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Abstract. Let S be a set of noncrossing triangularobstaclesin R3 with convex hullH .
A triangulationT of H is compatiblewith S if every triangle ofS is the union of a subset
of the faces ofT . Theweightof T is the sum of the areas of the triangles ofT . We give a
polynomial-time algorithm that computes a triangulation compatible withSwhose weight
is at most a constant times the weight of any compatible triangulation.

One motivation for studying minimum-weight triangulations is a connection with ray
shooting. A particularly simple way to answer a ray-shooting query (“Report the first
obstacle hit by a query ray”) is to walk through a triangulation along the ray, stopping at the
first obstacle. Under a reasonably natural distribution of query rays, the average cost of a
ray-shooting query is proportional to triangulation weight. A similar connection exists for
line-stabbing queries (“Report all obstacles hit by a query line”).

1. Introduction

Let Sbe a finite set of noncrossingobstacles(line segments inR2, triangles inR3) with
convex hullH . A triangulationT of H is compatiblewith S if each obstacle is the union
of a subset of the faces ofT . T may haveSteiner vertices, i.e., vertices that are not
vertices ofS. Theweightof a facet f , | f |, is edge length inR2 and triangle area inR3);
theweightof T , |T |, is the sum of the weights of its facets.

We give a polynomial-time algorithm that computes a triangulationT compatible
with a three-dimensional obstacle setS. The weight ofT is within a constant factor
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of the smallest possible compatible triangulation. The algorithm is a generalization of
Eppstein’s algorithm [9] to compute a constant-factor approximation to the minimum-
length Steiner triangulation of a set of points in two dimensions. As with Eppstein’s
analysis, the approximation ratio is large, though constant.

The algorithm has two steps. The first step produces a depth-bounded octtree from
the obstacles, where the rule is that an octtree cube is split if it meets an obstacle vertex
or edge and is not too small. The second step triangulates each leaf cube in a manner
compatible with the obstacles and neighboring leaf cubes. For the worst-case set of
n obstacles, the algorithm runs in timeO(n6) and produces as many tetrahedra. An
improvement of an order of magnitude in both running time and number of tetrahedra
is possible if the obstacle set is well-shaped (see Section 3.3). A further improvement is
possible if obstacles are just points (though this is not discussed in this paper).

The proof of the approximation ratio has two parts. The first part is to show that the
total surface area of the octtree is at most a constant factor times the area of an arbitrary
triangulationT̂ . To do this we charge the surface area of each leaf cube to some local
feature ofT̂ . There are essentially two cases: if the central subcube of the leaf cube
meets a vertex, edge, or face ofT̂ , then the area of̂T within the leaf cube must be at
least proportional to its surface area. Otherwise the central subcube must be contained
in a tetrahedron of̂T , some face of which must have area at least proportional to the
surface area of the leaf cube. (The actual argument is more complex, to guarantee that
a single tetrahedral face is not charged by too many leaf cubes.) The second part of
the approximation-ratio bound is to triangulate all leaf cubes with total area at most a
constant times the tree surface area plus the obstacle area.

We also briefly consider the two-dimensional case of compatible triangulations. As in
three dimensions, there is a polynomial-time algorithm that approximates the minimum-
weight compatible triangulation. In Section 2 we show that the minimal Steiner trian-
gulation weight is approximately the length ofS plus the length of the MST (within
a logarithmic factor). Here MST is the minimum Steiner spanning tree ofS, i.e., the
minimum-length set of line segments so that MST∪ S is connected.

Other Work. A long-standing open problem is the question of whether there is a
polynomial-time algorithm that finds the minimum-length triangulation of a point set in
two dimensions, without using additional Steiner points. Beirouti and Snoeyink [5] report
recent progress and give many references. Eppstein [9] describes a polymial-time algo-
rithm that gives a constant-factor approximation to the minimum-weight triangulation
of a two-dimensional point set, allowing Steiner points.

Average-Case Line Stabbing and Ray Shooting. We now describe a connection between
triangulation weight and the average cost of simple algorithms for ray shooting (“Report
the first obstacle hit by a ray”) and line stabbing (“Report all obstacle hit by a line”).

Line-stabbing queries can be answered in a particularly simple way given a triangula-
tion of space compatible with the obstacles. It suffices to walk through the triangulation
along the line, reporting each encountered obstacle. The walk takes constant time per
visited triangle, so the total cost of the walk is proportional to the number of triangle
faces crossed. In the worst case, the walk can be long. For example, Agarwal et al. [2]
describe a configuration ofn obstacle triangles inR3 so that there is a line missing all
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the obstacles yet hittingÄ(n) faces of any triangulation compatible with the obstacles.
We consider instead the average-case cost of line stabbing, using the standard rigid-

motion invariant measureµ on lines [16]. LetL(U ) be the set of lines that meet a set
U . A basic fact from integral geometry is that for a facetf , µ(L( f )) is the weight off
(length in two dimensions, area in three dimensions) times a constant depending upon
dimension.

Let Sbe a set of obstacles so that any facet of its convex hull is the union of obstacles.
Let T be a Steiner triangulation compatible withS. For line`, let s(`) andt (`) be the
number of obstacle facets and triangulation facets intersected by`, respectively. Then∫

t (`)dµ

µ(L(H))

is the average walk length to answer a line-stabbing query that meets the convex hullH
of S. The ratio

c(T ) =
∫

t (`)dµ∫
s(`) dµ

is the average walk length per reported obstacle facet. Lettingδ f (l ) be 1 if line l hits
facet f and 0 otherwise, we have that

c(T ) =
∫

t (`) dµ∫
s(`) dµ

=
∑

f ∈T
∫
δ f (l ) dµ∑

f ∈S
∫
δ f (l ) dµ

=
∑

f ∈T | f |∑
f ∈S | f |

= |T ||S| .

A ray-shooting query can be answered by an algorithm similar to the line-stabbing
algorithm: locate the endpoint of the ray in the triangulation, and walk along the ray
through the triangulation until an obstacle facet is encountered. For a rayr , let t (r )
be the number of triangulation facets encountered in a walk alongr up to an obstacle.
Formally,t (r ) should include the facet containing the ray endpoint (if any) and should
count all facets up to but not including the first obstacle facet. Clearly,t (r ) is proportional
to the cost of answering a ray-shooting query, ignoring the cost of locating the triangle
containing the endpoint oft .

The ratioc(T ) is also the average value oft (r ), for a particular distribution of query
rays. Let` be a directed line, and assume that the intersection of` with each obstacle
is either empty or a point. (Note thatc(T ) is changed neither by assuming that lines are
directed, nor by ignoring the measure-zero set of lines that overlap an obstacle.) Associate
with ` the set of rays in the same direction as` and with endpoints at an intersection of
` with an obstacle. Clearly,s(`) is the number of such rays andt (`) =∑ t (r ), r in the
associated set of rays. Hence

c(T ) =
∫

t (`) dµ∫
s(`) dµ

is the average oft (r ), under the distribution on rays induced by the distribution on lines.
Using integral geometry [16, Section 12.7, eq. (12.60)], the induced ray distribution is
sinθ d A∧ du, whered A is the uniform area distribution,du is the uniform solid angle
distribution, andθ is the angle between the ray and the surface of the obstacle. Informally,
a ray is chosen with endpoint uniformly at random from an obstacle and with direction
proportional to the sine of the angleθ between the ray and the obstacle.
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Let

c(S) = inf
T̂

c(T̂ ),

whereT̂ ranges over all triangulations compatible withS. Clearly, to answer line-stabbing
or ray-shooting queries it is desirable to choose a triangulationT with c(T ) as close
as possible toc(S). It is not obvious that the lower boundc(S) can be attained [6]; for
example, it is conceivable that it is always possible to decrease weight and hencec(T )
by adding Steiner points.

