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Abstract

Mutual information is useful in various data processing tasks such as feature selection or in-
dependent component analysis. In this paper, we propose a new method of approximating
mutual information based on maximum likelihood estimation of a density ratio function.
Our method, called Maximum Likelihood Mutual Information (MLMI), has several at-
tractive properties, e.g., density estimation is not involved, it is a single-shot procedure,
the global optimal solution can be efficiently computed, and cross-validation is available for
model selection. Numerical experiments show that MLMI compares favorably with existing
methods.

1. Introduction

Detection of dependencies between random variables is highly useful in various machine
learning problems such as feature selection (Guyon and Elisseeff, 2003; Torkkola, 2003) and
independent component analysis (Comon, 1994). Although classical correlation analysis
would be still useful in these problems, it cannot be used for discovering non-linear de-
pendencies with no correlation. On the other hand, mutual information (MI), which plays
an important role in information theory (Cover and Thomas, 1991), allows us to identify
general nonlinear dependencies. MI is defined by

I(X,Y ) :=

∫∫
pxy(x,y) log

(
pxy(x,y)

px(x)py(y)

)
dxdy, (1)

and it vanishes if and only if x and y are independent. For this reason, estimating MI from
samples has gathered a lot of attention for many years.
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A naive approach to estimating MI is to use a kernel density estimator (KDE) (Sil-
verman, 1986; Fraser and Swinney, 1986), i.e., the densities pxy(x,y), px(x), and py(y)
are separately estimated from samples and the estimated densities are used for comput-
ing MI. The bandwidth of the kernel functions could be optimized based on likelihood
cross-validation (Härdle et al., 2004), so there remains no open tuning parameter in this
approach. However, density estimation is known to be a hard problem and division by esti-
mated densities is involved when approximating MI, which tend to magnify the estimation
error. Therefore, the KDE-based method may not be reliable in practice.

Alternative methods involve estimation of the entropies using k-nearest neighbor (KNN)
samples (Kraskov et al., 2004) or using the Edgeworth (EDGE) expansion (Hulle, 2005).
The KNN-based approach was shown to perform better than KDE (Khan et al., 2007),
given that the number k is chosen appropriately—a small (large) k yields an estimator with
small (large) bias and large (small) variance. However, appropriately determining the value
of k so that the bias-variance trade-off is optimally controlled is not straightforward in the
context of MI estimation. The EDGE method works well when the target density is close
to the normal distribution; otherwise it is biased and therefore not reliable.

In this paper, we propose a new MI estimator that can overcome the limitations of the
existing approaches. Our method, which we call Maximum Likelihood Mutual Information
(MLMI), does not involve density estimation and directly models the density ratio:

w(x,y) :=
pxy(x,y)

px(x)py(y)
. (2)

Thus it is a single-shot procedure without division by estimated quantities and therefore the
estimation error is not further expanded. The density ratio is estimated by the maximum
likelihood method and it is cast as a convex optimization problem. Therefore, the unique
global optimal solution can be obtained efficiently. Furthermore, cross-validation (CV) is
available for model selection, so the values of tuning parameters such as the kernel width can
be adaptively determined in an objective manner. Our method does not assume normality
of the target distribution and therefore is flexible. Numerical experiments show that MLMI
compares favorably with existing methods.

A sibling of MLMI, called LSMI, is presented in Suzuki et al. (2008). In that paper,
we used a least-squares method for density ratio based MI estimation and emphasized its
practical usefulness in variable selection. On the other hand, the current paper employs
a maximum likelihood method and focuses more on mathematical aspects of density ratio
based MI estimation.

2. Approximating MI by Maximum Likelihood Density Ratio Estimation

In this section, we formulate the MI approximation problem as a density ratio estimation
problem and propose a new MI estimation method.

2.1 Formulation

Let DX (⊂ R
dx) and DY (⊂ R

dy) be data domains and suppose we are given n independent
and identically distributed (i.i.d.) paired samples

{(xi,yi) | xi ∈ DX, yi ∈ DY}n
i=1
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drawn from a joint distribution with density pxy(x,y). Let us denote the marginal densities
of xi and yi by px(x) and py(y), respectively. The goal is to estimate MI defined by Eq.(1).

Our approach here is to estimate the density ratio w(x,y) defined by Eq.(2); then MI
can be approximated using a density ratio estimator ŵ(x,y) by

Î(X,Y ) :=
1

n

n∑

i=1

log ŵ(xi,yi).

