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Approximating Nash Equilibria and Dense Subgraphs via an

Approximate Version of Carathéodory’s Theorem

Siddharth Barman∗

Abstract

We present algorithmic applications of an approximate version of Carathéodory’s theorem.

The theorem states that given a set of vectors X in R
d, for every vector in the convex hull of X

there exists an ε-close (under the p-norm distance, for 2 ≤ p <∞) vector that can be expressed

as a convex combination of at most b vectors of X , where the bound b depends on ε and the

norm p and is independent of the dimension d. This theorem can be derived by instantiating

Maurey’s lemma, early references to which can be found in the work of Pisier (1981) and Carl

(1985). However, in this paper we present a self-contained proof of this result.

Using this theorem we establish that in a bimatrix game with n× n payoff matrices A,B, if

the number of non-zero entries in any column of A+B is at most s then an ε-Nash equilibrium

of the game can be computed in time nO( log s

ε2
). This, in particular, gives us a polynomial-time

approximation scheme for Nash equilibrium in games with fixed column sparsity s. Moreover,

for arbitrary bimatrix games—since s can be at most n—the running time of our algorithm

matches the best-known upper bound, which was obtained by Lipton, Markakis, and Mehta

(2003).

The approximate Carathéodory’s theorem also leads to an additive approximation algorithm

for the normalized densest k-subgraph problem. Given a graph with n vertices and maximum

degree d, the developed algorithm determines a subgraph with exactly k vertices with normalized

density within ε (in the additive sense) of the optimal in time nO( log d

ε2
). Additionally, we show

that a similar approximation result can be achieved for the problem of finding a k× k-bipartite

subgraph of maximum normalized density.

1 Introduction

Carathéodory’s theorem is a fundamental dimensionality result in convex geometry. It states that

any vector in the convex hull of a set X in R
d can be expressed as a convex combination of at most

d+1 vectors of X.1 This paper considers a natural approximate version of Carathéodory’s theorem

where the goal is to seek convex combinations that are close enough to vectors in the convex hull.

∗California Institute of Technology. barman@caltech.edu
1This bound of d+ 1 is tight.
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Specifically, this approximate version establishes that given a set of vectors X in the p-unit ball2

with norm p ∈ [2,∞), for every vector µ in the convex hull of X there exists an ε-close—under the

p-norm distance—vector µ′ that can be expressed as a convex combination of 4p
ε2

vectors of X. A

notable aspect of this result is that the number of vectors of X that are required to express µ′, i.e.,
4p
ε2
, is independent of the underlying dimension d. This theorem can be derived by instantiating

Maurey’s lemma, early references to which can be found in the work of Pisier [30] and Carl [10].

However, in this paper we present a self-contained proof of this result, which we proceed to outline

below. The author was made aware of the connection with Maurey’s lemma after a preliminary

version of this work had appeared.

To establish the approximate version of Carathéodory’s theorem we use the probabilistic method.

Given a vector µ in the convex hull of a set X ⊂ R
d, consider a convex combination of vectors of

X that generates µ. The coefficients in this convex combination induce a probability distribution

over X and the mean of this distribution is µ. The approach is to draw b independent and identi-

cally distributed (i.i.d.) samples from this distribution and show that with positive probability the

sample mean, with an appropriate number of samples, is close to µ under the p-norm distance, for

p ∈ [2,∞). Therefore, the probabilistic method implies that these exists a vector close to µ that

can be expressed as a convex combination of at most b vectors, where b is the number of samples

we drew.

Note that in this context applying the probabilistic method is a natural idea, but a direct

application of this method will not work. Specifically, a dimension-free result is unlikely if we first

try to prove that the ith component of the sample mean vector is close to the ith component of µ,

for every i ∈ [d]; since this would entail a union bound over the number of components d. Bypassing

such a component-wise analysis requires the use of atypical ideas. We are able to accomplish this

task and, in particular, bound (in expectation) the p-norm distance between µ and the sample

mean vector via an interesting application of Khintchine inequality (see Theorem 1).

Given the significance of Carathéodory’s theorem, this approximate version is interesting in its

own right. The key contribution of the paper is to substantiate the algorithmic relevance of this

approximate version by developing new algorithmic applications. Our applications include additive

approximation algorithms for (i) Nash equilibria in two-player games, and (ii) the densest subgraph

problem. These algorithmic results are outlined below.

Algorithmic Applications

Approximate Nash Equilibria. Nash equilibria are central constructs in game theory that are

used to model likely outcomes of strategic interactions between self-interested entities, like human

players. They denote distributions over actions of players under which no player can benefit, in

expectation, by unilateral deviation. These solution concepts are arguably the most well-studied

2That is, X is contained in the set {v ∈ R
d | ‖v‖p ≤ 1}.

2



notions of rationality and questions about their computational complexity lie at the core of algo-

rithmic game theory. In recent years, hardness results have been established for Nash equilibrium,

even in two-player games [12, 14]. But, the question whether an approximate Nash equilibrium

can be computed in polynomial time still remains open. Throughout this paper we will consider

the standard additive notion of approximate Nash equilibria that are defined as follows: a pair

distributions, one for each player, is said to be an ε-Nash equilibrium if any unilateral deviation

increases utility by at most ε, in expectation.

We apply the approximate version of Carathéodory’s theorem to address this central open

question. Specifically, we prove that in a bimatrix game with n × n payoff matrices A,B, i.e., a

two-player game with n actions for each player, if the number of non-zero entries in any column

of A+B is at most s then an ε-Nash equilibrium of the game can be computed in time n
O
(

log s

ε2

)

.

Our result, in particular, shows that games with fixed column sparsity s admit a polynomial-time

approximation scheme (PTAS) for Nash equilibrium. Along the lines of zero-sum games (which

model strict competition), games with fixed column sparsity capture settings in which, except for

particular action profiles, the gains and losses of the two player balance out. In other words, such

games are a natural generalization of zero-sum games; recall that zero-sum games admit efficient

computation of Nash equilibrium (see, e.g., [29]).

It is also worth pointing out that for an arbitrary bimatrix game the running time of our

algorithm is n
O
(

log n

ε2

)

, since s is at most n. Given that the best-known algorithm for computing

ε-Nash equilibrium also runs in time n
O
(

log n

ε2

)

[25], for general games the time complexity of our

algorithm matches the best-known upper bound. Overall, this result provides a parameterized

understanding of the complexity of computing approximate Nash equilibrium in terms of a very

natural measure, the column sparsity s of the matrix A+B.

Our framework can address other notions of sparsity as well. Specifically, if there exist constants

α, β ∈ R+ and γ ∈ R such that the matrix αA + βB + γ1n×n has column or row sparsity s, then

our algorithm can be directly adopted to find an ε-Nash equilibrium of the game (A,B) in time

n
O
(

log s

ε2

)

; here, 1n×n is the all-ones n×n matrix.3 Additionally, the same running-time bound can

be achieved for approximating Nash equilibrium in games wherein both matrices A and B have

column or row sparsity s. Note that this case is not subsumed by the previous result; in particular,

if the columns of matrix A and the rows of matrix B are sparse, then it is not necessary that A+B

has low column or row sparsity.

We also refine the following result of Daskalakis and Papadimitriou [17]: They develop a PTAS

for bimatrix games that admit an equilibrium with small, specifically O
(

1
n

)

, probability values. This

result is somewhat surprising, since such small-probability equilibria have large, Ω(n), support, and

hence are not amenable to, say, exhaustive search. We show that if a game has an equilibrium with

probability values O
(

1
m

)

, for m ∈ [n], then an approximate equilibrium can be computed in time

3Note that given matrices A and B, parameters α, β, and γ can efficiently computed.
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nt, where t = O
(

log(s/m)
ε2

)

. Since s ≤ n, we get the result of [17] as a special case.

Densest Subgraph. In the normalized densest k-subgraph problem (NDkS) we are given a simple

graph and the objective is to find a size-k subgraph (i.e., a subgraph containing exactly k vertices)

of maximum density; here, density is normalized to be at most one, i.e., for a subgraph with k

vertices, it is defined to be the number of edges in the subgraph divided by k2. NDkS is simply

a normalized version of of the standard densest k-subgraph problem (see, e.g., [1] and references

therein) wherein the goal is to find a subgraph with k vertices with the maximum possible number

of edges in it. The densest k-subgraph problem (DkS) is computationally hard and it is shown

in [1] that a constant-factor approximation for DkS is unlikely. This result implies that NDkS is

hard to approximate (multiplicatively) within a constant factor as well.

