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ABSTRACT

Inference of topological and geometric attributes of a hidden man-
ifold from its point data is a fundamental problem arising in many
scientific studies and engineering applications. In this paper we
present an algorithm to compute a set of loops from a point data that
presumably sample a smooth manifold M ⊂ R

d. These loops ap-
proximate a shortest basis of the one dimensional homology group
H1(M) over coefficients in finite field Z2. Previous results ad-
dressed the issue of computing the rank of the homology groups
from point data, but there is no result on approximating the shortest
basis of a manifold from its point sample. In arriving our result, we
also present a polynomial time algorithm for computing a shortest
basis of H1(K) for any finite simplicial complex K whose edges
have non-negative weights.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and

computations

General Terms

Algorithms, Theory

Keywords

Topology, homology basis, Rips complex, point cloud

1. INTRODUCTION
Inference of unknown structures from point data is a fundamen-

tal problem in many areas of science and engineering that has mo-
tivated wide spread research [1, 13, 22, 24, 25, 26]. Typically, this
data is assumed to be sampled from a manifold sitting in a high
dimensional space whose geometric and topological properties are
to be derived from the data. In this work, we are particularly inter-
ested in computing a set of loops from data which not only captures
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the topology but is also aware of the geometry of the sampled man-
ifold. Specifically, we aim to approximate a shortest basis of the
one dimensional homology group from the data.

Recently, a few algorithms for computing homology groups from
point data have been developed. One approach would be to recon-
struct the sampled space from its point data [4, 7, 12] and then
apply known techniques for homology computations on triangula-
tions [21]. However, this option is not very attractive since a full-
blown reconstruction with known techniques requires costly com-
putations with Delaunay triangulations in high dimensions. Chazal
and Oudot [8] showed how one can use less constrained data struc-
tures such as Rips, Čech, and witness complexes to infer the rank
of the homology groups by leveraging persistence algorithms [19,
26]. Among these, the Rips complexes are the easiest to compute
though they consume more space than the others, an issue which
has started to be addressed [17].

All of the works mentioned above focus on computing the Betti
numbers, the rank of the homology groups. Although the persis-
tence algorithms [19, 26] also provide representative cycles of a
homology basis, they remain oblivious to the geometry of the man-
ifold. As a result, these cycles do not have nice geometric prop-
erties. A natural question to pose is that if the loops of the one
dimensional homology group are associated with a length under
some metric, can one approximate/compute a shortest set of loops
that generate the homology group in polynomial time? This ques-
tion has been answered in affirmative for the special case of sur-
faces when they are represented with triangulations [20]. In fact,
considerable progress has been made for this special case on var-
ious versions of the problem. We cannot apply these techniques,
mainly because we deal with point data instead of an input trian-
gulation. Also, these works either consider a surface [5, 6, 15, 20]
instead of a manifold of arbitrary dimension in an Euclidean space,
or use a local measure other than the lengths of the generators in a
basis [9].

Our main result is an algorithm that can compute a set of loops
from a Rips complex of the given data and a proof that the lengths
of the computed loops approximate those of a shortest basis of the
one dimensional homology group of the sampled manifold. In ar-
riving at this result, we also show how to compute a shortest basis
for the one dimensional homology group of any finite simplicial

complex whose edges have non-negative weights. Given that com-
puting a shortest basis for k-dimensional homology groups of a
simplicial complex over Z2 coefficients is NP-hard for k ≥ 2 (Chen
and Freedman [11]), this result settles the open case for k = 1.
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1.1 Background and notations
We use the concepts of homology groups, Čech and Rips com-

plexes from algebraic topology and geodesics from differential ge-
ometry. We briefly discuss them and introduce relevant notations
here; the readers can obtain the details from any standard book on
the topics such as [18, 21].

Homology groups and generators: A homology group of a topo-
logical space T encodes its topological connectivity. We use Hk(T)
to denote its k-dimensional homology group over the coefficients
in Z2. Since Z2 is a field, Hk(T) is a vector space of dimension k
and hence admits a basis of size k. We are concerned with the 1-
dimensional homology groups H1(T). The elements of H1(T) are
equivalent classes [g] of 1-dimensional cycles g, also called loops.
A set {[g1], . . . , [gk]} generating H1(T) is called its basis where
k = rank(H1(T)). Simplifying the notation, we say {g1, . . . , ga}
generates H1(T) if {[g1], . . . , [ga]} generates H1(T) and is a ba-
sis if a = rank(H1(T)). We assume that each loop g in T is
associated with a non-negative weight w(g). If T is a simplicial
complex, the loops are restricted to its 1-skeleton and w(g) is de-
fined to be the sum of edge weights in g which are assumed to be
non-negative. If T is a Riemannian manifold, the weights on loops
are taken as their lengths in the Riemannian metric. The weights of
the loops define the length of a set of loops G = {g1, . . . , ga} as
Len(G) = Σa

i=1w(gi). A shortest set of generators or a shortest

basis of H1(T) is a basis G of H1(T) where Len(G) is minimal
over all bases.

Complexes: Let B(p, r) denote an open Euclidean d-ball centered
at p with radius r. For a point set P ⊂ R

d, and a real r > 0,
the Čech complex Cr(P ) is a simplicial complex where a simplex
σ ∈ Cr(P ) if and only if Vert(σ), the vertices of σ, are in P and
are the centers of d-balls of radius r/2 which have a non-empty
common intersection, that is, ∩p∈Vert(σ)B(p, r/2) �= ∅. Instead
of common intersection, if we only require pairwise intersection
among the d-balls, we get the Rips complex Rr(P ). It is well
known that the two complexes are related by a nesting property:

Proposition 1.1 For any finite set P ⊂ R
d and any r ≥ 0, one has

Cr(P ) ⊆ Rr(P ) ⊆ C2r(P ).