In two dimensions,c(S) ≈ (|MST| + |S|)/|S| (see Section 2). Hence in cases where
the MST is short, for example if the obstacle set is connected or nearly connected,
the average cost of ray-shooting by walking through a triangulation should be small.
This good behavior has been observed experimentally [10] (even without explicitly
minimizing the weight of the triangulation).

Other Work. The ray-shooting problem has been studied extensively in computational
geometry (see [1] or [15] for a survey of theoretical results). Assuming roughly linear
data-structure storage, the best theoretical algorithms for ray shooting have worst-case
query timeO(logn) for a simple polygon [11], roughlyO(

√
n) for a set of planar line-

segments [4], and roughlyO(n3/4) for a set of triangles in three dimensions [3]. The last
two query times can be improved toO(logn) with polynomial storage. Agarwal et al.
[2] consider the line-stabbing number of triangulations consistent with a set of obstacles.
Mitchell et al. [12] consider segment shooting, a variant of ray shooting. They show that
the cost of a segment-shooting query in an octtree can be bounded up to a constant factor
by the “cover complexity” of the segment.

2. The Two-Dimensional Case

Throughout this sectionS is a set ofn planar obstacle segments that meet only at
endpoints;S must include segments partitioning the boundary of its convex hull. A
triangulationT is compatiblewith S if any edge inS is the union of closed edges ofT .
Vertical bars| · | denote length, thus|S| is the sum of the lengths of the segments inS.
Let M be infT |T |, whereT varies over triangulations compatible withS.

Lemma 2.1. In polynomial time it is possible to compute a polynomial-size Steiner
triangulationT compatible with S so that|T | = O(M).

We omit a detailed proof of Lemma 2.1; it can be proven using techniques of Epp-
stein [9] or of the proof in Section 3. The basic strategy is to build a depth-bounded
balanced quadtree using only the vertices ofS, and then triangulate each square in a
fashion compatible with the edges ofSmeeting the square. We remark that Lemma 2.1
depends upon including the length of the obstacle setS in the length of the triangulation;
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if the length is not included, a constant-factor polynomial-time approximation algorithm
is not known [9].

Let MST be aminimum(Steiner) spanning treeof S, i.e., a set of segments of minimum
total length so thatS∪ MST is connected. An easy compactness argument shows that
the minimum length can actually be attained.

Lemma 2.2. |S| + |MST| ≤ M ≤ O((|S| + |MST|) logn).

Proof. The first inequality is obvious, since any triangulation compatible withSmust
be connected. For the second, notice that MST∪ S partitions the convex hull ofS into
simple polygons (recall thatS includes the convex hull boundary). The total number of
vertices isO(n), since the MST is a forest with no vertices of degree 2 and the number
of leaves is the number of connected components ofS. By a result of Clarkson [7], each
simple polygon can be triangulated with weight proportional to logn times the perimeter
of the polygon.

Let D be the diameter ofS, i.e., the length of the longest segment contained in the
convex hull ofS. The minimum spanning tree of the vertices ofS has length at most
O(D
√

n), hence|MST| ≤ O(D
√

n). The following lemma improves the worst-case
bound that can be obtained from Lemma 2.2 and this estimate by a factor of logn. Again
we omit a detailed proof of the lemma (see Section 3.7 for a similar proof in three
dimensions).

Lemma 2.3. M ≤ O(|S| + D
√

n).

Corollary 2.4. |MST|/|S| + 1 ≤ c(S) ≤ min(O((1 + |MST|/|S|) logn),O(1 +
D
√

n/|S|)).

3. The Three-Dimensional Case

This section describes an algorithm that produces a Steiner triangulation compatible
with a set of polyhedral obstacles in three dimensions. The triangulation has area within
a constant factor of the smallest possible. Section 3.1 reviews some basic definitions.
Section 3.2 states the main theorem in the case where the obstacles are “wide,” a condition
on the aspect ratio of their convex hull. The main theorem is proved in Sections 3.3–
3.5. Section 3.3 gives an algorithm that constructs an octtree from a set of polyhedral
obstacles. In Section 3.4 we prove that the surface area of the octtree is at most a constant
factor times the area of any Steiner triangulation compatible with the obstacles, while
Section 3.5 gives an algorithm to triangulate the octtree with total area proportional to
the area of the octtree plus the area of the obstacles. The wideness condition on obstacles
is removed in Section 3.6. Finally in Section 3.7 we show some worst-case bounds on
the ratio of triangulation area to obstacle area.
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3.1. Definitions

We use terminology from the theory of convex polyhedra [8]. For example, apolyhedral
setis any set obtained from open and closed halfspaces by a finite number of unions and
intersections. Afaceof a convex polyhedronC is the relative interior of the intersection
of the closure ofC with a hyperplane supportingC; ∂C is the relative boundary ofC.

A polyhedral subdivisionQ of a polyhedral setQ is a finite partition ofQ into
relatively open convex polyhedralcellsso that every face of every cell is a union of cells
inQ. A subdivision isproper if every face of every cell is itself a cell in the subdivision.
Not all subdivisions are proper, since some face of a cell may be subdivided into more than
one cell. If f is a face of a cellC, we will occasionally refer tof as apolyhedral faceof
C to distinguish it from a cell contained in∂C that is not a face ofC. Thek-skeletonQ(k)
ofQ is the subdivision consisting of all cells ofQ of dimension at mostk. If C is a convex
polytope that is the union of cells ofQ, then bdry(C,Q) is the subdivision consisting of
the cells inQwhose union is∂C. For convenience we define bdry(Q) to be bdry(Q,Q).
Theareaof a subdivisionQ, area(Q), is the sum of the areas of the 2-cells inQ; similarly
thelengthofQ, length(Q), is the sum of the lengths of the 1-cells inQ. A triangulation
of a polyhedral set is a proper polyhedral subdivision so that all cells are simplices. A
triangulationT iscompatiblewith a subdivisionS if every cell inS is a union of cells inT .

If C is a square or cube andk a positive real, thenkC is the square or cube with the
same center and orientation asC and side lengthk times the side length ofC. We write
for exampleC/2 for (1/2)C.

3.2. The Main Theorem for Wide Obstacles

Theobstacle set Sis a subdivision inR3 consisting only of 0-, 1-, and 2-simplices. For
simplicity we assume that there are no isolated edges and vertices inS, i.e., every edge
or vertex lies on the boundary of a 2-simplex; with minor modifications the algorithm
can be extended to handle isolated edges and vertices. We letH be the convex hull of
S; we assume thatS contains a triangulation of∂H . Throughoutn is the total number
of simplices inS.

Let B be the smallest cube containingS, and let its side length beb. Obstacle setS is
wide if the area of∂H isÄ(b2). Informally, H can look like a ball or pancake, but not
like a pencil. The following theorem holds for wide obstacles; it follows immediately
from Theorem 3.2 in Section 3.4 and Theorem 3.9 in Section 3.5, using the fact that the
area of∂H and henceS isÄ(b2). The wideness assumption is removed in Section 3.6.

