
Approximating Minimum Size Weakly-Connected
Dominating Sets for Clustering Mobile Ad Hoc Networks ∗

Yuanzhu Peter Chen
School of Computing Science

Simon Fraser University
British Columbia, V5A 1S6, Canada

yzchen@cs.sfu.ca

Arthur L. Liestman
School of Computing Science

Simon Fraser University
British Columbia, V5A 1S6, Canada

art@cs.sfu.ca

ABSTRACT
We present a series of approximation algorithms for finding
a small weakly-connected dominating set (WCDS) in a given
graph to be used in clustering mobile ad hoc networks. The
structure of a graph can be simplified using WCDS’s and
made more succinct for routing in ad hoc networks. The
theoretical performance ratio of these algorithms is O(ln ∆)
compared to the minimum size WCDS, where ∆ is the max-
imum degree of the input graph. The first two algorithms
are based on the centralized approximation algorithms of
Guha and Khuller [14] for finding small connected dominat-
ing sets (CDS’s). The main contribution of this work is a
completely distributed algorithm for finding small WCDS’s
and the performance of this algorithm is shown to be very
close to that of the centralized approach. Comparisons be-
tween our work and some previous work (CDS-based) are
also given in terms of the size of resultant dominating sets
and graph connectivity degradation.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign, Wireless Communication; G.1.2 [Mathematics in

Computing]: Approximation—Minimax Approximation and
Algorithms

General Terms
Algorithms, Experimentation

Keywords
ad hoc network, clustering, dominating set, weakly-connected
dominating set, distributed algorithm

∗This work is supported by The Natural Sciences and Engi-
neering Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOBIHOC’02, June 9-11, 2002, EPFL Lausanne, Switzerland.
Copyright 2002 ACM 1-58113-501-7/02/0006 ...$5.00.

1. INTRODUCTION AND RELATED WORK

1.1 Mobile Ad hoc Networks
A mobile ad hoc network is a type of infrastructureless

wireless communication network, that requires only sub-
scriber units to form the network. Ad hoc networks can in-
volve hundreds of thousands of mobile subscriber units, each
with a transmission range that is small relative to the net-
work size. A subscriber unit can only directly communicate
with other subscriber units that are within range. For users
that are not within range to communicate, other subscriber
units must relay messages. Thus, subscriber units may be
able to communicate even though they may not be within
their mutual transmission ranges. When not considering the
physical layer or the data link layer issues, it is natural to
represent an ad hoc network by a graph G = (V, E) where
the vertices represent the individual subscriber units and
there is an edge between two vertices if the corresponding
subscriber units are within range of each other.

An ad hoc network is a multihop network in which mes-
sages may travel along several links from the source to the
destination via a certain path. The conventional pre-calculated
routing algorithms for wired communication networks are
not readily applicable to the ad hoc network since the sub-
scriber units are mobile and the network topology is contin-
uously changing. Ad hoc networks are also called reconfig-
urable networks. In wired networks, the network structure
is essentially static and link failure is not frequent. In con-
trast, ad hoc networks allow total mobility which permits
rapid topology change. Thus, pre-calculated routing infor-
mation can become stale quickly. Routes must be calculated
much more frequently to maintain the same response level
as in wired networks. Royer and Toh have a very good
survey [17] on the routing algorithms for ad hoc networks.
Broch, et al. have a more experiment-oriented view of the
comparison of the routing protocols in ad hoc networks [6].

1.2 Clustering ad hoc networks
Both the size of the network and the level of mobility

of subscriber units affect the performance of the ad hoc
network. Note that as subscriber units move the graph
changes. We will assume, however, that the graph is always
connected. In ad hoc networks, most topology changes are
localized within a small area of the network. Therefore, it
is desirable to abstract the network structure such that lo-
cal changes need not be seen by the entire network. This
is done using logical substructures called clusters. The pro-

Figure 1: Abstracting a network topology

cess of defining these substructures within the complete net-
work topology is called clustering. In some cases, particular
vertices called clusterheads may be designated to oversee
channel allocation and message routing within each clus-
ter. From a higher level view of the network, each of these
clusters (perhaps, represented by its clusterhead), is a vertex
and virtual connections between clusters are edges. Running
a routing algorithm on this abstracted structure has lower
cost, and local topology changes in the original network do
not necessarily affect the higher level structure. Figure 1
gives an example of abstracting an ad hoc network. In the
figure, the network structure is indicated in gray. The black
vertices represent clusterheads and the black edges represent
the virtual connections between clusters.

