSV), to input 

signals and images that are LSV in the following sense: they can be expressed as the outputs of 

systems with LSV impulse responses, where the shift-variance is with respect to the filter scale 

of a single prototype filter. The approximations take the form of LSI approximations to the 

responses. We develop tight bounds on the approximation errors expressed in terms of filter 

durations and derivative (Sobolev) norms. Finally, we find application of the developed theory to 

defoveation of images, deblurring of shift-variant blurs, and shift-variant edge detection. 
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I. INTRODUCTION 

 We consider the linear processing of n-dimensional signals of the form: 

    zσ(x)(x) = 
[ ]

[ ] aaxxa/
x

R

dfg

n

n
)()(

)(

1 −∫ σ
σ

   (1) 

where R
n
 are the n-dimensional reals, x = (x1 ,…, xn),  f: R

n
 → R is a continuously-differentiable 

signal being filtered by the linear filter kernel g: R
n
 → R, and σ(x): R

n
 → R

+
 is a non-negative, 

shift-variant scale function. Later, we will also consider discrete-domain n-dimensional signals 

having form analogous to (1) with appropriate substitutions made in the definition of the signals 

and functions. Clearly, (1) may be regarded as a linear shift-variant filtering of the signal f by the 

kernel g, where the shift-variance is a result of allowing the scale function σ to vary with x. We 

therefore refer to (1) as a scale-variant filtering or scale-variant convolution of the signal f. We 

make the notation g ⊗ f to denote such a scale-variant convolution, to be distinguished from the 

usual shift-variant convolution notation g ∗ f. 

 In the sequel it will also be understood that a scale-variant signal refers to a signal that 

can be written as (1) (or in the corresponding discrete form given in Section III). If σ(x) = σ = 

constant, then (1) takes the form of the familiar linear shift-invariant convolution 

    zσ(x) = aaxa/

R

dfg

n

n
)()(

1 −∫ σ
σ

.    (2) 

 Scale-variant signals of the form (1) appear in numerous applications, such as image and 

video foveation (where images are intentionally non-uniformly blurred) as a method of 

perceptual compression [1]-[4]; and in modeling undesirable degradations in signals that are 

blurred non-uniformly, e.g. by coma [5], [6]. Prior work on scale-variant signal processing has 

consisted mainly in applications to modeling biological vision systems [15]-[17] including fast 
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implementation of foveation filtering [18-19]. Scale-variant filtering has also been touched upon 

in the context of steerable filters [20-21], and log-polar representation of images [22]. Equations 

(1) and (2) also bear strong resemblance to the continuous wavelet transform [7], [8] if 

interpreted as a function of scale. 

 Here we are concerned with linear filtering of signals modeled as the responses of scale-

variant linear systems, viz., can be written in the form (1). We will develop theorems that place 

limits on the approximation of the responses of filters, both linear shift-invariant (LSI) and linear 

shift-variant (LSV), to input signals and images that are LSV in the sense expressed by (1): that 

they can be expressed as the outputs of systems with LSV impulse responses, where the shift-

variance is with respect to the filter scale of a single prototype filter. The approximations take 

the form of LSI approximations to the responses. We develop theorems that express tight bounds 

on the approximation errors, expressed in terms of filter durations and derivative (Sobolev) 

norms. 

 The paper is organized as follows. Section II develops the basic model of filtering scale-

variant signals of the form (1) in continuous coordinates. Approximations are given for the 

outputs of linear systems, both LSI and LSV, to inputs modeled as (1). Tight bounds are 

developed for the approximation errors. Interestingly, some of these bounds depend on the 

dimensionality, n, of the signal. In Section II, analogous approximations and bounds are 

discovered for signals defined on discrete coordinates. Section IV finds application of the 

developed theory to several problems of interest, including defoveation of images, deblurring of 

shift-variant blurs, and shift-variant edge detection. The paper concludes in Section V. 

 

II. QUASI-INVARIANT FILTERING OF SCALE-VARIANT SIGNALS 
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 In this section we develop the continuous-domain notation and theory of approximating 

linearly filtered scale-variant signals. In the first part, we state the relevant theorems. Proofs are 

assigned to the Appendix. In the second part, we give analytic examples of the utility of the 

theoretical results. Numerical results using real signals are given in a later section. 