Theorem 3.1. Let S be a wide set of obstacles with a total of n simplices. In time
O(n5) it is possible to compute a triangulation compatible with S whose area is within
a constant factor of the smallest possible. The triangulation has O(n5) tetrahedra and
partitions the convex hull of S.

3.3. The Octtree Algorithm

We now describe how to build an octtreeT from the obstacle setS. If necessary, perturb
the minimal enclosing cubeB slightly so that no obstacle face is parallel to a face ofB.
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Recall thatb is the side length ofB. Letm be the first power of two greater than or equal
to n. Defines0 = b/m. Thenb/s0 is a power of two andb/(2n) < s0 ≤ b/n.

We first build an octtreeT0. Every node of the tree is a cube.B is the root node. A
cube isskeweredif it meets the 1-skeleton ofS. A cubeC is subdivided (i.e., is not a leaf)
if it is skewered and has side length greater thans0; its children are the eight subcubes
obtained by cutting it by the three planes through its center parallel to its facets. This
process is repeated until no cube can be further subdivided. Clearly, each leaf cube in
the octtree has side length 2i s0, for some integrali ≥ 0, and each skewered leaf cube
has side lengths0.

OcttreeT0 must then be made balanced, resulting in the octtreeT . Two cubes are
adjacentif they have overlapping 2-faces; an octtree isbalancedif the side lengths of
any two adjacent leaf cubes differ by at most two. If an octtree is unbalanced, it can be
made balanced by repeatedly choosing a pair of adjacent cubes that violate the balance
property and subdividing the larger cube. Standard results [13] imply that balancingT
increases the number of cubes by at most a constant factor.

An obstacle triangle1 fully cutsa cubeC if 1 intersectsC and∂1 avoidsC. Notice
that a cube may be fully cut by an obstacle triangle independently of whether or not it is
skewered.

3.4. Area of the Octtree

Theareaof octtreeT , area(T), is
∑

C area(∂C∩ H), whereC varies over the leaf cubes
of T . Let M = infT̂ area(T̂ ), whereT̂ ranges over triangulations compatible withS.

Theorem 3.2. area(T) ≤ c · M , for some absolute constant c.

Proof. Let T̂ be an arbitrary triangulation compatible withS and letC be a leaf cube
of T . We can assumeC ∩ H is not empty. We charge area(∂C ∩ H) to features ofT̂ ,
with cases as follows (see Fig. 1):

1. C/2 6⊆ H . Necessarily∂H meetsC/2 (andC). By Lemma 3.3 below, area(∂C∩H)
is O(area(∂H ∩ C)). We charge area(∂C ∩ H) to ∂H ∩ C.

Fig. 1. Cases of Theorem 3.2. In case 1,∂H meetsC/2; in case 2, the 2-skeleton ofT̂ meetsC/4; in case 3,
the 2-skeleton of̂T avoidsC/4.
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2. C/2⊆ H andC/4 meets the 2-skeleton ofT̂ . By Lemma 3.4 below, area(∂C∩H)
is O(area(T̂ ∩ C)). We charge area(∂C ∩ H) to T̂ ∩ C.

3. C/2 ⊆ H andC/4 avoids the 2-skeleton of̂T . This is the most complex case.
Let α, β, andγ be constants (chosen in the proof of Lemma 3.6 below, with
0 < α, β < 1 andγ > 1). Let the side length ofC bes. A charging pair(1,e)
for C is a triangle1 of T̂ and an edgee of 1 so that area(1 ∩ γC) ≥ αs2 and
length(e∩ γC) ≥ βs. We charge the area of∂C ∩ H (which is O(s2)) to the
triangle of a charging pair, whose existence is guaranteed by Lemma 3.6 below.
By Lemma 3.8 the total charge to any triangle1 of T̂ , over all leaf cubes ofT , is
at mostO(area(1)).

In cases 1 and 2, the charges are to disjoint portions of∂H andT̂ , respectively, so
the total charge isO(area(∂H) + area(T̂ )) which is O(area(T̂ )). In case 3, the total
charge to any triangle1 of T̂ is O(area(1)), so the total charge over all triangles is
O(area(T̂ )).

Lemma 3.3. If C is a leaf cube and C/2 6⊆ H , thenarea(∂C∩H) is O(area(∂H∩C)).

Proof. Let s be the side length ofC. Pair each corner ofC/2 with the corresponding
corner ofC, and consider the eight subcubes whose opposite corners are formed by the
pairs. At least one such subcubeD must be entirely outsideH , elseH would contain
C/2. Letd be the center ofD. See Fig. 2.

Fig. 2. Proof of Lemma 3.3.
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Let S0 andS1 be the spheres of radiuss/8 and
√

3s, respectively, with centerd. S0

is contained inD and is outsideH , and S1 containsC. Let mappingsπ0 andπ1 be
central projections fromd into S0 and S1, respectively. Any ray fromd to a point of
∂C ∩ H must first hit a point of∂H ∩ C, sinced is outsideH and insideC. Hence
π1(∂C ∩ H) ⊆ π1(∂H ∩ C). For some constantc, we have

c · area(∂C ∩ H) ≤ area(π1(∂C ∩ H))

since, for any pointp ∈ ∂C∩ H , the angle that a rayEdpmakes with∂C∩ H is bounded
away from zero, asd is bounded away from∂C. We also have

area(π1(∂C ∩ H)) ≤ area(π1(∂H ∩ C))

= (8/
√

3)2 · area(π0(∂H ∩ C)) ≤ 64/3 · area(∂H ∩ C),

proving the lemma.

Lemma 3.4. If C is a leaf cube and B= C/2 ⊆ H and B/2 = C/4 meetsT̂ (2) (the
2-skeleton ofT̂ ), thenarea(∂C ∩ H) is O(area(T̂ ∩ C)).

Proof. Let s be the edge length ofB. Clearly, area(∂C ∩ H) is O(s2); we show
area(T̂ ∩ B) isÄ(s2). Let D be the open cube of side lengths/2 centered at a pointx of
the 2-skeleton of̂T in B/2, with the same orientation asB/2; plainly D ⊂ B. Choose
three orthogonal edgese1, e2, e3 of ∂D, and for anyp ∈ D let l i = l i (p), i = 1,2,3, be
the segment throughp parallel toei connecting opposite faces ofD. We claim at least
one ofl1, l2, l3 must meet̂T (2). Suppose not, then they must all lie in the same tetrahedron
1 of T̂ , since they share pointp. Hence the convex hull ofl1, l2, l3 is contained in1, a
contradiction since the convex hull containsx, which is inT̂ (2).

Let Di , i = 1,2,3, be the set of pointsp ∈ D for which l i (p)meetsT̂ (2). SinceD =
D1 ∪ D2 ∪ D3, we can assume, say, that the volume ofD1 is at least(s/2)3/3= s3/24.
Now D1 must be the Cartesian product of a segment of lengths/2 parallel toe1 with the
projection ofT̂ (2) ∩ D onto a facet ofD perpendicular toe1. Hence the projection of
T̂ (2) has area at leasts2/12, andT̂ (2) ∩ D itself has at least the same area.

Lemma 3.5. For any leaf cube C of T, 7C meets the1-skeleton of S.