Geodesics: The vertex set P of the simplicial complexes we con-
sider is a dense sample of a smooth compact manifold M ⊂ R

d

without boundary. Assume that M is isometrically embedded, that
is, M inherits the metric from R

d. For two points p, q ∈ M , a
geodesic is a curve connecting p and q in M whose acceleration
has no component in the tangent spaces of M . Two points may
have more than one geodesic among which the ones with the mini-
mum length are called minimizing geodesics. Since M is compact,
any two points admit a minimizing geodesic. The lengths of min-
imizing geodesics induce a distance metric dM : M × M → R

where dM (p, q) is the length of a minimizing geodesic between p
and q. Clearly, d(p, q) ≤ dM (p, q) where d(p, q) is the Euclidean
distance. If d(p, q) is small, Proposition 1.2 asserts that there is an
upper bound on dM (p, q) in terms of d(p, q). Our proof extends a
result in [2] where Belkin et al. show the same result on a surface in
R

3. The reach ρ(M) is defined as the minimum distance between
M and its medial axis.

Proposition 1.2 If d(p, q) ≤ ρ(M)/2, one has

dM (p, q) ≤ (1 +
4d2(p, q)

3ρ2(M)
)d(p, q).

PROOF. Let γ(t) be a minimizing geodesic between p and q
parameterized by length and set l = dM (p, q). By Proposition 6.3
in [24] we have that l ≤ 2d(p, q). Let ut = γ̇(t) be the unit tangent
vector of γ at t. We have t = dM (p, γ(t)).

Let B : Tγ(t) × Tγ(t) → T⊥
γ(t) be the second fundamental form

associated with the manifold M . Since γ is a geodesic, dut/dt =
B(ut, ut) = γ̈(t). Write ρ = ρ(M) and d = d(p, q) for conve-
nience. From Proposition 6.1 in [24], we have

‖γ̈(t)‖ ≤ 1/ρ

since the norm of the second fundamental form is bounded by 1/ρ
in all directions, and thus ‖dut/dt‖ ≤ 1/ρ. Hence we have that

‖ut − up‖ = ‖
Z

[0,t]

duy‖ ≤
Z

[0,t]

1

ρ
dy =

t

ρ

⇒ sin
∠(up, ut)

2
≤ t

2ρ
.

Furthermore, let u · v denote the dot-product between vectors u
and v. Then we have that

Z

[0,l]

ut · up dt =

Z

[0,l]

cos ∠(ut, up) dt

=

Z

[0,l]

(1 − 2 sin2 ∠(ut, up)

2
)dt

≥
Z

[0,l]

„

1 − t2

2ρ2

«

dt = l − l3

6ρ2

On the other hand, observe that
R

[0,l]
ut · up dt measures the

length of the (signed) projection of γ along the direction up. That
is,

Z

[0,l]

ut · up dlt = (q − p) · up.

Hence we have that

d = ‖p − q‖ ≥ (q − p) · up ≥ l − l3

6ρ2

⇒ l ≤ d + l3

6ρ2 ≤ d + 4d3

3ρ2 .

The last inequality follows from the fact that l ≤ 2d. This proves
the lemma.

Convexity radius and sampling: For a point p ∈ M , the set of
all points q with dM (p, q) < r form p’s geodesic ball BM (p, r)
of radius r. It is known that there is a positive real rp for each
point p ∈ M so that BM (p, r) is convex for r ≤ rp. It means
that, for r ≤ rp, any two points in BM (p, r) admit a unique mini-
mizing geodesic that lies in BM (p, r). The convexity radius of M
is ρc(M) = infp∈M rp. We use Euclidean distances to define the
sampling density. We say a discrete set P ⊂ M is an ε-sample1 of
M if B(x, ε) ∩ P �= ∅ for each point x ∈ M .

1.2 Main results
We compute a set of loops G = {g1, . . . , gk} from an ε-sample

P of M whose total length is within a factor of the total length of
a shortest basis in H1(M). The factor depends on ε, ρ(M), and an
input parameter r > 0.

Theorem 1.3 Let M ⊂ R
d be a smooth, closed manifold with ℓ

as the length of a shortest basis of H1(M). Given an ε-sample

1 Here ε-sample is not defined relative to reach or feature size as
commonly done in reconstruction literature [1, 7, 12].
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P ⊂ M of n points and 4ε ≤ r ≤ min{ 1
2

q

3
5
ρ(M), ρc(M)},

one can compute a set of loops G in R
d where:

i.

1

1 + 4r2

3ρ2(M)

ℓ ≤ Len(G) ≤ (1 +
4ε

r
)ℓ.

ii. Treating G as a 1-complex, there is a map h : G → M so

that h(G) is basis of H1(M) and the Hausdorff distance be-

tween the underlying space of g and h(g) is at most r/2 for

each g ∈ G.

iii. The loops in G can be computed in O(n(n+ne)
2(ne +nt))

time where ne and nt are the numbers of edges and triangles

respectively in the Rips complex R2r(P ).

The above result suggests that lim ε
r

,r→0 Len(G) → ℓ. To make
ε
r

and r simultaneously approach 0, one may take r = O(
√

ε) and
let ε → 0. We note that ne = O(n2) and nt = O(n3) giving
an O(n8) worst-case complexity for the algorithm. However, if
r = Θ(ε) and points in P have Ω(ε) pairwise distance, ne and
nt reduce to O(n) by a result of [8]. In this case we get a time
complexity of O(n4). In arriving at Theorem 1.3, we also prove
the following result which is of independent interest.

Theorem 1.4 Let K be a finite simplicial complex with non-negative

weights on edges. A shortest basis for H1(K) can be computed in

O(n4) time where n is the size of K.

2. ALGORITHM DESCRIPTION
The algorithm that we propose proceeds as follows. We com-

pute a Rips complex R2r(P ) out of the given point cloud P ⊂ M .
Next, we compute the rank k of H1(M) by considering the persis-
tent homology group

H
r,2r
1 (R(P )) = image ι∗

where the inclusion ι : Rr(P ) →֒ R2r(P ) induces the homomor-
phism ι∗ : H1(Rr(P )) → H1(R2r(P )). As a homology group
over Z2, H

r,2r
1 (R(P )) is a vector space and it is known that the

rank of H
r,2r
1 (R(P )) coincides with that of H1(M) for appropri-

ate r.
A basis of H

r,2r
1 (R(P )) is formed by the classes of a maxi-

mal set of loops in Rr(P ) whose classes remain independent in
H1(R2r(P )) under the map ι∗. We show that a shortest basis of
H

r,2r
1 (R(P )) approximates a shortest basis of H1(M). Therefore,

we aim to compute a shortest basis of H
r,2r
1 (R(P )) from Rr(P )

and R2r(P ). To accomplish this, the algorithm augments R2r(P )
by putting a weight w(e) on each edge e ∈ R2r(P ). The weights
are of two types: either they are the lengths of the edges, or a
very large value W which is larger than k times the total weight
of Rr(P ). Precisely we set

w(e) =

j

length of e if e ∈ Rr(P )
W if e ∈ R2r(P ) \ Rr(P ).