We model the density ratio function w(x,y) by the following linear model:

ŵ(x,y) := α
⊤
ϕ(x,y), (3)

where α := (α1, α2, . . . , αb)
⊤ are parameters to be learned from samples, ⊤ denotes the

transpose of a matrix or a vector, and

ϕ(x,y) := (ϕ1(x,y), ϕ2(x,y), . . . , ϕb(x,y))⊤

are basis functions such that

ϕ(x,y) ≥ 0b for all (x,y) ∈ DX ×DY.

0b denotes the b-dimensional vector with all zeros. Note that ϕ(x,y) could be dependent
on the samples {xi,yi}n

i=1, i.e., kernel models are also allowed. We explain how the basis
functions ϕ(x,y) are designed in Section 2.4.

2.2 Maximum Likelihood Estimation of Density Ratio Function

Using an estimated density ratio ŵ(x,y), we may estimate the joint density pxy(x,y) by

p̂xy(x,y) := ŵ(x,y)px(x)py(y).

Based on this, we determine the parameter α in the model ŵ(x,y) so that the following
log-likelihood L is maximized:

L(α) :=
n∑

i=1

log p̂xy(xi,yi) =
n∑

i=1

log
(
α

⊤
ϕ(xi,yi)

)
+

n∑

i=1

log px(xi) +
n∑

i=1

log py(yi).

The second and the third terms are constants and therefore can be safely ignored. This is
our objective function to be maximized with respect to the parameters α, which is concave.
Note that this corresponds to an empirical approximation of the Kullback-Leibler divergence
from pxy(x,y) to p̂xy(x,y) up to some irrelevant constant.

ŵ(x,y) is an estimator of the density ratio w(x,y) which is non-negative by definition.
Therefore, it is natural to impose ŵ(x,y) ≥ 0 for all (x,y) ∈ DX × DY , which can be
achieved by restricting α ≥ 0b. In addition to non-negativity, ŵ(x,y) should be properly
normalized since p̂xy(x,y) is a probability density function:

1 =

∫
p̂xy(x,y)dxdy =

∫
α

⊤
ϕ(x,y)px(x)py(y)dxdy ≈ 1

n(n− 1)

∑

1≤i6=j≤n

α
⊤
ϕ(xi,yj), (4)
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where we used the U -statistic (Serfling, 1980, p.171) for obtaining the empirical estimator.
Now our optimization criterion is summarized as follows.

maximize
α∈Rb

[
n∑

i=1

log
(
α

⊤
ϕ(xi,yi)

)]

subject to
1

n(n− 1)

∑

1≤i6=j≤n

α
⊤
ϕ(xi,yj) = 1 and α ≥ 0b. (5)

We call the above method Maximum Likelihood Mutual Information (MLMI).
MLMI can be characterized by Legendre-Fenchel duality of the convex function ‘− log’

(Rockafellar, 1970; Boyd and Vandenberghe, 2004). For f(u) = − log(u), MI is expressed
as

I(X,Y ) =

∫
pxy(x,y)f

(
px(x)py(y)

pxy(x,y)

)
dxdy.

Let f∗ be the Legendre-Fenchel dual function of f , which is defined and given by

f∗(v) := sup
u∈R

{uv − f(u)} = −1 − log(−v) (for v < 0).

Then Legendre-Fenchel duality implies that I(X,Y ) is obtained by solving the following
concave maximization problem (Nguyen et al., 2008):

I(X,Y ) = sup
ŵ≥0

[∫
pxy(x,y)

(
−ŵ(x,y)

px(x)py(y)

pxy(x,y)
− f∗(−ŵ(x,y))

)
dxdy

]

= sup
ŵ≥0

[∫ (
− ŵ(x,y)px(x)py(y) + log ŵ(x,y)pxy(x,y)

)
dxdy + 1

]
,

where the supremum is taken over all non-negative measurable functions. If the linear model
assumption (3) and the normalization constraint (4) are imposed and the expectation is
approximated by the sample average, the above formulation is reduced to MLMI.

2.3 Convergence Bound

Here, we show a non-parametric convergence rate of the solution of the optimization problem
(5). The set of basis functions is denoted by

F := {ϕθ | θ ∈ Θ},

where Θ is some parameter or index set. The set of basis functions used for estimation at
n samples is characterized by a subset of the parameter set Θn ⊆ Θ and denoted by

Fn := {ϕθ | θ ∈ Θn} ⊂ F ,

which can behave stochastically. The set of finite linear combinations of F with positive
coefficients and its bounded subset are denoted by

G :=

{
∑

l

αlϕθl

∣∣∣ αl ≥ 0, ϕθl
∈ F

}
, GM := {g ∈ G | ‖g‖∞ ≤M} ,
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and their subsets used for estimation at n samples are denoted by

Gn :=

{
∑

l

αlϕθl

∣∣∣ αl ≥ 0, ϕθl
∈ Fn

}
⊂ G, GM

n := {g ∈ Gn | ‖g‖∞ ≤M} ⊂ GM .

