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Abstract. Let Sbe a set of noncrossing triangulabstaclesn R3 with convex hullH.
A triangulation7 of H is compatiblewith Sif every triangle ofSis the union of a subset
of the faces ofl . Theweightof 7 is the sum of the areas of the triangles7iaf\We give a
polynomial-time algorithm that computes a triangulation compatible ®itthose weight
is at most a constant times the weight of any compatible triangulation.

One motivation for studying minimum-weight triangulations is a connection with ray
shooting. A particularly simple way to answer a ray-shooting query (“Report the first
obstacle hit by a query ray”) is to walk through a triangulation along the ray, stopping at the
first obstacle. Under a reasonably natural distribution of query rays, the average cost of a
ray-shooting query is proportional to triangulation weight. A similar connection exists for
line-stabbing queries (“Report all obstacles hit by a query line”).

1. Introduction

Let Sbe a finite set of noncrossirapstaclegline segments ifR?, triangles inR3) with
convex hullH. A triangulationZ of H is compatiblewith Sif each obstacle is the union
of a subset of the faces @f. 7 may haveSteiner verticesi.e., vertices that are not
vertices ofS. Theweightof a facetf, | f|, is edge length ifR? and triangle area iR®);
theweightof 7, |7, is the sum of the weights of its facets.

We give a polynomial-time algorithm that computes a triangulafionompatible
with a three-dimensional obstacle setThe weight of7 is within a constant factor

* Work of the first author was performed while he was visiting Bell Laboratories, Murray Hill, NJ, USA.
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of the smallest possible compatible triangulation. The algorithm is a generalization of
Eppstein’s algorithm [9] to compute a constant-factor approximation to the minimum-
length Steiner triangulation of a set of points in two dimensions. As with Eppstein’s
analysis, the approximation ratio is large, though constant.

The algorithm has two steps. The first step produces a depth-bounded octtree from
the obstacles, where the rule is that an octtree cube is split if it meets an obstacle vertex
or edge and is not too small. The second step triangulates each leaf cube in a manner
compatible with the obstacles and neighboring leaf cubes. For the worst-case set of
n obstacles, the algorithm runs in tin@(n®) and produces as many tetrahedra. An
improvement of an order of magnitude in both running time and number of tetrahedra
is possible if the obstacle set is well-shaped (see Section 3.3). A further improvement is
possible if obstacles are just points (though this is not discussed in this paper).

The proof of the approximation ratio has two parts. The first part is to show that the
total surface area of the octtree is at most a constant factor times the area of an arbitrary
triangulatiqnj’. To do this we charge the surface area of each leaf cube to some local
feature of7. There are essentially two cases: if the central subcube of the leaf cube
meets a vertex, edge, or face’Df then the area of within the leaf cube must be at
least proportional to its surface area. Otherwise the central subcube must be contained
in a tetrahedron of , some face of which must have area at least proportional to the
surface area of the leaf cube. (The actual argument is more complex, to guarantee that
a single tetrahedral face is not charged by too many leaf cubes.) The second part of
the approximation-ratio bound is to triangulate all leaf cubes with total area at most a
constant times the tree surface area plus the obstacle area.

We also briefly consider the two-dimensional case of compatible triangulations. As in
three dimensions, there is a polynomial-time algorithm that approximates the minimum-
weight compatible triangulation. In Section 2 we show that the minimal Steiner trian-
gulation weight is approximately the length 8fplus the length of the MST (within
a logarithmic factor). Here MST is the minimum Steiner spanning tre§, ok., the
minimum-length set of line segments so that M$Bis connected.

Other Work A long-standing open problem is the question of whether there is a
polynomial-time algorithm that finds the minimum-length triangulation of a point set in
two dimensions, without using additional Steiner points. Beirouti and Snoeyink [5] report
recent progress and give many references. Eppstein [9] describes a polymial-time algo-
rithm that gives a constant-factor approximation to the minimum-weight triangulation
of a two-dimensional point set, allowing Steiner points.

Average-Case Line Stabbing and Ray Shooting/e now describe a connection between
triangulation weight and the average cost of simple algorithms for ray shooting (“Report
the first obstacle hit by a ray”) and line stabbing (“Report all obstacle hit by a line”).
Line-stabbing queries can be answered in a particularly simple way given a triangula-
tion of space compatible with the obstacles. It suffices to walk through the triangulation
along the line, reporting each encountered obstacle. The walk takes constant time per
visited triangle, so the total cost of the walk is proportional to the number of triangle
faces crossed. In the worst case, the walk can be long. For example, Agarwal et al. [2]
describe a configuration af obstacle triangles iiR® so that there is a line missing all
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the obstacles yet hittin€ (n) faces of any triangulation compatible with the obstacles.

We consider instead the average-case cost of line stabbing, using the standard rigid-
motion invariant measurg on lines [16]. LetL (U) be the set of lines that meet a set
U. A basic fact from integral geometry is that for a fadetu (L (f)) is the weight off
(length in two dimensions, area in three dimensions) times a constant depending upon
dimension.

Let Sbe a set of obstacles so that any facet of its convex hull is the union of obstacles.
Let 7 be a Steiner triangulation compatible wiih For line¢, let s(¢) andt(¢) be the
number of obstacle facets and triangulation facets intersectédrbgpectively. Then

St du
u(L(H))

is the average walk length to answer a line-stabbing query that meets the conviex hull
of S. The ratio

_ Jt@du

~ s du

is the average walk length per reported obstacle facet. Lettidlg be 1 if linel hits
facet f and 0 otherwise, we have that

_[t@du _Zfeff‘sf(l)d“_ ier Il _ 7
Cfs@dp Y [sMdu Y slfl IS

A ray-shooting query can be answered by an algorithm similar to the line-stabbing
algorithm: locate the endpoint of the ray in the triangulation, and walk along the ray
through the triangulation until an obstacle facet is encountered. For g, layt(r)
be the number of triangulation facets encountered in a walk alargto an obstacle.
Formally,t(r) should include the facet containing the ray endpoint (if any) and should
count all facets up to but not including the first obstacle facet. Cladrlyis proportional
to the cost of answering a ray-shooting query, ignoring the cost of locating the triangle
containing the endpoint df

The ratioc(7') is also the average value of ), for a particular distribution of query
rays. Let¢ be a directed line, and assume that the intersectignvath each obstacle
is either empty or a point. (Note thet7) is changed neither by assuming that lines are
directed, nor by ignoring the measure-zero set of lines that overlap an obstacle.) Associate
with £ the set of rays in the same directionfaand with endpoints at an intersection of
£ with an obstacle. Clearlg(¢) is the number of such rays abe) = > t(r), r inthe
associated set of rays. Hence

c(7)

c(7)

_ Jt@®du

[s(0) du
is the average df(r), under the distribution on rays induced by the distribution on lines.
Using integral geometry [16, Section 12.7, eq. (12.60)], the induced ray distribution is
sind d AA du, whered Ais the uniform area distributiotlu is the uniform solid angle
distribution, and is the angle between the ray and the surface of the obstacle. Informally,
a ray is chosen with endpoint uniformly at random from an obstacle and with direction
proportional to the sine of the anglebetween the ray and the obstacle.

c(7)
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Let

o(S) = inf o(7),
T

wherel ranges over all triangulations compatible wgClearly, to answer line-stabbing
or ray-shooting queries it is desirable to choose a triangul&iomith c(7) as close
as possible ta(S). It is not obvious that the lower bourtdS) can be attained [6]; for
example, it is conceivable that it is always possible to decrease weight anddignce
by adding Steiner points.