In this paper we focus on an additive approximation for NDkS. In particular, our objective is

to compute a size-k subgraph whose density is close (in the additive sense) to the optimal. The

paper also presents additive approximations for the densest k-bipartite subgraph (DkBS) problem.

DkBS is a natural variant of NDkS and the goal in this problem is to find size-k vertex subsets

of maximum density. In the bipartite case, density of vertex subsets S and T is defined to be the

number of edges between the two subsets divided by |S||T |.
Hardness of additively approximating DkBS was studied by Hazan and Krauthgamer [20].

Specifically, the reduction in [20] rules out an additive PTAS for DkBS, under complexity the-

oretic assumptions.4 In terms of upper bound, the result of Alon et al. [3] presents an algorithm

for this problem that runs in time exponential in the rank of the adjacency matrix.

This paper develops the following complementary upper bounds: given a graph with n vertices

and maximum degree d, an ε-additive approximation for NDkS can be computed in time n
O
(

log d

ε2

)

.

This paper also presents an algorithm with the same time complexity for additively approximating

DkBS.

1.1 Related Work

Approximate Version of Carathéodory’s Theorem. In this paper we provide a self-contained

proof of the approximate version of Carathéodory’s theorem, employing the Khintchine inequality

(see Theorem 1), and use the theorem to develop new approximation algorithms. As mentioned

earlier, the approximate version of Carathéodory’s theorem can also be obtained by instantiating

Maurey’s lemma, which, in particular, appears in the analysis and operator theory literatures; see,

e.g., [30, 10, 8].

4They reduce the problem of determining a planted clique to that of computing an ε-additive approximation for

DkBS, with a sufficiently small but constant ε.
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Approximate Nash Equilibria. The computation of equilibria is an active area of research.

Nash equilibria is known to be computationally hard [12, 14], and in light of these findings, a

considerable effort has been directed towards understanding the complexity of approximate Nash

equilibrium. Results in this direction include both upper bounds [25, 22, 15, 21, 16, 23, 18, 7, 33,

34, 3, 2] and lower bounds [20, 13, 9]. In particular, it is known that for a general bimatrix game

an approximate Nash equilibrium can be computed in quasi-polynomial time [25]. Polynomial time

algorithms have been developed for computing approximate Nash equilibria for fixed values of the

approximation factor ε; the best-known result of this type shows that a 0.3393-approximate Nash

equilibrium can be computed in polynomial time [33]. In addition, several interesting classes of

games have been identified that admit a PTAS [21, 17, 34, 3, 2]. For example, the result of Alon

et al. [3] provides a PTAS for games in which the sum of the payoff matrices, i.e., A + B, has

logarithmic rank. Our result is incomparable to such rank based results, since a sparse matrix can

have high rank and a low-rank matrix can have high sparsity.

Chen et al. [11] considered sparsity in the context of games and showed that computing an

exact Nash equilibrium is hard even if both the payoff matrices have a fixed number of non-zero

entries in every row and column. It was observed in [17] that such games admit a trivial PTAS.5

Note that we study a strictly larger class of games and provide a PTAS for games in which the row

or column sparsity of A+B is fixed.

Densest Subgraph. The best-known (multiplicative) approximation ratio for the densest k-

subgraph problem is n(1/4+o(1)) [6]. But unlike this result, our work addresses additive approxima-

tions with normalized density as the maximization objective. In parituclar, we approximate NDkS

by approximately solving a quadratic program, which is similar to the quadratic program used in

the Motzkin-Straus theorem [28].

In addition, our approximation algorithm for DkBS is based on solving a bilinear program that

was formulated by Alon et al. [3]. This bilinear program was used in [3] to develop an additive

PTAS for DkBS in particular classes of graphs, including ones with low-rank adjacency matrices.

This paper supplements prior work by developing an approximation algorithm whose running time

is parametrized by the maximum degree of the given graph, and not by the rank of its adjacency

matrix.

1.2 Techniques

Approximate Nash Equilibria. Our algorithm for computing an approximate Nash equilib-

rium relies on finding a near-optimal solution of a bilinear program (BP). The BP we consider was

formulated by Mangasarian and Stone [26] and its optimal (near-optimal) solutions correspond to

5In particular, the product of uniform distributions over players’ actions corresponds to an approximate Nash

equilibrium in such games.
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exact (approximate) Nash equilibria of the given game. Below we provide a sketch of our algorithm

that determines a near-optimal solution of this BP.

The variables of the BP, x and y, correspond to probability distributions that are mixed strate-

gies of the players and its objective is to maximize xTCy, where C is the sum of the payoff matrices

of the game.6 Suppose we knew the vector u := Cŷ, for some Nash equilibrium (x̂, ŷ). Then, a

Nash equilibrium can be efficiently computed by solving a linear program (with variables x and y)

that is obtained by modifying the BP as follows: replace xTCy by xTu as the objective and include

the constraint Cy = u. Section 4 shows that this idea can be used to find an approximate Nash

equilibrium, even if u is not exactly equal to Cŷ but close to it. That is, to find an approximate

Nash equilibrium it suffices to have a vector u for which ‖Cŷ − u‖p is small.

To apply the approximate version of Carathéodory’s theorem we observe that Cŷ is a vector

in the convex hull of the columns of C. Also, note that in the context of (additive) approximate

Nash equilibria the payoff matrices are normalized, hence the absolute value of any entry of matrix

C is no more than, say, 2. This entry-wise normalization implies that if no column of matrix C

has more than s non-zero entries, then the log s norm of the columns is a fixed constant: ‖Ci‖p ≤
(s · 2p)1/p = 2 · 2

log s
p ≤ 4, where Ci is the ith column of C and norm p = log s. This is a simple but

critical observation, since it implies that, modulo a small scaling factor, the columns of an C lie in

the log s-unit ball. At this point we can apply the approximate version of Carathéodory’s theorem

to guarantee that close to Cŷ there exists a vector u that can be expressed as a convex combination

of about p = log s columns of C. We show in Section 4 that exhaustively searching for u takes

nO(log s) time, where n is the number of columns of C. Thus we can find a vector close to Cŷ and

hence determine a near-optimal solution of the bilinear program. This way we get an approximate

Nash equilibrium and the running time of the algorithm is dominated by the exhaustive search.

Overall, this template for approximating Nash equilibria in sparse games is made possible by

the approximate version of Carathéodory’s theorem. It is notable that our algorithmic framework

employs arbitrary norms p ∈ [2,∞), and in this sense it goes beyond standard ε-net-based results

that typically use norms 1, 2, or ∞.

Densest Subgraph. The algorithmic approach outlined above applies to any quadratic or bi-

linear program in which the objective matrix is column (or row) sparse and the feasible region is

contained in the simplex. We use this observation to develop an additive approximations for NDkS

and DkBS.

Specifically, we formulate a quadratic program, near-optimal solutions of which correspond

to approximate-solutions of NDkS. The column sparsity of the objective matrix in the quadratic

program is equal to the maximum degree of the underlying graph plus one. Hence, using the above

mentioned observation, we obtain the approximation result for NDkS. The same template applies

to DkBS; for this problem we employ a bilinear program from [3].

6We ignore the linear part of the objective for ease of presentation, see Section 4 for details.
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1.3 Organization

We begin by setting up notation in Section 2. Then, in Section 3 we present the approximate version

of Carathéodory’s theorem. Algorithmic applications of the theorem are developed in Sections 4

and 5. In Section 6 we consider convex hulls of matrices and also detail approximate versions of the

colorful Carathéodory theorem and Tverberg’s theorem. Finally, Section 7 presents a lower bound

proving showing that, in general, ε-close (under the p-norm distance with p ∈ [2,∞)) vectors cannot

be expressed as a convex combination of less than 1
4 εp/(p−1) vectors of the given set.