Let the complex R2r(P ) augmented with weights be denoted as
R2r+(P ). A shortest basis of H1(R2r+(P )) does not necessarily
form a shortest basis of H

r,2r
1 (R(P )). However, the first k loops

sorted according to lengths in a shortest basis of H1(R2r+(P ))
form a shortest basis of H

r,2r
1 (R(P )). We give an algorithm to

compute a shortest basis for any simplicial complex which we ap-
ply to R2r+(P ).

Since we are interested in computing the generators of the first
homology group, it is sufficient to consider all simplices up to di-
mension two, that is, only vertices, edges, and triangles in the sim-
plicial complexes that we deal with. Henceforth, we assume that all
complexes that we consider have simplices up to dimension two.

2.1 Computing loops
We will prove later that a shortest basis for H

r,2r
1 (R(P )) indeed

approximates a shortest basis for H1(M). The algorithm SHORT-
LOOP computes them.

Algorithm 1 SHORTLOOP (P, r)

1: Compute the Rips complex R2r(P ) and a weighted complex
R2r+(P ) from it as described.

2: Compute the rank k of H
r,2r
1 (R(P )) by the persistence algo-

rithm.
3: Compute a shortest basis for H1(R2r+(P )).
4: Return the first k smallest loops from this shortest basis.

Theorem 2.1 The algorithm SHORTLOOP(P, r) computes a short-

est basis for the persistent homology group H
r,2r
1 (R(P )).

PROOF. Let g1, . . . , ga be the set of generators sorted according
to the non-decreasing lengths which are computed in step 3. They
generate H1(R2r+(P )). Out of these generators the algorithm
outputs the first k generators g1, . . . , gk. Since k is the rank of
H

r,2r
1 (P ) there are k independent generators in H1(Rr(P )) which

remain independent in H1(R2r+(P )). We claim that the loops
g1, . . . , gk reside in Rr(P ). For if they do not, the sum of their
lengths would be more than W which is k times larger than the total
weight of Rr(P ). Then, we can argue that any independent set of
k loops from Rr(P ) which remain independent in H1(R2r+(P ))
can replace g1, . . . , gk to have a smaller length so that g1, . . . , ga

could not be a shortest basis of H1(R2r+(P )).
The above argument implies that g1, . . . , gk is a basis of H

r,2r
1 (P ).

If it is not a shortest basis, it can be replaced by a shorter one so
that again we would have a basis of H1(R2r+(P )) which is shorter
than the one computed. This is a contradiction.

It remains to show how to compute a shortest basis of H1(R2r+(P ))
in step 3 of SHORTLOOP.

2.2 Shortest basis
Let K be any finite simplicial complex embedded in R

d whose
edges have non-negative weights. To compute a shortest basis for
H1(K) we make use of the fact that H1(K) is a vector space as
we restrict ourselves to Z2 coefficients. For such cases, Erickson
and Whittlesey [20] observed that if a set of loops L in K con-
tains a shortest basis, then the greedy set G chosen from L is a
shortest basis. The greedy set G of L is an ordered set of loops
{g1, . . . gk}, k = rank H1(K), satisfying the following condition.
The first element g1 is the shortest loop in L which is nontrivial
in H1(K). Suppose g1, . . . , gi have already been defined in the set
G. The next chosen loop gi+1 is the shortest loop in L which is
independent of g1, . . . , gi, that is, [gi+1] cannot be written as a lin-
ear combination of [g1], ..., [gi]. The check for independence is a
costly step in this greedy algorithm which we aim to reduce. We
construct a set of canonical loops which contains a basis of H1(K).
This set is pruned by a persistence based algorithm before applying
the greedy algorithm.
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2.2.1 Canonical loops

We start with citing a result of Erickson and Whittlesey [20]. A
simple cycle L is tight if it contains a shortest path between every
pair of points in L.

Proposition 2.2 With non-negative weights, every loop in a short-

est basis of H1(K) is tight.

To collect all tight loops, we consider the canonical loops defined as
follows. Let T be a shortest path tree in K rooted at p. Notice that
we are not assuming T to be unique, but it is fixed once computed.
For any two nodes q1, q2 ∈ P , let ΠT (q1, q2) denote the unique
path from q1 to q2 in T . Let ET be the set of edges in T . Given
a non-tree edge e = (q1, q2) ∈ E \ ET , define the canonical

loop of e with respect to p, cp(e) in short, as the loop formed by
concatenating ΠT (p, q1), e, and ΠT (q2, p), that is,

cp(e) = ΠT (p, q1) ◦ e ◦ ΠT (q2, p).

Let Cp be the set of all canonical loops with respect to p, i.e.,
Cp = {cp(e) : e ∈ E \ ET }. Then we have the following easy
consequence.

Proposition 2.3 ∪p∈P Cp contains all tight loops.

Therefore ∪p∈P Cp is a set of loops from which the greedy set can
be selected. However, ∪p∈P Cp can be a very large set containing
possibly many trivial loops which result into many unnecessary in-
dependence checks. To remedy this, we identify the greedy set Gp

of Cp and choose the greedy set from the union ∪p∈P Gp instead
of ∪p∈P Cp. It turns out that Gp can be computed by a persistence
based algorithm thereby avoiding explicit independence checks.

If the lengths of the loops in Cp are distinct, the greedy set Gp

is unique. However, in presence of equal length loops we need
a mechanism to break ties. For this we introduce the notion of
canonical order. We assign a unique number ν(e) between 1 to m
to each non-tree edge e if there are m of them. For any two non-
tree edges e and e′, let e < e′ if and only if either Len(cp(e)) <
Len(cp(e′)), or Len(cp(e)) = Len(cp(e′)) and ν(e) < ν(e′).
The total order imposed by ‘<’ provides the canonical order

e1 < e2 < . . . < em.

