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Abstract

One of the fundamental clustering problems is to assign n points
into k clusters based on the minimal sum-of-squares(MSSC), which is
known to be NP-hard. In this paper, by using matrix arguments, we
first model MSSC as a so-called 0-1 semidefinite programming (SDP).
We show that our 0-1 SDP model provides an unified framework for
several clustering approaches such as normalized k-cut and spectral
clustering. Moreover, the 0-1 SDP model allows us to solve the under-
lying problem approximately via the relaxed linear and semidefinite
programming.

Secondly, we consider the issue of how to extract a feasible solu-
tion of the original MSSC model from the approximate solution of the
relaxed SDP problem. By using principal component analysis, we de-
velop a rounding procedure to construct a feasible partitioning from a
solution of the relaxed problem. In our rounding procedure, we need
to solve a k-means clustering problem in ℜk−1, which can be solved
in O(nk

2(k−1)) time. In case of bi-clustering, the running time of our
rounding procedure can be reduced to O(n log n). We show that our al-
gorithm can provide a 2-approximate solution to the original problem.
Promising numerical results based on our new method are reported.

Key words. K-means clustering, Principal component analysis, Semi-
definite programming, Approximation.
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1 Introduction

In general, clustering involves partition a given data set into subsets based
on the closeness or similarity among the data. Clustering is one of major
issues in data mining and machine learning with many applications arising
from different disciplines including text retrieval, pattern recognition and
web mining[17, 21].

There are many kinds of clustering problems and algorithms, resulting
from various choices of measurements used in the model to measure the
similarity/dissimilarity among entities in a data set. Most clustering algo-
rithms belong to two groups: hierarchical clustering and partitioning. The
hierarchical approach produces a nested series of partitions consisting of
clusters either disjoint or included one into the other. Those clustering al-
gorithms are either agglomerative or divisive. An agglomerative clustering
algorithm starts with every singleton entity as a cluster, and then proceeds
by successively merging clusters until a stopping criterion is reached. A di-
visive approach starts with an initial cluster with all the entities in it, and
then performs splitting until a stopping criterion is reached. In hierarchical
clustering, an objective function is used locally as the merging or splitting
criterion. In general, hierarchical algorithms can not provide optimal par-
titions for their criterion. In contrast, partitional methods assume given
the number of clusters to be found and then look for the optimal partition
based on the object function. Partitional methods produce only one parti-
tion. Most partitional methods can be further classified as deterministic or
stochastic, depending on whether the traditional optimization technique or
a random search of the state space is used in the process. There are several
other ways to categorize various clustering algorithms. For a comprehensive
introduction to the topic, we refer to the book [17, 21], and for more recent
results, see survey papers [8] and [18].

Among various criterion in clustering, the minimum sum of squared
Euclidean distance from each entity to its assigned cluster center is the most
intuitive and broadly used. Both hierarchical and partitional procedures for
MSSC have been investigated. For example, Ward’s [38] agglomerative ap-
proach for MSSC has a complexity of O(n2 log n) where n is the number of
entities. The divisive hierarchical approach is more difficult. In [14], the
authors provided an algorithm running in O(nd+1 log n) time, where d is the
dimension of the space to which the entities belong. Promising numerical
results are reported for data sets in low dimensions.

However, in many applications, assuming a hierarchical structure in par-
titioning based on MSSC is unpractical. In such a circumstance, the par-

3



titional approach directly minimizing the sum of squares distance is more
applaudable. The traditional way to deal with this problem is to use some
heuristics such as the well-known K-means [25]. To describe the algorithm,
let us go into a bit more details.

Given a set S of n points in a d-dimensional Euclidean space 1, denoted
by

S = {si = (si1, · · · , sid)
T ∈ Rd i = 1, · · · , n}

the task of a partitional MSSC is to find an assignment of the n points
into k disjoint clusters S = (S1, · · · , Sk) centered at cluster centers cj (j =
1, · · · , k) based on the total sum-of-squared Euclidean distances from each
point si to its assigned cluster centroid ci, i.e.,

f(S,S) =
k
∑

j=1

|Sj |
∑

i=1

∥

∥

∥
s
(j)
i − cj

∥

∥

∥

2
,

where |Sj | is the number of points in Sj , and s
(j)
i is the ith point in Sj . Note

that if the cluster centers are known, then the function f(S,S) achieves its
minimum when each point is assigned to its closest cluster center. Therefore,
MSSC can be described by the following bilevel programming problem (see
for instance [4, 27]).

min
c1,··· ,ck

n
∑

i=1

min{‖si − c1‖2 , · · · , ‖si − ck‖2}. (1)

Geometrically speaking, assigning each point to the nearest center fits into
a framework called Voronoi Program, and the resulting partition is named
Voronoi Partition. On the other hand, if the points in cluster Sj are fixed,
then the function

f(Sj ,Sj) =

|Sj |
∑

i=1

∥

∥

∥s
(j)
i − cj

∥

∥

∥

2

is minimal when

cj =
1

|Sj |

|Sj |
∑

i=1

s
(j)
i .

The classical K-means algorithm [25], based on the above two observations,
is described as follows:

1In the present paper, we always assume that n ≥ k > 1, because otherwise the
underlying clustering problem becomes trivial.
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K-means clustering algorithm

(1) Choose k cluster centers randomly generated in a domain containing
all the points,

(2) Assign each point to the closest cluster center,

(3) Recompute the cluster centers using the current cluster memberships,

(4) If a convergence criterion is met, stop; Otherwise go to step 2.

Another way to model MSSC is based on the assignment. Let X =
[xij ] ∈ ℜn×k be the assignment matrix defined by

xij =

{

1 If si is assigned to Sj ;
0 Otherwise.

As a consequence, the cluster center of the cluster Sj , as the mean of all the
points in the cluster, is defined by

cj =

∑n
l=1 xljsl
∑n

l=1 xlj
.