2 Notation

Write ‖x‖p to denote the p-norm of a vector x ∈ R
d. The Euclidean norm is denoted by ‖x‖, i.e.,

we drop the subscript from ‖x‖2. The number of non-zero components of a vector x is specified via

the ℓ0 “norm”: ‖x‖0 := |{i | xi 6= 0}|. Let ∆n be the set of probability distributions over the set

[n]. For x ∈ ∆n, we define Supp(x) := {i | xi 6= 0}. Similarly, for a vector v ∈ R
n write Supp(v) to

denote the set {i | vi 6= 0}.
Given a set X = {x1, x2, . . . , xn} ⊂ R

d, we use the standard abbreviation conv(X) for the

convex hull of X. A vector y ∈ conv(X) is said to be k uniform with respect to X if there exists a

size k multiset S of [n] such that y = 1
k

∑

i∈S xi. In particular, if vector y is k uniform with respect

to X then y can be expressed as a convex combination of at most k vectors from X. Throughout,

the set X will be clear from context so we will simply say that a vector is k uniform and not

explicitly mention the fact that uniformity is with respect to X.

3 Approximate Version of Carathéodory’s Theorem

A key technical ingredient in our proof is Khintchine inequality (see, e.g., [19] and [24]). The

following form of the inequality is derived from a result stated in [31].

Theorem 1 (Khintchine Inequality). Let r1, r2, . . . , rm be a sequence of i.i.d. Rademacher ±1
random variables, i.e., Pr(ri = ±1) = 1

2 for all i ∈ [m]. In addition, let u1, u2, . . . , um ∈ R
d be a

deterministic sequence of vectors. Then, for 2 ≤ p <∞

E

∥

∥

∥

∥

∥

m
∑

i=1

riui

∥

∥

∥

∥

∥

p

≤ √p
(

m
∑

i=1

‖ui‖2p

)
1
2

. (1)

Proof. Given vector v ∈ R
d, write diag(v) to denote the d × d diagonal matrix whose diagonal

is equal to v. Note that if matrix Q = diag(v) then ‖Q‖Sp = ‖v‖p, where ‖Q‖Sp denotes the

Schatten p-norm of Q, i.e., ‖Q‖Sp = ‖σ(Q)‖p, where σ(Q) is the vector of singular values of Q.

In addition, say we construct diagonal matrices for a sequence of vectors u1, u2, . . . , um ∈ R
d, i.e.,

7



set Qi = diag(ui) for all i ∈ [m], then for any sequence of scalars ξ1, ξ2, . . . , ξm ∈ R we have
∑m

i=1 ξiQi = diag (
∑m

i=1 ξiui).

In order to prove the theorem statement for vectors u1, u2, . . . , um ∈ R
d, we simply use Theorem

2 of [31]. In particular, setting Qi = diag(ui) for all i ∈ [m] in Theorem 2 of [31] and using the

above stated observations we get:

E

∥

∥

∥

∥

∥

m
∑

i=1

riui

∥

∥

∥

∥

∥

p

p

≤ pp/2

(

m
∑

i=1

‖ui‖2p

)
p
2

. (2)

For p ≥ 2 the pth root is a concave function; hence Jensen’s inequality, applied to (2), gives us

the desired result.

We are ready to prove the main result of this section. Note that in the following theorem the

scaling term γ is defined with respect to the p norm.

Theorem 2. Given a set of vectors X = {x1, x2, . . . , xn} ⊂ R
d and ε > 0. For every µ ∈ conv(X)

and 2 ≤ p < ∞ there exists an 4pγ2

ε2
uniform vector µ′ ∈ conv(X) such that ‖µ − µ′‖p ≤ ε. Here,

γ := maxx∈X ‖x‖p.

Proof. Express µ ∈ conv(X) as a convex combination of xis: µ =
∑n

i=1 αixi where αi ≥ 0, for all

i ∈ [n], and
∑n

i=1 αi = 1. Note that α = (α1, α2, . . . , αn) corresponds to a probability distribution

over vectors x1, x2, . . . , xn. That is, under probability distribution α vector xi is drawn with

probability αi. The vector µ is the mean of this distribution. Specifically, the jth component of µ

is the expected value of the random variable that takes value xi,j with probability αi, here xi,j is

the jth component of vector xi. We succinctly express these component-wise equalities as follows:

Ev∼α[v] = µ. (3)

Let v1, v2, . . . , vm be m i.i.d. draws from α. The sample mean vector is defined to be 1
m

∑m
i=1 vi.

Below we specify function g : Xm → R to quantify the p-norm distance between the sample mean

vector and the µ.

g(v1, v2, . . . , vm) :=

∥

∥

∥

∥

∥

1

m

m
∑

i=1

vi − µ

∥

∥

∥

∥

∥

p

. (4)

The key technical part of the remainder of the proof is to show that

E[g] ≤ 2
√
p γ√
m

. (5)
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For m = 4pγ2

ε2 this inequality reduces to E[g] ≤ ε. Therefore, when the number of samples

m = 4pγ2

ε2
we have Pr(g ≤ ε) > 0, i.e., with positive probability the sample mean vector is ε close

to µ in the p-norm. Overall, the stated claim is implied by the probabilistic method.

Recall that in expectation the sampled mean is equal to µ, i.e., Ev′1,...,v
′
m∼α

1
m

∑m
i=1 v

′
i = µ.

Hence, we have

E[g] = Ev1,...,vm

∥

∥

∥

∥

∥

1

m

m
∑

i=1

vi − µ

∥

∥

∥

∥

∥

p

(6)

= Ev1,...,vm

∥

∥

∥

∥

∥

1

m

m
∑

i=1

vi − Ev′1,...,v
′
m

1

m

m
∑

i=1

v′i

∥

∥

∥

∥

∥

p

(7)

= Ev1,...,vm

∥

∥

∥

∥

∥

Ev′1,...,v
′
m

(

1

m

m
∑

i=1

vi −
1

m

m
∑

i=1

v′i

)∥

∥

∥

∥

∥

p

. (8)

Note that ‖ · ‖p is convex for p ≥ 1. Therefore, Jensen’s inequality gives us:

Ev1,...,vm

∥

∥

∥

∥

∥

Ev′1,...,v
′
m

(

1

m

m
∑

i=1

vi −
1

m

m
∑

i=1

v′i

)∥

∥

∥

∥

∥

p

≤ Ev1,...,vmEv′1,...,v
′
m

∥

∥

∥

∥

∥

(

1

m

m
∑

i=1

vi −
1

m

m
∑

i=1

v′i

)∥

∥

∥

∥

∥

p

(9)

=
1

m
Ev1,...,vm
v′1,...,v

′
m

∥

∥

∥

∥

∥

(

m
∑

i=1

(

vi − v′i
)

)∥

∥

∥

∥

∥

p

. (10)

Let r1, r2, . . . , rm be a sequence of i.i.d. Rademacher ±1 random variables, i.e., Pr(ri = ±1) = 1
2

for all i ∈ [m]. Since, for all i ∈ [m], vi and v′i are i.i.d. copies we can write

1

m
Evi,v′i

∥

∥

∥

∥

∥

(

m
∑

i=1

(

vi − v′i
)

)∥

∥

∥

∥

∥

p

=
1

m
Evi,v′i,ri

∥

∥

∥

∥

∥

(

m
∑

i=1

ri
(

vi − v′i
)

)∥

∥

∥

∥

∥

p

≤ 1

m
Evi,v′i,ri





∥

∥

∥

∥

∥

m
∑

i=1

rivi

∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

m
∑

i=1

riv
′
i

∥

∥

∥

∥

∥

p



 (Triangle inequality)

=
1

m
Eri



 Evi,v′i





∥

∥

∥

∥

∥

m
∑

i=1

rivi

∥

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∥

m
∑

i=1

riv
′
i

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

r1, .., rm







 (Tower property)

=
1

m
Eri



 Evi





∥

∥

∥

∥

∥

m
∑

i=1

rivi

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

r1, .., rm



 + Ev′i





∥

∥

∥

∥

∥

m
∑

i=1

riv
′
i

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

r1, .., rm









=
1

m
Eri



 2 Evi





∥

∥

∥

∥

∥

m
∑

i=1

rivi

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

r1, .., rm









= 2 Evi,ri

∥

∥

∥

∥

∥

m
∑

i=1

ri
vi
m

∥

∥

∥

∥

∥

p

. (11)
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The penultimate equality follows from the following (vis and v′is are i.i.d. copies)

Evi





∥

∥

∥

∥

∥

m
∑

i=1

rivi

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

r1, .., rm



 = Ev′i





∥

∥

∥

∥

∥

m
∑

i=1

riv
′
i

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

r1, .., rm



 . (12)

Overall, inequalities (8), (10), and (11) imply

E[g] ≤ 2 Evi,ri

∥

∥

∥

∥

∥

m
∑

i=1

ri
vi
m

∥

∥

∥

∥

∥

p

, (13)

where r1, r2, . . . , rm is a sequence of i.i.d. Rademacher ±1 random variables.