Proof. Let arefinement stepduring balancing be the replacement of a leaf node by an
interior node with eight children. We show that the lemma holds forT0 and is maintained
by every refinement step.

By construction, every skewered leaf inT0 meets the 1-skeleton ofS. Every unskew-
ered leafC in T0 has a skewered parent, so certainly 3C meets the 1-skeleton ofS.

A refinement step maintains the condition of the lemma for every unchanged cube.
So supposeC is refined into eight subcubes, withs the original side length ofC andC′

an arbitrary child ofC. See Fig. 3.C must share a common 2-face with a cubeD whose
side length is at mosts/4. By inductive hypothesis, 7D meets the 1-skeleton ofS. Easy
calculations show that theL∞ distance between the centers ofC′ andD is at most 7s/8
and that 7D ⊂ 7C′. Hence 7C′ meets the 1-skeleton ofS.
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Fig. 3. Proof of Lemma 3.5.

Lemma 3.6. If C is a leaf cube, B = C/2⊆ H , and B/2 avoids the2-skeleton ofT̂ ,
then there is a charging pair for C.

Proof. Let s be the side length ofB, soB/2 has side lengths/2. By Lemma 3.5 there
is a pointq on the 1-skeleton of̂T within 7C = 14B, hence at distance 7

√
3s < 14s

from the centerp of B. We assume that open segmentpq meets the 2-skeleton of̂T
only at interior points of 2-cells; otherwise a slightly modified argument with a perturbed
segmentp′q is necessary.

Letσ be the plane orthogonal topq throughp and letπσ be the orthogonal projection
ontoσ . LetU be the infinite cylinder with axispqand radiuss/4; then the diskD = U∩σ
is contained inB/2. Let p1, . . . , pl−1 be the intersections of 2-cells of̂T with open
segmentpq in order fromp to q, and setp0 = p and pl = q. For i = 1, . . . , l , let τi

be the 3-simplex ofT̂ containing the open segmentpi−1 pi . See Fig. 4. We have that
B/2⊆ τ1, sincep0 = p ∈ B/2 and the 2-skeleton of̂T avoidsB/2.

Let µi be the connected component of∂τi ∩U containingpi . Choosek minimal so
thatµk contains a point of the 1-skeleton ofT̂ ; suchk must exist sincepl = q is on the
1-skeleton ofT̂ .

We claim thatµi fully cuts U, i.e.,πσ (µi ) = D, for i = 1, . . . , k. Nowµ1 fully cuts
U , sinceD ⊆ B/2 ⊆ τ1. For 1< i ≤ k, µi−1 must be a portion of a single 2-face of
τi , since it contains no point on the 1-skeleton ofT̂ . Hence there must be two connected
components toU ∩ ∂τi , specificallyµi−1 andµi , andµi must fully cutU .

We now show thatµk lies at distance at most 28s fromσ . Let fk−1 and fk be the faces
of τk containingpk−1 andpk, and letPk−1 andPk be the planes containingfk−1 and fk,
respectively. NowPk−1 ∩ D = Pk−1 ∩ U ∩ σ must be empty, sincePk−1 ∩ U = µk−1

lies entirely in facefk−1 but D = U ∩ σ lies entirely in the interior of simplexτ1. Also
Pk ∩ D must be empty: if not, chooseu ∈ Pk ∩ D; then pk andu lie on opposite sides
of Pk−1 within U , so segmentupk meets an interior point of facefk−1 of τk; however,
upk also lies entirely in the planePk of face fk of τk, a contradiction. The intersection of
Pk with ∂U is an ellipse, whose centerpk is at distance at most 14s from σ . The ellipse
avoidsD, sincePk avoidsD. Hence the farthest point of the ellipse is at most 28s from
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Fig. 4. Proof of Lemma 3.6.

σ . Since the closed halfspace ofPk containingD also containsτk andµk, µk is at most
distance 28s from σ .

We set the charging-pair constantsα = π/48, β = 1
8, andγ = 43. To finish the

proof, notice that area(µk) ≥ area(πσ (µk)) = π(s/4)2. Sinceµk consists of portions of
at most three triangular faces ofτk, at least one such triangle1 satisfies area(1∩U ) ≥
πs2/48= αs2.1 is the triangle ofT̂ promised by the lemma statement. We have1∩U
within distance 28s from σ , in fact within distance 28s from σ ∩U ⊂ B/2⊂ B. Since
the side length ofB is s,1 ∩U ⊂ (2 · 28+ 1)B ⊂ γC.

It remains to find a piece of an edge of1 of length at leastβs within γC. Let U ′ be
the cylinder coaxial withU but with double the radius. By analogous reasoning, we have
1∩U ′ within distance 42s from σ ∩U ′ ⊂ B, so1∩U ′ ⊂ (2 ·42+1)B ⊂ γC. If 1 is
completely contained withinU ′, then by the isoperimetric inequality [16] the perimeter
L of 1 satisfiesL ≥ √4π · area(1) ≥ πs/2

√
3, so one edge of1 has length at least

πs/6
√

3 ≥ βs. Otherwise∂1 intersects both∂U ′ and the interior ofU . Since∂U and
∂U ′ are separated bys/4, there is a portion of an edge of∂1 lying within U ′ of length
at leasts/8= βs.

Thewidth of a compact planar setS, width(S), is the smallest distancew so thatS
is contained in the closed region between two parallel linesw apart. Thediameterof S,
diam(S), is the length of the longest segment contained in the convex hull ofS. It is easy
to see that the area ofS is at most width(S) · diam(S).

Lemma 3.7. Let1 be an obstacle triangle and let r be the radius of its inscribed circle.
If leaf cube C with side length s has charging pair(1,e), then s is O(r ).
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Proof. The width of1 is at most 3r , by some elementary geometry. Since(1,e) is a
charging pair forC, we have

αs2 ≤ area(1 ∩ γC)

≤ width(1 ∩ γC) · diam(1 ∩ γC)

≤ 3r ·
√

3γ s.

Hences ≤ 3
√

3γ r/α, which isO(r ).

Lemma 3.8. The total charge to triangle1 of T̂ from all leaf cubes in case3 above is
O(area(1)).

Proof. Let p and r be the perimeter and inscribed-circle radius of1, respectively.
Some elementary geometry gives area(1) = pr/2.

Consider the setCs of all leaf cubes with a fixed side lengths. Since no two cubes
in Cs overlap, no point in space is covered by more thanγ 3 open supercubesγC, for
C ∈ Cs. Since the intersection ofγC with ∂1 has length at leastβs, no more than
γ 3 p/(βs) = O(p/s) cubes inCs can be charged to1. The charge for each cube is
O(s2), so the total charge to1 for cubes inCs is O(ps).

Let ŝ be the largest cube side length for which a cube is charged to1; by Lemma 3.7,
ŝ is O(r ). The total charge over all cube sizes isO(p(s0+ 2s0+ · · · + ŝ)) = O(pŝ) =
O(pr), which isO(area(1)).

3.5. Triangulating the Tree

Theorem 3.9. In time O(n5) it is possible to construct a triangulationT from the
octtree T so thatarea(T ) ≤ c′ · (area(T) + area(S) + b2), where c′ is an absolute
constant and b is the side length of the root cube of T. T has O(n5) tetrahedra and
partitions the convex hull H of S.