Let Ĝn be the feasible set of MLMI:

Ĝn :=

{
g ∈ Gn

∣∣∣ 1

n(n− 1)

∑

1≤i6=j≤n

g(xi,yj) = 1

}
.

Then, the solution ĝn of (generalized) MLMI is given as follows:

ĝn := arg max
g∈Ĝn

[
1

n

n∑

i=1

log g(xi,yi)

]
.

For simplicity, we assume that the optimal solution can be uniquely determined. In order to
derive the convergence rates of MLMI, we make the following assumptions. Let g0 denote

g0(x,y) :=
pxy(x,y)

px(x)py(y)
.

We define the (generalized) Hellinger distance with respect to pxpy as

hQ(g, g′) :=

(∫
(
√
g −

√
g′)2px(x)py(y)dxdy

)1/2

,

where g and g′ are non-negative measurable functions (not necessarily probability densities).

Assumption 1

1. On the support of pxy, there exists a constant η1 <∞ such that

g0 ≤ η1.

2. All basis functions are non-negative, and there exist constants ǫ0, ξ0 > 0 such that

∫
ϕ(x,y)px(x)py(y)dxdy ≥ ǫ0, ‖ϕ‖∞ ≤ ξ0, (∀ϕ ∈ F).

3. There exist constants 0 < γ < 2 and K such that

logN[](ǫ,GM , hQ) ≤ K

(√
M

ǫ

)γ

, (6)

where N[](ǫ,F , d) is the ǫ-bracketing number of F with norm d (van de Geer, 2000)1.

Then we obtain the following theorem and corollary (see Appendix for a sketch of proof).

1. As shown in Section 2.4, we will use Gaussian kernel models in practice. The bracketing number for
Gaussian mixture models is extensively discussed, e.g., in Ghosal and van der Vaart (2001).
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Theorem 1 Let

g∗n := max
g∈Ĝn

∫
log(g(x,y))p(x,y)dxdy.

In addition to Assumption 1, if there exist constants c̃0, c0 such that g∗n satisfies

P

(
c̃0 ≤ g0

g∗n
≤ c0

)
→ 1, (7)

then
hQ(ĝn, g0) = Op(n

− 1
2+γ + hQ(g∗n, g0)),

where Op denotes the asymptotic order in probability.

Corollary 2 If there exists N such that g0 ∈ Gn (∀n ≥ N), then

hQ(ĝn, g0) = Op(n
− 1

2+γ ).

In Sugiyama et al. (2008), a similar convergence result to the above theorem has been
provided, where g0 was assumed to be bounded from both below and above. On the other
hand, the current proof only requires an upper bound on g0 (see Assumption 1.1). Thus,
the above theorem is more general than the result in Sugiyama et al. (2008) in terms of g0.

More technically, we use the bracketing number with respect to the Hellinger distance
for describing the complexity of a function class, while Sugiyama et al. (2008) used the
bracketing number with respect to the ℓ2 distance or the covering number. The main math-
ematical device used in Sugiyama et al. (2008) was to bound hQ(ĝn, g

∗
n) by the difference

between the empirical mean and the expectation of log(2g∗n/(ĝn + g∗n)). On the other hand,
the current paper employs 2ĝn/(ĝn + g∗n) instead of log(2g∗n/(ĝn + g∗n)), which enables us
to replace the lower bound of g0 with the bounds of the ratio g0/g

∗
n. Then we utilize the

convexity of Ĝn and the bracketing number condition with respect to the Hellinger distance
(see Section 7 of van de Geer (2000) for more details).

2.4 Model Selection by Likelihood Cross Validation

The performance of MLMI depends on the choice of the basis functions ϕ(x,y). Here we
show that model selection can be carried out based on a variant of CV.