At this point we can apply Theorem 1 (Khintchine inequality) with ui =
vi
m to obtain

Evi,ri

∥

∥

∥

∥

∥

m
∑

i=1

ri
vi
m

∥

∥

∥

∥

∥

p

= Evi



 Eri





∥

∥

∥

∥

∥

m
∑

i=1

ri
vi
m

∥

∥

∥

∥

∥

p

∣

∣

∣

∣

∣

∣

v1, .., vm







 (14)

≤ Evi





√
p

(

m
∑

i=1

∥

∥

∥

vi
m

∥

∥

∥

2

p

)1/2


 (15)

≤ Evi





√
p

(

m
∑

i=1

γ2

m2

)1/2


 (16)

=
√
p

γ√
m
. (17)

Inequality (16) uses the fact that random vectors vi are supported over X, so ‖vi‖2p ≤ γ2.

Using (13) and (17) we get

E[g] ≤ 2
√
p γ√
m

. (18)

This completes the proof.

We end this section by stating an ∞-norm variant of our result. This theorem follows directly

from Hoeffding’s inequality. Note that in the following theorem the scaling of vectors in X is with

respect to the ∞-norm.

Theorem 3. Given a set of vectors X = {x1, x2, . . . , xn} ⊂ R
d, with maxx∈X ‖x‖∞ ≤ 1, and

ε > 0. For every µ ∈ conv(X) there exists an O
(

logn
ε2

)

uniform vector µ′ ∈ conv(X) such that

‖µ− µ′‖∞ ≤ ε.

Proof. Apply Hoeffding’s inequality component wise and take union bound.
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4 Computing Approximate Nash Equilibrium

Bimatrix Games. Bimatrix games are two player games in normal form. Such games are specified

by a pair of n× n matrices (A,B), which are termed the payoff matrices for the players. The first

player, also called the row player, has payoff matrix A, and the second player, or the column player,

has payoff matrix B. The strategy set for each player is [n] = {1, 2, . . . , n}, and, if the row player

plays strategy i and column player plays strategy j, then the payoffs of the two players are Aij and

Bij respectively. The payoffs of the players are normalized between −1 and 1, so Aij, Bij ∈ [−1, 1]
for all i, j ∈ [n].

Recall that ∆n is the set of probability distributions over the set of pure strategies [n]. We

use ei ∈ R
n to denote the vector with 1 in the ith coordinate and 0’s elsewhere. The players

can randomize over their strategies by selecting any probability distribution in ∆n, called a mixed

strategy. When the row and column players play mixed strategies x and y respectively, the expected

payoff of the row player is xTAy and the expected payoff of the column player is xTBy.

Definition 1 (Nash Equilibrium). A mixed strategy pair (x, y), x, y ∈ ∆n, is said to be a Nash

equilibrium if and only if:

xTAy ≥ eTi Ay ∀ i ∈ [n] and (19)

xTBy ≥ xTBej ∀ j ∈ [n]. (20)

By definition, if (x, y) is a Nash equilibrium neither the row player nor the column player can

benefit, in expectation, by unilaterally deviating to some other strategy. We say that a mixed

strategy pair is an ε-Nash equilibrium is no player can benefit more than ε, in expectation, by

unilateral deviation. Formally,

Definition 2 (ε-Nash Equilibrium). A mixed strategy pair (x, y), x, y ∈ ∆n, is said to be an ε-Nash

equilibrium if and only if:

xTAy ≥ eTi Ay − ε ∀ i ∈ [n] and (21)

xTBy ≥ xTBej − ε ∀ j ∈ [n]. (22)

Throughout, we will write C to denote the sum of payoff matrices, C := A+B. We will denote

the ith column of C by Ci, for i ∈ [n]. Note that ‖Ci‖0 is equal to the number of non-zero entries

in the ith column of C.

In the following definition we ensure that the sparsity parameter s is at least 4 for ease of

presentation. In particular, the running time of our algorithm depends on the log of the number of

non-zero entries in the columns of C, i.e., log of the sparsity of the columns of matrix C. Setting

s ≥ 4 gives us log s ≥ 2. This allows us to state a single running-time bound, which holds even for

corner cases wherein the column sparsity is, say, zero (and hence log(maxi ‖Ci‖0) is undefined).

11



Definition 3 (s-Sparse Games). The sparsity of a game (A,B) is defined to be

s := max{max
i
‖Ci‖0, 4},

where matrix C = A+B.

The quantitative connection between the sparsity of a game and the time it takes to compute

an ε-Nash equilibrium is stated below.

Theorem 4. Let A,B ∈ [−1, 1]n×n be the payoff matrices of an s-sparse bimatrix game. Then, an

ε-Nash equilibrium of (A,B) can be computed in time

n
O
(

log s

ε2

)

.

Our algorithm for computing ε-Nash equilibrium relies on the following bilinear program, which

was formulated by Mangasarian and Stone [26]. As formally specified in Lemma 1 below, approxi-

mate solutions of this bilinear program correspond to approximate Nash equilibria.

max
x,y,π1,π2

xTCy − π1 − π2

subject to xTB ≤ 1

Tπ2

Ay ≤ 1π1

x, y ∈ ∆n

π1, π2 ∈ [−1, 1]. (BP)

Here 1 denotes the all-ones vector. Using the definition of Nash equilibrium one can show that

the optimal solutions of this bilinear program correspond to Nash equilibria of the game (A,B).

Formally, we have

Theorem 5 (Equivalence Theorem [26]). Mixed strategy pair (x̂, ŷ) is a Nash equilibrium of the

game (A,B) if and only if x̂, ŷ, π̂1, and π̂2 form an optimal solution of the bilinear program (BP),

for some scalars π̂1 and π̂2. In addition, the optimal value achieved by (BP) is equal to zero and

the payoffs of the row and column player at this equilibrium are π̂1 and π̂2 respectively.

A relevant observation is that that an approximate solution of the bilinear program corresponds

to an ε-Nash equilibrium.

Lemma 1. Let x, y ∈ ∆n along with scalars π1 and π2 form a feasible solution of (BP) that achieves

an objective function value more than −ε, i.e., xTCy ≥ π1 + π2 − ε. Then, (x, y) is an ε-Nash

equilibrium of the game (A,B).

12



Proof. The feasibility of x, y implies that maxj x
TBej ≤ π2 and maxi e

T
i Ay ≤ π1. Since the

objective function value achieved by x, y is at least −ε we have xTAy+xTBy−π1−π2 ≥ −ε. But,
xTAy is at most π1 and xTBy is at most π2. So, the following inequalities must hold

xTAy ≥ π1 − ε and (23)

xTBy ≥ π2 − ε. (24)

Overall, we get xTAy ≥ maxi e
T
i Ay − ε and xTBy ≥ maxj x

TBej − ε. Hence (x, y) satisfies the

definition of an ε-Nash equilibrium.

The proposed algorithm (see Algorithm 1) solves the following p-norm minimization problem,

with p ≥ 2. The program CP(u) is parametrized by vector u ∈ R
n and it can be solved in polynomial

time.7

min
x,y,π1,π2

‖Cy − u‖p (CP(u))

subject to xTu ≥ π1 + π2 − ε/2

Ay ≤ 1π1

xTB ≤ 1

Tπ2

x, y ∈ ∆n

π1, π2 ∈ [−1, 1].