In two dimensions¢(S) =~ (IMST| + |S])/|S| (see Section 2). Hence in cases where
the MST is short, for example if the obstacle set is connected or nearly connected,
the average cost of ray-shooting by walking through a triangulation should be small.
This good behavior has been observed experimentally [10] (even without explicitly
minimizing the weight of the triangulation).

Other Work The ray-shooting problem has been studied extensively in computational
geometry (see [1] or [15] for a survey of theoretical results). Assuming roughly linear
data-structure storage, the best theoretical algorithms for ray shooting have worst-case
query timeO (logn) for a simple polygon [11], roughl{(,/n) for a set of planar line-
segments [4], and roughi® (n®#) for a set of triangles in three dimensions [3]. The last

two query times can be improved @(logn) with polynomial storage. Agarwal et al.

[2] consider the line-stabbing number of triangulations consistent with a set of obstacles.
Mitchell et al. [12] consider segment shooting, a variant of ray shooting. They show that
the cost of a segment-shooting query in an octtree can be bounded up to a constant factor
by the “cover complexity” of the segment.

2. The Two-Dimensional Case

Throughout this sectiors is a set ofn planar obstacle segments that meet only at
endpoints;S must include segments partitioning the boundary of its convex hull. A
triangulation7 is compatiblewith Sif any edge inSis the union of closed edges Bt.
Vertical barg| - | denote length, thusS| is the sum of the lengths of the segments$in
Let M be inf7 |7 |, whereT varies over triangulations compatible wih

Lemma 2.1. In polynomial time it is possible to compute a polynomial-size Steiner
triangulation7 compatible with S so tha? | = O(M).

We omit a detailed proof of Lemma 2.1; it can be proven using techniques of Epp-
stein [9] or of the proof in Section 3. The basic strategy is to build a depth-bounded
balanced quadtree using only the verticesSpand then triangulate each square in a
fashion compatible with the edges $fmeeting the square. We remark that Lemma 2.1
depends upon including the length of the obstacl&sethe length of the triangulation;
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if the length is not included, a constant-factor polynomial-time approximation algorithm
is not known [9].

Let MST be aninimum(Steinej spanning treef S, i.e., a set of segments of minimum
total length so thaB U MST is connected. An easy compactness argument shows that
the minimum length can actually be attained.

Lemmaz2.2. |S+ |MST| <M < O((|S| + IMST]) logn).

Proof. The first inequality is obvious, since any triangulation compatible Withust

be connected. For the second, notice that MSS partitions the convex hull o8 into
simple polygons (recall th& includes the convex hull boundary). The total number of
vertices isO(n), since the MST is a forest with no vertices of degree 2 and the number
of leaves is the number of connected component 8fy a result of Clarkson [7], each
simple polygon can be triangulated with weight proportional taltighes the perimeter

of the polygon. O

Let D be the diameter 0§, i.e., the length of the longest segment contained in the
convex hull of S, The minimum spanning tree of the vertices®has length at most
O(D./n), hencelMST| < O(D./n). The following lemma improves the worst-case
bound that can be obtained from Lemma 2.2 and this estimate by a factorofdggin
we omit a detailed proof of the lemma (see Section 3.7 for a similar proof in three
dimensions).

Lemma2.3. M < O(|S| + D/nh).

Corollary 2.4. |MST|/|S|+ 1 < ¢(S) < min(O((1 + |[MST|/|S]) logn), O(1 +
DVN/ISD).

3. The Three-Dimensional Case

This section describes an algorithm that produces a Steiner triangulation compatible
with a set of polyhedral obstacles in three dimensions. The triangulation has area within
a constant factor of the smallest possible. Section 3.1 reviews some basic definitions.
Section 3.2 states the main theoremin the case where the obstacles are “wide,” a condition
on the aspect ratio of their convex hull. The main theorem is proved in Sections 3.3—
3.5. Section 3.3 gives an algorithm that constructs an octtree from a set of polyhedral
obstacles. In Section 3.4 we prove that the surface area of the octtree is at most a constant
factor times the area of any Steiner triangulation compatible with the obstacles, while
Section 3.5 gives an algorithm to triangulate the octtree with total area proportional to
the area of the octtree plus the area of the obstacles. The wideness condition on obstacles
is removed in Section 3.6. Finally in Section 3.7 we show some worst-case bounds on
the ratio of triangulation area to obstacle area.
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3.1. Definitions

We use terminology from the theory of convex polyhedra [8]. For examlelydnedral
setis any set obtained from open and closed halfspaces by a finite number of unions and
intersections. Aaceof a convex polyhedro@ is the relative interior of the intersection
of the closure ofZ with a hyperplane supporting; oC is the relative boundary df.

A polyhedral subdivisior@ of a polyhedral seQQ is a finite partition ofQ into
relatively open convex polyhedraglisso that every face of every cell is a union of cells
in Q. A subdivision isproperif every face of every cell is itself a cell in the subdivision.
Not all subdivisions are proper, since some face of a cell may be subdivided into more than
one cell. If f is aface of a celC, we will occasionally refer td as apolyhedral faceof
C to distinguish it from a cell contained #C that is not a face of . Thek-skeletonQ®
of Q is the subdivision consisting of all cells gfof dimension at most. If C is a convex
polytope that is the union of cells @, then bdryC, Q) is the subdivision consisting of
the cells inQ whose union i9C. For convenience we define bdg) to be bdryQ, Q).
Theareaof a subdivisiorQ, aredQ), is the sum of the areas of the 2-celldnsimilarly
thelengthof Q, length(Q), is the sum of the lengths of the 1-cells@h A triangulation
of a polyhedral set is a proper polyhedral subdivision so that all cells are simplices. A
triangulation” iscompatiblewith a subdivisiors if every cellinS isa union of cellsiry .

If C is a square or cube arkda positive real, thekC is the square or cube with the
same center and orientation@sand side length times the side length . We write
for exampleC/2 for (1/2)C.

3.2. The Main Theorem for Wide Obstacles

Theobstacle set $ a subdivision ifR3 consisting only of 0-, 1-, and 2-simplices. For
simplicity we assume that there are no isolated edges and verti€egen, every edge

or vertex lies on the boundary of a 2-simplex; with minor modifications the algorithm
can be extended to handle isolated edges and vertices. \Webetthe convex hull of

S, we assume thab contains a triangulation dgfH. Throughoum is the total number

of simplices inS.