Based on this canonical order, we form the greedy set Gp of Cp as
described in the beginning of Section 2.2.

Below we argue that ∪p∈P Gp is good for our purpose and each
set Gp can be computed based on the persistence algorithm.

Proposition 2.4 The greedy set chosen from ∪p∈P Gp is a shortest

basis of H1(K).

PROOF. We show that ∪p∈P Gp contains a shortest basis of H1(K).
Then, the proposition follows by the argument as delineated at the
beginning of section 2.2.

Consider all canonical loops ∪p∈P Cp. Sort them in non-decreasing
order of their lengths. If two loops have equal lengths and if there
are points pi ∈ P for which both of them are in Cpi , break the
tie using the canonical order applied to the canonical loops for
any such one point. Otherwise, break the tie arbitrarily. Based on
this order let G be the greedy set from ∪p∈P Cp. Proposition 2.2
and Proposition 2.3 imply that ∪p∈P Cp contains a shortest basis of
H1(K) and thus G is a shortest basis. Consider any loop L in G. It
is a canonical loop with respect to some q ∈ P for which all loops
appearing before L in the canonical order precede it in the sorted

sequence. The loop L is independent of the loops in ∪p∈P Cp ap-
pearing before L, in particular independent of the loops in Cq ap-
pearing before L in the canonical order, which means L ∈ Gq .
Therefore ∪p∈P Gp contains a shortest basis G of H1(K). The
proposition follows.

Motivated by the above observations, we formulate an algorithm
CANONGEN that computes the greedy set Gp of Cp. We note that,
very recently, Chen and Freedman [9] proposed a similar algorithm
which computes an approximation of a shortest basis of a simplicial
complex rather than an optimal one.

Algorithm 2 CANONGEN (p, K)
1: Construct a shortest path tree T in K with p as the root. Let

ET denote the set of tree edges.
2: For each non-tree edge e = (q1, q2) ∈ E \ ET , let cp(e) be

the canonical loop of e.
3: Perform the persistence algorithm based on the following fil-

tration of K: all the vertices in P = Vert(K), followed by
all tree edges in T , followed by non-tree edges in the canon-

ical order, and followed by all the triangles in K. There are
k = rank(H1(K)) number of edges unpaired after the algo-
rithm, and each of them is necessarily a non-tree edge. Return
the set of canonical loops associated with them.

Proposition 2.5 CANONGEN (p,K) outputs the greedy set Gp cho-

sen from Cp.

PROOF. Let {e1, e2 · · · , em} be the set of non-tree edges for
the shortest path tree T listed in the canonical order. Let

Gp = {cp(e∗1), cp(e∗2), · · · , cp(e∗k)}.
It suffices to show that {e∗1, e∗2 · · · , e∗k} is the set of unpaired edges.
Observe that for any e∗i , cp(e∗i ) is independent of any subset of
{cp(ej) : ej < e∗i }.

We prove the proposition by contradiction. Assume some e∗i
gets paired by a triangle t in the persistence algorithm. Let Kt

denote the complex in the filtration right before t is added. Let
f : Kt →֒ K be the inclusion map; it induces a homomorphism
f∗ = H1(Kt) → H1(K). Let [L]t denote the homology class in
Kt carried by the loop L. The boundary ∂t uniquely determines a
subset of unpaired positive edges e′1 < · · · < e′s in Kt such that
[∂t]t = [cp(e′1)]t + · · ·+[cp(e′s)]t. The persistence algorithm [19]
picks the youngest one from this subset to pair with t, i.e., e∗i = e′s.
On the other hand, we have

[cp(e′1)] + · · · + [cp(e′s−1)] + [cp(e∗i )]

= f∗([cp(e′1)]t + · · · + [cp(e′s−1)]t + [cp(e∗i )]t)

= f∗([∂t]t) = 0

which means that cp(e∗i ) is dependent on a subset of {cp(ej) :
ej < e∗i }. We reach a contradiction.

All previous results put together provide a greedy algorithm for
computing a shortest basis of H1(K).

2.2.2 Checking independence

In step 7 of SPGEN we need to determine if a generator g is
independent of all generators g′

1, . . . , g
′
s so far selected in G. Sup-

pose we obtain g from running persistence algorithm on a shortest
path tree based filtration for a point p in step 3 of CANONGEN.
At the end of this persistence algorithm we must have gotten an
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Algorithm 3 SPGEN (K)

1: For each p ∈ P = Vert(K) compute Gp :=CANONGEN

(p,K). Let k = |Gp|.
2: Sort all loops in ∪pGp by their lengths in the increasing order.

Let g1, . . . , gk|P | be this sorted list.
3: Initialize G := {g1}.
4: for i := 2 to k|P |, do

5: if |G| = k, then

6: Exit the for loop.
7: else if gi is independent of all loops in G, then

8: Add gi to G.
9: end if

10: end for

11: Return G.

unpaired edge, say e, where cp(e) = g. To determine if g is inde-
pendent of all generators selected so far we adopt a sealing tech-
nique proposed in [9]. We fill g′

1 . . . g′
s with triangles. The filling is

done only combinatorially by choosing a dummy vertex, say v, and
adding triangles vvivi+1 for each edge vivi+1 of the loops to be
filled. Let K′ be the new complex after adding these triangles and
their edges to K. In effect, these triangles and edges destroy the
generators g′

1, . . . , g
′
s from K. They destroy the generator g as well

if and only if g is dependent on g′
1, . . . , g

′
s. Since we are sealing

according to the greedy order, the proof of Lemma 4.4 in [9] ap-
plies to establish this fact. Whether g is rendered trivial or not can
be determined as follows. We continue the persistence algorithm
corresponding to the vertex p with the addition of the simplices in
K′ \ K and check if e is now paired or not.

Let nv , ne, and nt denote the number of vertices, edges, and
triangles respectively in K. Notice that we add at most ne edges
and triangles for sealing since the dummy vertex is added to at most
ne edges to create new triangles in K′.