Proof of Theorem 4. Algorithm 1 iterates at most n
O
(

p

ε2

)

times, since this is an upper bound on

the number of multisets of size O( p
ε2
). Furthermore, in each iteration the algorithm solves convex

program CP(u), this takes polynomial time. Given that p = log s, these observations establish the

desired running-time bound.

Now, in order to prove the theorem we need to show that Alogorithm 1 is (i) Sound: any mixed

strategy pair, (x, y), returned by the algorithm is an approximate Nash equilibrium; (ii) Complete:

the algorithm always returns a mixed-strategy pair.

Soundness: Lemma 1 implies that any mixed-strategy pair returned by the algorithm is guar-

anteed to be an ε-Nash equilibrium. Specifically, say for some u the “if” condition in Step 7 is met.

In addition, let x and y be the returned optimal solution of CP(u). Then,

|xT (Cy − u)| ≤ ‖x‖q‖Cy − u‖p (Hölder’s inequality) (25)

≤ 1× ε/2. (26)

7Note that for fixed u, CP(u) is a convex program. Specifically, given u ∈ R
n and matrix C ∈ R

n×n, for p ≥ 1,

the function f(x) := ‖Cx − u‖p is convex.
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Algorithm 1 Algorithm for computing ε-Nash equilibrium in s-sparse games

Given payoff matrices A,B ∈ [−1, 1]n×n and ε > 0; Return: ε-Nash equilibrium of (A,B)

1: Write s to denote the sparsity of the game (A,B) and let p = log s.

{Note that, by definition, s ≥ 4; hence, p ≥ 2.}
2: Let U be the collection of all multisets of {1, 2, . . . , n} of cardinality at most κ p

ε2
, where κ is a

fixed constant.

3: Write Ci to denote the ith column of matrix C = A+B, for i ∈ [n].

4: for all multisets S ∈ U do

5: Set u = 1
|S|

∑

i∈S Ci.

{u is an |S|-uniform vector in the convex hull of the columns of C.}
6: Solve convex program CP(u).

7: if the objective function value of CP(u) is less than ε/2 then

8: Return (x, y), where x and y form an optimal solution of CP(u).

9: end if

10: end for

Here q = p/(p− 1) ≥ 1, since p ≥ 2. The second inequality follows from the fact that the objective

function value of CP(u) is no more than ε/2 and ‖x‖q ≤ ‖x‖1 = 1. Since the returned x satisfies

the feasibility constraints in CP(u) we have xTu ≥ π1 + π2 − ε/2. Therefore, xTCy ≥ xTu− ε/2 ≥
π1 + π2 − ε. Overall, x and y satisfy the conditions in Lemma 1, and hence form an ε-Nash

equilibrium.

Completeness: It remains to show that the “if” condition in Step 7 is satisfied at least once

(and hence the algorithm successfully returns a mixed strategy pair (x, y)). Next we accomplish

this task.

Write (x̂, ŷ) to denote a Nash equilibrium of the given game and let π̂1 (π̂2) be the payoff of the

row (column) player under this equilibrium. Note that Cŷ lies in the convex hull of the columns of

C. Furthermore, since the sparsity of the game is s, for p = log s, we have

‖Ci‖p ≤ 4 ∀i ∈ [n]. (27)

This follows from the fact that the entries of matrix C lie between −2 and 2 (recall that the

payoffs are normalized between −1 and 1); hence considering the p norm of any column i we get:

‖Ci‖p ≤ (2ps)1/p = 2(s)1/p = 2(2log s)1/p = 4.

Therefore, for p = log s, we can apply Theorem 2 over the convex hull conv({Ci}i) with γ ≤ 4.

In particular, for µ = Cŷ, Theorem 2 implies that there exists a O( p
ε2
) uniform vector µ′ such that

‖Cŷ − µ′‖p ≤ ε/2

Since µ′ is O( p
ε2
) uniform, at some point during its execution the algorithm (with an appropriate
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value of κ) will set u = µ′. Therefore, at least once the algorithm will consider a u that satisfies

‖Cŷ − u‖p ≤ ε/2. (28)

We show that in this case x̂, ŷ, π̂1 and π̂2 form a feasible solution of CP(u) that achieves an

objective function value of no more than ε/2. That is, the “if” condition in Step 7 is satisfied for

this choice of u.

First of all the fact that the objective function value is no more than ε/2 follows directly from

(28).

Since (x̂, ŷ) is a Nash equilibrium, using Theorem 5 we get

x̂TCŷ = π̂1 + π̂2. (29)

Next we show that x̂Tu ≥ π1 + π2 − ε/2. Consider the following bound:

|x̂T (Cŷ − u)| ≤ ‖x̂‖q‖Cŷ − u‖p (Hölder’s inequality) (30)

≤ 1× ε/2. (31)

Again, q = p/(p − 1) ≥ 1 and we have ‖x̂‖q ≤ 1. Here, the second inequality now follows from our

choice of u. Since, x̂TCŷ = π̂1 + π̂2, we have x̂Tu ≥ π̂1 + π̂2 − ε/2.

The remaining feasibility constraints of CP(u) are satisfied as well. This simply follows from

the fact that x̂, ŷ, π̂1, and π̂2 form a feasible (in fact optimal) solution of (BP), see Theorem 5.

Overall, we get that the “if” condition in Step 7 will be satisfied at least once and this completes

the proof.

Ideas developed in this section can address other notions of sparsity as well. Specifically, if there

exist α, β ∈ R+ and γ ∈ R such that the matrix αA+βB+γ1n×n has column or row sparsity s, then

our algorithm can be used to find an ε-Nash equilibrium of the game (A,B) in time n
O

(

λ2 log s

ε2

)

;

here, 1n×n is the all-ones n × n matrix and λ := max{α, β, 1/α, 1/β}. This follows from the fact

that a (min{α, β} ε)-Nash equilibrium of the game (αA, βB + γ1n×n) is an ε-Nash equilibrium of

the game (A,B).

Furthermore, in time n
O
(

log s

ε2

)

, we can compute ε-Nash equilibria of games in which both ma-

trices A and B have column or row sparsity s. Note that this case is not a direct corollary of

Theorem 4. In particular, if the columns of matrix A and the rows of matrix B are s sparse,

then it is not necessary that A + B has low column or row sparsity. But, an approximate equi-

librium of such a game can be computed by exhaustively searching for vectors, v and w, that are
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ε/4-close (under the log s-norm distance) to Aŷ and x̂TB respectively, here (x̂, ŷ) is a Nash equilib-

rium of (A,B). In this case, instead of CP(u), we need to solve a convex program that minimizes

‖Ay − v‖log s + ‖BTx− w‖log s and has the following constraint xT v + wT y ≥ π1 + π2 − ε/2 along

with the constraints present in (BP). A direct extension of the proof of Theorem 4 shows that this

program finds an ε-Nash equilibrium of the game (A,B).

Remark 1. Consider the class of games in which the p norm of the columns of matrix C is a fixed

constant. A simple modification of the arguments mentioned above shows that for such games an

ε-Nash equilibrium can be computed in time n
O
(

p

ε2

)

.

Remark 2. Algorithm 1 can be adopted to find an approximate Nash equilibrium with large social

welfare (the total payoffs of the players). Specifically, in order to determine whether there exists

an approximate Nash equilibrium with social welfare more than α − ε, we include the constraint

π1 +π2 ≥ α in CP(u). The time complexity of the algorithm stays the same, and then via a binary

search over α we can find an approximate Nash equilibrium with near-optimal social welfare.

Remark 3. In Algorithm 1, instead of the convex program CP(u), we can solve the linear program

with objective min ‖Cy−u‖∞ and constraints identical to CP(u). Algorithm 1 still finds an approx-

imate Nash, since ‖Cy− u‖∞ ≤ ‖Cy− u‖p and we have |xT (Cy− u)| ≤ ‖x‖1‖Cy− u‖∞ ≤ 1× ε/2

(1 and ∞ are Hölder conjugates of each other).

Solving a linear program, in place of a convex program, would lead to a polynomial improvement

in the running time of the algorithm. But, minimizing the p norm of Cy − u remains useful in

specific cases; in particular, it provides a better running-time bound when the game is guaranteed

to have a “small probability” equilibrium. We detail this result in the following Section.