Using this fact, we can represent (1) as

min
xij

k
∑

j=1

n
∑

i=1

xij

∥

∥

∥

∥

si −
∑n

l=1 xljsl
∑n

l=1 xlj

∥

∥

∥

∥

2

(2)

S.T.
k
∑

j=1

xij = 1 (i = 1, · · · , n) (3)

n
∑

i=1

xij ≥ 1 (j = 1, · · · , k) (4)

xij ∈ {0, 1} (i = 1, · · · , n; j = 1, · · · , k) (5)

The constraint (3) ensures that each point si is assigned to one and only one
cluster, and (4) ensures that there are exactly k clusters. This is a mixed
integer programming with nonlinear objective [13], which is NP-hard. The
difficulty of the problem consists of two parts. First, the constraints are
discrete. Secondly the objective is nonlinear and nonconvex. Both the diffi-
culties in the objective as well as in the constraints make MSSC extremely
hard to solve.

Many different approaches have been proposed for attacking (2) both
in the communities of machine learning and optimization [1, 13, 7]. Most
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methods for (2) are heuristics that can locate only a good local solution,
not the exact global solution for (2). Only a few works are dedicated to the
exact algorithm for (2) as listed in the references of [7].

Approximation methods provide a useful approach for (2). There are
several different ways to approximate (2). For example, by solving the so-
called K-medians problem we can obtain a 2-approximately optimal solution
for (2) in O(nd+1) time [15]. In [30], Mutousek proposed a geometric ap-
proximation method that can find an (1+ǫ) approximately optimal solution
for (2) in O(n logk n) time, where the constant hidden in the big-O notation
depends polynomially on ǫ−1. Although theoretically efficient, no numer-
ical results have been reported based on Mutousek’s algorithm. Another
efficient way of approximation is to attack the original problem (typically
NP-hard) by solving a relaxed polynomially solvable problem. This has
been well studied in the field of optimization, in particular, in the areas
of combinatorial optimization and semidefinite programming [9]. We noted
that recently, Xing and Jordan [40] considered the SDP relaxation for the
so-called normalized k-cut spectral clustering.

In the present paper, we focus on developing approximation methods for
(2) based on semidefinite programming (SDP) relaxation. A crucial step in
relaxing (2) is to rewrite the objective in (2) as a simple convex function
of matrix argument that can be tackled easily, while the constraint set still
enjoy certain geometric properties. This was possibly first suggested in
[11] where the authors owed the idea to an anonymous referee. However,
the authors of [11] did not explore the idea in depth to design any usable
algorithm. A similar effort was made in [41] where the authors rewrote the
objective in (2) as a convex quadratic function in which the argument is a
n × k orthonormal matrix.

Our model follows the same stream as in [11, 41]. However, different
from the approach [41] where the authors used only a quadratic objective
and simple spectral relaxation, we elaborate more on how to characterize (2)
exactly by means of matrix arguments. In particular, we show that MSSC
can be modelled as the so-called 0-1 semidefinite programming (SDP), which
can be further relaxed to polynomially solvable linear programming (LP) and
SDP. Our model provides novel avenues not only for solving MSSC, but also
for solving clustering problems based on some other criterions. For example,
the clustering problem based on normalized cuts can also be embedded into
our model. Moreover, by slightly change the constraints in the 0-1 SDP
model, we can attack clustering problems with constraints such as in the
so-called balanced clustering.

We also discuss how to find a good approximate solution for our 0-1 SDP
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model. For this, we first relax the model by removing some constraints. We
show that the relaxed problem can be solved by using singular value decom-
position of the underlying coefficient matrix. This is similar to the principal
component analysis (PCA) for data analysis [20]. Then we introduce a
rounding procedure to extract a feasible solution for the original 0-1 model.
In our rounding procedure, we need to solve a clustering problem whose
entities are in ℜk−1.

Our rounding procedure follows similar idea as in the so-called spectral
clustering [6, 41, 31], where PCA is used to project the data into a lower-
dimensional space generated by the eigenvectors corresponding to the first
largest k eigenvalues of the underlying coefficient matrix, and then K-means
clustering is performed in the lower dimension. The interesting link between
K-means clustering and principal component analysis has been noted by
several experts in the machine learning community. For example, Ding and
He [5] showed that a solution for MSSC can be constructed by using PCA
and a simple rounding heuristics. In [6], Drineas et’al proposed to solve a
K-means clustering problem in ℜk whose solution can be solved in O(nk3/2)
time and showed that their method can provide a 2-approximate solution to
the original problem 2.

However, different from all the above-mentioned approaches, we project
the coefficient matrix into a subspace in ℜk−1. Mathematically, this equals to
transfer all the points si to si− s̄ where s̄ is the geometric center of the whole
data set. Then we apply PCA to project the new transformed coefficient
matrix into a lower space ℜk−1 where k is the number of clusters. In the
last step of our algorithm, we perform K-means clustering in space ℜk−1,
which can be solved in O(nk2(k−1)/2) time. We show that our algorithm
can provide a 2-approximate solution to the original K-means clustering. In
general, the complexity of our algorithm is only a fraction ( 1

nk2/2
) of that

of the algorithm in [6]. In case that k = 2, a global solution to K-means
clustering in ℜ1 can be found in O(n log n) time. This allows us to efficiently
solve the bi-clustering problem in large-scale.