A. Approximations and Theorems 

 We consider linear filtering of signals modeled as the responses of scale-variant linear 

systems, viz., can be written in the form (1). Specifically we study functions of the form 

   qσ (x)(x) = 
[ ]

[ ] baabxbxa/b

RR

bx
ddfgh

nn

n
)()-()(

)-(

1 −−⋅ ∫∫ σ
σ

 (3) 

which is the linear filtering (either LSI or LSV) of the scale-variant signal (1) by the kernel h. 

 We shall also be interested in the filtered function 

   q̂ σ (x0)(x) = h(x) * zσ (x0)(x) = h(x) * zσ (x) | σ = σ (x0) 

        = [ ] [ ] baabxxa/b

RR

x
ddfgh

nn

n
)()()(

0

0
)(

1 −−⋅ ∫∫ σ
σ

. (4) 

This is the LSI convolution of the filter h with the function zσ (x0)(x), but with the scale function 

held constant: σ(x) = σ(x0) = constant; hence zσ (x0)(x) is space-invariant and (4) is a true double 

convolution. As indicated by (2), this is also the LSI convolution of h with (2), where σ = σ(x0). 

 The coordinate x0 is the point at which we make approximation to the filtered scale-

variant signal (3). In fact, the approximation is (4). Thus define the quasi-invariant 

approximation of qσ (x)(x) at the point x0: 

     q̂ σ (x0)(x) ≈ qσ (x)(x) |  x = x0
.     (5) 



 

 

 

5 

 

 

 

If the filter h and the scale variant signal zσ (x0)(x) are such that the approximation (5) is close (in 

some sense), then (3) will be referred to as a quasi-invariant filtering of the scale-variant signal. 

 The following Theorem places a bound on the magnitude of the error 

    ε(x0) = qσ (x)(x) |  x = x0
 − q̂ σ (x0)(x) |  x = x0

.    (6) 

of approximation (5). It is expressed in terms of the filter durations and certain derivative or 

smoothness norms of the signal being filtered and of the scaling function. We define these first. 

 The n-dimensional vector ∆g = (∆g1 ,…, ∆gn)
T
 has elements 

     ∆gi = v

R

v dgv

n

i∫ )(22 ; i = 1 ,…, n   (7) 

with identical definition for the ∆hi ; i = 1 ,…, n of ∆h. The elements ∆gi and ∆hi are the energy 

variances (durations) of g(x) and h(x) along the direction of the axis xi; i = 1 ,…, n. 

 The vectors δf = (δf1 ,…, δfn)
T
 and ∂σ = (∂σ1 ,…, ∂σn)

T
 have elements 

     rr

R

dff
i

n

i

2

)(∇= ∫δ  ; i = 1 ,…, n   (8) 

     [ ] b
b

b

R

d
n

i

n

i )(

)( 2

σ
∇σ

σ ∫=∂  ; i = 1 ,…, n,   (9) 

where ∇fi(x) = ∂f(x)/∂xi is the ith element of the gradient vector of f(x). The elements 
i

fδ and 

i
∂σ , i = 1 ,…, n are derivative functionals, or Sobolev norms, which are measures of the 

smoothness of the functions  f(x) and σ(x) along the direction of the axis xi; i = 1 ,…, n. The 

integrands of the functionals 
i

∂σ  are weighted by the reciprocal of the scaling function, and so 

express a greater sensitivity when σ(x) is small. Finally, given vectors length-n vectors ∆g and 

δf, we denote the vector inner product by ∆g • δf. 
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 Theorem 1 – When n ≠ 2, the absolute error |ε(x0)| is bounded from above as 

    |ε(x0)| < ∂σ∆δ∆ •• ⋅
−

hfg
n2

2
.     ♣        (10) 

 A number of comments regarding this result are in order. First, the bound is tight. As the 

filters g(x), h(x) are taken arbitrarily narrow, the RHS of (10) vanishes. Likewise, if the variation 

in the signal f(x) is sufficiently small, then (10) becomes arbitrarily small: zero if the signal is 

constant. Likewise, if σ(x) is made sufficiently smooth, then the bound vanishes. 

 Secondly, the weighted functional ∂σ is of particular interest. At locations x0 where the 

scaling function σ(x) becomes small, then the bound can become large unless the scale-variant 

filter or process is such that σ(x) changes very slowly near x0. For example, in image foveation 

[1]-[4], σ(x) increases away from a presumed point of visual fixation (heavier blurring), but may 

be small near the point of fixation. Theorem 1 implies that at such points, slow changes in σ(x) 

are required in order that the approximation (5) might hold accurately. This might be desirable to 

be able to, e.g., construct an algorithm for de-foveation (as we shall see). 