4.1 Small Probability Games

Daskalakis and Papadimitriou [17] showed that there exists a PTAS for games that contain an equi-

librium with small—specifically, O
(

1
n

)

—probability values. This result is somewhat surprisingly,

since such small-probability equilibria have large—Ω(n)—support, and hence are not amenable to,

say, exhaustive search. This section shows that if a game has an equilibrium with probability values

O
(

1
m

)

, for some 1 ≤ m ≤ n, then an approximate equilibrium can be computed in time nO(k/ε2),

where k has a logarithmic dependence on s/m. Since column sparsity s is no more than n, we get

back the result of [17] as a special case.

Definition 4 (Small Probability Equilibrium). A Nash equilibrium (x, y) is said to be m-small

probability if all the entries of x and y are at most 1
m .

In [17] a PTAS is given for games that have an equilibrium with probability values at most
1
δn , for some fixed constant δ ∈ (0, 1]. Hence, the setting of [17] corresponds to games that have

δn-small probability equilibrium. Next we prove a result for general m-small probability equilibria.
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Theorem 6. Let A,B ∈ [−1, 1]n×n be the payoff matrices of an s-sparse bimatrix game. If (A,B)

contains an m-small probability Nash equilibrium, then an ε-Nash equilibrium of the game can be

computed in time

n
O
(

t
ε2

)

,

where t = max
{

2 log
(

s
m

)

, 2
}

.

Proof. Let norm p = max
{

2 log
(

s
m

)

, 2
}

and write q to denote the Hölder conjugate of p, i.e., q

satisfies 1
p + 1

q = 1. To obtain this result Algorithm 1 is modified as follows: (i) use the updated

value of p instead of the one specified in Step 1 of the algorithm; (ii) include convex constraint

‖x‖q ≤ m−1/p in CP(u); (iii) In Step 7 use ε m1/p

2 , instead of ε
2 , as the threshold for returning a

solution.

In order to establish the theorem we prove that the modified alogorithm is (i) Sound: any

mixed strategy pair, (x, y), returned by it is an approximate Nash equilibrium; (ii) Complete: the

algorithm always returns a mixed-strategy strategy pair.

Soundness: Below we show that if x and y are returned by this modified algorithm then they

form a near-optimal solution of the bilinear program (BP) and, in particular, satisfy xTCy ≥
π1 + π2 − ε. Hence, Lemma 1 shows that any returned solution (x, y) is an ε-Nash equilibrium.

Say the algorithm returns (x, y) while considering vector u. Applying Hölder’s inequality gives

us:

|xT (Cy − u)| ≤ ‖x‖q‖Cy − u‖p (32)

≤ m−1/p ε m1/p

2
(33)

= ε/2. (34)

Here the second inequality uses the fact that x satisfies the feasibility constraint ‖x‖q ≤ m−1/p

and the objective function value of CP(u) is at most ε m1/p

2 . Since x is a feasible solution of CP(u),

it satisfies xTu ≥ π1 + π2 − ε/2. Therefore, using inequality (34) we get xTCy ≥ π1 + π2 − ε, as

required.

Completeness: It remains to show that the “if” condition in Step 7 is satisfied at least once.

To achieve this we prove that, for a particular u, an m-small probability Nash equilibrium forms

a feasible solution of CP(u) and achieves an objective function value of at most ε m1/p

2 . Therefore,

for this u the “if” condition in Step 7 will be met.

Recall that the columns of C are s sparse and its entries are at most 2. Hence the p norm of

any column Ci satisfies ‖Ci‖p ≤ (s2p)1/p = 2s1/p.

Let (x̂, ŷ) be an m-small probability Nash equilibrium of the game. Theorem 2, applied over

the convex hull conv({Ci}i) with γ ≤ 2s1/p, guarantees that there exists a O
(

p s2/p

ε2 m2/p

)

uniform
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vector that is ε m1/p

2 close to Cŷ. Since p ≥ 2 log
(

s
m

)

, we have

s2/p

m2/p
=
( s

m

)2/p
(35)

≤ 2. (36)

Therefore, there exists a O
( p
ε2

)

uniform vector that is ε m1/p

2 close to Cŷ. Such a vector, say

u, will be selected by the algorithm in Step 4 at some point of time. Below we show that, for u,

the mixed strategies of the Nash equilibrium x̂ and ŷ are feasible solutions that achieve the desired

objective function value.

To establish the feasibility of x̂, we first upper bound its q norm. The fact that its entries at

most 1/m and q = p
p−1 ≥ 1 implies:

‖x̂‖q ≤
(

m
1

mq

)1/q

(37)

= m−1/p. (38)

Since (x̂, ŷ) is a Nash equilibrium, there exists payoffs π̂1 and π̂2 such x̂TCŷ = π̂1 + π̂2 (The-

orem 5). Also, x̂, ŷ, π̂1, and π̂2 are feasible with respect to (BP). Hence, the only constraint of

CP(u) that we still need to verify is x̂Tu ≥ π̂1 + π̂2 − ε/2. This follows from Hölder’s inequality:

|x̂T (Cŷ − u)| ≤ ‖x̂‖q ‖Cŷ − u‖p (39)

≤ m−1/p ε m1/p

2
(40)

= ε/2. (41)

Overall, for the above specified u, the “if” condition in Step 7 will be satisfied. This shows that

the algorithms successfully returns an ε-Nash equilibrium.

The algorithm iterates at most n
O
(

p

ε2

)

times, since this is an upper bound on the number of

multisets of size O( p
ε2 ). Furthermore, in each iteration the algorithm solves a convex program, this

takes polynomial time. These observations establish the desired running-time bound and complete

the proof.

5 Densest Subgraph

This section and the next one present additive approximations for the normalized densest k-

subgraph problem (NDkS) and the densest k-bipartite subgraph problem (DkBS) respectively.

In NDkS we are given a simple graph G = (V,E) along with a size parameter k ≤ |V | and the

goal is to find a maximum density subgraph containing exactly k vertices. Here, density of a size-k

18



subgraph S = (VS , ES) is defined to be ρ(S) := |ES |/k2. Note that in NDkS density is normalized

to be at most one.

Next, we present a quadratic program, an ε-additive approximate solution of which can be used

to efficiently find an ε-additive approximate solution of NDkS. Write A to denote the adjacency

matrix of the given graph G and let n be the number of vertices in G. Define matrix C := 1
2A+ I,

here I is the n× n identity matrix.

max
x

xTCx (QP)

subject to xi ≤
1

k
∀i ∈ [n]

x ∈ ∆n

Write S∗ to denote an optimal solution of the given NDkS instance and let z∗ denote the

optimal value of the quadratic program (QP). Given a solution x of (QP) that achieves an objective

function value of z∗− ε (i.e., x satisfies xTCx ≥ z∗− ε), we show how to efficiently find a subgraph

S that is an ε-additive approximate solution of NDkS, i.e., find a size-k subgraph S that satisfies

ρ(S) ≥ ρ(S∗)− ε. Towards this end, the following lemma serves as a useful tool.

Lemma 2. Given a feasible solution, y, of the quadratic program (QP) we can find in polynomial

time a feasible solution z that satisfies zTCz ≥ yTCy and, moreover, every component of z is either

0 or 1
k , i.e., zi ∈

{

0, 1k
}

for each i ∈ [n].

Proof. Given feasible solution y write M(y) := {i ∈ [n] | 0 < yi < 1/k}. We iteratively update y

to decrease the cardinality of M(y), and at the same time ensure that the objective function value

(i.e., yTCy) does not decrease. Since |M(y)| ≤ n we iterate at most n times. This will overall

establish the lemma.

Note that each i ∈ [n] indices both a component of y and a vertex of the graph G. Write γi

to denote the total y value of vertex i and its neighbors in G, i.e., γi := yi +
∑

j:(i,j)∈E yj . Since

y ∈ ∆n and integer k > 1, the cardinality of set M(y) is either 0 or strictly greater than one. If

M(y) = φ then the stated claims follows simply by setting z = y. Otherwise, if |M(y)| ≥ 2 then

we select two vertices i, j ∈M(y) and change yi and yj such that the size of M(y) decreases by at

least one. We select i, j ∈M(y) as follows:

• If there exist vertices i, j ∈M(y) that are not connected by an edge in G, then without loss

of generality we assume that γi + yi ≥ γj + yj.