The paper is organized as follows. In Section 2, we show that MSSC can
be modelled as 0-1 SDP, which allows convex relaxation such as SDP and LP.
In Section 3, we consider approximation algorithms for solving our 0-1 SDP
model. We propose to use PCA to reduce the dimension of the problem,

2It should be pointed out that although the algorithm in [6] enjoy some nice properties,
the high complexity in solving the subproblem might prevent it from practical efficiency
when dealing with large-scale data sets. For example, for the bi-clustering problem with
a data set with n = 104, the running time of the algorithm in [6] will reach formidable
O(1016).
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and then perform K-means clustering in the lower dimension. Approximate
ratio between the obtained solution and the global solution of the original
K-means clustering is estimated in Section 4. In Section 5, we report some
preliminary numerical tests, and finally we close the paper by few concluding
remarks.

2 0-1 SDP for K-means clustering

In this section, we establish the equivalence between K-means type and 0-
1 SDP. The section has three parts. In the first part, we briefly describe
SDP and 0-1 SDP. In the second part, we establish the equivalence between
MSSC and 0-1 SDP model. In the last part, we explore the interrelation
between 0-1 SDP and other clustering approaches.

2.1 0-1 Semidefinite Programming

In general, SDP refers to the problem of minimizing (or maximizing) a linear
function over the intersection of a polyhedron and the cone of symmetric
and positive semidefinite matrices. The canonical SDP takes the following
form

(SDP)







min Tr(WZ)
S.T. Tr(BiZ) = bi fori = 1, · · · , m

Z � 0

Here Tr(.) denotes the trace of the matrix, and Z � 0 means that Z is
positive semidefinite. If we replace the constraint Z � 0 by the requirement
that Z2 = Z, then we end up with the following problem

(0-1 SDP)







min Tr(WZ)
S.T. Tr(BiZ) = bi fori = 1, · · · , m

Z2 = Z, Z = ZT

We call it 0-1 SDP owing to the similarity of the constraint Z2 = Z to the
classical 0-1 requirement in integer programming.

2.2 Equivalence of MSSC to 0-1 SDP

In this subsection we show that MSSC can be modelled as 0-1 SDP. We men-
tion that the equivalence between MSSC and 0-1 SDP was first established
in [32]. However, for self-completeness, we still give a detailed description of
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the reformulation process. We start with a brief introduction to SDP and
0-1 SDP.

By rearranging the items in the objective of (2), we have

f(S,S) =
n
∑

i=1

‖si‖2





k
∑

j=1

xij



−
k
∑

j=1

‖∑n
i=1 xijsi‖2

∑n
i=1 xij

(6)

= Tr
(

WSW
T
S

)

−
k
∑

j=1

‖∑n
i=1 xijsi‖2

∑n
i=1 xij

,

where WS ∈ ℜn×d denotes the matrix whose i-th row is the transfer sT
i of

the vector si. Since X is an assignment matrix, we have

XT X = diag (

n
∑

i=1

x2
i1, · · · ,

n
∑

i=1

x2
ik) = diag (

n
∑

i=1

xi1, · · · ,

n
∑

i=1

xik).

Let
Z := [zij ] = X(XT X)−1XT ,

we can write (6) as Tr
(

WSW
T
S (I − Z)

)

= Tr
(

WT
S WS

)

−Tr
(

WT
S WSZ

)

. Obvi-
ously Z is a projection matrix satisfying Z2 = Z with nonnegative elements.
For any integer m, let em be the all one vector in ℜm. We can write the
constraint (3) as

Xek = en.

It follows immediately

Zen = ZXek = Xek = en.

Moreover, the trace of Z should equal to k, the number of clusters, i.e.,

Tr(Z) = k.

Therefore, we have the following 0-1 SDP model for MSSC

min Tr
(

WSW
T
S (I − Z)

)

(7)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z = ZT , Z2 = Z.

We first give a technical result about positive semidefinite matrix that will
be used in our later analysis.
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Lemma 2.1. For any symmetric positive semidefinite matrix Z ∈ ℜn×n,
there exists an index i0 ∈ {1, · · · , n} such that

Zi0i0 = max
i,j

Zij .

Proof. For any positive semidefinite matrix Z, it is easy to see that

Zii ≥ 0, i = 1, · · · , n.

Suppose the statement of the lemma does not hold, i.e., there exists i0 6= j0

such that
Zi0j0 = max

i,j
Zij > 0.

Then the submatrix
(

Zi0i0 Zi0jo

Zj0i0 Zj0j0

)

is not positive semidefinite. This contradicts to the assumptuion in the
lemma.

Now we are ready to establish the equivalence between the models (7)
and (2).

Theorem 2.2. Solving the 0-1 SDP problem (7) is equivalent to finding a
global solution of the integer programming problem (2).

Proof. From the construction of the 0-1 SDP model (7), we know that one
can easily construct a feasible solution for (7) from a feasible solution of
(2). Therefore, it remains to show that from a global solution of (7), we can
obtain a feasible solution of (2).

Suppose that Z is a global minimum of (7). Obviously Z is positive
semidefinite. From Lemma 2.1 we conclude that there exists an index i1
such that

Zi1i1 = max{Zij : 1 ≤ i, j ≤ n} > 0.

Let us define the index set

I1 = {j : Zi1j > 0}.

Since Z2 = Z, we have
∑

j∈I1

(Zi1j)
2 = Zi1i1 ,
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which implies
∑

j∈I1

Zi1j

Zi1i1

Zi1j = 1.

From the choice of i1 and the constraint

n
∑

j=1

Zi1j =
∑

j∈I1

Zi1j = 1,

we can conclude that
Zi1j = Zi1i1 , ∀j ∈ I1.