 Thirdly, the dependence on the dimensionality n of the involved signals is interesting. 

For signals of high dimensionality, it appears that the bound (10) becomes very narrow – 

although the involved products may be larger in practice. For n = 2, the bound is useless! Hence 

the result seems of reduced interest for two-dimensional signals and images. However, a 

Corollary result will be given next that provides a useful bound even for n = 2. Moreover, the 

bound (10) can be applied to two-dimensional signals when the involved filters are separable, 

e.g., gaussian. 

 First, a few more notations are required. Let 

     
max,max

max
i

i

ff δδ =      (11) 
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     )(sup
max,

r

R
in

i
ff ∇=δ      (12) 

and define the alternate directional duration measures 

    Dgi = v

R

v dgv

n

i∫ )(2 ; i = 1 ,…, n    (13) 

which are the usual (non-normalized) function variances, and the (directionless) overall duration 

     Dg = ∑
=

n

i 1

Dgi .     (14) 

Corollary 1 - The absolute error |ε (x0)| is bounded from above as 

    |ε(x0)| < n
hg

CC ⋅
max

fδ
max

δσ DhDg ⋅      

where    
g

C  = a 

R

a dg

n

∫ )( , 
h

C   = a 

R

a dh

n

∫ )(   ♣       (15) 

This second result is also dimension-dependent, but with a different (linear) dependence on the 

dimension n and finite bound when n = 2. For large n, (15) may prove less useful than (10). The 

bound is again tight in all variables, becoming arbitrarily small as the filter durations are 

reduced, or as the filter or scale function are made sufficiently smooth. 

 Making comparisons between the bounds in Theorem 1 and Corollary 1 is difficult, since 

the durations and the smoothness measures all have distinct definitions, and each contains four 

terms that behave independently. Nevertheless, the two results substantiate one another, since 

both indicate that the quasi-invariant filtering approximation of scale-variant signals will tend to 

be accurate if the involved filters are of short duration, and if the filtered signal is smooth, and if 

the change in scale is not too rapid. These observations will be born out later in the numerical 

simulations (Section IV). 
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B. Illustrative Examples 

 We now examine a few interesting and illustrative examples. These were selected for 

their general significance and applicability, as opposed to the numerical simulations given later, 

which demonstrate specific examples of interest. 

Signal Differentiation 

 In numerous applications it is of interest to differentiate a signal, possibly following a 

linear (and perhaps scale-variant) filtering. For example, in image processing, directional 

derivatives, gradients or Laplacian operators highlight sustained intensity changes, or edges [9]. 

In many other applications, derivative operators highlight sudden changes or signal transients, 

reveal trends, or when combined with nonlinear operations, demodulate AM-FM signals [10]. 

 Suppose that we are given a scale-variant signal (1) with n = 1. In the context of what is 

to follow, this would usually be a signal that has been filtered with a linear low-pass (smoothing) 

function g, such as a gaussian, with a varying scale parameter. Suppose then that the scale-

variant signal (1) is passed through a k-fold differentiator, with impulse response 

     h(x) = δ(k)
(x) = 

k

k

dx

d δ(x).    (16) 

In this case, the quasi-invariant approximation is 

   θσ (x0)(x) = δ(k)
(x) * zσ (x) | σ = σ (x0) 

      = [ ]
[ ] )(*)(

)(

)(
0

0

1
axfxag k

n
−σ

σ
/

x
,    (17) 

the convolution of the scale-variant filter with the k
th

 derivative of f. If the variation in f and σ 

are finite, as measured by 
max

fδ  and 
max

δσ , then (17) is exact when k ≠ 2, since (15) is zero: Dh 
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= 0. When k = 2, then Dh = ∞! Hence the bound is not applicable, although the approximation 

remains exact. In this example, (10) is also not applicable for any k, since the square of the 

generalized function (16) is not properly defined [12]. 

Inverse Filtering 

 A basic, yet difficult operation in signal processing is the restoration of a signal that has 

been degraded by a linear distortion function, e.g., image blurred by defocusing or other 

undesirable smoothing function [11]. The problem is variously called restoration, deconvolution, 

or inverse filtering, depending on the details of the formulation. The problem is complicated by 

frequency-domain zeros in the blur function, noise, and other uncertainties that leave the 

problem generally ill-posed. Yet even more difficult is the case where the blur function is shift-

variant, viz., the degree or the nature of the blur changes from point to point or moment to 

moment [5], [6]. This problem has been given only a small amount of attention, especially as 

compared to the case of shift-invariant linear distortion. However, it is of interest for many 

applications. 