2.3 Time complexity
First, we analyze the time complexity of CANONGEN. Shortest

path tree computation in step 1 of CANONGEN takes O(nv log nv+
ne) time. The persistence algorithm for CANONGEN can be imple-
mented using matrix reductions [14] in time O((nv + ne)

2(ne +
nt)). This is because there are nv + ne rows in this matrix and
each insertion of ne +nt simplices can be implemented in O(nv +
ne) column operations each taking O(nv + ne) time. Therefore,
CANONGEN takes O(nv log nv + (nv + ne)

2(ne + nt)) time.
Step 1 of SPGEN calls CANONGEN nv times. Therefore, step

1 of SPGEN takes O(n2
v log nv + nv(nv + ne)

2(ne + nt)) time.
Step 2 of SPGEN can be performed in O(nvk log nvk) time where
k = O(ne) is the rank of H1(K). The time complexity for inde-
pendence check in step 7 is dominated by the persistence algorithm
which is continued on K to accommodate simplices in K′. Since
we add O(ne) new simplices in K′, it has the same asymptotic
complexity as for running the persistence algorithm on K. We con-
clude that SPGEN spends O(nv(nv +ne)

2(ne +nt)) time in total.
If we take n = |K|, this gives an O(n4) time complexity.

Now, we analyze the time complexity of SHORTLOOP which is
the main algorithm. Let ne and nt be the number of edges and
triangles in R2r(P ) created out of n points. Step 1 takes at most
O(n+ne +nt) time since we only compute edges and triangles of
R2r(P ) out of n points. Accounting for the persistence algorithm
in step 2 and the time complexity of step 3 we get that SHORTLOOP

takes

O(n(n + ne)
2(ne + nt)) time.

The procedure SPGEN(K) computes canonical sets Gp which
is ensured by Proposition 2.5. Then, it forms a greedy set from
these canonical sets which is a shortest basis for H1(K) by Propo-
sition 2.4. This and the time analysis for SPGEN establish Theo-
rem 1.4.

3. APPROXIMATION FOR M
The algorithm SPGEN is used in SHORTLOOP to produce a short-

est basis for the persistent homology group H
r,2r
1 (R(P )). Proposi-

tion 3.5 in this section shows that a shortest basis of H
r,2r
1 (R(P ))

coincides with a shortest basis in H1(Cr(P )). Therefore, if we
show that a shortest basis in H1(Cr(P )) approximates a shortest
basis in H1(M), we have the approximation result of Theoerm 1.3.

3.1 Connecting M, Čech complex, and Rips
complex

First, we note the following result established in [24] which con-
nects M with the union of the balls P r = ∪p∈P B(p, r).

Proposition 3.1 Let P ⊂ M be an ε-sample. If 2ε ≤ r ≤
q

3
5
ρ(M), there is a deformation retraction from P r to M so that

the corresponding retraction t : P r → M has t(B) ⊂ B for any

ball B ∈ {B(p, r)}p∈P .

Recall that C2r(P ) is the nerve of the cover {B(p, r)}p∈P of the
space P r . By a result of Leray [23], it is known that P r and C2r(P )
are homotopy equivalent. The next proposition follows from exam-
ining the specific equivalence maps used to prove the Nerve Lemma
in Hatcher [21]. In particular, the simplices of the Čech complex
are mapped to a subset of the union of the balls centered at their
vertices, see Appendix for its proof.

Proposition 3.2 There exists a homotopy equivalence f : C2r(P ) →
P r such that for each simplex σ ∈ C2r(P ), one has f(σ) ⊂
∪p∈Vert(σ)B(p, r) and f(p) = p for any p ∈ P .

The two propositions above together provide the connection be-
tween M and the Čech complex:

Proposition 3.3 Let P ⊂ M be an ε-sample. If 2ε ≤ r ≤
q

3
5
ρ(M), there is a homotopy equivalence map h = t ◦ f :

C2r(P ) → M such that h(σ) ⊂ M ∩ (∪p∈Vert(σ)B(p, r)) and

h(p) = p for any p ∈ P .

Now we establish a connection between Čech complex and Rips
complexes which helps proving Proposition 3.5.

Proposition 3.4 Let P ⊂ M be an ε-sample. Then, for 4ε ≤ r ≤
1
2

q

3
5
ρ(M), we have the following isomorphisms

H
r,2r
1 (R(P )) ≈ H1(Cr(P ))

j1∗≈ H1(C2r(P ))
j2∗≈ H1(C4r(P )),

where j1∗ and j2∗ are induced by the inclusion maps j1 and j2
respectively. Moreover, if

Cr(P )
i1→֒ Rr(P ))

i2→֒ C2r(P ))
i3→֒ R2r(P ))

i4→֒ C4r(P ),

then j1 = i2◦i1, and j2 = i4◦i3 and H
r,2r
1 (R(P )) = image (ι∗)

where ι∗ : H1(Rr(P )) → H1(R2r(P )) is induced by the inclu-

sion ι = i3 ◦ i2.

PROOF. Based on Proposition 3.3, it can be proved by following
the idea in [8] of intertwined Čech and Rips complexes.
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By definition the set of edges in Cr(P ) is same as the set of edges
in Rr(P ). This means a set of loops in Rr(P ) also forms a set of
loops in Cr(P ). In light of Proposition 3.4, this implies:

Proposition 3.5 Let P ⊂ M be an ε-sample and 4ε ≤ r ≤
1
2

q

3
5
ρ(M). Then H

r,2r
1 (R(P )) and H1(M) are isomorphic and

a basis for H
r,2r
1 (R(P )) is shortest if and only if it is shortest for

H1(Cr(P )).

PROOF. From Proposition 3.3 and Proposition 3.4, we have the
following isomorphisms:

H
r,2r
1 (R(P )) ≈ H1(Cr(P )) ≈ H1(M).

Let A = {a1, · · · , ak} be a shortest basis for H
r,2r
1 (R(P )). Each

ai is a loop in Rr(P ) and hence in Cr(P ). Obviously A is a basis
of H1(Cr(P )) as the inclusion map from Cr(P ) to Rr(P ) induces
a homomorphism. Thus, a shortest basis for H1(Cr(P )) must be no
longer than that of H

r,2r
1 (R(P )). Similarly if A = {a1, · · · , ak} is

a shortest basis of H1(Cr(P )), then each ai must be in Rr(P ) and
survive in R2r(P ) as it must survive in C4r(P ). Thus A is a basis
for H

r,2r
1 (R(P )) and hence a shortest basis of H

r,2r
1 (R(P )) is no

longer than that of H1(Cr(P )). This proves the proposition.