This further implies that the submatrix ZI1I1
is a matrix whose elements

are all equivalent, and we can decompose the matrix Z into a bock matrix
with the following structure

Z =

(

ZJ1J1
0

0 ZĪ1Ī1

)

, (8)

where Ī1 = {i : i 6∈ I1}. Since
∑

i∈I1
Zii = 1 and (ZI1I1

)2 = ZI1I1
, we can

consider the reduced 0-1 SDP as follows

min Tr
(

(

WSW
T
S

)

Ī1Ī1
(I − Z)Ī1Ī1

)

(9)

ZĪ1Ī1
e = e,Tr

(

ZĪ1Ī1

)

= k − 1,

ZĪ1Ī1
≥ 0, Z2

Ī1Ī1
= ZĪ1Ī1

.

Repeating the above process, we can show that if Z is a global minimum of
the 0-1 SDP, then it can be decomposed into a diagonal block matrix as

Z = diag (ZI1I1
, · · · , ZIkIk

),

where each block matrix ZIlIl
is a nonnegative projection matrix whose

elements are equal, and the sum of each column or each row equals to 1.
Now let us define the assignment matrix X ∈ ℜn×k

Xij =

{

1 if i ∈ Ij

0 otherwise

One can easily verify that Z = X(XT X)−1XT . Our above discussion il-
lustrates that from a feasible solution of (7), we can obtain an assignment
matrix that satisfies the condition in (2). This finishes the proof of the
theorem.
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Note that for a given data set S, the trace Tr
(

WSW
T
S

)

becomes a fixed
quantity. Therefore, we can solve the MSSC model via the following opti-
mization problem

max Tr
(

WSW
T
S Z
)

(10)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z = ZT , Z2 = Z.

To distinguish the above problem from the original MSSC model, we call
the objective in the above formulation as the refined objective for the MSSC
model.

It is worthwhile comparing (7) with (2). First, the objective in (7) is
linear while the constraint in (7) is still nonlinear, even more complex than
the 0-1 constraint in (2). The most difficult part in the constraint of (7) is
the requirement that Z2 = Z. Several different ways for solving (7) will be
discussed in the next section.

2.3 0-1 SDP Reformulation for Other Clustering Approaches

In this subsection, we show that the 0-1 SDP can also be used for other
clustering approaches based on other measurements. Let us consider the
more general 0-1 SDP model for clustering

min Tr(W(I − Z)) (11)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z, Z = ZT ,

where W is the so-called affinity matrix whose entries represent the similar-
ities or closeness among the entities in the data set. In the MSSC model, we
use the geometric distance between two points to characterize the similarity
between them. In this case, we have Wij = sT

i sj . However, we can also use
a general function φ(si, sj) to describe the similarity relationship between si

and sj . For example, let us choose

Wij = φ(si, sj) = exp−‖si−sj‖2

σ , σ > 0. (12)

In order to apply the classical K-means algorithm to (11), we can first use the
singular eigenvalue decomposition method to decompose the matrix W into
the product of two matrices, i.e., W = UT U . In this case, each column of U
can be cast as a point in a suitable space. Then, we can apply the classical K-
means method for MSSC model to solving problem (11). This is exactly the
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procedure what the recently proposed spectral clustering follows [2, 31, 39,
40]. However, we now have a new interpretation for spectral clustering, i.e., a
variant of MSSC in a different kernel space. It is worthwhile mentioning that
certain variants of K-means can be adapted to solve (11) directly without
using the SVD decomposition of the affinity matrix.

We note that recently, the k-ways normalized cut and spectral cluster-
ing received much attention in the machine learning community, and many
interesting results about these two approaches have been reported [12, 28,
31, 36, 39, 40, 41]. In particular, Zha et’al [41] discussed the links between
spectral relaxation and K-means. Similar ideas was also used in [31]. An
SDP relaxation for normalized k-cut was discussed [40]. The relaxed SDP in
[40] takes a form quite close to (16). For self-completeness, we next describe
briefly how the k-ways normalized cut can be embedded into the 0-1 SDP
model. Let us first recall the exact model for normalized k-cut [40]. Let W
be the affinity matrix defined by (12) and X be the assignment matrix in
the set Fk defined by

Fk = {X : Xek = en, xij ∈ {0, 1}}.

Let d = Wen and D = diag (d). The exact model for normalized k-cut
in [40] can be rewritten as

max
X∈Fk

Tr
(

(XTDX)−1XTWX
)

(13)

If we define
Z = D

1

2 X(XT DX)−1XT D
1

2 ,

then we have
Z2 = Z, ZT = Z, Z ≥ 0, Zd

1

2 = d
1

2 .

Following a similar process as in the proof of Theorem 2.2, we can show that
the model (13) equals to the following 0-1 SDP:

min Tr
(

D− 1

2 WD− 1

2 (I − Z)
)

(14)

Zd
1

2 = d
1

2 , Tr(Z) = k,

Z ≥ 0, Z2 = Z, Z = ZT .

The only difference between (11) and (14) is the introduction of the scaling
matrix D.

Except for the above mentioned cases, the 0-1 SDP model can also be
applied to the so-called balanced clustering [3] where the number of entities
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in every cluster is restricted. One special case of balanced clustering is
requiring the number of entities in every cluster must be equal or large than
a prescribed quantity, i.e., |Ci| ≥ ñ. It is straightforward to see such a
problem can be modelled as a 0-1 SDP by adding the constraint Zii ≤ 1

ñ to
(11), which leads to the following problem

min Tr(W(I − Z)) (15)

Zii ≤
1

ñ
, i = 1, · · · , n,

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z, Z = ZT ,

.

3 Approximate Algorithms for Solving 0-1 SDP

In this section we discuss how to solve the 0-1 SDP model for clustering. For
simplification of our discussion, we restrict us to the model (11). Throughout
the paper, we further assume that the underlying matrix W is positive
definite or semidefinite. This assumption is satisfied in the MSSC model as
well as in the so-called spectral clustering where the kernel matrix is defined
by (12). It is worth mentioning that although we restrict our discussion to
(11), however, with a little effort, our results can be extended to (14) as
well.