• If every pair of vertices i, j ∈ M(y) is connected by an edge, then without loss of generality

we assume that γi ≥ γj.
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Let δ := min
{

yj,
1
k − yi

}

. We update yi ← yi + δ and yj ← yj − δ, this update ensures that

either yj goes down to zero or yi becomes equal to 1/k; hence, the size of M(y) decreases by at

least one.

Next we show this change in y does not decrease the objective function value yTCy. Thereby

we get the stated claim.

Consider the case in which i and j are not connected via an edge. The other case in which

(i, j) ∈ E (and we have si ≥ sj) follows along the same lines.

Before the update the following inequality holds, γi + yi ≥ γj + yj . For any δ, the change in

objective function value is equal to (yi + δ)(γi + δ) + (yj − δ)(γj − δ)− (yiγi + yjγj). This quality

is equal to δ(yi + γi − yj − γj) + δ2. Since yi + γi − yj − γj ≥ 0 and δ is nonnegative, we get that

the update in y does not decrease the objective function value. This completes the proof.

Recall that ρ(S∗) and z∗ denote the optimal values of the given NDkS instance and (QP)

respectively. Using Lemma 2 we get the following proposition.

Proposition 1. The optimal value of (QP) is equal to the optimal value of the NDkS instance plus

1/k, i.e., z∗ = ρ(S∗) + 1/k.

Proof. We use S∗ to obtain a feasible solution, x̂, for (QP) as follows: for each i ∈ V (S∗) set

x̂i = 1/k and for every j /∈ V (S∗) set x̂j = 0. Here, V (S∗) denotes the set of vertices of the

subgraph S∗.

By the definition of matrix C we get that x̂TCx̂ = ρ(S∗) + 1/k. This implies that

z∗ ≥ ρ(S∗) + 1/k. (42)

Using Lemma 2 we can obtain an optimal solution x′ of the QP such that the components of

x′ are either 0 or 1/k. By definition, (x′)TCx′ = z∗. Write S′ to denote the subgraph induced by

the vertex subset Supp(x′). Note that z∗ = (x′)TCx′ = ρ(S′) + 1/k. Given that S∗ is an optimal

solution of the NDkS instance, we have ρ(S∗) ≥ ρ(S′). Hence, the following inequality holds

ρ(S∗) + 1/k ≥ z∗. (43)

Inequalities (42) and (43) imply the stated claim.

Finally, we establish the connection between (QP) and NDkS.

Theorem 7. Given an ε-additive approximate solution of (QP) we can find an ε-additive approx-

imate solution of NDkS in polynomial time.

Proof. Given an ε-additive approximate solution of (QP), via Lemma 2, we can find an ε-additive

approximation x̂ whose components are either 0 or 1/k. Write Ŝ to denote the subgraph induced
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by vertex subset Supp(x̂); recall that, each i ∈ [n] indices both a component of x̂ and a vertex of

the graph G.

Note that x̂TCx̂ = ρ(Ŝ) + 1/k. Since x̂TCx̂ ≥ z∗ − ε, the following inequality holds ρ(Ŝ) +

1/k ≥ z∗ − ε. Using Propostion 1 we get that Ŝ is an ε-additive approximate solution of NDkS,

ρ(Ŝ) ≥ ρ(S∗)− ε.

In other words, in order to determine an approximate solution of NDkS it suffices to compute

an approximate solution of (QP).

Note that, if the maximum degree of the graph G is d then the number of non-zero components

in any column of the objective matrix C is no more than d + 1. This implies that, for i ∈ [n],

we have ‖Ci‖p ≤ (d + 1)1/p. Here, Ci denotes the ith column of C. Now for p = log(d + 1)

the following bound holds for all i ∈ [n]: ‖Ci‖p ≤ 2. Therefore, as in Algorithm 1, enumerating

all O
( p
ε2

)

-uniform vectors in the convex hull of the columns of C, we can find an ε-approximate

solution of (QP). This establishes the following theorem.

Theorem 8. Let G be a graph with n vertices and maximum degree d. Then, an ε-additive ap-

proximation of NDkS over G can be determined in time

n
O
(

log d

ε2

)

.

In general, this gives us an additive approximation algorithm for NDkS that runs in quasi-

polynomial time.

5.1 Densest Bipartite Suubgraph

In DkBS we are given a graph G = (V,E) along with a size parameter k ≤ |V | and the goal is to

find size-k vertex subsets, S and T , such that the density of edges between S and T is maximized.

Specifically, the (bipartite) density of vertex subsets S and T is defined as follows:

ρ(S, T ) :=
|E(S, T )|
|S||T | , (44)

here E(S, T ) denotes the set of edges that connect S and T .

Let vertex subsets S∗ and T ∗ form an optimal solution of the given DkBS instance. Hence,

ρ(S∗, T ∗) is equal to the optimal density. Next we state a bilinear program from [3] to approximate

DkBS. Here, A denotes the adjacency matrix of the given graph G and n = |V |.

max
x,y

xTAy

subject to x, y ∈ ∆n

xi, yi ≤
1

k
∀i ∈ [n]. (BP-DkBS)
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Note that optimizing (BP-DkBS) over x, with a fixed y, corresponds to solving a linear program.

Therefore, for any fixed y there exists an optimal basic feasible x, and vice versa. In other words,

for any feasible pair (x0, y0) we can find (x, y), such that xT0 Ay0 ≤ xTAy and the all the components

of x and y are either 0 or 1/k. This observation implies that the optimal value of (BP-DkBS) is

equal to ρ(S∗, T ∗). In addition, given an additive ε-approximate solution of (BP-DkBS), (x′, y′), we

can efficiently determine an ε-approximate solution of DkBS. Specifically, we can assume without

loss of generality that x′ and y′ are basic, and then for S′ := Supp(x′) and T ′ := Supp(y′) we have

ρ(S′, T ′) ≥ ρ(S∗, T ∗)− ε. In other words, in order to determine an approximate solution of DkBS

it suffices to compute an approximate solution of (BP-DkBS).

Note that the column sparsity of the objective matrix in (BP-DkBS)—i.e, the column sparsity

of the adjacency matrix A—is equal to the maximum degree of the given graph. Therefore, as

outlined in the previous section, we can modify Algorithm 1 to obtain the following theorem.

Theorem 9. Let G be a graph with n vertices and maximum degree d. Then, there exists an

algorithm that runs in time n
O
(

log d

ε2

)

and computes a k × k-bipartite subgraph of density at least

ρ(S∗, T ∗)− ε.

6 Extensions

This section extends Theorem 2 to address convex hulls of matrices. Here we also detail approximate

versions of certain generalizations of the Carathéodory’s theorem; specifically, we focus on the

colorful Carathéodory theorem and Tverberg’s theorem.

First of all, note that a d × d matrix can be considered as a vector in R
d2 , and hence directly

applying Theorem 2 to vectors in R
d2 we get results for entrywise p-norms. Recall that for a d× d

matrix Y the entrywise p-norm is defined as follows ‖Y ‖p :=
(

∑d
i=1

∑d
j=1 |Yi,j|p

)1/p
.

In particular, we get the an approximate version of the Birkhoff-von Neumann theorem by

considering d × d matrices as vector of size d2 and applying Theorem 2 with norm p = log d.

We know via the Birkhoff-von Neumann theorem that any d × d doubly stochastic matrix can be

expressed as a convex combination of d × d permutation matrices (see, e.g., [5]). The following

corollary shows that for every doubly stochastic matrix D there exists an ε-close (in the entrywise

log d-norm, and hence in the entrywise∞-norm) doubly stochastic matrix D′ that can be expressed

as a convex combination of O
(

log d
ε2

)

permutation matrices.

We say that a doubly stochastic matrix D′ is k uniform if there exists a size k multiset Π of

permutation matrices such that D′ = 1
k

∑

P∈Π P .

Corollary 1. For every d× d doubly stochastic matrix D there exists an O
(

log d
ε2

)

uniform doubly

stochastic matrix D′ such that maxi,j |Di,j −D′
i,j | ≤ ε.