Baker, Ephremides and Flynn [2] began the study of the
clustering problem in ad hoc networks by proposing a linked
cluster algorithm. Several other authors have studied clus-
tering and devised different approaches. Gerla and Tsai [13]
presented two distributed algorithms to choose clusterheads.
Their algorithms are based on lowest-ID and highest de-
gree, respectively. Their approaches designates the vertices
with the lowest-ID or highest degree within the neighbor-
hoods as clusterheads and their neighborhoods as clusters.
Basagni [4] generalized the work of Gerla and Tsai, and
used a generic weight as a criterion for clustering. Bettstet-
ter and Krausser [5] investigated the stability of the results
presented in [4] by experiments. Krishna, Vaidya, Chatter-
jee and Pradham [16] presented another type of clustering
which does not use clusterheads. In their model, a cluster
corresponds to a clique in G and the resultant clusters are
usually heavily overlapped. Banerjee and Khuller [3] used
spanning trees to form clusters. In their model, a cluster is a
subset of the vertices whose induced subgraph is connected
in the spanning tree. Awerbuch, Du, Khan and Shavitt [1]
studied clustering which they referred to as aggregated net-
work routing. Another method used for clustering is based
on domination in graphs, which is described in detail in the
next subsection. Chen and Stojmenovic provide a more de-
tailed review of these clustering techniques in [7]. Chlamtac
and Farago [8] presented a random clustering which is essen-
tially finding a small independent dominating set. Another
recent clustering algorithm based on finding connected dom-
inating sets has been proposed by Wu and Li [18].

1.3 Graph domination
A natural method for forming clusters is based on the

idea of graph domination. A dominating set of a graph
G = (V, E) is a vertex subset S ⊆ V , such that every vertex

Figure 2: A dominating set.

Figure 3: A connected dominating set.

v ∈ V is either in S or adjacent to a vertex of S. A vertex of
S is said to dominate itself and all adjacent vertices. For ex-
ample, in Figure 2, the black vertices form a dominating set.
We can use the vertices of a dominating set as clusterheads
and assign each vertex to a cluster corresponding to a ver-
tex that dominates it. In general, one wishes to find a small
number of clusterheads, that is, a small dominating set, in
order to simplify the network structure as much as possible.
Unfortunately, finding a minimum size dominating set in a
general graph is NP-complete [12]. Haynes, Hedetniemi and
Slater present a detailed survey of the area of domination in
graphs [15].

By constraining the dominating set, we can ensure that
the clusterheads are adjacent to each other or are at least
reasonably close to each other. This simplifies the con-
struction of a higher level view of the network on which
to route messages. A connected dominating set (CDS) of a
given graph G is a dominating set whose induced subgraph
is connected. For example, the black vertices of Figure 3
form a connected dominating set of the graph and their in-
duced subgraph is indicated by the black lines. Such an
induced subgraph can easily be used for routing messages
between clusters. Unfortunately, finding a minimum size
connected dominating set is also NP-complete [12]. Guha
and Khuller [14] proposed two approximation algorithms for
finding small connected dominating sets. Das and Bhargha-
van [9] implemented distributed versions of the above two
algorithms.

Although a connected dominating set provides an obvious
routing for messages, the connectivity requirement causes
the number of clusters to be rather large. The number
can be reduced by relaxing this requirement. The subgraph
weakly induced by S (S ⊆ V) is the graph 〈S〉w=(N [S], E ∩
(N [S]×S)). 〈S〉w includes the vertices in S and all of their

Figure 4: Weakly induced subgraph

Figure 5: Network structure from the weakly-

connected dominating set.

neighbors as the vertex set. The edges of 〈S〉w are all edges
of G which have at least one end point in S. Figure 4 shows
a subset S of vertices in black with the edges of 〈S〉w indi-
cated by black lines. A vertex subset S is a weakly-connected
dominating set (WCDS), if S is dominating and 〈S〉w is con-
nected. The black vertices in Figure 5 are an example of a
weakly-connected dominating set S for the graph pictured
in gray. The black edges show the corresponding abstracted
network structure 〈S〉w. Dunbar, et al. studied weakly-
connected domination in graphs and, among other things,
showed that it is NP-complete to find a minimum size dom-
inating set of a given graph [10].