3.2 Bounding the lengths
Our idea is to argue that a shortest basis of H1(Cr(P )) can be

pulled back to a basis of H1(M) by the map h of Proposition 3.3.
We argue that the lengths of the generators cannot change too much
in the process.

Let g be any closed curve in M . Following [3], we define a pro-
cedure to approximate g by a loop ĝ in the 1-skeleton of Cr(P ).
This procedure called Decomposition method is not part of our al-
gorithm, but is used in our argument about length approximations
of loops in M .

Decomposition method.
If ℓ = Len(g) > r − 2ε > 0, we can write ℓ = ℓ0 + (ℓ1 +

ℓ1 + . . . + ℓ1) + ℓ0 where ℓ1 = r − 2ε and r − 2ε > ℓ0 ≥
(r − 2ε)/2. Starting from an arbitrary point, say x, split g into
pieces whose lengths coincide with the decomposition of ℓ. This
produces a sequence of points x = x0, x1, . . . , xm = x along g
which divide it according to the lengths constraints. Because of
our sampling condition, each point xi has a point pi ∈ P within
ε distance. We define a loop ĝ = {p0p1 . . . pm} with consecutive
points joined by line segments. Proposition 3.6 shows that ĝ resides
in the 1-skeleton of Cr(P ).

Proposition 3.6 Given a closed curve g on M with Len(g) > r−
2ε > 0, Decomposition method finds a loop ĝ from the 1-skeleton

of Cr(P ) such that: Len(ĝ) ≤ r
r−2ε

Len(g).

PROOF. From the construction and sampling condition, it fol-
lows that, for 1 ≤ i ≤ m − 2,

d(pi, pi+1) ≤ d(xi, pi) + d(xi, xi+1) + d(xi+1, pi+1)

< 2ε + ℓ1 = r =
r

(r − 2ε)
ℓ1

Similarly,

d(p0, p1) ≤ r

r − 2ε
ℓ0 and d(pm−1, p0) ≤ r

r − 2ε
ℓ0.

Since r
r−2ε

ℓ0 < r, each edge pipi+1 belongs to Cr(P ). There-
fore, we obtain a loop ĝ = p0p1 . . . pm in the 1-skeleton of Cr(P )

whose length satisfies:

Len(ĝ) = Σm−1
i=0 d(pi, pi+1) ≤ r

r − 2ε
Len(g).

Consider a basis of H1(M) where each generator is a closed
geodesic on M . For a smooth, compact manifold such a basis al-
ways exists by a well known result in differential geometry [18].
Let G = {g1, . . . , gk} be this set of geodesic loops. By Proposi-
tion 3.6, we claim that there is a set of loops Ĝ = {ĝ1, . . . , ĝk}
in Cr(P ) whose length is within a small factor of the length of G.
However, we need to show that Ĝ indeed generates H1(Cr(P )).
We show this by mapping each ĝj ∈ Ĝ to M by the homotopy
equivalence h (Proposition 3.3) and arguing that [h(ĝj)] = [gj ] in
H1(M). Since h is a homotopy equivalence map, it follows that
the isomorphism h∗ : H1(Cr(P )) → H1(M) maps the class [ĝj ]

to [gj ]. This implies that Ĝ generates H1(Cr(P )).
To prove that h(ĝj) is a representative of the class [gj ], we con-

sider a tubular neighborhood of gj of radius r which is smaller than
the convexity radius ρc(M). Then, we show that each segment
pipi+1 of ĝj is mapped to a curve h(pipi+1) which lies within
this tubular neighborhood. Because of this containment, h(pipi+1)
must be homotopic to a geodesic segment of gj . All these homo-
topies together provide a homotopy between h(gj) and gj . First
we show that the tubular neighborhood of a segment of gj that we
consider is indeed simply connected.

Proposition 3.7 Let γ = γ(p, q) be a minimizing geodesic be-

tween two points p, q ∈ M . Consider its tubular neighborhood

Tubs(γ) on M that consists of the points on M within a geodesic

distance s from γ, i.e., Tubs(γ) = {x ∈ M : miny∈γ dM (x, y) <
s}. Then if s < ρc(M), Tubs(γ) is contractible, in particular,

Tubs(γ) is simply connected.

PROOF. We show that Tubs(γ) deformation retracts to γ. For
any point x ∈ Tubs(γ), consider an open geodesic ball B of ra-
dius s. We claim that γ ∩ B has a unique point xm which is at
a minimum geodesic distance from x. Suppose not, that is, there
is another minimum x′

m. The geodesic segement γ(xm, x′
m) on

γ goes outside the open geodesic ball B′ = BM (x, dM (x, xm)).
Since s < ρc(M), B′ has a radius less than the convexity radius. It
follows that there is a unique minimizing geodesic between xm and
x′

m lying in B′. Then, we have two distinct minimizing geodesics
between xm and x′

m, one lying in B′ and another going outside B′

though both of which lie in B. This is impossible since B also has
a radius less than the convexity radius.

Consider the retraction map t : Tubs(γ) → γ where t(x) =
xm. One can construct a deformation retraction that deforms the
identity on Tubs(γ) to t by moving each point x along the mini-
mizing geodesic path that connect x to xm in γ.

Proposition 3.8 Let P ⊂ M be an ε-sample and 4ε ≤ r ≤
min{ 1

2
ρ(M), ρc(M)}. If ĝ is the loop on Cr(P ) constructed from

a geodesic loop g in M by Decomposition method, then [h(ĝ)] =
[g] where h is the homotopy equivalence defined in Proposition 3.3.