Let B be the smallest cube containifgand let its side length be Obstacle seBis
wideif the area ofdH is 2 (b?). Informally, H can look like a ball or pancake, but not
like a pencil. The following theorem holds for wide obstacles; it follows immediately
from Theorem 3.2 in Section 3.4 and Theorem 3.9 in Section 3.5, using the fact that the
area ofoH and henceésis Q (b?). The wideness assumption is removed in Section 3.6.

Theorem 3.1. Let S be a wide set of obstacles with a total of n simplitegime
O(nd) it is possible to compute a triangulation compatible with S whose area is within
a constant factor of the smallest possibi&e triangulation has @°) tetrahedra and
partitions the convex hull of.S

3.3. The Octtree Algorithm

We now describe how to build an octtr&édrom the obstacle s&. If necessary, perturb
the minimal enclosing cubB slightly so that no obstacle face is parallel to a fac®of
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Recall thab is the side length oB. Letm be the first power of two greater than or equal
to n. Definesy = b/m. Thenb/s is a power of two anth/(2n) < 5o < b/n.

We first build an octtredy. Every node of the tree is a cubB.is the root node. A
cube isskeweredf it meets the 1-skeleton @. A cubeC is subdivided (i.e., is not a leaf)
if it is skewered and has side length greater tiarits children are the eight subcubes
obtained by cutting it by the three planes through its center parallel to its facets. This
process is repeated until no cube can be further subdivided. Clearly, each leaf cube in
the octtree has side lengthsg, for some integral > 0, and each skewered leaf cube
has side lengthp.

Octtree Ty must then be made balanced, resulting in the ocfire&@wo cubes are
adjacentif they have overlapping 2-faces; an octtred@ancedif the side lengths of
any two adjacent leaf cubes differ by at most two. If an octtree is unbalanced, it can be
made balanced by repeatedly choosing a pair of adjacent cubes that violate the balance
property and subdividing the larger cube. Standard results [13] imply that balahcing
increases the number of cubes by at most a constant factor.

An obstacle triangle\ fully cutsa cubeC if A intersect$C andd A avoidsC. Notice
that a cube may be fully cut by an obstacle triangle independently of whether or not it is
skewered.

3.4. Area of the Octtree

Theareaof octtreeT, aredT), is) . areddC N H), whereC varies over the leaf cubes
of T.LetM =inf; area7), where7 ranges over triangulations compatible wih

Theorem 3.2. aredT) < c¢- M, for some absolute constant c

Proof Let7 be an arbitrary triangulation compatible wigand letC be a leaf cube
of T. We can assum€ N H is not empty. We charge argeC N H) to features of/,
with cases as follows (see Fig. 1):

1. C/2 £ H.Necessarily H meet /2 (andC). By Lemma 3.3 below, ar¢aCNH)
is O(areddH N C)). We charge ar¢éaC N H) toaH N C.

C C >< c

ay
L NET (A

case | case 2 case 3

Fig. 1. Cases otTheorem 3.2. In casédH meetsC/2; in case 2, the 2-skeleton 6TmeetsC/4; in case 3,
the 2-skeleton of " avoidsC/4.
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2. C/2 € H andC/4 meets the 2-skeleton ot By Lemma 3.4 below, aréaCNH)
is O(area7 N C)). We charge argdC N H) to7 N C.

3. C/2 € H andC/4 avoids the 2-skeleton &f. This is the most complex case.
Let «, B, andy be constants (chosen in the proof of Lemma 3.6 below, with
0 <a, B <1andy > 1). Let the side length o€ bes. A charging pair(A, €)
for C is a triangleA of 7 and an edge of A so that aregA N yC) > as? and
lengthe N yC) > Bs. We charge the area @C N H (which is O(s?)) to the
triangle of a charging pair, whose existence is guaranteed by Lemma 3.6 below.
By Lemma 3.8 the total charge to any triangleof 7', over all leaf cubes o, is
at mostO(areqA)).

In cases 1 and 2, the charges are to disjoint portiorﬁsl—bhnd’f , respectively, so
the total charge i©(areddH) + aree(f)) which is O(areaf')). In case 3, the total
charge to any triangle\ of 7 is O(aredA)), so the total charge over all triangles is
O(ared?)). O

Lemma 3.3. IfCisaleafcubeand @ ¢ H,thenaregdoCNH) is O(aregoH NC)).

Proof. Lets be the side length of. Pair each corner d€ /2 with the corresponding
corner ofC, and consider the eight subcubes whose opposite corners are formed by the
pairs. At least one such subcubemust be entirely outsidél, elseH would contain

C/2. Letd be the center oD. See Fig. 2.

Fig. 2. Proof of Lemma 3.3.
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Let § andS; be the spheres of radisg8 and+/3s, respectively, with centedt. S
is contained inD and is outsideH, and S, containsC. Let mappingstg andm; be
central projections frond into § and S, respectively. Any ray frontd to a point of
9C N H must first hit a point o H N C, sinced is outsideH and insideC. Hence
m11(0C N H) € 71(0H N C). For some constamt we have

c-areddCNH) < aredmr(0C N H))

since, for any poinp € 3C N H, the angle that a rayp makes withyC N H is bounded
away from zero, ad is bounded away froiC. We also have

aredm(0CNH)) < aredr1(dH NC))

= (8/«/5)2 -aredng(dH NC)) < 64/3-areddH N C),

proving the lemma. O

Lemma3.4. If Cisaleafcubeand B= C/2 < H and B/2= C/4 meets7 @ (the
2-skeleton ofl'), thenareddC N H) is O(ared”7 N C)).

Proof. Lets be the edge length oB. Clearly, are@®C N H) is O(s?); we show
area(fﬂ B) is (s?). Let D be the open cube of side lengtl? centered at a pointof
the 2-skeleton of " in B/2, with the same orientation &y/2; plainly D ¢ B. Choose
three orthogonal edges, &, e3 of 9D, and for anyp € D letl; =1;(p),i =1, 2, 3, be
the segment through parallel toe, connecting opposite faces Bf. We claim at least
one ofl4, |, 13 must mee? ®. Suppose not, then they must all lie in the same tetrahedron
A of T, since they share poimt. Hence the convex hull df, |, I3 is contained imA, a
contradiction since the convex hull contaiswhich is in7 @,

LetD;,i = 1, 2, 3, be the set of pointp € D for whichl; (p) meets7 . SinceD =
D, U D, U D3, we can assume, say, that the voluméefis at leasi(s/2)3/3 = s%/24.
Now D; must be the Cartesian product of a segment of legf2tparallel toe; with the
projection of7® N D onto a facet oD perpendicular t@;. Hence the projection of
7@ has area at least/12, andZ @ N D itself has at least the same area. O

Lemma 3.5. For any leaf cube C of T7C meets thd-skeleton of S

Proof. Let arefinement steduring balancing be the replacement of a leaf node by an
interior node with eight children. We show that the lemma hold§§@nd is maintained
by every refinement step.