The vertices of a WCDS S can be used as clusterheads,
and 〈S〉w can be used to route messages between clusters. In
general, a WCDS can be smaller than a CDS, and yield fewer
clusters. Computing a small WCDS is not more complicated
than computing a small CDS. Thus, we feel that the WCDS
is a better method for clustering than the CDS.

In this paper, we focus on the initial construction of a set
of clusterheads for a graph. In future papers, we will address
the issues arising from the change of network structure as
subscriber units move. We propose a series of approximation
algorithms for finding a small weakly-connected dominating
set for a given graph. Section 2 introduces two sequential
algorithms, Algorithm I and II, with asymptotically optimal
approximation ratios. We then describe distributed imple-
mentations, Algorithm III and IV, respectively, of the se-
quential algorithms. In Section 3 we present a completely
distributed algorithm for asynchronous networks, Algorithm
V. We have designed experiments for comparing our cluster-
ing approach with the previous connected dominating sets.
We report results comparing the size of the dominating sets
and vertex pair distance/capacity degradation in Section 4.

2. CENTRALIZED ALGORITHMS
In this section, we present two centralized algorithms for

finding small weakly-connected dominating sets in an arbi-
trary graph. For each algorithm we analyze its performance
by determining the size of the resultant weakly-connected
dominating sets compared to a minimum weakly-connected
dominating set. These algorithms form the basis for the
upcoming distributed algorithms.

2.1 Algorithm I
The first algorithm is based on Algorithm 2 of Guha and

Khuller [14]. Given a graph G = (V, E), we associate a
color (white, gray, or black) with each vertex. All vertices
are initially white and change color as the algorithm pro-
gresses. The algorithm is essentially an iteration of the pro-
cess of choosing a white or gray vertex to dye black. When
any vertex is dyed black, any neighboring white vertices are
changed to gray. At the end of the algorithm, the black
vertices constitute a weakly-connected dominating set.

The term piece is used to refer to a particular substructure
of the graph. A white piece is simply a white vertex. A
black piece contains a maximal set of black vertices whose
weakly induced subgraph is connected plus any gray vertices
that are adjacent to at least one of the black vertices of the
piece. Figure 6 illustrates the definitions. The pieces are
indicated by the dotted regions. Vertices 4, 5, 6, and 7 are
each white pieces. The other vertices are divided among the
two black pieces, one containing the black vertex 1 and the
other containing the black vertices 2 and 3.

We define the improvement of a (non-black) vertex u to be
the number of distinct pieces within the closed neighborhood
of u. That is, the improvement of u is the number of pieces
that would be merged into a single black piece if u were to
be dyed black.

In each iteration, the algorithm chooses a single white or
gray vertex to dye black. The vertex is chosen greedily so
as to reduce the number of pieces as much as possible until
there is only one piece left. In particular, a vertex with
maximum improvement value is chosen (with ties broken
arbitrarily). The black vertices are the required weakly-
connected dominating set S.

Figure 6 illustrates the situation after the third iteration
of the algorithm for the given graph. Dyeing vertex 5 black
would merge 4 pieces, reducing the number of pieces by 3.
Dyeing any of the other vertices black would merge at most
3 pieces. Thus, we choose vertex 5 to dye black in the next
iteration.

2

4

5

6

7

3

1

Figure 6: A snap shot of pieces.

Let OPT denote a minimum size weakly-connected dom-
inating set for G and let ∆ denote the maximum degree of
G. We can bound the size of the WCDS found by Algorithm
I as follows:

Theorem 2.1. The size of the weakly-connected dominat-
ing set found by Algorithm I is at most (ln ∆ + 1) · |OPT |.

Proof: Let u1 be an arbitrary vertex of OPT . As u1 is
of degree at most ∆, at most ∆ + 1 distinct vertices can
be dominated by u1 (including u1 itself). As OPT is a
weakly-connected dominating set of G, there must be an-
other element of OPT at distance at most 2 from u1. Let
u2 be such a vertex. As at least one vertex in u2’s closed
neighborhood is also in the closed neighborhood of u1, at
most ∆ new distinct vertices are dominated by u2. Again,
as OPT is a weakly-connected dominating set of G, there
must be another element of OPT at distance at most 2 from
either u1 or u2. This vertex, called u3, dominates at most
∆ new distinct vertices. We repeat this argument until we
have included all |OPT | elements of OPT . Thus, G can
contain at most n ≤ (∆ + 1) + ∆(|OPT | − 1) vertices. It
follows that |OPT | ≥ n−1

∆
.