The section consists of two parts. In the first subsection, we give a
general introduction to algorithms for solving (11). In the second part, we
introduce a new approximation method for (11).

3.1 Algorithms for 0-1 SDP

In this subsection, we discuss various algorithms for solving the 0-1 SDP
model (11). From a viewpoint of the algorithm design, we can categorize
all the algorithms for (11) into two groups. The first group consists of
the so-called feasible iterative algorithms, where all the iterates are feasible
regarding the constraints in (7) and the objective is increased step by step
until some termination criterion is reached. The classical K-means algorithm
described in the introduction can be interpreted as a special feasible iterative
scheme for attacking (11). It is also easy to see that, many variants of the
K-means algorithm such as the variants proposed in [16, 19], can also be
interpreted as specific iterative schemes for (11).
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The second group of algorithms for (11) consists of approximation al-
gorithms that are based on LP/SDP relaxation. We starts with a general
procedure for those algorithm.

Approximation Algorithm Based on Relaxation

Step 1: Choose a relaxation model for (7),

Step 2: Solve the relaxed problem for an approximate solution,

Step 3: Use a rounding procedure to extract a feasible solution to (7)
from the approximate solution.

The relaxation step has an important role in the whole algorithm. For
example, if the approximation solution obtained from Step 2 is feasible for
(11), then it is exactly an optimal solution of (11). On the other hand, when
the approximation solution is not feasible regarding (11), we have to use a
rounding procedure to extract a feasible solution.

Various relaxations and rounding procedures have been proposed for
solving (11) in the literature. For example, in [32], Peng and Xia considered
a relaxation of (11) based on linear programming and a rounding procedure
was also proposed in that work. Xing and Jordan [40] considered the SDP
relaxation for normalized k-cuts and proposed a rounding procedure based
on the singular value decomposition of the solution Z of the relaxed prob-
lem,i.e., Z = UT U . In their approach, every row of UT is cast as a point in
the new space, and then the weighted K-means clustering is performed over
the new set of those points in ℜk. Similar works for spectral clustering can
also be found in [12, 28, 31, 39, 41] where the singular value decomposition
of the underlying matrix W is used and a K-means-type clustering based
on the eigenvectors of W is performed. In the above-mentioned works, the
solutions obtained from the weighted K-means algorithm for the original
problem and that based on the eigenvectors of W has been compared, and
simple theoretical bounds have been derived based on the eigenvalues of W .

The idea of using the singular value decomposition of the underlying ma-
trix W is natural in the so-called principal component analysis (PCA) [20].
In [5], the link between PCA and K-means clustering was also explored
and simple bounds were derived. In particular, Drineas et’al [6] proposed
to use singular value decomposition to form a subspace, and then perform
K-means clustering in the subspace ℜk. They proved that the solution ob-
tained by solving the K-means clustering in the reduced space can provide
a 2-approximation to the solution of the original K-means clustering.

We note that in [36], Shi and Malik used the eigenvector of a projection
matrix of W (not W itself) onto a subspace to construct a feasible parti-
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tioning for the original problem. In this paper, we follow a similar idea as
[36]. We first use singular value decomposition to obtain the k − 1 eigen-
vectors corresponding to the first k − 1 largest eigenvalues of a projection
matrix of W , and then we perform K-means clustering in ℜk−1. This allows
us to improve the complexity of the algorithm for solving the subproblem
in the reduced space. As we shall see later, such a rounding procedure
can also provide a 2-approximation to the original problem with theoretical
guarantee.

3.2 A New Approximation Method

In this subsection, we describe our SDP-based approximation method for
(11). We start our discussion on various relaxation forms for (11).

First, recall that in (11), the argument Z is stipulated to be a projection
matrix, i.e., Z2 = Z, which implies that the matrix Z is a positive semidefi-
nite matrix whose eigenvalues are either 0 or 1. A straightforward relaxation
to (11) is replacing the requirement Z2 = Z by the relaxed condition

I � Z � 0.

Note that in (11), we further stipulate that all the entries of Z are non-
negative, and the sum of each row(or each column) of Z equals to 1. This
means the eigenvalues of Z is always less than 1. In this circumstance, the
constraint Z � I becomes superfluous and can be waived. Therefore, we
obtain the following SDP relaxation 3

min Tr(W(I − Z)) (16)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z � 0.

The above problem is feasible and bounded below. We can apply many ex-
isting optimization solvers such as interior-point methods to solve (16). It
is known that an approximate solution to (16) can be found in polynomial
time. However, we would like to point out here that although there exist
theoretically polynomial algorithm for solving (16), most of the present op-
timization solvers are unable to handle the problem in large size efficiently.

Another interesting relaxation to (11) is to further relax (16) by dropping
some constraints. For example, if we remove the nonnegative requirement

3In [40], the constraint Ze = e in (11) is replaced by Zd = d, where d is a positive
scaling vector associated with the affinity matrix.
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on the elements of Z, then we obtain the following simple SDP problem

min Tr(W(I − Z)) (17)

Ze = e,Tr(Z) = k,

I � Z � 0.

In the sequel we discuss how to solve (17). Note that if Z is a feasible
solution for (17), then we have

1√
n

Ze =
1√
n

e,

which implies 1√
n
e is an eigenvector of Z corresponding to its largest eigen-

value 1. For any feasible solution of (17), let us define

Z1 = Z − 1

n
eeT .

It is easy to see that

Z1 = (I − 1

n
eeT )Z = (I − 1

n
eeT )Z(I − 1

n
eeT ), (18)

i.e., Z1 represents the projection of the matrix Z onto the null subspace of
e. Moreover, it is easy to verify that

Tr(Z1) = Tr(Z) − 1 = k − 1.