By construction, every skewered leafip meets the 1-skeleton & Every unskew-
ered leafC in Ty has a skewered parent, so certainly Beets the 1-skeleton &

A refinement step maintains the condition of the lemma for every unchanged cube.
So suppos€ is refined into eight subcubes, wistthe original side length of andC’
an arbitrary child ofC. See Fig. 3C must share a common 2-face with a cib&vhose
side length is at most/4. By inductive hypothesis,J meets the 1-skeleton & Easy
calculations show that thie,, distance between the centergGfandD is at most /8
and that D c 7C’. Hence T’ meets the 1-skeleton & O
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C

Fig. 3. Proof of Lemma 3.5.

Lemma 3.6. If Cisaleaf cubeB = C/2 C H, and B/2 avoids the2-skeleton off,
then there is a charging pair for C

Proof. Lets be the side length dB, soB/2 has side length/2. By Lemma 3.5 there
is a pointq on the 1-skeleton of” within 7C = 14B, hence at distanceJ3s < 14s
from the centemp of B. We assume that open segmeuit meets the 2-skeleton af
only atinterior points of 2-cells; otherwise a slightly modified argument with a perturbed
segmentp’q is necessary.

Leto be the plane orthogonal foq throughp and letr,, be the orthogonal projection
ontoo . LetU be the infinite cylinder with axipgand radius/4; thenthe disld = Uno
is contained inB/2. Let p, ..., p_1 be the intersections of 2-cells Gf with open
segmentpq in order fromp to g, and setpp = pandp = q. Fori =1,...,1, let
be the 3-simplex of containing the open segmept_1p;. See Fig. 4. We have that
B/2 C 14, sincepp = p € B/2 and the 2-skeleton of avoidsB/2.

Let uj be the connected componentaaf N U containingp;. Choosek minimal so
thatuk contains a point of the 1-skeleton Dt suchk must exist sincey = q is on the
1-skeleton of7 .

We claim thaty; fully cuts U, i.e.,m, (ui) = D, fori =1, ..., k. Now u; fully cuts
U, sinceD € B/2 C 1;. For 1 < i < k, uj_1 must be a portion of a single 2-face of
7;, Since it contains no point on the 1-skeletorfofHence there must be two connected
components t&J N at;, specificallyu; _; andu;i, andu; must fully cutU.

We now show thati, lies at distance at most 8&omo . Let fy_; and fi be the faces
of 7y containingpx_; and px, and letP_; and P be the planes containinfy_; and fy,
respectively. NowP,_; N D = P_1 NU N o must be empty, sincB_1 NU = ug_1
lies entirely in facefy_1 but D = U N o lies entirely in the interior of simplex;. Also
P« N D must be empty: if not, choosee P« N D; then px andu lie on opposite sides
of Px_; within U, so segmentip; meets an interior point of facé_; of tx; however,
upx also lies entirely in the planB, of face fi of 7, a contradiction. The intersection of
P« with 9U is an ellipse, whose centg is at distance at most $4rom o. The ellipse
avoidsD, sincePy avoidsD. Hence the farthest point of the ellipse is at most 28m
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Fig. 4. Proof of Lemma 3.6.

o. Since the closed halfspace Bf containingD also containsy and, 1k is at most
distance 28fromo.

We set the charging-pair constants= /48,8 = % andy = 43. To finish the
proof, notice that argay) > aredrn, (ux)) = 7(s/4)?. Sinceu, consists of portions of
at most three triangular faces @f at least one such triangle satisfies area\ NU) >
75?/48 = as?. A is the triangle off promised by the lemma statement. We hawve U
within distance 28 from o, in fact within distance 28fromo NU c B/2 C B. Since
the side lengthoBiss,ANU c (2-28+ 1)B c yC.

It remains to find a piece of an edge &fof length at leasBs within yC. LetU’ be
the cylinder coaxial withJ but with double the radius. By analogous reasoning, we have
A NU’ within distance 42fromo NU’ € B,soANU’ c (2-424+1)B c yC.If Ais
completely contained withib’, then by the isoperimetric inequality [16] the perimeter
L of A satisfiesL > /4w - aredA) > 75/2+/3, so one edge ok has length at least
7s/64/3 > Bs. Otherwised A intersects botldU’ and the interior ofJ. SincedU and
odU’ are separated bgy/4, there is a portion of an edge ®A lying within U’ of length
at leasts/8 = gs. O

Thewidth of a compact planar s&, width(S), is the smallest distanae so thatS
is contained in the closed region between two parallel linegpart. Thediameterof S,
diam(9), is the length of the longest segment contained in the convex h8lllbis easy
to see that the area &is at most widtkiS) - diam(S).

Lemma 3.7. LetA be an obstacle triangle and letr be the radius of its inscribed circle
If leaf cube C with side length s has charging péd, e), then s is Qr).
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Proof. The width ofA is at most 8, by some elementary geometry. Siree, e) is a
charging pair folIC, we have

as?

aregA Ny C)
width(A N yC) - diam(A N yC)

3r-+/3ys.

IAIATA

Hences < 3+/3yr /a, which isO(r). O

Lemma 3.8. The total charge to triangle\ of 7 from all leaf cubes in cas@above is
O(aredA)).

Proof. Let p andr be the perimeter and inscribed-circle radius/afrespectively.
Some elementary geometry gives arep= pr/2.

Consider the se€s of all leaf cubes with a fixed side length Since no two cubes
in Cs overlap, no point in space is covered by more thrdropen supercubesC, for
C € Cs. Since the intersection gfC with A has length at leagts, no more than
v3p/(Bs) = O(p/s) cubes inCs can be charged ta. The charge for each cube is
O(s?), so the total charge ta for cubes inCs is O(ps).

Let$ be the largest cube side length for which a cube is chargad by Lemma 3.7,
§is O(r). The total charge over all cube sizeA$p(so + 25 + - -- + 8)) = O(ps) =
O(pr), which isO(aredA)). O

3.5. Triangulating the Tree

Theorem 3.9. In time O(n®) it is possible to construct a triangulatio from the
octtree T so thatred7) < ¢ - (aredT) + aredS) + b?), where ¢ is an absolute
constant and b is the side length of the root cube of Thas Q(n®) tetrahedra and
partitions the convex hull H of.S

ForC aleaf cube off, theclipped cube G is C N H. We choose below a subdivision
P of H whose 3-cells are clipped-cube interiors and whose 2-skeleton is a triangulation.
In Sections 3.5.2 and 3.5.3 we show how to triangulate a clipped cube so that its boundary
triangulation matche®. The desired triangulatioh is then obtained simply by pasting
the clipped-cube triangulations inf2.