 We consider the case of attempting to reverse a linear distortion that is scale-variant in 

the sense of (1). Our approach is to apply an “inverse filter” that is also scale-variant, referred to 

as scale-variant inverse filter. We first consider the noise-free case where the scale-variant linear 

distortion is the only degradation of the signal. 

 Model a signal distorted by n-dimensional scale-variant distortion function g using (1). 

Also assume, for simplicity, that the distortion is suitably well behaved, in the sense that g 

possesses no frequency-domain zeroes, although this is a practical impossibility. In the future, 

modifications of the example solution proposed here could be developed, e.g., pseudo-inverse 

solutions, etc. Denote the Fourier transform of g by 
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    G(Ω) = ℑ{g(x)} =  aa

R

djag Τ

n

)exp()( Ω−∫    (18) 

At each x0, f(x) is modified by taking the inner product of f with the scaled filter function 

    gσ (x0)(x) =  [ ] [ ])(
)(

1
0

0

xa/
x

σ
σ

g
n

,    (19) 

which has Fourier transform Gσ (x0)(Ω) = G[σ(x0)Ω]. Then, define the scale-variant inverse 

filter 

     hσ (x0)(x) = ℑ-1{1/G[σ(x0)Ω]}.    (20) 

This idea is conceptually simple; at each coordinate, define the scale-variant inverse filter to be 

the inverse Fourier transform of the reciprocal of the Fourier transform of the filter kernel g 

scaled by the scaling function evaluated at the current point of interest, x0. The idea is that near 

x0, the signal has been modified sufficiently similarly to LSI filtering with gσ (x0)(x) that the 

restoration will be accurate. We note that if Hσ( x0)(Ω) = [1/ Gσ (x0)(Ω)] is not square integrable, 

then Hσ( x0)(Ω) is a power-type signal, with an appropriate interpretation for its inverse Fourier 

transform expressed in terms of generalized functions. 

 We would be surprised if this idea for shift-variant inverse filtering has not been 

considered previously; it may even be quite old. However, we have been unable to find a single 

reference to such a method. In any case, Theorem 1 and Corollary 1 directly address the validity 

of the approach. The signal f should not vary too quickly; at points where it does, the bounds will 

be large and the approximation poor. Likewise, the rate of change of the scale of the LSV 

degradation (and hence of the restoration filters) should be small. Where it changes quickly, 

expect a poor approximation. The remaining question address the degradation filter durations, 

and the restoration filter durations. The questions are linked since one defines the other. 
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 Theorem 1 addresses this question with some generality. The bound (10) is reduced if 

∆gσ (x0), ∆hσ (x0) are both small; however, there are limits on how well this can be accomplished. 

Dropping the question of scale for simplicity, consider distortion g ↔ G and inverse filter h ↔ 

H. By the Fourier transform frequency differentiation theorem and Parseval’s formula: 

  ∆gi = v

R

v dgv

n

i∫ )(22 = ΩΩ dG

n i
∫

R

2

)(
2

1

∂Ω
∂

π
for i = 1 ,…, n  (21) 

  ∆hi = v

R

v dhv

n

i∫ )(22  = ΩΩ dH

n i
∫

R

2

)(
2

1

∂Ω
∂

π
 

     = ΩΩ
Ω

dG
G i

n

24

)(
)(

1

2

1

∂Ω
∂

π ∫
R

for i = 1 ,…, n. (22) 

While short-duration linear degradation functions might often be encountered in practice, and so 

(21) might be small, the problem that arises is expressed well by (22): the duration of h is 

controlled by the reciprocal of G. Low-pass blur functions that completely or nearly eradicate 

high frequencies will have large durations, hence (10) will grow quite large. This is a new 

interpretation of the main limitation of inverse filters: excessive and unpredictable amplification 

of high signal frequencies, especially when noise is present. In this case, it limits the reversibility 

of scale-variant linear degradations and blurs. A consequence of this is that, in cases where 

scale-variant blurs are intentionally applied to signals, and are desired to be reversible, then the 

square of the Fourier transforms of the blur functions should not vanish faster than their 

derivatives. 