First, the samples {zi | zi = (xi,yi)}n
i=1 are divided into K disjoint subsets {Zk}K

k=1 of
(approximately) the same size. Then a density ratio estimator ŵZk

(x,y) is obtained using
{Zj}j 6=k (i.e., without Zk) and the log-likelihood for the hold-out samples Zk is computed
as

L
(K-CV)
Zk

=
1

|Zk|
∑

(x′,y′)∈Zk

log ŵZk
(x′,y′),

where |Zk| denotes the number of sample pairs in the set Zk. This procedure is repeated
for k = 1, 2, . . . ,K and its average L(K-CV) is outputted:

L(K-CV) =
1

K

K∑

k=1

L
(K-CV)
Zk

.
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For model selection, we compute L(K-CV) for all model candidates (the basis functions
ϕ(x,y) in the current setting) and choose the one that maximizes the hold-out log-
likelihood. Note that L(K-CV) is an almost unbiased estimate of the Kullback-Leibler diver-
gence from pxy(x,y) to p̂xy(x,y) up to some irrelevant constant, where the ‘almost’-ness
comes from the fact that the number of samples is reduced in the CV procedure due to data
splitting (Schölkopf and Smola, 2002).

A good model may be chosen by the above CV procedure, given that a set of promising
model candidates is prepared. As model candidates, we propose using a Gaussian kernel
model: for z = (x⊤,y⊤)⊤,

ϕℓ(x,y) = exp

(
−‖z − cℓ‖2

2σ2

)
= exp

(
−‖x − uℓ‖2

2σ2

)
exp

(
−‖y − vℓ‖2

2σ2

)
,

where {cℓ | cℓ = (u⊤
ℓ ,v

⊤
ℓ )⊤}b

ℓ=1 are Gaussian centers; we choose the centers randomly from
{zi | zi = (x⊤

i ,y
⊤
i )⊤}n

i=1. Below, we fix the number of basis functions at b = min(200, n)
and choose the Gaussian width σ by CV.

3. Relation to Existing Methods

In this section, we discuss the characteristics of existing and proposed approaches.

3.1 Kernel Density Estimator (KDE)

KDE is a non-parametric technique to estimate a probability density function p(x) defined
on R

d from its i.i.d. samples {xi}n
i=1. For the Gaussian kernel, KDE is expressed as

p̂(x) =
1

n(2πσ2)d/2

n∑

i=1

exp

(
−‖x − xi‖2

2σ2

)
.

The performance of KDE depends on the choice of the kernel width σ and it can be
optimized by likelihood CV as follows (Härdle et al., 2004): First, divide the samples {xi}n

i=1

into K disjoint subsets {Xk}K
k=1 of (approximately) the same size. Then obtain a density

estimate p̂Xk
(x) from {Xj}j 6=k (i.e., without Xk) and compute its hold-out log-likelihood for

Xk:
1

|Xk|
∑

x∈Xk

log p̂Xk
(x).

This procedure is repeated for k = 1, 2, . . . ,K and choose the value of σ such that the
average of the hold-out log-likelihood over all k is maximized. Note that the average hold-
out log-likelihood is an almost unbiased estimate of the Kullback-Leibler divergence from
p(x) to p̂(x) up to some irrelevant constant.

Based on KDE, MI can be approximated using density estimates p̂xy(x,y), p̂x(x), and
p̂y(y) (obtained from {(xi,yi)}n

i=1, {xi}n
i=1, and {yi}n

i=1, respectively) as

Î(X,Y ) :=
1

n

n∑

i=1

log
p̂xy(xi,yi)

p̂x(xi)p̂y(yi)
.
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However, density estimation is known to be a hard problem and division by estimated
densities may expand the estimation error. For this reason, the KDE-based approach may
not be reliable in practice.

3.2 K-nearest Neighbor Method (KNN)

MI can be expressed in terms of the entropies as

I(X,Y ) = H(X) +H(Y ) −H(X,Y ),

where H(X) denotes the entropy of X:

H(X) := −
∫
px(x) log px(x)dx.

Thus MI can be approximated if the entropies H(X), H(Y ), and H(X,Y ) are estimated.
Kraskov et al. (2004) developed an entropy estimator that utilizes the k-nearest neighbor

distance (KNN). Let us define the norm of z = (x,y) by ‖z‖z := max{‖x‖, ‖y‖}, where
‖ · ‖ denotes the Euclidean norm. Let Nk(i) be the set of k-nearest neighbor samples of
(xi,yi) with respect to the norm ‖ · ‖z, and let

ǫx(i) := max{‖xi − xi′‖ | (xi′ ,yi′) ∈ Nk(i)}, nx(i) := |{zi′ | ‖xi − xi′‖ ≤ ǫx(i)}|,
ǫy(i) := max{‖yi − yi′‖ | (xi′ ,yi′) ∈ Nk(i)}, ny(i) := |{zi′ | ‖yi − yi′‖ ≤ ǫy(i)}|.