ForC a leaf cube ofT , theclipped cube CH is C∩H . We choose below a subdivision
P of H whose 3-cells are clipped-cube interiors and whose 2-skeleton is a triangulation.
In Sections 3.5.2 and 3.5.3 we show how to triangulate a clipped cube so that its boundary
triangulation matchesP. The desired triangulationT is then obtained simply by pasting
the clipped-cube triangulations intoP.

In octtreeT , two adjacent cubes may have overlapping but distinctk-faces,k = 1,2,
if the cubes are of different sizes. A clipped-cubek-face isminimal if no other clipped-
cube face of the same dimension is properly contained within it; a minimalk-face is a
tree-partitioningface if it is properly contained in another clipped-cube face (possibly of
higher dimension). It is easy to see that any clipped-cubek-face is the union of minimal
faces of dimension at mostk. In fact, sinceT is balanced, any 1-face is the union of at
most four minimal 1-faces and three vertices, and any 2-face is the union of at most four
minimal 2-faces, four minimal 1-faces, and a vertex (forming a “+”-shape in the middle
of the 2-face).
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Fig. 5. 1 and1′ are obstacle triangles that meet minimal cube 2-facef . InP , f is replaced by a triangulation
of f compatible with1 ∩ f and1′ ∩ f .

LetP ′ consist of clipped-cube interiors plus all minimal 0-, 1-, and 2-faces. Subdivi-
sionP is obtained fromP ′ by replacing 1- and 2-faces. A 1-faceeof P ′ is replaced with
the chain of 0- and 1-cells formed by subdividinge at each point of intersection with
an obstacle triangle. Letf be a 2-face ofP ′. Form the set of line segments obtained by
intersectingf with all obstacle triangles, then triangulate this set together with the set
of 0- and 1-cells partitioning∂ f . The resulting triangulation replacesf in P. See Fig. 5.
It is easy to check thatP is a subdivision ofH whose 2-skeleton has been triangulated.

Thecombinatorial complexityof leaf cubeC, nC, is the number of edges ofC plus
the number of obstacle triangles meetingC. It is easy to check that bdry(CH ,P) has
O(nC) edges and vertices.

3.5.1. Central Triangulations. Let Q be a 3-cell in a polyhedral subdivisionQ with
bdry(Q,Q)a triangulation and letq be an interior point ofQ. Recall that by the definition
of polyhedral subdivision,Q is convex. Thecentral triangulationof Q from q consists
of the tetrahedra formed byq and the triangles in bdry(Q,Q), and all tetrahedral faces.

Proposition 3.10. If bdry(Q,Q) has k vertices, then the area of any central triangu-
lation of Q is at most3k/2 times the area of∂Q.

Proof. Let q be the central triangulation vertex. There are at most 3k edges of
bdry(Q,Q). Each new tetrahedral 2-face is formed byq and such an edge, and has
area at most half the area of∂Q.

3.5.2. Triangulating an Unskewered Cube. For this section,C is an unskewered leaf
cube (i.e.,C avoids the 1-skeleton ofS). A triangulationTC of CH is obtained as follows.
Start with the subdivision consisting ofCH and bdry(CH ,P). SubdivideCH by all
obstacle triangles that meet it. Notice that all such obstacle triangles must cutC fully
and cannot meet withinC; furthermore, bdry(CH ,P) already contains all edges of
intersection between obstacle triangles and∂CH . Now triangulate any new 2-cells, and
centrally triangulate each 3-cell.

Lemma 3.11. TC has area O(area(S∩ C)+ area(∂C ∩ H)).



540 B. Aronov and S. Fortune

Fig. 6. The edges of obstacle1 are projected onto a horizontal plane, extended to lines, and clipped to the
projection ofCH (labeledπ(CH )). The result is triangulated and each triangle is lifted to an infinite vertical
prism.

Proof. Let T0 be the subdivision before central triangulation, and letC0 be a 3-cell of
T0. We show that the number of vertices in bdry(C0, T0) is constant. The lemma then
follows using Proposition 3.10 and the fact that area(T0) is area(S∩C)+area(∂C∩H).

First notice thatC0 has at most fourteen polyhedral 2-faces, six faces that are subsets
of a 2-face ofC and at most eight faces separating a vertex ofC from C0. HenceC0

has a constant number of polyhedral vertices. Any vertex of bdry(C0, T0) that is not
a polyhedral vertex must be a cube partitioning vertex, of which there are at most a
constant number.

3.5.3. Triangulating a Skewered Cube. For this section,C is a skewered leaf cube
(i.e., C meets the 1-skeleton ofS); recall C has side lengths0. A triangulationTC of
CH is obtained in two steps. We first compute a triangulationT ′C so that bdry(T ′C) =
bdry(CH , T ′C) is a refinement of bdry(CH ,P). Using Lemma 3.15, we then compute a
triangulationTC so that bdry(TC) = bdry(CH ,P).

The first step has four substeps. In the following, the “vertical” direction can be chosen
to be any direction not parallel to a face ofCH or a face ofSand so that no vertical line
meets three obstacle edges that do not already meet at a common vertex. See Fig. 6.

1. Orthogonally project each edge of bdry(CH ,P) onto a horizontal plane (i.e., a
plane orthogonal to the vertical direction), and extend the projection to a line.
Similarly project and extend each obstacle edge meetingC.

2. LetT2 be a (two-dimensional) triangulation of the resulting arrangement, truncated
to the projection ofCH . Lift T2 to a set of infinite vertical triangular prisms.

3. SubdivideCH using both the vertical prisms and any obstacle triangles meeting
C, forming a subdivisionT3.

4. Extend the triangulation of bdry(CH ,P) to form a triangulation of the 2-skeleton
of T3. Then centrally triangulate each 3-cell, forming the triangulationT ′C.

Lemma 3.12. The total length ofT2 is O(nCs0).

Proof. Let ` be a line in the plane and lett (`) be the number of edges ofT2 met by
`. Consider the arrangement (in substep 2 above) before triangulation and truncation.
By the zone theorem for lines [8], the total combinatorial complexity of the cells of the
arrangement intersected by a line` is O(nC), sot (`) is O(nC).
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Let µ be the rigid-motion invariant measure on sets of lines in the plane [16]; up
to a constant multiple, the length ofT2 is

∫
t (`) dµ. The measure of the set of lines

intersectingT2 is O(s0), since the perimeter ofT2 is O(s0) [16]. Hence
∫

t (`) dµ is
bounded byO(s0nC).

Lemma 3.13. TriangulationT ′C has area O(area(S∩ C)+ area(∂C ∩ H)+ nCs2
0).

Proof. The total area of the vertical 2-cells in the subdivisionT3 is O(nCs2
0), since the

total length ofT2 is O(nCs0) and the height ofCH is at mostO(s0). Any nonvertical
2-cell is a portion of eitherS∩C or∂C∩H , hence the total area of all nonvertical 2-cells
is area(S∩ C) + area(∂C ∩ H). Let P be a 3-cell inT3; we show that the number of
vertices in bdry(P, T3) is constant. The lemma then follows using Proposition 3.10 and
the bound on the sum of the areas of all 2-cells.