 If the scale-variant blur is accompanied by additive noise, then it is natural to define a 

scale-variant minimum mean-squared error (MMSE or Wiener) filter, by applying the 

appropriate MMSE filter at each point in the signal. 
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Scale-Variant Random Process 

 Suppose that f is a wide-sense stationary (wss) random process f(x) = )(
~

xf  with mean µf 

and autocorrelation function Rf(ξ) = E[ )(
~

xf )(
~

ξ-xf ]. The scale-variant filtering (1) delivers a 

random signal )(~
)(

x
xσz  that is no longer wss. 

 The mean function of the filtered process is 

   µz(x) =  E[ [ ]
[ ] aax

R

xa/
x

dfg

n

n
)(

~
)(

)(

1 −∫ σ
σ ]   (23) 

            = µf µg         (24) 

where  

   µg = 
[ ]

[ ] a

R

a  a

R

xa/
x

dgdg

nn

n ∫∫ = )()(
)(

1 σ
σ

 = constant.  (25) 

Since the filters have constant area over scale, then )(~
)(

x
xσz  has constant mean function. 

 The autocorrelation function of the output process )(~
)(

x
xσz  is 

Rz(x, ξ) = E[ )(~)(~
)/2()/2(

xx
x-x ξξ +σσ zz ] 

[ ]
[ ] [ ] babxax

R

xb/xa/

R

xx
ddffEgg

nn

n 





+−
−+−−+−= ∫∫ )2(

~
)2(

~
)2()2(

)2()2(

1 ξ/ξ/ξ/ξ/
ξ/ξ/

σσ
σσ

[ ]
[ ] [ ] a bab

R

xb/

R

xa/
xx

ddRgg
f

n n

n
)()2()2(

)2()2(

1
+−+−= ∫ ∫+−

ξξ/ξ/
ξ/ξ/

σσ
σσ

 (26) 

the inner integral of which is a scale-variant convolution of the form (1). It is of interest to learn 

whether a useful approximation to (26) can be developed. The outer integral is not a scale-



 

 

 

13 

 

 

 

variant convolution; therefore we cannot apply Theorem 1 or its Corollary to develop an 

approximation to (26). However, in a moment we shall state and prove a Lemma that will serve 

this purpose. 

 In fact we propose the approximation 

   R̂ z(x, ξ) 
[ ] n2

)(

1

xσ
= { )(** ][][

)()(
ξξξ

f
Rgg

xx σσ
− }  (27) 

to Rz(x, ξ) which is expressed in terms of shift-invariant convolutions. The autocorrelation 

approximation (27) is still a function of position x; viz., from point-to-point in the signal, the 

(approximated) correlation structure changes. From a computational perspective, the correlation 

approximation must be computed via a convolution at every point, but it has the advantage that it 

need not be computed as a separate operation for every ξ as well, unlike the true expression (26). 

 The validity of the approximation (27) is addressed by the following Lemma. We denote 

     ρ(x, ξ) = Rz(x, ξ) - R̂ z(x, ξ)    (28) 

     
g

C  = a 

R

a dg

n

∫ )( .     (29) 

Lemma 1 - The absolute error |ρ(x, ξ)| is bounded from above as 

   |ρ(x, ξ)| < n⋅
g

C ⋅
max,f

Rδ ⋅
max

δσ ⋅Dg⋅∑
=

n

j

j

1

ξ .     ♣       

 (30) 

This result suggests that the formula (27) is most useful for small correlation distances. Indeed, 

when ξ = 0, the approximation is exact. Thus, the approximation captures the second-order point 

statistics (variances) exactly. The approximation bound is also tight: the error becomes 

arbitrarily small when the correlation function Rf is sufficiently smooth, when the scaling 

function g changes slowly enough, and when the filter g is adequately narrow. 
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 As an example of these concepts, we explore the idea of scale-variant zero-crossing 

rates. If )(
~

xf  is gaussian, then the output process is gaussian as well. In the case of a one-

dimensional signal, so that )(
~

xf  = )(
~

xf  and Rf(ξ) = Rf(ξ), the input process has a zero-crossing 

rate expressed by Rice’s famous formula [13]: 

     λ0 
)0(

)0(1

f

f

R

R ′′
=

π
.     (31) 

Here we postulate an expression for the shift-variant zero-crossing rate for the case of a one-

dimensional scale-variant process )(~
)(

xz
xσ  with approximate autocorrelation function (27). The 

approximate zero-crossing rate at each x is (naturally enough): 