Then the KNN-based MI estimator is given by

Î(X,Y ) :=ψ(k) + ψ(n) − 1

k
− 1

n

n∑

i=1

[
ψ(nx(i)) + ψ(ny(i))

]
,

where ψ is the digamma function.
An advantage of the above KNN-based method is that it does not simply replace en-

tropies with their estimates, but it is designed to cancel the error of individual entropy
estimation. A practical drawback of the KNN-based approach is that the estimation accu-
racy depends on the value of k and there seems no systematic strategy to choose the value
of k appropriately.

3.3 Edgeworth Expansion Method (EDGE)

Hulle (2005) proposed an entropy approximation method based on the Edgeworth expansion,
where the entropy of a distribution is approximated by that of the normal distribution
and some additional higher-order correction terms. More specifically, for a d-dimensional
distribution, an estimator Ĥ of the entropy H is given by

Ĥ =Hnormal −
1

12

d∑

i=1

κ2
i,i,i −

1

4

d∑

i,j=1,i6=j

κ2
i,i,j −

1

72

d∑

i,j,k=1,i<j<k

κ2
i,j,k,

where Hnormal is the entropy of the normal distribution with covariance matrix equal to
the target distribution and κi,j,k (1 ≤ i, j, k ≤ d) is the standardized third cumulant of the
target distribution. In practice, all the cumulants are estimated from samples.
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Table 1: Relation among existing and proposed MI estimators. If the order of the Edge-
worth expansion is regarded a tuning parameter, model selection of EDGE should
be ‘Not available’.

Division by estimated quantities Model selection Distribution

KDE Involved Available Free

KNN Not involved Not available Free

EDGE Not involved Not necessary Nearly normal

MLMI Not involved Available Free

Based on EDGE, MI can be approximated using entropy estimates Ĥ(X), Ĥ(Y ), and
Ĥ(X,Y ) as

Î(X,Y ) := Ĥ(X) + Ĥ(Y ) − Ĥ(X,Y ).

If the underlying distribution is close to the normal distribution, the above approximation
is quite accurate and the EDGE method works very well. However, if the distributions
are far from the normal distribution, the approximation error gets large and therefore the
EDGE method is unreliable.

In principle, it is possible to include the fourth and even higher cumulants for further
reducing the estimation bias. However, this in turn increases the estimation variance; the
expansion up to the third cumulants seems to be reasonable.

3.4 Discussions

The characteristics of the proposed and existing MI estimators are summarized in Table 1.
KDE is distribution-free and model selection is possible by CV. However, division by esti-
mated densities is involved, which can result in magnifying the estimation error. KNN is
distribution-free and does not involve division by estimated quantities. However, there is
no model selection method for determining the number of nearest neighbors and therefore
its practical performance is not reliable. EDGE does not involve division by estimated
quantities and any tuning parameters. However, it is based on the assumption that the
target distributions are close to the normal distribution and the result is not reliable if this
assumption is violated. MLMI is distribution-free, it does not involve division by estimated
quantities, and model selection is possible by CV. Thus MLMI overcomes the limitations
of the existing approaches.

4. Numerical Experiments

In this section, we experimentally investigate the performance of the proposed and existing
MI estimators using artificial datasets. We use the following four datasets (see Figure 1):

(a) Linear dependence: y has a linear dependence on x as

x ∼ N (x; 0, 0.5) and y|x ∼ N (y; 3x, 1),

where N (x;µ, σ2) denotes the normal density with mean µ and variance σ2.
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(b) Non-linear dependence with correlation: y has a quadratic dependence on x as

x ∼ N (x; 0, 1) and y|x ∼ N (y;x2, 1).

(c) Non-linear dependence without correlation: y has a lattice-structured depen-
dence on x as

x ∼ U(x;−0.5, 0.5) and y|x ∼
{
N (x; 0, 1/3) if x ≤ |1/6|,
0.5N (x; 1, 1/3) + 0.5N (x;−1, 1/3) otherwise,

where U(x; a, b) denotes the uniform density on (a, b).

(d) Independence: x and y are independent to each other as

x ∼ U(x; 0, 0.5) and y|x ∼ N (y; 0, 1).