Cell P is a section of a triangular prism and has at most five polyhedral facets, hence a
constant number of polyhedral vertices. We claim bdry(P, T3) has at most two additional
vertices per vertical polyhedral edge ofP. To see this, note that, by construction ofT3,
any vertex of bdry(P, T3)must either be a vertex of bdry(CH , T3), and hence a polyhedral
vertex ofP, or must lie in the interior of a collinear vertical chain of edges ofT3. In the
latter case, the vertex must either lie in the interior of an obstacle triangle, and hence
must be a polyhedral vertex ofP, or on the closure of an obstacle edge. However, there
can be at most two such vertices of this last type per vertical chain, since the vertical
direction was chosen so that no three obstacle edges lie on a common vertical line.

It is easy to see thatT ′C hasO(n3
C) tetrahedra, hasO(n2

C) vertices on bdry(T ′C), and
can be computed in timeO(n3

C).
The second step is to transformT ′C intoTC by removing the vertices of bdry(CH , T ′C)

not in bdry(CH ,P). As will be seen in the proof of Lemma 3.15, removing a vertex that
lies in the interior of a 2-face of bdry(CH ,P) is slightly different from removing a vertex
that lies in the interior of an edge of bdry(CH ,P).

Let G = (V, E) be the 1-skeleton of bdry(CH , T ′C) as a graph, and similarly let
GP = (VP, EP) be the 1-skeleton of bdry(CH ,P). A subset ofV is independentif no
two vertices are connected by an edge ofE.

Lemma 3.14. There is an independent subset of V\VP whose size is a constant fraction
of V\VP so that each vertex has constant degree in G.

Proof. The average degree of vertices in the subgraph ofG induced byV\VP is at most
six, by planarity. Any vertexv in V\VP is incident to at most four vertices ofVP: either
v lies in the interior of a triangle of bdry(CH ,P), in which case it can be incident to at
most three vertices ofVP, or v lies on an edge of bdry(CH ,P), in which case it can be
incident to at most four vertices ofVP. Hence the average degree of verticesV\VP in
G is at most ten. By standard techniques [14], it follows that there is a bounded-degree
independent set whose size is a constant fraction ofV\VP.

Lemma 3.15. There is a triangulationTC of C withbdry(TC) = bdry(CH ,P). TC can
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be computed fromT ′C in time O(n3
C), adding O(n3

C) tetrahedra and area O(s2
0 lognC +

area(S∩ C)).

Proof. T ′C is updated in stages, with the final stage yieldingTC. Each stage removes the
independent set of vertices guaranteed by Lemma 3.14. Clearly, the number of stages is
logarithmic in the number of vertices ofT ′C, i.e., O(lognC).

For simplicity, we first assume that every vertex to be removed lies in the interior of
some 2-face of bdry(CH ,P) and not on an edge of bdry(CH ,P). Consider the triangles
incident tov; all such triangles are coplanar. LetSv be the polygon formed by the triangle
edges oppositev. It is possible to pushv slightly insideCH maintaining the combinatorial
structure ofT ′C (in particular,vmust not be pushed through the plane of the face opposite
v in any tetrahedron incident tov). Pushingv leaves a dimple in the triangulation ofCH .
The dimple can be filled by triangulatingSv and then adding toT ′C the tetrahedra formed
by v and the new triangles.

The area added toT ′C at each stage is at mostO(s2
C), wheresC is the side length of

cubeC. To see this, first note that when a vertexv is pushed, the change in area of the
tetrahedra incident tov is negligible, since the perturbation ofv can be made arbitrarily
small. The area of the new tetrahedral faces is at most a constant times the area ofSv,
sinceSv has at most a constant number of edges. Since the vertices at each stage form an
independent set, the polygons{Sv} have disjoint interiors and their total area is at most
the surface area ofC, i.e.,O(s2

C). Hence the total area added at all stages isO(s2
C lognC).

Now suppose some vertexv lies on an edgee of bdry(CH ,P). Edgee may be a
portion of a polyhedral edge of∂CH or may be interior to a polyhedral face of∂CH .
If v does not lie on an obstacle triangle, then the approach is similar, except that the
triangulation ofSv must use a piece of edgee.

Now supposev lies on an edgee of bdry(CH ,P) and also on an obstacle triangle.
It does not suffice simply to pushv into the interior ofCH as above, since the resulting
triangulation would not be compatible with the obstacles. Instead, vertexv is removed
as follows. Necessarilyv lies in the interior of a segments of the intersection of the
obstacle triangle with∂CH . Let p andq be the vertices on either side ofv alongs. Let
11, . . . , 1k be the obstacle triangles incident tos that enter the interior ofCH , in cyclic
order arounds. We can assumek>0, i.e., not all triangles incident tos lie on ∂CH ,
otherwisev can be perturbed as before. LetPi be the plane through1i , and choose
the positive and negative open halfspaces ofPi so that the positive halfspace contains
11, . . . , 1i−1 and the negative halfspace contains1i+1, . . . , 1k. Let Sv be defined as
above, and letS+v be the polygon bounded bypq and the portion ofSv in the positive
halfspace ofP1; similarly, let S−v be the polygon bounded bypq and the portion ofSv
in the negative halfspace ofPk. For each triangle1i , i = 1, . . . , k − 1, in turn, splitv
into two verticesv andvi connected by an edge, and perturbvi slightly into the interior
of ∂CH while staying on1i . See Fig. 7. Incidences tov are adjusted as follows. Within
the positive halfspace ofPi+1, any edge, triangle, or tetrahedron previously incident tov

should be made incident tovi ; in the negative halfspace ofPi+1, incidences remain with
v. Incidences tov on Pi+1 expand by a dimension: an edgeuv on Pi+1 becomes a triangle
uvvi ; a triangletuv on Pi+1 becomes a tetrahedrontuvvi . Finally, for the last triangle
1k, simply perturbvk = v to the interior of∂CH while staying on1k. After all splitting
and perturbation there is again a dimple on∂CH . Specifically, the perturbation ofv1



Approximating Minimum-Weight Triangulations in Three Dimensions 543

Fig. 7. Vertexv lies on∂CH (not shown); both1i and1i+1 are interior toCH ; vi lies on1i ; u andt lie on
1i+1 though they need not be close tov.

formed a dimple bounded byS+v ; each subsequent perturbation ofvi , i>1, increased
the dimple by the tetrahedronpqvi vi−1; in addition, the final perturbation ofv = vk

increased the dimple byS−v . To fill the dimple, choose triangulations ofS−v and S+v ;
then add the tetrahedra formed byv1 and the triangles ofS+v , the tetrahedrapqvi vi−1,
i = 2, . . . , k, and the tetrahedra formed byvk and the triangles ofS−v .

To check that the resulting triangulation is compatible with all obstacles, observe that
the perturbation ofvi maintains a two-dimensional triangulation of obstacle1i , with the
exception of the trianglepqvi . However, trianglepqvi is a face of tetrahedronpqvi vi−1

(and tetrahedronpqvi+1vi ) and hence is added when the dimple is filled.
The perturbation increases area by adding tetrahedrapqvi vi+1, by replacing an edge

uv with a triangleuvvi , and by replacing a triangletuv with a tetrahedrontuvvi . In
the first two cases, the additional area is negligible since the distancesvvi can be made
arbitrarily small. In the last case, the triangletuv is essentially duplicated, adding the
triangle tuvi . However, notice that after the entire perturbation, neitherv in its new
position atvk nor any vertex split fromv lies on∂CH . Hence over all stages each triangle
tuv can be duplicated at most three times, once per vertex. Sincetuv is part of an obstacle
lying in CH , the total additional area isO(area(S∩ CH )).