     λ0(x) 
)0,(ˆ

)0,(ˆ1

xR

xR

z

z′′≈
π

 ,    (32) 

where 

   
z

R ′′ˆ (x, ξ) 
[ ] n2

)(

1

xσ
= { )(*'*' ][][

)()(
ξξξ

f
Rgg

xx σσ
− }   (33) 

We have found it difficult to develop an error analysis of the approximation (32), so it remains as 

a postulate. However, in the simulations, we explore the utility of the approximation for a 

practical application: zero-crossing based edge detection. While the approximation (32) is 1-D, 

can also be used to approximate zero-crossing rates along appropriate paths (such as image scan 

lines) in higher dimensional signals. 

 

III. DISCRETE FORMULATION 
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 We now develop results for the case of scale-variant discrete-domain signals filtered by 

linear filters (LSV or LSI). Consider n-dimensional discrete-domain signals of the form: 

    zk(m)(m) = [ ] )()( pmmp/

Z

−∑
∈

fkg

np

 = g ⊗ f   (34) 

where Z
n
 are the n-dimensional integers, m = (m1 ,…, mn),  f: Z

n
 → R is a discrete-domain signal 

filtered by g: Z
n
 → R, and k: Z

n
 → R

+
 is a non-negative, shift-variant integer-valued scaling 

function. Whenever p/k(m) ∉ Zn
, then we take g(p/k(m)) = 0. We also refer to (34) as a scale-

variant filtering or scale-variant convolution of f. When k(x) = k = constant, then (34) becomes 

    zk(m) = )()( pmp/

Zp

−∑
∈

fkg

n

.    (35) 

We are concerned with filtering signals of the form (34). Thus we study functions of the form 

   qk (m)(m) = [ ] )()()( rpmpmr/p

ZrZp

−−−∑∑
∈∈

fkgh

nn

   (36) 

which is the linear (LSI or LSV) filtering of (34) by h. We further define 

   q̂ k (m0)(m) = h(m) * z k (m0)(m)  = h(m) * zk(m) | k = k (m0) 

        = [ ] )()()(
0

rpmmr/p

ZrZp

−−∑∑
∈∈

fkgh

nn

.   (37) 

which has the same explanation as (4): it is the LSI convolution of h with zk(m0)(m), but with the 

scale function held constant: k(x) = k(x0) = constant. The point m0 is where we make 

approximation to (36); the quasi-invariant approximation is (37): 

     q̂ k (m0)(m) ≈ q k (m)(m) |  m =m0
.    (38) 
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Again, if filter h and scale variant signal zk(m0)(m) are such that (38) is close, then (36) is a quasi-

invariant filtering of the scale-variant signal. 

 Corollary 2, which follows, bounds the absolute value of the error 

    ε(m0) = q k (m)(m) |  m =m0
 − q̂  k (m0)(m) |  m =m0

.   (39) 

The bound is again expressed in terms of the durations of the involved filters and derivative 

norms of the signal and scaling function. The discrete directional durations are given 

    Dgi = )(2 r

Zr

gr
n

i∑
∈

; i = 1 ,…, n    (40) 

and the overall duration Dg is still given by (14). The overall discrete smoothness functional is 

     ( )






∇

∈∈
=∇ )(maxmax s

ZsZ

f

,i

f
in

    (41) 

     )-(-)()(
ii

fff ∆sss =∇     (42) 

with the vector ∆i = (0, …, 1, …, 0)
T
 taking nonzero value only in the ith position. 

Corollary 2 - The absolute error |ε(m0)| is bounded from above as 

    |ε(m0)| < n ( ) ( ) DhDgkf ⋅∇∇ maxmax      ♣       (43) 

 The bound (43) is tight in all terms. For filters g and h taken arbitrarily narrow, the bound 

vanishes; for signal f and scaling function k taken arbitrarily smooth, it also vanishes. 

 

IV. SIMULATION RESULTS 

 In this section we show several examples of the quasi-invariant approximation in 

simulation. We find practical application to two problems, both suggesting avenues for using the 

ideas developed here while also serving to exemplify limitations found in schemes based upon 

such approximations. 
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Defoveation 

We begin by demonstrating an application of quasi-invariant approximation for defoveation.  

Foveation can be modeled as a scale-varying filtering system [1]-[4], where the scale of the filter 

increases away from the point of fixation according to some scaling function. 