In octtreeT, two adjacent cubes may have overlapping but diskiHfeicesk = 1, 2,
if the cubes are of different sizes. A clipped-cubtace isminimalif no other clipped-
cube face of the same dimension is properly contained within it; a mirkAfede is a
tree-partitioningface if it is properly contained in another clipped-cube face (possibly of
higher dimension). It is easy to see that any clipped-¢ufaee is the union of minimal
faces of dimension at mokt In fact, sinceT is balanced, any 1-face is the union of at
most four minimal 1-faces and three vertices, and any 2-face is the union of at most four
minimal 2-faces, four minimal 1-faces, and a vertex (forming-&5hape in the middle
of the 2-face).



Approximating Minimum-Weight Triangulations in Three Dimensions 539

Fig.5. A andA’are obstacle triangles that meet minimal cube 2-fada P, f is replaced by a triangulation
of f compatible withA N f andA’ N f.

Let P’ consist of clipped-cube interiors plus all minimal 0-, 1-, and 2-faces. Subdivi-
sionP is obtained fronf®’ by replacing 1- and 2-faces. A 1-faeef P’ is replaced with
the chain of 0- and 1-cells formed by subdividiagt each point of intersection with
an obstacle triangle. Lett be a 2-face of?’. Form the set of line segments obtained by
intersectingf with all obstacle triangles, then triangulate this set together with the set
of 0- and 1-cells partitioningf . The resulting triangulation replacésn P. See Fig. 5.
Itis easy to check th&® is a subdivision oH whose 2-skeleton has been triangulated.
The combinatorial complexityf leaf cubeC, nc, is the number of edges @f plus
the number of obstacle triangles meeti@iglt is easy to check that bdi€y, P) has
O(nc) edges and vertices.

3.5.1. Central Triangulations Let Q be a 3-cell in a polyhedral subdivisiap with
bdry(Q, Q) atriangulation and lef be an interior point o€). Recall that by the definition
of polyhedral subdivisionQ) is convex. Thecentral triangulationof Q from q consists
of the tetrahedra formed liyand the triangles in bdf, Q), and all tetrahedral faces.

Proposition 3.10. If bdry(Q, Q) has k verticesthen the area of any central triangu-
lation of Q is at mos8k/2 times the area 0§ Q.

Proof. Let g be the central triangulation vertex. There are at mdstedges of
bdry(Q, Q). Each new tetrahedral 2-face is formed dpyand such an edge, and has
area at most half the area @. O

3.5.2. Triangulating an Unskewered CubeFor this sectionC is an unskewered leaf
cube (i.e.C avoids the 1-skeleton @&). A triangulationZc of Cy is obtained as follows.
Start with the subdivision consisting @ and bdr¥Cy, P). SubdivideCy by all
obstacle triangles that meet it. Notice that all such obstacle triangles muStfally
and cannot meet withil€; furthermore, bdryCy, P) already contains all edges of
intersection between obstacle triangles adg;. Now triangulate any new 2-cells, and
centrally triangulate each 3-cell.

Lemma 3.11. 7c has area QaredSN C) + areddC N H)).
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Fig. 6. The edges of obstaclé are projected onto a horizontal plane, extended to lines, and clipped to the
projection ofCy (labeledr (Cy)). The result is triangulated and each triangle is lifted to an infinite vertical
prism.

Proof. Let 7 be the subdivision before central triangulation, andiigbe a 3-cell of
7o. We show that the number of vertices in b@Ry, 7y) is constant. The lemma then
follows using Proposition 3.10 and the fact that afgais aredSNC) +areddC N H).

First notice thaCy has at most fourteen polyhedral 2-faces, six faces that are subsets
of a 2-face ofC and at most eight faces separating a verte dfom Cy. HenceCy
has a constant number of polyhedral vertices. Any vertex of (@tyZo) that is not
a polyhedral vertex must be a cube partitioning vertex, of which there are at most a
constant number. O

3.5.3. Triangulating a Skewered CubeFor this sectionC is a skewered leaf cube
(i.e., C meets the 1-skeleton @); recall C has side lengtls,. A triangulationZc of
Cy is obtained in two steps. We first compute a triangulaigrso that bdry7:) =
bdry(Cy, 7¢) is a refinement of bdifC , P). Using Lemma 3.15, we then compute a
triangulationZc so that bdry7c) = bdry(Cy, P).

The first step has four substeps. In the following, the “vertical” direction can be chosen
to be any direction not parallel to a face@f; or a face ofS and so that no vertical line
meets three obstacle edges that do not already meet at a common vertex. See Fig. 6.

1. Orthogonally project each edge of bddy, P) onto a horizontal plane (i.e., a
plane orthogonal to the vertical direction), and extend the projection to a line.
Similarly project and extend each obstacle edge me&ing

2. Let7;, be a (two-dimensional) triangulation of the resulting arrangement, truncated
to the projection ofCy. Lift 7 to a set of infinite vertical triangular prisms.

3. SubdivideCy using both the vertical prisms and any obstacle triangles meeting
C, forming a subdivisiorys.

4. Extend the triangulation of bdf€, P) to form a triangulation of the 2-skeleton
of 73. Then centrally triangulate each 3-cell, forming the triangulafign

Lemma 3.12. The total length of7; is O(ncSy).

Proof. Let¢ be a line in the plane and let¢) be the number of edges @5 met by

£. Consider the arrangement (in substep 2 above) before triangulation and truncation.
By the zone theorem for lines [8], the total combinatorial complexity of the cells of the
arrangement intersected by a lihes O(n¢), sot(£) is O(n¢).
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Let u be the rigid-motion invariant measure on sets of lines in the plane [16]; up
to a constant multiple, the length @ is [ t(¢) du. The measure of the set of lines
intersectingZ; is O(s), since the perimeter df; is O(sp) [16]. Hence [ t(¢) du is
bounded byO(spnc). O

Lemma 3.13. TriangulationZ! has area QaredSN C) + aregdC N H) + ncsg).

Proof. The total area of the vertical 2-cells in the subdivisiris O(ncsg), since the
total length of7; is O(ncS) and the height o€y is at mostO(sy). Any nonvertical
2-cellis a portion of eitheBN C oraC N H, hence the total area of all nonvertical 2-cells
is aredSN C) + areqdC N H). Let P be a 3-cell inZ3; we show that the number of
vertices in bdryP, 73) is constant. The lemma then follows using Proposition 3.10 and
the bound on the sum of the areas of all 2-cells.