In each iteration of the algorithm, we dye a vertex black
and put it in set S. Observe that the improvement value
of any vertex is monotonically non-increasing over time. At
the start of the algorithm, the improvement of every vertex
u is one more than its degree. When a neighboring vertex is
colored black, u becomes gray and its improvement decreases
by at least one. When a neighboring vertex is colored gray,
u’s improvement may decrease but will not increase. When
u is dyed black, it no longer has an improvement value.

Let ai be the number of pieces left after the ith iteration
and let a0 = n. Consider the i + 1st iteration. Since the
addition of the (non-black) vertices of OPT would join all
of the remaining ai pieces, decreasing the number of pieces
by ai−1, there is at least one non-black vertex of OPT which
would decrease the number of pieces by at least d ai−1

|OPT |
e.

Figure 7 depicts the situation after 2 iterations on the
given graph. In the figure, the five circled vertices are a
minimum weakly-connected dominating set (OPT). At this
point, one vertex u in OPT has already been dyed black.
Picking the remaining 4 vertices of OPT would join the
remaining a2 = 10 pieces. Therefore, our greedy algorithm
is guaranteed to decrease the number of pieces at least by
d a2−1

|OPT |
e = 2 in the 3rd iteration.

This gives us the recurrence relation,

ai+1 ≤ ai − d
ai − 1

|OPT |
e ≤ ai(1 −

1

|OPT |
) +

1

|OPT |
.

Solving it, we get the following bound:

ai+1 ≤ a0(1 −
1

|OPT |
)i+1 +

1

|OPT |

i�

j=0

(1 −
1

|OPT |
)j

= (a0 − 1)(1 −
1

|OPT |
)i+1 + 1

u

Figure 7: Greedy scenario.

1

2

3

T

4

Figure 8: Growing the black piece.

Letting i + 1 = |OPT | · ln a0−1

|OPT |
, we have:

ai+1 ≤ (a0 − 1)(1 −
1

|OPT |
)i+1 + 1

= (a0 − 1)(1 −
1

|OPT |
)
|OPT |·ln

a0−1

|OP T | + 1

≤ (a0 − 1)(
1

e
)
ln

a0−1

|OP T | + 1

= (a0 − 1) ·
|OPT |

a0 − 1
+ 1

= |OPT | + 1

That is, after |OPT | · ln a0−1

|OPT |
iterations, the number of

pieces remaining is at most |OPT | + 1. For each additional
vertex we choose, we will decrease the number of pieces by at
least one. Thus, we need only pick at most |OPT | additional
vertices to reduce the number of pieces to one. The total
number of vertices that we choose is no more than |OPT | ·
ln a0−1

|OPT |
+ |OPT |. Since |OPT | ≥ n−1

∆
, the solution found

by our algorithm has at most |OPT | · (ln∆ + 1) vertices. 2

2.2 Algorithm II
Our second algorithm for constructing a weakly-connected

dominating set is based on growing a single black piece T in
the input graph G = (V, E). As with the previous algorithm,
the vertices of G are colored white, gray, or black. Initially,
all vertices are white and T is empty. When a white or gray
vertex is dyed black, all white vertices adjacent to it are
colored gray. When a vertex is dyed black, it is placed into
T along with all of its newly gray neighbors.

The algorithm starts by choosing an arbitrary vertex in
G to dye black. In each subsequent iteration, a candidate

vertex is chosen to dye black. These candidates consist of
the gray vertices of T and the white vertices adjacent to
those gray vertices. In these later iterations, the algorithm
considers all of these candidate vertices. For each candidate
vertex u it counts the number of white vertices that are in
u’s closed neighborhood. By coloring u black, this number
of vertices will be added to T . The candidate vertex with
the maximum such value is chosen to be dyed black.

Figure 8 illustrates the situation after the 3rd iteration
in the given graph. The black vertices 1, 2, and 3 are the
vertices dyed in the first 3 iterations, respectively. Vertex 4,
which is at distance two from the black vertex 2, is chosen
in the 4th iteration, adding three vertices to T .