 Figure 1 shows a 512x512 foveated Lena image with 4 distinct annular regions of filter 

scales that increase away from the fixation point (presumed to be the image center). The 

prototype filter used was a unit variance Gaussian filter. Figure 2 shows the defoveated image. 

The defoveation is performed using the simple scheme described in Section II-B (Inverse 

Filtering). Figure 3 shows the quasi-invariant approximation. This foveated example was 

designed to contain sharp discontinuities in the scaling function. It is not representative of a 

foveation process reflective of the human eye or as appropriate for human consumption. In this 

case, the defoveation scheme performs poorly, as might be expected from (43). 

 Figure 4 shows a more representative foveated image using the same prototype filter. 

Here the foveation is mediated by a gradual change in the filter scale away from fixation. Since 

the filter scale function varies smoothly, the Sobolev norm of the scale function in (43) is small, 

hence the quasi-invariant approximation is more accurate, as seen in Figs. 5 and 6. 

 Now consider the case where there is foveation blur accompanied by additive white 

Gaussian noise (AWGN). Figure 7 shows a graded foveated image corrupted by AWGN, while 

Fig. 8 depicts the defoveated image using the scale-variant inverse filters defined above; Fig. 9 

shows the defoveated image using MMSE versions of scale-varying inverse filters; clearly, the 

scale-variant Wiener filtered image (Fig. 9) has much less noise amplification than the scale-

variant inverse filtered image (Fig. 8). 
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Zero-Crossing Rate Approximation 

 As a second type of example, the plausibility of the hypothesis in (32) is demonstrated. 

Figure 10 depicts plots of the theoretical and the actual zero-crossing rates obtained by applying 

scale-variant Laplacian-of-Gaussian (LoG) bandpass filters to Gaussian white noise 1-D signals. 

Here the ZC rate is plotted against the value of σ (expressed in units of sample rate) for the 

Gaussian filter component of the LoG. As can be seen, the average “theoretical” ZC rate as 

computed from (32), (33) is in close alignment with the actual ZC rates computed from the scale-

variant filtered signals. 

 As an example of more specific application, note that the ZCs of LoG-filtered images are 

commonly used for scale-dependent edge detection in images [9]. Figure 11 depicts a scale-

variant LoG-filtered image and also the associated ZC map that was computed from it. Although 

the graded scale-variant LoG was applied to the image tessellated on Cartesian coordinates, the 

ZC rates were measured by performing a coordinate transformation into polar coordinates 

centered at fixation (so that contours of constant radius map to columns). The ZC rate was 

computed along each row, then the ZC rates across the rows was averaged. To compute the 

theoretical ZC rates from (32), (33) the theoretical rate was computed for each σ for each row, 

then these were averaged across rows. Figure 12 shows the plots of theoretical vs. actual ZC 

rates. It may be noted that the theoretical ZC rate underestimated the actual ZC rates in the 

images; this is likely due to nonstationarities and non-gaussianity in the Lena image. 

 The implication of these results are that the quasi-invariant approximation may be 

extended, with care, for extended applications such as ZC rate approximation in scale-variant 

signals. Such signals can occur, e.g., in foveated edge detection systems. 

 

VI. CONCLUSIONS 
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 The analysis of the structural responses of systems that depart from the usual assumptions 

of linearity and/or shift-invariance generally poses significant problems owing to the loss of the 

principles of superposition and/or frequency-domain equivalence. Analyzing such systems 

requires either the development of new tools for analysis, which is usually quite difficult, or the 

use of approximations that relate the systems to other, more easily-analyzed systems. We have 

taken the second approach here, but we believe that the approximations used are simple enough 

and sufficiently understandable to find extensive applications. This is particularly likely owing to 

the increased recognition of the multi-scale (and often scale-variant) structure that is found in 

signals and images of recorded natural phenomena, such as speech signals, images, and videos. 

 

APPENDIX 

 In this Appendix we supply proofs of the main results. 