Let W1 denote the projection of the matrix W onto the null space of e, i.e.,

W1 = (I − 1

n
eeT )W (I − 1

n
eeT ). (19)

Then, we can reduce (17) to

min Tr(W1(I − Z1)) (20)

Tr(Z1) = k − 1,

I � Z1 � 0.

Let λ1, · · · , λn−1 be the eigenvalues of the matrix W1 listed in the order of
decreasing values. The optimal solution of (20) can be achieved if and only
if

Tr(W1Z1) =

k−1
∑

i=1

λi.

This gives us an easy way to solve (20) and correspondingly (17). The
algorithmic scheme for solving (17) can be described as follows:
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Relaxation Algorithm 1

Step 1: Calculate the projection W1 via (19);

Step 2: Use singular value decomposition method to compute the first
k−1 largest eigenvalues of the matrix W1 and their corresponding
eigenvectors v1, · · · , vk−1,

Step 3: Set

Z =
1

n
eeT +

k−1
∑

i=1

viviT .

From our above discussion, we immediately have

Theorem 3.1. Let Z∗ be the global optimal solution of (11), and λ1, · · · , λk−1

be the first largest eigenvalues of the matrix W1. Then we have

Tr(W(I − Z∗)) ≥ n − 1

n
eTWe −

k−1
∑

i=1

λi.

We point out that if k = 2, then Step 2 in the above algorithm uses the
eigenvector corresponding to the largest eigenvalue of W1. Our relaxation
method is very similar to the one used by Shi and Malik [36] (See also [39])
for image segmentation where the normalized k-cut clustering problem with
k = 2 was discussed. Similar bounds for normalized k-cuts and spectral
clustering can also be found in [31, 5].

Note that solving the relaxed problem (17) can not provide a solution
for the original problem (11). In the sequel we propose a rounding proce-
dure to extract a feasible solution for (11) from a solution of the relaxed
problem (17) provided by the relaxation Algorithm 1. Our rounding pro-
cedure follows a similar vein as the rounding procedure in [6]. Let us de-
note V = (

√
λ1v

1, · · · ,
√

λk−1v
k−1) ∈ ℜn×(k−1) the solution matrix obtained

from relaxation Algorithm 1. We can cast each row of V as a point in ℜk−1,
and thus we obtain a data set of n points in ℜk−1,i.e., V = {v1, · · · , vn}.
Then we perform the classical K-means clustering for the data set V. From
Theorem 2.2, this equals to solving the following 0-1 SDP problem

min Tr

(

(I − Z)
k−1
∑

i=1

λiv
i(vi)T

)

(21)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z, Z = ZT ,
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For constrained K-means clustering, then we need to solve the following
subproblem

min Tr

(

(I − Z)
k−1
∑

i=1

λiv
i(vi)T

)

(22)

Zii ≥
1

ñ
i = 1, · · · , n,

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z, Z = ZT ,

Finally, we partition all the entities in the original space based on the clus-
tering on V, i.e., the entities si, sj belong to the same cluster if and only if
vi, vj are in the same cluster.

The whole algorithm can be described as follows.

Approximation Algorithm 2

Step 1: Calculate the projection of the matrix W onto the null space of
e, i.e.,

W1 = (I − 1

n
eeT )W (I − 1

n
eeT );

Step 2: Use singular value decomposition method to compute the first
k−1 largest eigenvalues of the matrix W1 and their corresponding
eigenvectors v1, · · · , vk−1;

Step 3: Solve problem (21) (or (22)) for (constrained) K-means clustering;

Step 4: Assign all the entities in S based on the assignment obtained from
Step 3.

4 Estimation of the Approximate Solution

In this section, we estimate the approximation solution provided by our al-
gorithm. We first consider the case for the classical K-means clustering. It
should be pointed out that in [6], Drineas et’al considered a similar algo-
rithm similar based on the singular value decomposition of W and showed
that their algorithm can provide a 2-approximation to the original K-means
clustering. However, since the working subspace in our algorithm is quite
different from what in [6], a new analysis is necessary to investigate the
approximation ratio of the solution obtained from Algorithm 2.

We now discuss the case of bi-clustering. One reason for this is that for
bi-clustering, the subproblem involved in Step 3 of Algorithm 2 is in ℜ. In
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such a case, the task in Step 3 of Algorithm 2 reduces to partitioning the
data set V = {vi ∈ ℜ, i = 1, · · · , n} into two clusters based on the MSSC
model. Therefore, we can refer to the following refined K-means clustering
in one dimension.

Refined K-means in One Dimension

Step 0: Input the data set V = {v1, v2, · · · , vn};
Step 1: Sort the sequence so that

vi1 ≥ vi2 · · · ≥ vin ,

where {i1, · · · , in} is a permutation of the index set {1, · · · , n};
Step 2: For l = 1 to n, set

C l
1 = {vi1 , · · · , vil}, C l

2 = {vil+1
, · · · , vin},

and calculate the objective function

f(C l
1, C

l
2) =

∑

vi∈Cl
1



vi −
1

l

∑

vi∈Cl
1

vi





2

+
∑

vi∈Cl
2



vi −
1

n − l

∑

vi∈Cl
2

vi





2

.

based on the partition (C l
1, C

l
2);

Step 3: Find the optimal partition (C∗
1 , C∗

2 ) such that

(C∗
1 , C∗

2 ) = arg min
l∈{1,··· ,n}

f(C l
1, C

l
2),

and output it as the final solution.

The above algorithm is similar to the algorithm in [14] for divisive k-clustering
in low dimension. It is straightforward to see that for bi-clustering prob-
lems in ℜ based on the MSSC model, the above procedure can find a global
solution in O(n log n) time.