Cell P is a section of a triangular prism and has at most five polyhedral facets, hence a
constant number of polyhedral vertices. We claim lg&ry73) has at most two additional
vertices per vertical polyhedral edge Bf To see this, note that, by constructionzaf
any vertex of bdryP, 73) must either be a vertex of bdi@ , 73), and hence a polyhedral
vertex of P, or must lie in the interior of a collinear vertical chain of edgeg§#fin the
latter case, the vertex must either lie in the interior of an obstacle triangle, and hence
must be a polyhedral vertex &f, or on the closure of an obstacle edge. However, there
can be at most two such vertices of this last type per vertical chain, since the vertical
direction was chosen so that no three obstacle edges lie on a common verticalline.

Itis easy to see thaf! hasO(n) tetrahedra, ha®(n2) vertices on bdrg7!), and
can be computed in tim&(n).

The second step is to transfoffg into 7c by removing the vertices of bd(@€, 72)
not in bdryCy, P). As will be seen in the proof of Lemma 3.15, removing a vertex that
lies in the interior of a 2-face of bd(€, P) is slightly different from removing a vertex
that lies in the interior of an edge of bdyy, P).

Let G = (V, E) be the 1-skeleton of bd(€y, 7¢) as a graph, and similarly let
Gp = (Vp, Ep) be the 1-skeleton of bd(€, P). A subset olV is independenif no
two vertices are connected by an edge=of

Lemma 3.14. Thereisanindependent subset of\4 whose size is a constant fraction
of V\Vp so that each vertex has constant degree in G

Proof. The average degree of vertices in the subgraghiofuced by \ Vp is at most

six, by planarity. Any vertex in V\Vp is incident to at most four vertices d%: either

v lies in the interior of a triangle of bd(€Cy, P), in which case it can be incident to at
most three vertices ofp, or v lies on an edge of bdfZy, P), in which case it can be
incident to at most four vertices &p. Hence the average degree of vertis€gvp in

G is at most ten. By standard techniques [14], it follows that there is a bounded-degree
independent set whose size is a constant fraction\afp. O

Lemma 3.15. There is a triangulatiorf¢ of C withbdry(7¢) = bdry(Cy, P). 7c can
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be computed fror, in time O(nd), adding O(ng) tetrahedra and area @2 lognc +
aregSNQC)).

Proof. 7{is updated in stages, with the final stage yieldiggEach stage removes the
independent set of vertices guaranteed by Lemma 3.14. Clearly, the number of stages is
logarithmic in the number of vertices G, i.e., O(lognc).

For simplicity, we first assume that every vertex to be removed lies in the interior of
some 2-face of bdiCy, P) and not on an edge of bdi@y, 7). Consider the triangles
incident tov; all such triangles are coplanar. L&tbe the polygon formed by the triangle
edges opposite. Itis possible to pushslightly insideCy maintaining the combinatorial
structure of7 (in particular,y must not be pushed through the plane of the face opposite
v in any tetrahedron incident t9. Pushingy leaves a dimple in the triangulation ©f; .

The dimple can be filled by triangulatir®y and then adding t@/ the tetrahedra formed
by v and the new triangles.

The area added t@. at each stage is at moSt(s2), wheresc is the side length of
cubeC. To see this, first note that when a verteis pushed, the change in area of the
tetrahedra incident to is negligible, since the perturbation @tan be made arbitrarily
small. The area of the new tetrahedral faces is at most a constant times the &rea of
sinceS, has at most a constant number of edges. Since the vertices at each stage form an
independent set, the polygofiS,} have disjoint interiors and their total area is at most
the surface area @, i.e.,O(sé). Hence the total area added at all stag@(t% logne).

Now suppose some vertexlies on an edge of bdry(Cy, P). Edgee may be a
portion of a polyhedral edge &fCy or may be interior to a polyhedral face &€y .

If v does not lie on an obstacle triangle, then the approach is similar, except that the
triangulation ofS, must use a piece of edge

Now suppose lies on an edge of bdry(Cy, P) and also on an obstacle triangle.

It does not suffice simply to pushinto the interior ofCy as above, since the resulting
triangulation would not be compatible with the obstacles. Instead, verigexemoved
as follows. Necessarily lies in the interior of a segmeistof the intersection of the
obstacle triangle witldCy . Let p andq be the vertices on either side ofalongs. Let
A4, ..., Ak be the obstacle triangles incidentstthat enter the interior a€y, in cyclic
order arounds. We can assumk=>0, i.e., not all triangles incident te lie on aC,
otherwisev can be perturbed as before. Liat be the plane through;, and choose
the positive and negative open halfspace$ 0o that the positive halfspace contains
A1, ..., Aj_1 and the negative halfspace contais 1, ..., Ax. Let S, be defined as
above, and le§" be the polygon bounded hyq and the portion of5, in the positive
halfspace ofPy; similarly, let S, be the polygon bounded hyqg and the portion of5,

in the negative halfspace &%. For each triangle\j,i = 1, ...,k — 1, in turn, splitv
into two verticesy andv; connected by an edge, and pertuylslightly into the interior
of dCy while staying onA;. See Fig. 7. Incidences toare adjusted as follows. Within
the positive halfspace d% 1, any edge, triangle, or tetrahedron previously incident to
should be made incident tg; in the negative halfspace &f 1, incidences remain with
v. Incidences tw on P, ;1 expand by a dimension: an edgeon P, ; becomes a triangle
uvyj; a triangletuv on P, ; becomes a tetrahedroavv;. Finally, for the last triangle
Ay, simply perturbvg = v to the interior ofdCy while staying onAy. After all splitting
and perturbation there is again a dimple @@y . Specifically, the perturbation af;
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Fig. 7. Vertexv lies ondCy (not shown); bot; andAj 1 are interior toCy ; v; lies onA;; u andt lie on
Aij+1 though they need not be closeuto

formed a dimple bounded bg'"; each subsequent perturbationpfi>1, increased
the dimple by the tetrahedropqujvi_y; in addition, the final perturbation af = vy
increased the dimple b, . To fill the dimple, choose triangulations & and S;
then add the tetrahedra formed byand the triangles o8/, the tetrahedrgqu;vi_1,

i =2,...,k, and the tetrahedra formed by and the triangles d§; .

To check that the resulting triangulation is compatible with all obstacles, observe that
the perturbation of; maintains a two-dimensional triangulation of obstat]ewith the
exception of the triangl@qu; . However, triangleoqu; is a face of tetrahedropqu; vj 1
(and tetrahedropqu; +1v;) and hence is added when the dimple is filled.

The perturbation increases area by adding tetrahedvav; 1, by replacing an edge
uv with a triangleuvv;, and by replacing a triangluv with a tetrahedroruvy;. In
the first two cases, the additional area is negligible since the distancean be made
arbitrarily small. In the last case, the trianglev is essentially duplicated, adding the
triangle tuv;. However, notice that after the entire perturbation, neithér its new
position atvk nor any vertex split frone lies ondCy . Hence over all stages each triangle
tuv can be duplicated at most three times, once per vertex. 8indge part of an obstacle
lying in Cy, the total additional area ®(aredSN Cp)).