The number of tetrahedra required to fill the dimple resulting from perturbingv is
constant ifv is not on an obstacle andO(nC) if v is on an obstacle. SinceO(n2

C)

vertices have to be removed, the total number of tetrahedra over all stages isO(n3
C).

New tetrahedra are also created by expanding a triangle to a tetrahedron. However, this
happens at most once per vertex of each triangle, hence at mostO(n3

C) times altogether.
The running time of the algorithm is O(n3

C), since it takes timeO(n2
C) to find inde-

pendent sets andO(n3
C) to add tetrahedra.

3.5.4. Accounting

Lemma 3.16.
∑

C nCs2
0 = O(area(S) + b2), where the sum runs over all skewered

leaf cubes C and b is the side length of the root bounding cube.

Proof. LetmC be the total number of obstacle triangles that intersect cubeC. Since ev-
ery skewered cube meets some obstacle triangle,nC is O(mC). We can express

∑
C mCs2

0
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as ∑
1∈S

|S1|s2
0,

whereS1 is the set of skewered leaf cubes intersected by obstacle triangle1. We can
write

|S1| = a1 +m1,

wherea1 andm1 are respectively the number of cubesC in S1 so that the doubled cube
2C avoids or meets the boundary of1.

Consider first cubesC in S1 so that 2C avoids the boundary of1. Plainly the area of
2C ∩ 1 is2(s2

0). Since no point in space is covered by more than eight open doubled
skewered cubes,a1 ≤ 8·area(1)/Ä(s2

0) = O(area(1)/s2
0). Hencea1s2

0 is O(area(1)),
and

∑
1∈S a1s2

0 is O(area(S)).
Now consider cubesC in S1 so that 2C meets the boundary of1. The boundaries of

the doubled cubes lie on the planes of a cubic grid of step sizes0. An obstacle triangle
edgee meets at most 3dlength(e)/s0e planes, which isO(b/s0) (recall thatb is the side
length of the box bounding the obstacle setS). Hence each edge meetsO(b/s0) doubled
cubes, som1 is O(b/s0). We have∑

1∈S

m1s2
0 = O(n · b/s0 · s2

0) = O(nbs0) = O(b2)

usingb/(2n) < s0 ≤ b/n.

Proof of Theorem3.9. By Lemmas 3.11, 3.13, and 3.15, the total area ofT is∑
C

area(∂C ∩ H)+
∑

C

area(S∩ C)+
∑

C

nCs2
0,

where the first two summations run over all leaf cubes and the last over skewered leaf
cubes. The first two summations add toO(area(T)+ area(S)). Using Lemma 3.16, the
last summation isO(area(S)+ b2).

Since the minimum cube size is aboutb/n, the total number of leaf cubes isO(n3).
Both the running time to computeT and the number of tetrahedra are bounded by
O(
∑

C n3
C) = O(

∑
C(mC + 1)3) = O(

∑
C m3

C) + O(n3), wheremC is the number of
triangles meeting cubeC. All leaf cubesC have faces lying on a cubic grid of planes with
step sizes0; a triangle can hit at mostO(n2) such grid cubes and thus at mostO(n2) leaf
cubes ofT . Hence the number of incidences between leaf cubes and triangles,

∑
C mC is

O(n3). The sum
∑

C m3
C is maximized ifmC is as large as possible, i.e.,n, for as many

cubesC as possible, i.e.,O(n2), yielding an upper bound ofO(n3 · n2) = O(n5).

3.6. General Obstacle Sets

Theorem 3.17. Let S be an arbitrary obstacle set with a total of n simplices. In time
O(n6) it is possible to compute a triangulation compatible with S whose area is within
a constant factor of the smallest possible. The triangulation has O(n6) tetrahedra and
partitions the convex hull of S.



Approximating Minimum-Weight Triangulations in Three Dimensions 545

We begin the proof by finding a bounding box ofS. Choose a diametrical segment of
the convex hullH of S. ProjectH onto a plane orthogonal to the segment, and choose a
smallest square containing the projection.S fits into a boxBS which is a translation of
the Cartesian product of the diametrical segment with the square. As before, perturbBS

slightly to guarantee that no obstacle face is parallel to a face ofBS. Let BS have size
h × h × `h. We can assume that` is an integer. It is easy to see that the area of∂H is
Ä(`h2).

We choose a familyB of boxesthat partitionBS. Conceptually splitBS into ` consec-
utiveh× h× h cubes. Any cube that contains a vertex ofS is a box inB. Any maximal
union of consecutive cubes not containing a vertex is also a box inB. Clearly, there are
at most 2v − 1 boxes inB, wherev is the number of vertices inS.

Refine the obstacle setSusing the planes separating adjacent boxes inB, as follows.
For each planeP, if P hits an edgeeof S, split the edge into two subedges and the vertex
e∩ P; if P hits a 2-simplex1 of S, split the simplex into two 2-faces and the edgee∩1;
finally, triangulate the regionP ∩ H compatibly with all intersection verticese∩ P and
intersection edges1∩ P, and add all resulting 2-faces toS. After examining all planes,
triangulate any remaining 2-face that is not a triangle. LetS′ be the refined obstacle set
and letSB be the subset ofS′ lying inside boxB. Recall|T | is the area of triangulation
T . Let M = infT |T |, whereT varies over all triangulations compatible withS; for
B ∈ B, let MB = infT |T |, whereT varies over all triangulations compatible withSB.

Lemma 3.18.
∑

B∈B MB = O(M).

Proof. Let T̂ be an arbitrary triangulation compatible withS. Use each planeP that
separates adjacent boxes inB to refineT̂ , as follows: if P hits 0-, 1-, or 2-cells, then
they are refined asS was refined toS′; if P hits a 3-cell1, then1 is split into two
3-cells and the 2-cellP ∩1. The area ofP ∩1 is O(h2), for a total over all planes of
O(|B| · h2) = O(area(∂H)) = O(area(T̂ )). Each 3-cell in the resulting subdivision is
either a tetrahedron or has a constant number of polyhedral faces; in the latter case the cell
can be centrally triangulated (after triangulating any nontriangular faces), increasing area
by at most a constant factor. The resulting triangulation can be split into a triangulation
of each boxB ∈ B, with triangulation areas summing toO(area(T̂ )).

The obstacle setS′ is triangulated by triangulating each setSB in turn, and then
pasting the resulting triangulations together. A detail is that adjacent triangulations must
be compatible along their common boundary; however, this is easily guaranteed using
the technique of Section 3.5. Choose a boxB ∈ B of sizeh × h × `B · h, `B ≥ 1 an
integer. LetL B be the affine transformation that fixes one of the square sides ofB and
shrinks the orthogonal direction by a factor of`B; then L B(B) is a cube. Triangulate
L B(B) usingL B(SB) as before: build an octtree with root cubeL B(B) and subdivide it
using the obstaclesL B(SB), as described in Section 3.3, and then triangulate each octtree
leaf cube as in Section 3.5, again usingL B(SB). Apply the inverse transformationL−1

B
to obtain a triangulationTB compatible withSB.

Let TB be the image underL−1
B of the octtree, thenL B(TB) is the octtree with root

cubeL(B) andTB is an octtree-like structure formed from blocks with side-length ratio
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1× 1× `B. Theareaof TB, area(TB), is
∑

C area(C ∩ H), where the sum runs over all
leaf boxesC in TB.