PROOF. Since g is a geodesic loop, it follows from standard re-
sults in differential geometry [18] that Len(g) > 2ρc(M). Thus
ĝ can be constructed from a geodesic loop g using Decomposition

method. Each vertex pi of ĝ is within an ε Euclidean distance from
the point xi in g. Next, notice that, since Cr(P ) uses balls of radius
r/2, the stated range of r satisfies the condition of Proposition 3.3.
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By Proposition 3.3, for any point y on the segment pipi+1, h(y)
is within r/2 Euclidean distance to either pi or pi+1. This im-
plies that h(y) is within r/2 + ε Euclidean distance, and hence,
by Proposition 1.2, within r geodesic distance to either xi or xi+1.
In addition, since the sub-curve of the geodesic loop g between xi

and xi+1, denoted γ(xi, xi+1), is of length ℓ1 = r−2ε < ρc(M),
γ(xi, xi+1) is a minimizing geodesic between xi and xi+1. There-
fore h(pipi+1) ∈ Tubr(γ(xi, xi+1)) In particular, there are mini-
mizing geodesics γ(xi, h(pi)) and γ(xi+1, h(pi+1)) that reside in
Tubr(γ(xi, xi+1)).

Consider the loop formed by the three geodesic segments γ(xi, xi+1),
γ(xi, h(pi)), γ(xi+1, h(pi+1)), and the curve h(pipi+1). From
Proposition 3.7, this cycle is contractible in M as it resides in
Tubr(γ(xi, xi+1)). In fact, there is a homotopy Hi that takes
h(pipi+1) to γ(xi, xi+1) while Hi keeps h(pi) and h(pi+1) on
the geodesics γ(xi, pi) and γ(xi+1, pi+1) respectively. We can
combine all homotopies Hi for 0 ≤ i ≤ m to define a homotopy
between h(ĝ) and g. It follows that [h(ĝ)] = [g].

Proposition 3.9 Let P ⊂ M be an ε-sample and 4ε ≤ r ≤
min{ 1

2
ρ(M), ρc(M)}. If G = {g1, . . . , gk} and G′ = {g′

1, . . . , g
′
k}

are the generators of a shortest basis of H1(M) and H1(Cr(P ))
respectively, then we have Len(G′) ≤ (1 + 4ε

r
)Len(G).

PROOF. It is obvious that any gi must be a geodesic loop. Let ĝi

be the loop constructed by Decomposition method in the 1-skeleton
of Cr(P ). Thus, we have a set Ĝ = {ĝ1, · · · , ĝk}. By Proposi-
tion 3.8, there is a homotopy equivalence h : Cr(P ) → M so that
[h(ĝj)] = [gi], which means that Ĝ is also a basis of H1(Cr(P )).
By Proposition 3.6,

Len(G′) ≤ Len(Ĝ) ≤ r

r − 2ε
Len(G) ≤ (1 +

4ε

r
)Len(G).

We now consider the opposite direction, and provide a lower
bound for the total length of a shortest basis of H1(Cr(P )) in terms
of the length of a shortest basis of H1(M).

Proposition 3.10 Let P ⊂ M be an ε-sample and 4ε ≤ r ≤
min{ 1

2
ρ(M), ρc(M)}. Let G and G′ be defined as in Proposi-

tion 3.9. We have LenG ≤ (1 + 4r2

3ρ2(M)
)Len(G′). Moreover,

there exists a map h : G′ → M so that h(G′) is a basis of H1(M)
and the Hausdorff distance between each loop g ∈ G′ and h(g′) is

at most r
2

.

PROOF. We construct a set of loops in M from G′. First, we
show that the length of these loops is at most (1 + 4r2

3ρ2(M)
) times

the length of G′. Next, we show that the constructed loops generate
H1(M).

For each loop g′ ∈ G′, we construct ḡ as follows. The vertices
and edges of g′ are the vertices and edges of Cr(P ). For an edge
e = pq ∈ g′, p, q ∈ P thus p, q ∈ M . We connect p and q by
a minimizing geodesic γ(p, q) on M , and map e to this geodesic.
Mapping each edge in g′ on M , we obtain ḡ. Thus we obtain a
set Ḡ = {ḡ1, · · · , ḡk}. By Proposition 1.2, dM (p, q) ≤ (1 +
4d2(p,q)

3ρ2(M)
)d(p, q) ≤ (1 + 4r2

3ρ2(M)
)d(p, q). Hence the length bound

follows.
We now show that the set Ḡ is a basis for M . Consider mapping

g′
j ∈ G′ to M by the equivalence map h. Each edge e = pq ∈

g′
j is mapped to a curve h(pq). From Proposition 3.3, we have

that h(p) = p and h(q) = q and each point of h(pq) is within
r/2 Euclidean distance and hence r geodesic distance to either p

or q. This implies that h(pq) ⊂ Tubr(γ(p, q)). Then, by using
similar argument as in Proposition 3.7, we claim that γ(p, q) and
h(pq) are homotopic. Combining all homotopies for each edge of
g′

j , we get that h(g′
j) is homotopic to ḡj . Since h is a homotopy

equivalence, h(G′) and hence Ḡ = {ḡ1, . . . , ḡk} are a basis of
H1(M). Therefore,

Len(G) ≤ Len(Ḡ) ≤ (1 +
4r2

3ρ2(M)
)Len(G′).

The loops in h(G′) form a basis of H1(M) and each loop g′ ∈
G′ has a Hausdorff distance of r/2 with h(g′) satisfying the last
claim.

Thanks to Proposition 3.5, shortest bases in Cr(P ) and H
r,2r
1 (R(P ))

are same for an appropriate range of r.

Theorem 3.11 Let P ⊂ M be an ε-sample and r be a real positive

with 4ε ≤ r ≤ min{ 1
2

q

3
5
ρ(M), ρc(M)}. Let G and G′ be a

shortest basis of H1(M) and H
r,2r
1 (R(P )) respectively. We have

i. 1

1+ 4r2

3ρ2(M)

Len(G) ≤ Len(G′) ≤ (1 + 4ε
r

)Len(G).

ii. There is a map h : G′ → M so that h(G′) is a basis of

H1(M) and the Hausdorff distance between the underlying

space of g′ and h(g′) is at most r/2 for each g′ ∈ G′.

Theorem 1.3 follows from Theorem 3.11, Theorem 2.1, and the
time complexity analysis in section 2.3.

4. CONCLUSIONS
We have given a polynomial time algorithm for approximating

a shortest basis of the first homology group of a smooth manifold
from a point data. We have also presented an algorithm to com-
pute a shortest basis for the first homology of any finite simplicial
complex.