The task is to estimate MI between x and y. We compare the performance of
MLMI(CV), KDE(CV), KNN(k) for k = 1, 5, 15, and EDGE; the approximation error
of an MI estimate Î is measured by |Î − I|. Figure 2 depicts the average approximation
error—MLMI, KDE, KNN(5), and EDGE perform well for the dataset (a), MLMI tends to
outperform the other estimators for the dataset (b), MLMI and KNN(5) show the best per-
formance against the other methods for the dataset (c), and MLMI, EDGE, and KNN(15)
perform well for the dataset (d). In the above simulation, KDE works moderately well for
the datasets (a)–(c), while it performs poorly for the dataset (d). This instability would
be due to devision by estimated densities, which tends to magnify the estimation error.
KNN seems work well for all four datasets if the value of k is chosen optimally; the best
value of k varies depending on the datasets and thus using a prefixed value of k is not
appropriate—k needs to be chosen adaptively using the data samples. However, there is
no systematic model selection strategy for KNN and therefore KNN would be unreliable
in practice. EDGE works well for the datasets (a) and (b), which posses high normality2.
However, for the datasets (c) and (d) where normality of the target distributions is low, the
EDGE method performs poorly. In contrast, MLMI with CV performs reasonably well for
all four datasets in a stable manner.

These experimental results show that MLMI nicely compensates for the weaknesses of
the existing methods and therefore we conclude that MLMI should be regarded as a useful
alternative to the existing methods of MI estimation.

5. Conclusions

In this paper, we proposed a new method of estimating mutual information. The proposed
method, called MLMI, has several useful properties, e.g., it is a single-shot procedure,
density estimation is not involved, it is equipped with a cross-validation procedure for model
selection, and the unique global solution can be computed efficiently. We have provided a
rigorous convergence analysis of the proposed algorithm as well as numerical experiments
illustrating the usefulness of the proposed method.

2. Note that although the Edgeworth approximation is exact when the target distributions are completely
normal, the EDGE method still suffers from some estimation error since the cumulants are estimated
from samples.
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Figure 1: Datasets used in experiments.
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(a) Linear dependence

50 100 150
0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 M
I a

pp
ro

xi
m

at
io

n 
er

ro
r

Number of samples

(b) Non-linear dependence with correlation
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(c) Non-linear dependence without correlation
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(d) Independence

Figure 2: MI approximation error measured by |Î−I| averaged over 100 trials as a function
of the sample size n. The symbol ‘◦’ on a line means that the corresponding
method is the best in terms of the average error or is judged to be comparable to
the best method by the t-test at the significance level 1%.
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Appendix: Sketch of Proof of Theorem 1 and Corollary 2

Proof of Theorem 1
For notational simplicity, we define the linear operators Qn, Q, Pn, P as

Qnf :=

∑
1≤i6=j≤n f(xi,yj)

n(n− 1)
, Qf := Epxpyf, Pnf :=

∑n
i=1 f(xi,yi)

n
, Pf := Epxyf.

Step1: Proof of supϕ∈Fn
|(Qn − Q)ϕ| = Op(1/

√
n). Hoeffding (1963) derived Bernstein’s

inequality for U -statistics which, in our context, is written as

P

(
|(Qn −Q)f | > x√

n

)
≤ 2 exp

(
− x

(2x‖f‖∞/
√
n+ 6Q(f −Q(f))2)

)
, (8)

for all x > 0 and n ≥ 2 (see also Proposition 2.3 of Arcones and Giné, 1993). By applying the
above inequality to the proof of Theorem 5.11 of van de Geer (2000) instead of Bernsten’s
inequality for the i.i.d. sum, we obtain a “double sum” version of Theorem 5.11 of van de
Geer (2000), i.e., exponential decay of the tail probability of

√
n supf∈F |(Qn−Q)f |, where F

is a class of uniformly bounded measurable functions and satisfies the polynomial bracketing
condition (6) as GM . This will be used for obtaining (9) later. By Assumption 1.2, we have
Fn ⊂ Gξ0 . Now Q(ϕ− ϕ′)2 = Q(

√
ϕ−√

ϕ′)2(
√
ϕ+

√
ϕ′)2 ≤ 4ξ0hQ(ϕ,ϕ′)2 yields

N[](ǫ,Gξ0 , L2(Q)) ≤ N[](ǫ/2
√
ξ0,Gξ0 , hQ).

Thus the uniform convergence theorem (van de Geer, 2000, Theorem 5.11) with Assumption
1.3 implies

sup
ϕ∈Fn

|(Qn −Q)ϕ| = Op

(
1√
n

)
. (9)

Let M̃ = 2ξ0/ǫ0 and G(c) be

G(c) :=

{
2g

g + ḡ

∣∣∣ g ∈ GM̃ , ḡ ∈ GM̃ , c̃0 ≤ g0
ḡ

≤ c0

}
.