If k ≥ 3, then we can resort to the algorithm in [6] to solve problem (21).
It is easy to see that the algorithm takes O(nk2(k−1)/2) time to find the global
solution of the subproblem in Step 3 of Algorithm 2, which is roughly a 1

nk2/2

fraction of the running time when the same procedure is applied to solve
the subproblem in [6]. This is because the working space in our algorithm
is one dimension less than the space in [6]. In case of bi-clustering, the
improvement is substantial since we can use our simple refined K-means in
one dimension.
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We next progress to estimate the solution obtained from Algorithm 2.
Let Z∗ be a global solution to (11) and Z̄ is the solution provided by Algo-
rithm 2. Let us define

U =
1

n
eeT +

k−1
∑

i=1

vi(vi)T . (23)

It follows

Tr

(

(I − U)
k−1
∑

i=1

vi(vi)T

)

= 0; (24)

Tr

(

U
n−1
∑

i=k

vi(vi)T

)

= 0.. (25)

From Theorem 3.1, we have

Tr(W(I − Z∗)) ≥ Tr(W(I − U)). (26)

It follows

Tr
(

W(I − Z̄)
)

= Tr
(

W(I − U + U − Z̄)
)

≤ Tr(W(I − Z∗)) + Tr
(

W(U − Z̄)
)

.

The above relation implies that if

Tr
(

W(U − Z̄)
)

≤ Tr(W(I − Z∗)), (27)

then
Tr
(

W(I − Z̄)
)

≤ 2Tr(W(I − Z∗)),

i.e., in the worst case, the solution provided by Algorithm 2 is a 2-approximation
to the original K-means clustering.

In what follows we prove (27), which can be equivalently stated as

Tr
(

W(I − Z∗ + Z̄ − U)
)

≥ 0. (28)

By the choices of Z∗, Z̄ and U , it is easy to verify

(I − Z∗ + Z̄ − U)e = 0, (29)

(I− eeT

n
)(I−Z∗+Z̄−U) = (I− eeT

n
)(I−Z∗+Z̄−U)(I− eeT

n
). (30)
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It follows immediately that

Tr
(

W(I − Z∗ + Z̄ − U)
)

=
1

n
Tr
(

W(I − Z∗ + Z̄ − U)eeT
)

+ Tr
(

W1(I − Z∗ + Z̄ − U)
)

= Tr

(

(I − Z∗ + Z̄ − U)
n−1
∑

i=1

λiv
i(vi)T

)

= Tr

(

(I − Z∗ + Z̄ − U)
k−1
∑

i=1

λiv
i(vi)T)

)

+Tr

(

(I − Z∗ + Z̄ − U)
n−1
∑

i=k

λiv
i(vi)T

)

= Tr

(

(Z̄ − Z∗)
k−1
∑

i=1

λiv
i(vi)T)

)

+ Tr

(

(I − Z∗ + Z̄)
n−1
∑

i=k

λiv
i(vi)T

)

≥ Tr

(

(Z̄ − Z∗)
k−1
∑

i=1

λiv
i(vi)T)

)

,

where the last equality is given by (24) and (25), and the last inequality
is implied by the fact that the matrix I − Z∗ + Z̄ is positive semidefinite.
Recall that Z̄ is the global solution of subproblem (21) and Z∗ is only a
feasible solution of (21), we therefore have

Tr

(

(Z̄ − Z∗)
k−1
∑

i=1

λiv
i(vi)T)

)

≥ 0,

which further implies (27).
Now we are ready to state the main result in this section, which follows

immediately from (26) and (27).

Theorem 4.1. Suppose that Z∗ is a global solution to problem (11) and Z̄
is the solution provided by Algorithm 2. Then, we have

Tr
(

W(I − Z̄)
)

≤ 2Tr(W(I − Z∗)).

In what follows we estimate the approximation rate of the solution pro-
vided by Algorithm 2 for constrained K-means clustering. It worth mention-
ing that in such a case, no polynomial algorithm has been reported in the
literature to find a global solution of subproblem (22). However, suppose a
global solution to (22) can be located, then by following a similar chain of
reasoning as in the proof of Theorem 4.1, we can prove the following result.
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Theorem 4.2. Suppose that Z∗ is a global solution to problem (15) and Z̄
is the solution provided by Algorithm 2. Then, we have

Tr
(

W(I − Z̄)
)

≤ 2Tr(W(I − Z∗)).

5 Numerical Experiments

To test the new algorithm, we have done some preliminary numerical ex-
periments on several data sets from the UCI Machine Learning Repository4

and internet newsgroups. All the experiments are done by using Matlab on
a personal computer with a Pentium 4 1700 MHz Processor and a 256M
memory. The power method is applied for calculating the largest eigenvalue
and eigenvector for the matrix [10].

It should be mentioned that although the subproblem (21) can be solved
by using the procedure in [6], the running time of the procedure is clearly
too much for reasonably large data set. Due to this fact, in our experiments,
we restrict us only to bi-clustering.

Data Sets from the UCI Machine Learning Repository

• Soybean Data Set (small): see also [29]. This data set has 47
instances and each instance has 35 normalized attributes.

• The Späth’s Postal Zones: This data set is from [37] about the
post zones in Bavaria. It has 89 entities with each having 3 attributes.

• Spam E-mail Database: created by M. Hopkins et al from Hewlett-
Packard Labs. It has 4601 samples, 57 attributes. For purpose of
clustering, we have removed the last boolean attribute which indicates
whether the e-mail was consider spam or not.

In our experiments, we use a two-phase strategy. After we obtain the
partition of the data sets from Approximation Algorithms 2, we use the
classical K-Means to further improve the partition. In other words, we
only use Algorithms 2 as a starting strategy for K-Means clustering. In the
following tables, we list the solutions from both phase 1 and phase 2.