This iterative process continues until all vertices in G are
non-white. The set of black vertices at the termination of
the algorithm constitute the desired weakly-connected dom-
inating set S.

Let Sb denote the set of black vertices at some point
during the execution of the algorithm. As 〈Sb〉w is always
connected and the algorithm terminates when there are no
white vertices remaining, S is a weakly-connected dominat-
ing set of G. It can be shown that the size of the weakly-
connected dominating set S found by Algorithm II is at most
(lg ∆ + 2) · |OPT |.

2.3 Algorithms III and IV: Distributed Imple-
mentation of Algorithm I and II

In an ad hoc network, a subscriber unit does not know
the structure of the network beyond its own neighborhood.
Thus, in this section, we propose distributed versions of Al-
gorithm I and II, called Algorithm III and IV respectively.

Algorithm I and II grow their weakly-connected dominat-
ing sets S by including a globally best vertex for each itera-
tion. In order to achieve the same performance ratio in the
distributed scenario, we use a special vertex to determine
the global optimum.

To implement Algorithm III, we build a rooted spanning
tree within the network and use the tree root as the arbitra-
tor. The root starts an iteration by broadcasting a request
throughout the network along the tree edges to search for the
vertex with the maximum improvement value. The result is
convergecast back to the root along the tree edges (with ties
broken arbitrarily). Once the root has determined the global
maximum, it unicasts a message to that vertex to color it
black. The route for sending the unicast can be found in the
convergecast search result.

Algorithm III generates the same weakly-connected dom-
inating set as the its centralized counterpart on any input
graph. Excluding building the spanning tree, the distributed
version of Algorithm I can be done in O(|V |×|S|) time with
O(|V | × |S|) messages. Note that if the spanning tree is
balanced, i.e. the depth of the tree is at the order of th
graph diameter Diam(G), then the running time can be re-
duced to O(Diam(G)×|S|). The classic GHS algorithm for
finding a minimum-weight spanning tree (Gallager, Humblet
and Spira [11]) adds O(|V | log |V |) and O(|V | log |V | + |E|)
to these costs, respectively, though any spanning tree algo-
rithm will help.

A similar modification of Algorithm II results in the dis-
tributed Algorithm IV. In this case, we do not need to build
a spanning tree beforehand, but can do it while growing the
single black piece. A straightforward implementation can be
done using O(|S|2) time and O(|V | × |S|) messages.

3. DISTRIBUTED ALGORITHM FOR
FINDING A SMALL WCDS

Algorithms III and IV are still inherently sequential since
only one vertex can be colored black in each iteration. There-
fore, it is desirable to be able to color multiple vertices black
in each iteration. In other words, it would be useful for dif-
ferent parts of G to have vertices colored black in parallel.
In this section we propose Algorithm V, that finds a small
weakly-connected dominating set in an asynchronous ad hoc
network.

3.1 Overview
In a fully distributed approach, we grow multiple black

pieces in parallel, each of which has its own internal deci-
sion mechanism to determine its own (local) best candidate.
Here, any gray or white vertex may be a candidate. (Recall
that in Algorithm II a candidate vertex was either a gray
vertex or a white vertex adjacent to some gray vertex.) To
be considered as a candidate, a gray or white vertex must
also have the largest improvement among any vertex in its
closed neighborhood. In each iteration, each piece calcu-
lates its own candidate(s). A black piece may have more
than one candidate, while a white piece may have at most
one candidate (itself). Each piece selects from its own can-
didate vertices the candidate with maximum improvement.
The chosen candidate vertex is then colored black, causing
neighboring white vertices to be colored gray and tangent
pieces to be merged into a large one. A tie is broken arbi-
trarily, say by using the vertex ID. The piece ID, unique to
each piece, of the new large piece is broadcast to all vertices
in the new piece and the new piece is ready for next itera-
tion. We assume every node knows the color and piece ID
information of all its neighbors at any time. The algorithm
terminates when no piece has a candidate with improvement
greater than one.