Proof of Theorem 1 – We have that 
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By making appropriate substitutions (A1) becomes: 
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The term in the inner curly brackets can be evaluated using a first-order Taylor’s approximation 

with explicit remainder [9, p. 203]: 
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where v = (v1 ,…, vn). With this the squared error (A2) becomes: 
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the innermost integral of which is bounded above by the Cauchy-Schwarz inequality: 
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where ∆gi is given in (7). By making the substitutions 
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the term inside the radical in (A5) can be re-expressed as 
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where δfi is given by (8). Using (A5)-(A9) yields the following bound on the squared error (A2): 
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            (A10) 

Making another substitution of variables in the innermost integral of (A10), letting ∆g = (∆g1 

,…, ∆gn)
T
 and δf = (δf1 ,…, δfn)

T
, then (A10) becomes 
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 Further evaluation of (A11) requires noting that the innermost integral yields different 

definite forms when n = 2 and n ≠ 2. When n ≠ 2, 
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and when n = 2 

   )/(ln1 abdss =−∫
b

a

.       (A13) 

For the case n ≠ 2, the innermost integral becomes 
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where ∇σi(x) = ∂σ(x)/∂xi, i = 1 ,.., n are the elements of the gradient vector of the scaling 

function. Equation (A15) follows by application of the closed-form of the first-order Taylor’s 

approximation of the difference within curly brackets in (A14). Hence (A11) becomes (n ≠ 2) 
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For the case n = 2, as it turns out, the bound is the same, since  
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and so it follows that the bound (A11) is given by (A16) for n = 2 as well. But this can be 

simplified even further by again applying the Cauchy-Schwarz inequality, this time to the 

innermost integral of (A16). 
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where ∆hj, the directional energy variance of h(x), is defined as in (7). Hence the squared error 

functional (A1) is further bounded as 
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The innermost integral of (A19) can also be simplified: 
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where ∂σ = (∂σ1 ,…, ∂σ n)
 T

 is the vector of weighted derivative (Sobolev) norms given by (9). 

Also denoting  ∆h = (∆h1 ,…, ∆hn)
T
, the bound (A19) can be expressed 
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However, dss n 2/

1

0

−∫  evaluates to 2/(2-n) except when n = 2, in which case the integral does not 

converge (is infinite). Hence we finally have (n ≠ 2) 
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which, after take the square root of each side, finishes the proof.     ♣ 

Proof of Corollary 1 – We have from (A2) that 
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By the Fundamental Theorem for line integrals we have that 
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The squared error (A23) can be bounded as 
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where 
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fδ  is defined in (11), (12). Defining 
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δσ  in this way we can write 
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Then, using (A28) and by separating the sums and integrals the squared error (A23) is further 

bounded as: 
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Using this special case of the Cauchy-Schwarz inequality: 
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where the second inequality (A33) follows since for a positive function r(x) it is true that 
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Therefore, we finally have 

    |ε(x0)|
2
 < n

2
 Cg Ch 

2
max

fδ 2
max

δσ Dg ⋅ Dh   (A35) 

which, upon taking square roots, completes the proof.     ♣ 

Proof of Lemma 1 – With some simple substitutions we have that 
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Reasoning as in (A24), (A25) we have that 
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using (A28) and (A31). The proof is finished by taking the square root of both sides of (A41).   
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Proof of Corollary 2 – The squared error can be written 
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Reasoning similar to previous proofs, we have:  
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so that the squared error (A41) can be bounded 
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using (38) and (39). Now 
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where ( )maxk∇  is defined as in (38), (39). Hence (A46) is further bounded as 
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using (A31) and the discrete version of (A34), (37) and (14). The proof is then finished by taking 

square roots.    ♣ 
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    Fig. 1. Foveated image      Fig. 2. Defoveated image. 

   (with 4 annular regions). 

      

 

 

     
 Fig. 3. Quasi-invariant approximation     Fig. 4. Graded foveated image. 

            to the defoveated image. 
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Fig. 5. Defoveation of graded foveated image. Fig. 6. Quasi-invariant approximation of graded 

    defoveated image. 

 

 

 

Fig.7.  Image foveated over four annular       Fig. 8. Defoveated version of graded,  

regions corrupted by AWGN (variance = 10.0)  foveated noisy image in Fig. 7. 
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Fig. 9. MMSE (Wiener) defoveated version of graded, foveated noisy image in Fig. 7. 

 

 

 

 

 

 

 

     
   

Fig. 10. Plot of theoretical and actual zero-crossing rates averaged over 100 1-D Gaussian noise  

signals filtered by scale-variant linear Gaussian filters. 
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Fig. 11. Left: Scale-variant LoG-filtered Lena image. Right: ZCs computed from Left image. 

 

 

 

 

 
   

Fig. 12. Plot of theoretical and actual zero-crossing rates averaged over  

100 radial directions on image filtered by scale-variant linear Gaussian filter. 

(Legend: +:Theoretical ZC Rate, x: Actual ZC Rate) 

 

 