Since, for all the first two data sets, the global optimum has already been
reported in [32] by using a linear programming model in the case of K = 2,
we list it in the Global Opt. column as reference. The global solution for
the third data set has been reported in [33].

4http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Table 5.1: Results on three UCI data sets

data set Stage 1 Stage 2 Global Opt.

Soybean 404.4593 404.4593 404.4593

The Späth’s 6.0255e + 11 6.0255e + 11 6.0255e + 11

Spam E-mail 9.43479784e + 08 9.43479784e + 08 9.43479784e + 08

Numerical Results for Balanced Bi-Clustering

We also test our algorithm for balanced bi-clustering. To find a global
solution to balanced bi-clustering, we adapt the LP model in [32] slightly
to incorporate balanced constraints. The solution obtained from the LP
model gives us a lower bound for the global optimum of the balanced bi-
clustering. We also pointed out that for the third data set, its relatively
large size prevents us from the use of the LP model due to the enormous
amount O(n3) of constraints involved in the model. In such a case, we list
the result from [34], which is derived by a so-called Q-Means heuristic for
the same data and same balanced constraint.

In the experiments for the last two data sets, we require that each cluster
has at least n/3 entities. For the soybean data set, we require each cluster
has at least 22 entities. This is because the data set itself is fairly bal-
anced already(the optimal bi-clustering has a (20, 27) distribution). Table
5.2 summaries the results.

Table 5.2: Results for Balanced Bi-clustering

data set Stage 1 Stage 2 LP/Q-Means

Soybean 419.5473 418.5273 418.5273

The Späth’s 1.6310e + 012 1.6310e + 012 1.6310e + 012

Spam E-mail 1.4049e + 09 1.4046e + 09 1.4046e + 09

From the above tables we can see that the solution from phase 1 is very
close to the solution from phase 2. In all the case, the solution from phase
2 match the global solution of the underling problem.

Internet Newsgroups

Text mining has been popular in document analysis, search engine and
knowledge discovery in large volume of text data. We have also performed
experiments on newsgroups articles submitted to 20 newsgroups5. This data

5The news group data together with the bow tookit for preprocessing can be down-
loaded from http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html
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set has also been used in [5, 12, 41], where a similar framework as ours was
used to solve the problem. The algorithm we use is still the two-phase
heuristic which is introduced in last section.

This data set consists of about 20,000 articles (email messages) evenly
distributed among the 20 newsgroups. We list the name of the newsgroups
together with the associated group labels.

Table 5.2: Newsgroups and Their Labels

NG1 alt.atheism NG11 rec.sport.hockey
NG2 comp.graphics NG12 sci.crypt
NG3 comp.os.ms-windows.misc NG13 sci.electronics
NG4 comp.sys.ibm.pc.hardware NG14 sci.med
NG5 comp.sys.mac.hardware NG15 sci.space
NG6 comp.windows.x NG16 soc.religion.christian
NG7 misc.forsale NG17 talk.politics.guns
NG8 rec.autos NG18 talk.politics.mideast
NG9 rec.motorcycles NG19 talk.politics.misc
NG10 rec.sport.baseball NG20 talk.religion.misc

Before constructing the word-document matrices, we perform the pre-
processing by using the bow toolkit, a preprocessor similar to what em-
ployed in [5, 12, 41]. In particular, we use the tokenization option such that
the UseNet headers are stripped, since the headers include the name of the
correct newsgroup, and we also apply stemming [24]. Afterwards, we apply
the standard tf.idf weighting scheme and normalized each document vector
to have unit Euclidean length. Finally, we conduct feature selection where
500 words are selected according to the mutual information between words
and documents in unsupervised manner.

In our experiment, we choose 50 random document vectors each from
two newsgroups. Then we apply our approximation algorithm to the prob-
lem. The results are summarized in table 5.3. Note that, since the global
optimum are not known for these data sets, we use the linear programming
relaxation model proposed in [32] to get an upper bound on the global opti-
mum. More specifically, we implement the LP relaxation model (14) in [32]
using package CPLEX 7.1 with AMPL interface on an IBM RS-6000 , by
solving this LP problem, we can obtain a upper bound for the global opti-
mum solution. Apparently, if the solution obtained from the LP relaxation
equals to the solution provided by our two-phase heuristic, then it must be
a global optimal solution of the original problem.

Table 5.4: Results on internet newsgroup data sets
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data set Stage 1 Stage 2 LP

NG1/NG2 92.6690 92.6630 92.6630

NG2/NG3 94.0377 94.0377 94.0377

NG8/NG9 93.7051 93.5380 93.4007

NG10/NG11 92.0785 92.0299 92.0299

NG1/NG15 91.9277 91.9011 91.9011

NG18/NG19 92.2275 92.2035 92.2035

From the above experiments, we can conclude that our deterministic
two-phase heuristic performs very well on these data sets and it finds the
global optimum for most of these data sets.

6 Conclusions

In this paper, we reformulated the classical MSSC as a 0-1 SDP. Our new
model not only provides a unified framework for several existing clustering
approaches, but also opens new avenues for clustering. An approximation
method based on the SDP relaxation and PCA has been proposed to attack
the underlying 0-1 SDP. It is shown that in the worst case, our method can
provide a 2-approximate solution to the original classical or constrained K-
means clustering. Preliminary numerical tests indicate that our algorithm
can always find a global solution for bi-clustering.

Several important issues regarding the new framework remain open.
First, for general k ≥ 3, although subproblem (21) can be solved by us-
ing the procedure in [6], its complexity is still exponential in k. This makes
the algorithm impractical for relatively large data set. Secondly, the current
model can deal with only a simple case of constrained K-means clustering.
The issue of how to deal with general constrained K-means clustering still
remains open. More study is needed to address these questions.
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