Figure 9 gives an example of how these best candidates
are found in each iteration. The numbers beside each ver-
tex are vertex ID, improvement pairs. We omit the vertex
labels for which the improvement is 1. Figure 9(a) depicts
the scenario of the first iteration when 3 white vertices, ver-
tices 2, 7, and 15, find themselves candidates by comparing
their improvements with those of their neighbors. When two
neighboring vertices, for example vertex 7 and 10, have the
same improvement, that with the lower ID is the winner.
The 3 candidates are automatically the best candidates as
they are the only vertices in their (white) pieces, and they
decide to color themselves black. At the end of the first iter-
ation, two larger black pieces are formed, as shown in Figure
9(b). During the second iteration, another two white ver-
tices, vertex 6 and 19, and one gray vertex, vertex 10, are the
best candidates. Note that in Figure 9(b), vertex 14 is not
a candidate since it does not have the largest improvement
in its closed neighborhood.

3.2 Algorithm V — Distributed Asynchronous
Approach

Here, we use an asynchronous model where all vertices in
the network are autonomous machines using their own clocks
and there is no agreement on interlocked timing. We assume
that there is a bound on how much time a link can delay
message delivery and how much time a vertex can spend on
a single step of execution.

22, 6

4, 3 14, 5

3, 3
6, 3

12, 3

19, 4

15, 7

18, 5

13, 4

16, 7

8, 5

20, 7

17, 3

2, 5

9, 4

7, 5

10, 5

11, 40, 4

(a) Iteration 1, 3 best candidates.

22, 2

14, 3

18, 2

17, 3

20, 3

10, 2

12, 3

19, 4

6, 3

(b) Iteration 2, 3 best candidates.

Figure 9: First 2 iterations.

The basic process of our algorithm is as described above.
Whenever a vertex is colored black (from white or gray), it
causes all its white neighbors to be colored gray by sending
an update message. Whenever a vertex changes its colors or
piece ID, it informs all of its neighbors about the change.

The piece ID is used to help calculate the improvement
of vertices. However, due to propagation delay, nodes in
the same piece may appear to have different piece ID’s. By
calculating an improvement value without waiting for the
piece ID’s to be fully propagated, the improvement value
may be calculated incorrectly. In our experiments, this sit-
uation does not occur very often and the size of the weakly-
connected dominating set generated by Algorithm V is very
close to that produced by Algorithm I (see Section 4). A root
vertex of a piece is the vertex whose vertex ID is used as the
piece ID. The algorithm proceeds as follows: a root ver-
tex broadcasts a “best-candidate-inquiry” message within
its piece. When other vertices forward this inquiry they only
use the “black-black”, “black-gray”, or “gray-black” edges
to make sure that the message does not propagate beyond
the piece border. These out going messages form a broad-
cast tree in the piece. Leaves of this tree reply with their
improvement values and internal vertices of the tree collect
results from their children and forward the best value back
up the tree. When the root knows that it has a best candi-
date with improvement of more than 1, it sends a “please-
color-black” message to the corresponding vertex. When
that vertex receives the “please-color-black” message, it col-
ors itself black and tells all neighbors about this message.
The white neighbors color themselves gray, causing some
tangent pieces to merge. The newly colored black vertex
becomes the root of the new piece and sends a “new-piece-
ID” message to all vertices within the larger piece. The

new-piece-ID
(u, Gen) u

new-piece-ID
(v, Gen) v

u v

v

uu

u
v

v

u

u

u

u

u

u

u

u v

u v

Figure 10: When two frontlines meet.

root also piggybacks the “best-candidate-inquiry” with the
“new-piece-ID” message, starting the next iteration.

Due to the asynchrony and the possibility of multiple si-
multaneous changes to the structure of the pieces, it is possi-
ble that multiple vertices will declare themselves to be roots
of a single piece and initiate a new search process. We need
a mechanism to choose among the roots as their “new-piece-
ID” messages encounter each other. We define the notion
of the generation of a black vertex. A black vertex that
has just been colored from white is a first generation black
vertex. When a root (black) vertex chooses the best can-
didate of its piece, the old root assigns the new root to be
of generation one greater than its own. The “new-piece-ID”
messages carry the generation number of the root. When
two “new-piece-ID” messages meet each other, later genera-
tion (with larger generation number) continues to broadcast
while the earlier generation message is dropped. When two
“new-piece-ID” messages with the same generation number
meet, we favor the smaller piece ID to break the tie.

In Figure 10, we assume that two new black vertices, u and
v, broadcast their “new-piece-ID” messages within the new
black piece and u has a greater generation number. Before
the messages meet, the left side portion of the piece accepts
u as the new piece ID and the right side takes v. Once the
two messages meet, the message of u overtakes that of v and
pushes towards v so that the entire piece accepts u as piece
ID.