We use Rips complexes for computations and use Čech com-
plexes for analysis. One may observe that Čech complexes can be
used directly in the algorithm. Since we know that Cr(P ) is homo-
topy equivalent to M for an appropriate range of r, we can compute
a shortest basis for H1(Cr(P )) which can be shown to approximate
a shortest basis for H1(M) using our analysis. In technical terms,
this will get rid of the weighting in step 1 and also step 4 of SHORT-
LOOP algorithm, and make Theorem 2.1 and Proposition 3.5 re-
dundant. Although the time complexity does not get affected in
the worst-case sense, computing the triangles for Čech complexes
becomes harder numerically in high dimensions than those for the
Rips complexes. This is why we chose to describe an algorithm
using the Rips complexes.

Computing a shortest basis for other homology groups under Z2

has been shown to be NP-hard by Chen and Freedman [11]. A re-
lated topic that has been addressed in the literature is the problem
of homology localization which asks for computing a shortest cy-
cle in a given homology class. The problem has been shown to be
NP-hard for a large number of cases [6, 11] under Z2 coefficient.
Interestingly, it is shown in [16] that the problem is polynomial
time solvable for a class of spaces when the homology is defined
with Z instead of Z2. Does similar disparity exist for the shortest
basis problem between different coefficient rings?
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Figure 1: Loops in a shortest homology basis computed in Rips complexes (left column) constructed out of point data (right column).
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Appendix

Proof of Proposition 3.2.

PROOF. The proof is based on that of Nerve Lemma in [21]
(Chapter 4.G). Let Γ be the barycentric subdivision of C2r(P ).
Taking the definitions of the maps ∆p, ∆q, and the space ∆P r

from Hatcher [21], we consider the following sequence

C2r(P )
h↔ Γ

∆q

⇄
∆p

∆P r π→ P r. (1)

We prove the proposition by showing f = π ◦ ∆q ◦ h which is a
homotopy equivalence. We first introduce the concept of mapping
cylinder. For a map f : X → Y , the mapping cylinder Mf is the
quotient space of the disjoint union (X × I)

F

Y with (x, 1) iden-
tified with f(x) ∈ Y , denoted Mf = X

F

f Y , see Figure 2(a).
It is obvious that Mf deformation retracts to Y . It is also well-

known that f is a homotopy equivalence map if and only if Mf

deformation retracts to X , see Figure 2(b), where the map g =
eX ◦ iY is a homotopy equivalence map from Y to X .

We are now ready to explain each map in the composition of
the map f . Γ is the barycentric subdivision of C2r(P ). Thus h is
an identity map between the underlying spaces of C2r(P ) and Γ.
Index the points in P = {pi}m

i=1 arbitrarily. Let Bi = B(pi, r).
To facilitate the argument, label the vertices in Γ using Bi’s and

(a)

X

Y

Mf = X
⊔

f Y

f
g

iYeY

iX

eX

(b)

Figure 2: (a) the mapping cylinder Mf = X
F

f Y (courtesy of

Hatcher [21]); (b) the maps among X , Y and Mf

their finite intersections, see Figure 3. Each edge (one simplex) in
Γ is associated with an inclusion map, which induces a sequence of
inclusion maps over a simplex of any dimension in Γ.

∆P r can be realized using the concept of mapping cylinder, see
the top right most picture in Figure 3. The sequence of inclusion
maps associated with each simplex in Γ

(Bi0 ∩ · · · ∩ Bin) →֒ (Bi0 ∩ · · · ∩ Bin−1)

→֒ · · · →֒ (Bi0 ∩ · · · ∩ Bin−k
),

induces an iterated mapping cylinder. ∆P r is obtained by gluing
these iterated mapping cylinders over all simplices in Γ, see [21] for
details. There is a canonical projection ∆p : ∆P r → Γ induced
by projecting each finite intersection to its corresponding vertex in
Γ. Consider the mapping cylinder M∆p. The Nerve Lemma is
proved in [21] by showing M∆p deformation retracts to ∆P r . In
fact, the deformation retraction described in [21] maps a simplex
∆k ∈ Γ to the part of ∆P r defined over the same ∆k, namely
∆q = e∆P r ◦ iΓ is a homotopy equivalence and maps a simplex
∆k ∈ Γ into the iterated mapping cylinder defined by the sequence
of inclusion map associated with ∆k.

On the other hand, ∆P r can also be considered as the quotient
space of the disjoint union of all the products Bi0∩· · ·∩Bin ×∆n,
as the subscripts range over set of n+1 distinct indices and any n ≥
0, with the identifications over the faces of ∆n using inclusions
Bi0 ∩ · · · ∩ Bin →֒ Bi0 ∩ · · · ∩ B̂ij ∩ · · · ∩ Bin where ˆ means
the corresponding term is missing. From this viewpoint, any point
x ∈ P r has a fiber π−1(x) in ∆P r defined as follows. π−1(x) =
{P

i tixi} where
P

i ti = 1 and ti ≥ 0, and xi is a copy of x in
Bi for those Bi containing x. see the bottom left most picture in
Figure 3. It is easy to see that P r can be embedded into ∆P r as a
section of ∆P r , in particular π is a homotopy equivalence. Thus f
is a homotopy equivalence.

Observe that each point y in an iterated mapping cylinder over
some simplex ∆k = (Bi0 ∩ · · · ∩Bin , · · · , Bi0 ∩ · · · ∩Bin−k

) in
Γ is in the fiber π−1(x) for some x in Bi0 . In other words, if ∆k

is in the closure of the star of a point p ∈ P in Γ, then any point y
in the iterated mapping cylinder over ∆k is in the fiber of a point
x ∈ B(p, r). Now consider a simplex σ ∈ C2r(P ). Any simplex
in its barycentric subdivision much be in the closure of the star of
some vertex of σ. Thus σ, under the map ∆q ◦h, is mapped into the
union of the iterated mapping cylinders defined over the simplices
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Figure 3: Illustration of the maps and the spaces involved in Eq. 1.

in the barycentric subdivision of σ, and its image, under the map π,
is further mapped into ∪p∈Vert(σ)B(p, r).

In addition, it is clear that the map f can fix each vertex in
C2r(P ). This proves the proposition.
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