The number of tetrahedra required to fill the dimple resulting from perturbiisy
constant ifv is not on an obstacle an@(n¢) if v is on an obstacle. Sinc@(né)
vertices have to be removed, the total number of tetrahedra over all sta@esdis.
New tetrahedra are also created by expanding a triangle to a tetrahedron. However, this
happens at most once per vertex of each triangle, hence atio$} times altogether.

The running time of the algorithm is @Z), since it takes tim@(n%) to find inde-
pendent sets an@(ng) to add tetrahedra. O

3.5.4. Accounting

Lemma3.16. ) . ncsg = O(areqS) + b?), where the sum runs over all skewered
leaf cubes C and b is the side length of the root bounding.cube

Proof. Letmc be the total number of obstacle triangles that intersect CuiSince ev-
ery skewered cube meets some obstacle trianglis, O (mc). We can expresy c Mcs?



544 B. Aronov and S. Fortune

as

PIENES

A€eS

whereS, is the set of skewered leaf cubes intersected by obstacle trianglée can
write

[Sal = aa + My,

wherea, andm, are respectively the number of culi@én S, so that the doubled cube
2C avoids or meets the boundary &f

Consider first cube€ in S, so that Z avoids the boundary aof. Plainly the area of
2C N A is ©(s?). Since no point in space is covered by more than eight open doubled
skewered cubes, < 8-aredA)/Q(s3) = O(aredA)/s?). Hencea, 3 is O(aredA)),
and)_ . sasss is O(ared9)).

Now consider cube€ in S, so that Z meets the boundary &. The boundaries of
the doubled cubes lie on the planes of a cubic grid of stepssiz&n obstacle triangle
edgee meets at most[3engthle) /so] planes, which i (b/s) (recall thatb is the side
length of the box bounding the obstacle SetHence each edge me&$b/s;) doubled
cubes, san, is O(b/sy). We have

Y mas§ = 0(n-b/s - ) = O(nbg) = O(b?)

AeS

usingb/(2n) < 5 < b/n. O

Proof of Theoren3.9. By Lemmas 3.11, 3.13, and 3.15, the total area of
> areadC N H)+ ) aredSNC)+ Y ncsp,
C C C

where the first two summations run over all leaf cubes and the last over skewered leaf
cubes. The first two summations addQ@daredT) + aredS)). Using Lemma 3.16, the
last summation i©(areqS) + b?).

Since the minimum cube size is abdu/in, the total number of leaf cubes @(n®).
Both the running time to comput& and the number of tetrahedra are bounded by
0 cnd) = 0 c(me + 1)3) = OX.c md) + O(n?), wheremc is the number of
triangles meeting cub@. All leaf cubesC have faces lying on a cubic grid of planes with
step sizesp; a triangle can hit at mo$d(n?) such grid cubes and thus at m@tn?) leaf
cubes ofT . Hence the number of incidences between leaf cubes and triapgles is
O(n3). The sum)_. m3 is maximized ifmc is as large as possible, i.@,,for as many
cubesC as possible, i.eQ(n?), yielding an upper bound @(n®-n?) = O(n%. O

3.6. General Obstacle Sets

Theorem 3.17. Let S be an arbitrary obstacle set with a total of n simplidagime
O(nd) it is possible to compute a triangulation compatible with S whose area is within
a constant factor of the smallest possibiée triangulation has @°) tetrahedra and
partitions the convex hull of.S
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We begin the proof by finding a bounding box®&fChoose a diametrical segment of
the convex hulH of S. ProjectH onto a plane orthogonal to the segment, and choose a
smallest square containing the projecti@fits into a boxBs which is a translation of
the Cartesian product of the diametrical segment with the square. As before, f@&yturb
slightly to guarantee that no obstacle face is parallel to a fad;0oEet Bs have size
h x h x £h. We can assume théatis an integer. It is easy to see that the arealdfis
Q(¢h?).

We choose a familys of boxeghat partitionBs. Conceptually spliBs into £ consec-
utive h x h x h cubes. Any cube that contains a vertex&a$ a box in3. Any maximal
union of consecutive cubes not containing a vertex is also a bBx@learly, there are
at most 2 — 1 boxes inB, wherev is the number of vertices i8.

Refine the obstacle s8tusing the planes separating adjacent boxds; s follows.

For each plan®, if P hits an edge of S, split the edge into two subedges and the vertex
en P; if P hits a 2-simplexA of S, split the simplex into two 2-faces and the edgeA;
finally, triangulate the regioP N H compatibly with all intersection verticesn P and
intersection edge& N P, and add all resulting 2-faces & After examining all planes,
triangulate any remaining 2-face that is not a triangle. & dde the refined obstacle set
and letSg be the subset df lying inside boxB. Recall|7 | is the area of triangulation
7. LetM = inf7 |7, where7 varies over all triangulations compatible wis) for

B € B, let Mg = inf+ |7 |, where7 varies over all triangulations compatible wifh.

Lemma3.18. } gz Mg = O(M).

Proof Let7 be an arbitrary triangulation compatible wi Use each plan® that
separates adjacent boxesfrto refine7, as follows: if P hits 0-, 1-, or 2-cells, then

they are refined a$ was refined taS; if P hits a 3-cellA, then A is split into two

3-cells and the 2-celP N A. The area o N A is O(h?), for a total over all planes of

O(|B] - h?) = O(areqdH)) = O(aree(f)). Each 3-cell in the resulting subdivision is
either atetrahedron or has a constant number of polyhedral faces; in the latter case the cell
can be centrally triangulated (after triangulating any nontriangular faces), increasing area
by at most a constant factor. The resulting triangulation can be split into a triangulation
of each boxB € B, with triangulation areas summing €@(aredq7)). O

The obstacle sef is triangulated by triangulating each s& in turn, and then
pasting the resulting triangulations together. A detail is that adjacent triangulations must
be compatible along their common boundary; however, this is easily guaranteed using
the technique of Section 3.5. Choose a l®x B of sizeh x h x £g - h, £g > 1 an
integer. LetL g be the affine transformation that fixes one of the square sidBsamid
shrinks the orthogonal direction by a factor &f; thenLg(B) is a cube. Triangulate
Lg(B) usingLg(Sg) as before: build an octtree with root cubg(B) and subdivide it
using the obstacldsg (Sg), as described in Section 3.3, and then triangulate each octtree
leaf cube as in Section 3.5, again using(Sg). Apply the inverse transformatidngl
to obtain a triangulatiog compatible withSg.

Let Tg be the image undelrg1 of the octtree, theh g(Tg) is the octtree with root
cubelL (B) andTjg is an octtree-like structure formed from blocks with side-length ratio
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1x 1 x £g. Theareaof Tg, aredTg), is ) _ aredC N H), where the sum runs over all
leaf boxe<C in Tg.

Lemma 3.19. aredTg) = O(Mp).