Step2: Proof of N[](ǫ,G(c), L2(P )) ≤ N[](ǫ/8
√

2c0,GM̃ , hQ)2.
(9) yields

inf
ϕ∈Fn

Qnϕ ≥ ǫ0 −Op(1/
√
n),

and

Q(S̄n) → 1 for S̄n :=

{
inf

ϕ∈Fn

Qnϕ ≥ ǫ0/2

}
. (10)

On the event S̄n, all the elements of Ĝn is uniformly bounded from above:

1 = Qn(
∑

l

αlϕl) =
∑

l

αlQn(ϕl) ≥
∑

l

αlǫ0/2 ⇒
∑

l

αl ≤ 2/ǫ0.

Thus on the event S̄n, Ĝn ⊂ GM̃
n is always satisfied. We define

Sn := S̄n ∩
{
c̃0 <

g0
g∗n

< c0

}
.
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The rest of the proof goes through an analogous line to Theorem 7.6 of van de Geer
(2000). Since Ĝn is convex, from the definition of ĝn, we obtain

0 ≤ Pn log
2ĝn

ĝn + g∗n
≤ Pn

2ĝn

ĝn + g∗n
− 1 = (Pn − P )

2ĝn

ĝn + g∗n
− P

g∗n − ĝn

ĝn + g∗n
. (11)

Since g∗n maximizes P log g in the convex set Ĝn, we have

d

dα
P log(αg + (1 − α)g∗n)

∣∣∣
α=0

≤ 0, ∀g ∈ Ĝn.

This yields the inequality

P
g − g∗n
g∗n

≤ 0, ∀g ∈ Ĝn.

Thus the second term of the far RHS of (11) is bounded from below as

P
g∗n − ĝn

ĝn + g∗n
=

1

2
P
g∗n − ĝn

g∗n
+

1

2
P

(g∗n − ĝn)2

g∗n(g∗n + ĝn)
≥ 1

2
P

(g∗n − ĝn)2

g∗n(g∗n + ĝn)

=
1

2
P

(
√
g∗n −

√
ĝn)2(

√
g∗n +

√
ĝn)2

g∗n(ĝn + g∗n)
≥ 1

2
Q

(
(
√
g∗n −

√
ĝn)2

g0
g∗n

)
. (12)

Combining (11) and (12), on the event g0/g
∗
n ≥ c̃0, we have

c̃0hQ(g∗n, ĝn)2 = c̃0
1

2
Q(
√
g∗n −

√
ĝn)2 ≤ (Pn − P )

2ĝn

ĝn + g∗n
. (13)

This indicates that it suffices to bound (Pn − P ) 2ĝn

ĝn+g∗n
. Let ḡ, g̃ ∈ G be g0/ḡ ≤ c0 and

g0/g̃ ≤ c0, then

P

(
2g

g + ḡ
− 2g

g + g̃

)2

= P
4g2(ḡ − g̃)2

(g + ḡ)2(g + g̃)2
= Q

4g0g
2(
√
ḡ −

√
g̃)2(

√
ḡ +

√
g̃)2

(g + ḡ)2(g + g̃)2

≤ 16c0Q(
√
ḡ −

√
g̃)2.

Similarly, for g, g′ ∈ G, on the event g0/g
∗
n < c0, we have

P

(
2g

g + g∗n
− 2g′

g′ + g∗n

)2

≤ 16c0Q(
√
g −

√
g′)2.

Therefore, for g, g′ ∈ G and ḡ, g̃ ∈ G such that g0/ḡ ≤ c0 and g0/g̃ ≤ c0, the following is
satisfied:

√

P

(
2g

g + ḡ
− 2g′

g′ + g̃

)2

≤ 4
√

2c0(hQ(g, g′) + hQ(ḡ, g̃)). (14)

Note that P ( 2ĝn

ĝn+g∗n
∈ G(c)) → 1 holds by the assumptions (7) and (10). Since 2g

g+ḡ is

increasing with respect to g and decreasing with respect to ḡ, (14) yields that the bracketing
number of G(c) is bounded by

N[](ǫ,G(c), L2(P )) ≤ N[](ǫ/8
√

2c0,GM̃ , hQ)2. (15)
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Step3: Proof of P (hQ(ĝn, g
∗
n) > δn) → 0 where δn = O(n

− 1
2+γ ).

Now (15) gives an upper bound of the entropy integral of G(c) as follows:

1√
n

∫ δ

0

√
log(N[](ǫ,G(c), L2(P )))dǫ ≤ 1√

n

∫ δ

0

√
2 log(N[](ǫ/8

√
2c0,GM̃ , hQ))dǫ.