The algorithm ends when a new black finds that its best
candidate has an improvement value of one.

4. COMPARISONS
Using the members of a weakly-connected dominating set

as clusterheads and the closed neighborhood of each clus-
terhead as a cluster, we can regard the network as a graph
of clusters from a higher level. Clusterheads can be directly
joined by a link or may share a neighbor that can relay
communications between them. Note that links between
non-clusterheads are not included in the higher level graph.
Using a weakly-connected dominating set to define clusters
helps to simplify the network structure. However, it may
compromise the network structure to some degree as some
edges are not included.

To measure the performance of our clustering algorithm,
we consider three parameters. First we consider the size
of the dominating set produced. Since our goal is to find

a small weakly-connected dominating set in order to ab-
stract the network structure as much as possible, we prefer
smaller values for this parameter. The second parameter is
the average distance between pairs of vertices in the clustered
network (subgraph weakly induced by the dominating set).
Clustering using weakly-connected dominating sets removes
edges not incident to vertices of the dominating set result-
ing in a sparser structure. This sparser structure dilates
the network so that the distance between pairs of vertices in
the clustered network may be longer than the corresponding
distance in the original network. We do not wish the dila-
tion to be too large, so smaller average distance is preferred.
The third parameter is the average number of edge-disjoint
paths between pairs of vertices in the clustered network.
This parameter measures, in some sense, the capacity of the
network. As we are simplifying the structure and deleting
both edges and vertices, we can expect that this value will
be less than in the original graph. However, we would prefer
that it does not drop significantly.

In our experiment we generate random graphs repeatedly
and run our algorithms and those of [9], measuring the above
parameters. The random graphs have expected average de-
gree of 6 and 12, providing two levels of density. The size
of the graphs ranges from 20 to 200 vertices and 40 to 200
vertices, respectively. To simulate the structure of ad hoc
networks, we place vertices (subscriber units) randomly in a
rectangular area in a 2D-plane. The coordinates of the ver-
tices are chosen uniformly in each dimension. We assign each
subscriber unit a transmission range according to a normal
distribution centered at a predefined expected value. When
two subscriber units are placed within range of each other,
an edge is added between the vertices simulating a reliable
link between them. By changing the number of vertices in
the plane and the expected transmission range, one can ad-
just the network size and density.

For each randomly generated network, we measure the
dominating set size resulting from the two algorithms of [9]
and our Algorithms I and V. Figure 11 shows the results
obtained by the four algorithms when the graph is sparse
(a) and dense (b). In the figure, CDS-SBP is “single-black-
piece” (Algorithm II of [9]), CDS-MBP is “multiple-black-
piece” (Algorithm I of [9]), WCDS-CTR is our centralized
algorithm (Algorithm I), and WCDS-DST is our distributed
algorithm (Algorithm V). It is apparent that our algorithms
generate smaller dominating sets than those of Das and
Bharghavan [9].

The average distance and number of edge-disjoint paths
between vertex pairs are compared between the original graph,
Algorithm I of [9] and our Algorithm V. Both sparse and
dense graphs were considered as shown in Figure 12 and Fig-
ure 13. These results indicate that the average distance be-
tween vertex pairs increases by about 20% when connected
dominating sets are used for clustering and increases a fur-
ther 10% when weakly-connected dominating sets are used.
These increases are not unreasonable. The average num-
ber of edge-disjoint paths is reduced by about 25% when
connected dominating sets are used for clustering and by a
further 20% with weakly-connected dominating sets. Again,
these decreases are as expected.

5. CONCLUSION
Ad hoc networks are a type of highly dynamic wireless

networks, in which routing and clustering are important in

Dominating Set Size (expected degree = 6)

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Graph Size

S
e
t

S
i
z
e

CDS-SBP

CDS-MBP

WCDS-DST

WCDS-CTR

(a)

Dominating Set Size (expected degree = 12)

0

5

10

15

20

25

30

35

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Graph Size

S
e
t

S
i
z
e

CDS-SBP

CDS-MBP

WCDS-DST

WCDS-CTR

(b)

Figure 11: Dominating set size.

determining the network performance. In this work we pre-
sented algorithms for finding small weakly-connected domi-
nating sets including an asynchronous distributed algorithm.
When using weakly-connected dominating sets to cluster ad
hoc networks, the network structure can be greatly simpli-
fied with reasonable degradation of connectivity. Due to the
dynamic nature of ad hoc networks, it is desirable to be able
to maintain the clustering information at a reasonably low
cost. Our next step is to devise a mechanism for maintaining
the WCDS structure as the network changes.