Proof. We can assume thég > 1, otherwise the lemma follows from Theorem 3.2.
Choose a leaf bo& in Tg and conceptually partition it intég consecutive cubes. We
show below that, for each such cube 21D meets the 1-skeleton &s. Let7 be an
arbitrary triangulation ofsg. Using the same argument as the proof of Theorem 3.2, we
charge are@ N H) to features ofl (with an appropriate modification to the charging-
pair constants, since Plrather than D meets the 1-skeleton). Since a@an H) is
bounded by) " aredD N H), D in the partition ofC, the lemma follows.

By Lemma 3.5, Lg(C) meets the 1-skeleton afg(Sg), so IT meets the 1-skeleton
of Sg. SinceS has no vertices withiB, 7C must meet an edgeof Sg with endpoints
on opposite square facesBf Consider the subsegmebf e lying between the planes
through the square faces Gf Clearly, there is a translate oC7that contain®’ and
overlaps €. Hence for any of the cubd3 partitioningC, 21D meetse'. O

Lemma 3.20. ¢g-aredlLg(Tg)) = O(aredTg))andlg-aredLg(SR)) = O(aredR)).

Proof. We show the second statement; the first is easier. Asggme 1, otherwise
the lemma is trivial. Choose triangleé € Sg. SinceB contains no vertices of, A
must result from refining a triangle & by the planes through the two square sides of
B. HenceA is a triangle, with an edge on one square side & and a vertex on the
opposite square side & Similarly, Lg(A) has an edge’ of the same length a&on one
side ofLg(B), and a vertex on the opposite side. The heighh afppositee is at least
h¢g, and the height of g(A) oppositee is at mosth+/3. Hencels - aredLg(A)) =
O(aredA)). O

Lemma3.21. ared7g) = O(aredTg) + aredSg) + £ - h?).

Proof. By Theorem 3.9, we have aféas(7g)) = O(aredLg(Tg)) +aredLg(Sg)) +
h?). Hence

ared7g) = O({p - aredLg(7p)))
= O(lg - aredLg(Tp)) + £5 - aredL(Ss)) + £sh?)
= O(aredTg) + areaSg) + ¢gh?),

using Lemma 3.20. O

Proof of Theoren3.17. By Lemmas 3.19 and 3.21, the triangulatignof each box
B € B has are@D(Mg + £g - h?). Hence the whole triangulation has area

Y O(Mg)+ ) O(g -h? = O(M) + O(¢h?) = O(M),
BeB BeB
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using Lemma 3.18 an¢h?> = O(ared@dH)) = O(M). The bounds on running time
and tetrahedra follow from Theorem 3.9 since there@(e) boxes in5. O

3.7. Worst-Case Bounds

For obstacle seBin R3, recall thatc(S) = inf; ared7)/aredS), where7 varies over
all triangulations compatible witB. The following lemma gives worst-case bounds on
c(S). As before,S must contain faces partitioning the boundary of its convex hull.

Lemma 3.22. Foranywide obstac[e set SR?, ¢(S) = O(/n) ,Awhere nisthe number
of simplices in SThere is a wide seb of Q(n) obstacles with €5) = Q(/n).

Proof. Let B be the minimum-size bounding cube $fperturbed slightly so that no
obstacle face is parallel to a face Bf Let B have side lengthp. Split B into a grid

of identical cubes, where each cube has side leagthb//n, so there are about®/?

cubes altogether. Using the algorithms of Section 3.5, triangulate each clipped cube and
paste the triangulations together, yielding a triangulafionompatible withS. 7" has
areaO(n%? . s) = O(b%/n) (the surface area of the cubes) pl0garedS)) plus

O(>_¢ Ncs?), wherenc is the combinatorial complexity of culi. An analysis similar

to Lemma 3.16 shows th3f . ncs?is O(areaS)+n- (b/s)-s?) = O(aredS) +b?\/n).

Hence the ratio aréd@) /aredS) is O(/n), as areéS) is Q (b?).

For the second statement, choose an axis-aligned unit BulseibdivideB into a
cubical grid of about,/n x \/n x ./n identical subcubes. For each one-dimensional
row of subcubes parallel to the, y-, or z-axis, choose a very thin obstacle triangle
that covers all the subcube centers in the row. Slightly perturb the resulting ®€hpf
triangles so that no two intersect. Add to the obstacle triangles a triangulation of their
convex hull, forming the obstacle s&t Since the 1-skeleton & passes very near the
center of each subcube, Lemma 3.4 implies that any triangul&ticompatible with
S must have are®((1/,/N)?) = £(1/n) within each subcube. Since there arfé?
subcubes, the total area Bfis 2 (,/n). Since the area of the convex hull@1) and
the area of the remaining obstacles can be made arbitrarily = QG/n. O

An argument similar to this proof shows that3fcontainsn points (and the faces of
the convex hull), them(S) = O(n¥3). Furthermore, there is a s8tof n points with
c(S) = Q(n/3). These results contrast with the results of Agarwal et al. [2]. They show
there is a se§ of n points inR? so that in any triangulation o, some line meetg/n
triangulation faces. Similarly there is a s8tof n obstacle triangles ifR® so that in
any triangulation compatible witf, some line meet& (n) triangulation triangles, even
though it misses all obstacles.

4. Discussion

We have nottried to estimate the approximation ratio for the constructionin Section 3. Our
algorithm is based on Eppstein’s algorithm, which approximates the minimum-length
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Steiner triangulation of a set of points in two dimensions. Eppstein is able to prove an
approximation ratio of 316 (though he suspects the true ratio is much smaller, perhaps
around 20); our proof is much less careful about constants than his. A challenging open
problem is to construct triangulations of approximately minimum weight in two or three
dimensions with reasonable constants and with a reasonable humber of vertices.

In two dimensions, the minimum spanning tree provides an intrinsic measure of
the minimum weight triangulation, in the sense that their weights differ by at most a
logarithmic factor (Lemma 2.2). In three dimensions, the surface area of the octtree
constructed in Section 3 is an intrinsic measure of the minimum weight triangulation
(Theorem 3.2). It would be of interest to obtain a more natural intrinsic measure.

The analysis of ray-shooting-by-walking can be extended to other subdivisions be-
sides triangulations. For example, consider the leaf cubes of the octtree constructed in
Section 3, with the modification that each unskewered cube is partitioned by all obstacles
that cut it fully. Label each skewered leaf cube with the number of obstacle triangles
that meet it, and label all the other 3-cells 1. Then it is possible to walk through the
partitioned octtree along a linkewith total cost proportional ta (¢), wherew (¢) is the
sum of the labels of the 3-cells intersectedéyhe analysis in Section 3 shows that
[ w(e) du is the area of the minimum weight triangulation, to within a constant factor.
Two problems arise naturally when considering alternative subdivisions for ray-shooting
queries: first, to determine if the area on the minimum weight triangulation is always
a relevant bound; second, to provide an analytic comparison of the constants that arise
from different subdivisions.
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