Note that on the event g0/g
∗
n < c0, we have

P

(
2g

g + g∗n
− 1

)2

= P

(
g − g∗n
g + g∗n

)2

= P

(
(
√
g −√

g∗n)2(
√
g +

√
g∗n)2

(g + g∗n)2

)

≤ 2c0Q(
√
g −

√
g∗n)2 ≤ 4c0hQ(g, g∗n)2. (16)

Theorem 5.11 of van de Geer (2000) yields that there exist constants K ′, C, C ′, c such that
for all δ ≥ δn where δn satisfies

δ2n ≥ K ′
√
n

∫ δn

0

√
log(N[](ǫ,G(c), L2(P )))dǫ, (17)

the following inequalities are satisfied:

P (hQ(ĝn, g
∗
n) > δ)

≤ P

(
sup

g∈Ĝn:hQ(g,g∗n)>δ

(Pn − P )

(
2g

g + g∗n
− 1

)
≥ c̃0hQ(g, g∗n)2

)

≤
∞∑

s=0

P

(
sup

g∈Ĝn:hQ(g,g∗n)≤2s+1δ

√
n(Pn − P )

(
2g

g + g∗n
− 1

)
≥ c̃0

√
n22sδ2 ∩ Sn

)
+ P (Sc

n)

≤
∞∑

s=0

P

(
sup

f∈G(c):‖f−1‖P≤√
c02s+2δ

√
n(Pn − P ) (f − 1) ≥ c̃0

√
n22sδ2

)
+ P (Sc

n)

≤
∞∑

s=0

C exp

(
−n22sδ2

C ′

)
+ P (Sc

n) ≤ c exp

(
−nδ

2

c2

)
+ P (Sc

n). (18)

In the above equation, Sc
n denotes the complement of Sn and the second inequality follows

the application of the “peeling device” (see p.70 and Theorem 7.6 of van de Geer, 2000, for

more details). Now we can take δn = O(n
− 1

2+γ ) because to ensure (17) it suffices to let δn
satisfy

δ2n ≥ K ′
√
n

∫ δn

0

√
2 log(N[](ǫ/8

√
2c0,GM̃ , hQ))dǫ = O(δ1−γ/2

n /
√
n).

This yields that the far RHS of (18) converges to 0 and therefore hQ(ĝn, g
∗
n) = Op(n

− 1
2+γ )

holds.
Proof of Corollary 2

By the definition of g∗n, P log g∗n ≥ P log
(

g0

Qng0

)
. On the other hand, since g0 maximizes

P log g in {g ∈ G | Qg = 1}, we have P log
(

g∗n
Qg∗n

)
≤ P log g0. Combining these inequalities

gives

0 ≤ P log

(
g0

g∗n/Qg∗n

)
= P log

(
g0/Qng0

g∗n
Qng0Qg

∗
n

)
≤ log(Qng0Qg

∗
n). (19)
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A similar argument to Lemma 1.3 of van de Geer (2000) yields

2h2
Q(g∗n/Qg

∗
n, g0) ≤ P log

(
g0

g∗n/Qg∗n

)
.

Moreover we have

log(Qng0Qg
∗
n) ≤ Qng0Qg

∗
n − 1 = (Qg∗n)(Qn −Q)

(
g0 −

g∗n
Q(g∗n)

)
.

Then, by (19), we have

2h2
Q(g∗n/Qg

∗
n, g0) ≤ (Qg∗n)(Qn −Q)

(
g0 −

g∗n
Q(g∗n)

)
.

We can easily check that g∗n/Q(g∗n) is contained in GM̃ . Thus

Q

(
g0 −

g∗n
Q(g∗n)

)2

= Q

(
√
g0 −

√
g∗n

Q(g∗n)

)2(
√
g0 +

√
g∗n

Q(g∗n)

)2

≤ 4(M̃+η0)hQ

(
g0,

g∗n
Q(g∗n)

)2

.

Similarly, for G̃ := {g − g0 | g ∈ GM̃}, we have

N[](ǫ, G̃, L2(Q)) ≤ N[](ǫ/2
√

2M̃, G̃, hQ).

Applying a similar argument to (18) with the double sum version of Theorem 5.11 of van de
Geer (2000), we have

hQ

(
g0,

g∗n
Q(g∗n)

)
= Op(n

− 1
2+γ ).

Since Q(g∗n) = 1 + Op(n
− 1

2 ) yields hQ

(
g∗n,

g∗n
Q(g∗n)

)
= Op(n

− 1
2 ), we have hQ (g0, g

∗
n) =

Op(n
− 1

2+γ ) by the triangle inequality.
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