6. REFERENCES
[1] Baruch Awerbuch, Yi Du, Bilal Khan, and Yuval

Shavitt. Routing through networks with hierarchical
topology aggregation. In IEEE ISCC’98, pages
406–412, Athens, Greece, June 1998.

[2] Dennis Baker, Anthony Ephremides, and Julia A.
Flynn. The design and simulation of a mobile radio
network with distributed control. IEEE Journal on
Selected Areas in Communications, SAC-2(1):226–237,
1984.

[3] S. Banerjee and S. Khuller. A clustering scheme for
hierarchical routing in wireless networks. Technical
Report CS-TR-4103, University of Maryland, College
Park, February 2000.

[4] B. Basagni. Distributed clustering for ad hoc
networks. In Proc. ISPAN’99 Int. Symp. on Parallel
Architectures, Algorithms, and Networks, pages

Path Stretch (expected degree = 6)

0

2

4

6

8

10

12

14

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Graph Size

A
v
e
r
a
g
e

D
i
s
t
a
n
c
e

Original

CDS

WCDS

(a)

Path Stretch (expected degree = 12)

0

1

2

3

4

5

6

7

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Graph Size

A
v
e
r
a
g
e

D
i
s
t
a
n
c
e

Original

CDS

WCDS

(b)

Figure 12: Average vertex distance.

310–315, 1999.

[5] C. Bettstetter and R. Krausser. Scenario-based
stability analysis of the distributed mobility-adaptive
clustering (dmac) algorithm. In Proc. ACM MobiHoc
2001, pages 232–241, 2001.

[6] Josh Broch, David A. Maltz, David B. Johnson,
Yih-Chun Hu, and Jorjeta Jetcheva. A performance
comparison of multi-hop wireless ad hoc network
routing protocols. In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile
Computing and Networking, ACM, Dallas, TX,
October 1998.

[7] Geng Chen and Ivan Stojmenovic. Clustering and
routing in mobile wireless networks. Technical Report
TR-99-05, SITE, June 1999.

[8] I. Chlamtac and A. Farago. A new approach to the
design and analysis of peer-to-peer mobile networks.
Wireless Networks, 5:149–156, 1999.

[9] Bevan Das and Vaduvur Bharghavan. Routing in
ad-hoc networks using minimum connected
dominating sets. In IEEE International Conference on
Communications (ICC’97), June 1997.

[10] J. E. Dunbar, J. W. Grossman, J. H. Hattingh, S. T.
Hedetniemi, and A. A. McRae. On weakly-connected
domination in graphs. Discrete Math.,
167/168:261–269, 1997.

[11] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning

Average Number of Edge-Disjoint Paths (expected degree = 6)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Graph Size

A
v
e
r
a
g
e

F
l
o
w

Original

CDS

WCDS

(a)

Average Number of Edge-Disjoint Paths (expected degree = 12)

0

2

4

6

8

10

12

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Graph Size

A
v
e
r
a
g
e

F
l
o
w

Original

CDS

WCDS

(b)

Figure 13: Average number of edge-disjoint paths.

tree. ACM Transactions on Programming Languages
and Systems, 5(1):66–77, January 1983.

[12] M. L. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco,
1979.

[13] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster,
mobile, multimedia radio network. Wireless Networks,
1:255–265, 1995.

[14] Sudipto Guha and Samir Khuller. Approximation
algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998.

[15] Teresa W. Haynes, Stephen T. Hedetniemi, and
Peter J. Slater. Fundamentals of Domination in
graphs. Marcel Dekker, Inc., 1998.

[16] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K.
Pradhan. A cluster-based approach for routing in
dynamic networks. Computer Communication Review,
49:49–64, 1997.

[17] Elizabeth M. Royer and Chai-Keong Toh. A review of
current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications, pages
46–55, 4 1999.

[18] Jie Wu and Hailan Li. On calculating connected
dominating set for efficient routing in ad hoc wireless
networks. In DIAL M’99, Seattle, 1999.