Lemma 3.19. area(TB) = O(MB).

Proof. We can assume that`B > 1, otherwise the lemma follows from Theorem 3.2.
Choose a leaf boxC in TB and conceptually partition it intòB consecutive cubes. We
show below that, for each such cubeD, 21D meets the 1-skeleton ofSB. Let T̂ be an
arbitrary triangulation ofSB. Using the same argument as the proof of Theorem 3.2, we
charge area(D ∩ H) to features ofT̂ (with an appropriate modification to the charging-
pair constants, since 21D rather than 7D meets the 1-skeleton). Since area(C ∩ H) is
bounded by

∑
D area(D ∩ H), D in the partition ofC, the lemma follows.

By Lemma 3.5, 7L B(C)meets the 1-skeleton ofL B(SB), so 7C meets the 1-skeleton
of SB. SinceS has no vertices withinB, 7C must meet an edgee of SB with endpoints
on opposite square faces ofB. Consider the subsegmente′ of e lying between the planes
through the square faces ofC. Clearly, there is a translate of 7C that containse′ and
overlaps 7C. Hence for any of the cubesD partitioningC, 21D meetse′.

Lemma 3.20. `B·area(L B(TB)) = O(area(TB))and`B·area(L B(SB)) = O(area(SB)).

Proof. We show the second statement; the first is easier. Assume`B > 1, otherwise
the lemma is trivial. Choose triangle1 ∈ SB. SinceB contains no vertices ofS, 1
must result from refining a triangle ofS by the planes through the two square sides of
B. Hence1 is a triangle, with an edgee on one square side ofB and a vertex on the
opposite square side ofB. Similarly,L B(1) has an edgee′ of the same length aseon one
side ofL B(B), and a vertex on the opposite side. The height of1 oppositee is at least
h`B, and the height ofL B(1) oppositee′ is at mosth

√
3. Hencè B · area(L B(1)) =

O(area(1)).

Lemma 3.21. area(TB) = O(area(TB)+ area(SB)+ `B · h2).

Proof. By Theorem 3.9, we have area(L B(TB)) = O(area(L B(TB))+area(L B(SB))+
h2). Hence

area(TB) = O(`B · area(L B(TB)))

= O(`B · area(L B(TB))+ `B · area(L B(SB))+ `Bh2)

= O(area(TB)+ area(SB)+ `Bh2),

using Lemma 3.20.

Proof of Theorem3.17. By Lemmas 3.19 and 3.21, the triangulationTB of each box
B ∈ B has areaO(MB + `B · h2). Hence the whole triangulation has area∑

B∈B
O(MB)+

∑
B∈B

O(`B · h2) = O(M)+ O(`h2) = O(M),
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using Lemma 3.18 and̀h2 = O(area(∂H)) = O(M). The bounds on running time
and tetrahedra follow from Theorem 3.9 since there areO(n) boxes inB.

3.7. Worst-Case Bounds

For obstacle setS in R3, recall thatc(S) = infT area(T )/area(S), whereT varies over
all triangulations compatible withS. The following lemma gives worst-case bounds on
c(S). As before,Smust contain faces partitioning the boundary of its convex hull.

Lemma 3.22. For any wide obstacle set S inR3,c(S) = O(
√

n),where n is the number
of simplices in S. There is a wide set̂S of O(n) obstacles with c(Ŝ) = Ä(√n).

Proof. Let B be the minimum-size bounding cube ofS, perturbed slightly so that no
obstacle face is parallel to a face ofB. Let B have side lengthb. Split B into a grid
of identical cubes, where each cube has side lengths ≈ b/

√
n, so there are aboutn3/2

cubes altogether. Using the algorithms of Section 3.5, triangulate each clipped cube and
paste the triangulations together, yielding a triangulationT compatible withS. T has
areaO(n3/2 · s2) = O(b2√n) (the surface area of the cubes) plusO(area(S)) plus
O(
∑

C nCs2), wherenC is the combinatorial complexity of cubeC. An analysis similar
to Lemma 3.16 shows that

∑
C nCs2 is O(area(S)+n·(b/s) ·s2) = O(area(S)+b2√n).

Hence the ratio area(T )/area(S) is O(
√

n), as area(S) isÄ(b2).
For the second statement, choose an axis-aligned unit cubeB. SubdivideB into a

cubical grid of about
√

n × √n × √n identical subcubes. For each one-dimensional
row of subcubes parallel to thex-, y-, or z-axis, choose a very thin obstacle triangle
that covers all the subcube centers in the row. Slightly perturb the resulting set of2(n)
triangles so that no two intersect. Add to the obstacle triangles a triangulation of their
convex hull, forming the obstacle setŜ. Since the 1-skeleton of̂S passes very near the
center of each subcube, Lemma 3.4 implies that any triangulationT compatible with
Ŝ must have areaÄ((1/

√
n)2) = Ä(1/n) within each subcube. Since there aren3/2

subcubes, the total area ofT is Ä(
√

n). Since the area of the convex hull isO(1) and
the area of the remaining obstacles can be made arbitrarily small,c(Ŝ) = Ä(√n).

An argument similar to this proof shows that ifScontainsn points (and the faces of
the convex hull), thenc(S) = O(n1/3). Furthermore, there is a setŜ of n points with
c(Ŝ) = Ä(n1/3). These results contrast with the results of Agarwal et al. [2]. They show
there is a setS of n points inR3 so that in any triangulation ofS, some line meets

√
n

triangulation faces. Similarly there is a setS of n obstacle triangles inR3 so that in
any triangulation compatible withS′, some line meetsÄ(n) triangulation triangles, even
though it misses all obstacles.

4. Discussion

We have not tried to estimate the approximation ratio for the construction in Section 3. Our
algorithm is based on Eppstein’s algorithm, which approximates the minimum-length
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Steiner triangulation of a set of points in two dimensions. Eppstein is able to prove an
approximation ratio of 316 (though he suspects the true ratio is much smaller, perhaps
around 20); our proof is much less careful about constants than his. A challenging open
problem is to construct triangulations of approximately minimum weight in two or three
dimensions with reasonable constants and with a reasonable number of vertices.

In two dimensions, the minimum spanning tree provides an intrinsic measure of
the minimum weight triangulation, in the sense that their weights differ by at most a
logarithmic factor (Lemma 2.2). In three dimensions, the surface area of the octtree
constructed in Section 3 is an intrinsic measure of the minimum weight triangulation
(Theorem 3.2). It would be of interest to obtain a more natural intrinsic measure.

The analysis of ray-shooting-by-walking can be extended to other subdivisions be-
sides triangulations. For example, consider the leaf cubes of the octtree constructed in
Section 3, with the modification that each unskewered cube is partitioned by all obstacles
that cut it fully. Label each skewered leaf cube with the number of obstacle triangles
that meet it, and label all the other 3-cells 1. Then it is possible to walk through the
partitioned octtree along a linèwith total cost proportional tow(`), wherew(`) is the
sum of the labels of the 3-cells intersected by`. The analysis in Section 3 shows that∫
w(`) dµ is the area of the minimum weight triangulation, to within a constant factor.

Two problems arise naturally when considering alternative subdivisions for ray-shooting
queries: first, to determine if the area on the minimum weight triangulation is always
a relevant bound; second, to provide an analytic comparison of the constants that arise
from different subdivisions.
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