In addition to entrywise norms, we can establish an approximate version of Carathéodory’s

theorem for matrices under the Schatten p-norm. Write ‖Y ‖Sp to denote that Schatten p-norm of
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a d× d′ matrix Y , i.e., ‖Y ‖Sp := ‖σ(Y )‖p, where σ(Y ) is the vector of singular values of Y . Given

a set of matrices Y = {Y1, Y2, . . . , Yn} ⊂ R
d×d′ , we say that a matrix M ′ ∈ conv(Y) is k uniform

(implicitly with respect to Y) if there exists a size k multiset S of [n] such that M ′ = 1
k

∑

i∈S Yi.

We can directly adopt the proof of Theorem 2 and, in particular, use the matrix version of

Khintchine inequality [31, 32] (instead of Theorem 1) to obtain the following result.

Theorem 10. Given a set of matrices Y = {Y1, Y2, . . . , Yn} ⊂ R
d×d′ and ε > 0. For every matrix

M ∈ conv(Y) and 2 ≤ p < ∞ there exists an O
(

pγ2

ε2

)

uniform matrix M ′ ∈ conv(Y) such that

‖M −M ′‖Sp ≤ ε. Here, γ := maxY ∈Y ‖Y ‖Sp .

6.1 Approximating Colorful Carathéodory and Tverberg’s Theorem

The colorful Carathéodory theorem (see [4] and [27]) asserts that if the convex hulls of d+1 sets (the

color classes) X1,X2, . . . ,Xd+1 ⊂ R
d intersect, then every vector in the intersection µ ∈ ∩iconv(Xi)

can be expressed as a convex combination of vectors, each of which has a different color.

Theorem 11 (Colorful Carathéodory Theorem). Let X1,X2, . . . ,Xd+1 be d + 1 sets in R
d and

vector µ ∈ ∩iconv(Xi). Then, there exists d+ 1 vectors x1, x2, . . . , xd+1 such that xi ∈ Xi for each

i and µ ∈ conv({x1, x2, . . . , xd+1}).

For a given collection of d + 1 sets (the color classes) X1,X2, . . . ,Xd+1 ⊂ R
d, a set R ∈ R

d is

called a rainbow if |R ∩Xi| = 1 for all i ∈ [d+ 1].

The colorful Carathéodory theorem guarantees the existence of a rainbowR = {x1, x2, . . . , xd+1}
whose convex hull contains the given vector µ. But, determining a rainbow R with µ ∈ conv(R) in

polynomial time remains an interesting open problem; see, e.g., [27]. Here we consider a natural

approximate version of this question wherein the goal is to find a rainbow R′ whose convex hull is

ε close to µ in the following sense infv∈conv(R′) ‖µ− v‖p ≤ ε. Below we show that, for appropriately

scaled vectors, Theorem 2 can be used to efficiently determine such a rainbow R′.

Theorem 2 implies that there exists a vector µ′ that satisfies ‖µ−µ′‖p ≤ ε and can be expressed

as a convex combination of t = O
(

pγ2

ε2

)

vectors of R, for p ≥ 2 and γ := maxx∈∪iXi ‖x‖p. Let

R′ be a size t subset of R such that µ′ ∈ conv(R′). Write n =
∑d+1

i=1 |Xi| and note that we can

exhaustively search for R′ in time
(d+1

t

)

nO(t). For a guessed R′ we can test if its convex hull is close

to µ (i.e., infv∈conv(R′) ‖µ− v‖p ≤ ε) via a convex program. Moreover, after finding an appropriate

subset R′ we can extend it to obtain a rainbow that is ε close to µ.

Another generalization of Carathéodory’s theorem is Tverberg’s Theorem (see [35] and [27]),

which is stated below.

Theorem 12 (Tverberg’s Theorem). Any set of (r − 1)(d + 1) + 1 vectors X ⊂ R
d can be parti-

tioned into r pairwise disjoint subsets X1,X2, . . . ,Xr ⊆ X such that their convex hulls intersect:
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∩ri=1conv(Xi) 6= φ.

Note that here the special case of r = 2 corresponds to Radon’s theorem (see, e.g., [27]).

Next we consider an approximate version of Tverberg’s theorem. At a high level, our result

guarantees the existence of pairwise disjoint subsets, X ′
1, . . . ,X

′
r, that have small cardinality and

whose convex hulls, conv(X ′
1), . . . , conv(X

′
r), are “concurrently close” to each other. Formally:

Definition 5 (Concurrently ε close). Sets V1, V2, ..., Vr ⊂ R
d are said to be concurrently ε close

under the p-norm distance if there exists a vector µ ∈ R
d such that infv∈conv(Vi) ‖µ − v‖p ≤ ε, for

all i ∈ [r].

Tverberg’s theorem together with Theorem 2 establish the following result.

Theorem 13. Let norm p ∈ [2,∞) and parameter ε > 0. Then, any set of (r − 1)(d + 1) + 1

vectors X ⊂ R
d can be partitioned into r pairwise disjoint subsets X ′

1,X
′
2, . . . ,X

′
r ⊆ X that are

concurrently ε close under the p-norm distance and satisfy |X ′
i| = O

(

pγ2

ε2

)

, for all i ∈ [r]. Here,

γ := maxx∈X ‖x‖p.

Tverberg’s theorem guarantees the existence of a partition with subsets X1,X2, . . . ,Xr whose

convex hulls intersect. It is an interesting open problem whether such a partition can be determined

in polynomial time; see [27]. But, note that Theorem 13 implies that for fixed r we can efficiently

determine an approximate solution for this problem, i.e., determine a partition consisting of subsets

that are concurrently ε close. In particular, with t = O
(

pγ2

ε2

)

, we can exhaustively search for size t

subsets X ′
1,X

′
2, . . . ,X

′
r ⊆ X that are concurrently ε close under the p-norm distance.8 This search

runs in time nO(rt). Finally, we can extend the disjoint subsets X ′
1,X

′
2, . . . ,X

′
r ⊆ X—by arbitrarily

assigning the vectors in X \ (∪iX ′
i)—to obtain a partition of X that is concurrently ε close.

7 Lower Bound

This section presents a lower bound that proves that in general ε-close (under the p-norm distance

with p ∈ [2,∞)) vectors cannot be expressed as a convex combination of less than 1
4εp/(p−1) vectors

of the given set. This, in particular, implies that the 1/ε2 dependence established in Theorem 2 is

tight for the Euclidean case (p = 2).

To prove the lower bound we consider the convex hull of the standard basis vectors e1, e2, . . . , ed ∈
R
d, i.e., consider the simplex ∆d. Write ē ∈ ∆d to denote the uniform convex combination of

e1, e2, . . . , ed: ē := (1/d, 1/d, . . . , 1/d)T . Next we show that any vector that can be expressed as a

8A polynomial-time algorithm exists for testing whether given subsets X ′

1, X
′

2, . . . , X
′

r are concurrently ε close

under the p-norm distance. In particular, we can run the ellipsoid method with a separation oracle that solves

the convex optimization problem minv∈conv(X′

i
) ‖u− v‖p to test if there exists a separating hyperplane for proposed

ellipsoid center u.
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convex combination of less than 1
4 εp/(p−1) standard basis vectors is at least ε away from ē in the

p-norm distance. This establishes the desired lower bound.

Note that (trivially) any vector in ∆d can be expressed as a convex combination of 1
εp/(p−1)

standard basis vectors if, say, 1
εp/(p−1) = d. Hence, to obtain a meaningful lower bound we need to

assume that 1
εp/(p−1) is less than d.

Proposition 2. Let 1
εp/(p−1) < d and norm p ≥ 2. Then, any vector u ∈ ∆d that can be expressed

as a convex combination of less than 1
4 εp/(p−1) standard basis vectors must satisfy ‖ē− u‖p > ε.

Proof. Write k = 1
4 εp/(p−1) . Since ē is symmetric, we can assume without loss of generality that u is

a convex combination of vectors e1, e2, . . . , ek. The optimal value of the following convex program

lower bounds the p-norm distance between u and ē:

min
α1,...,αk

∥

∥

∥

∥

∥

ē−
k
∑

i=1

αiei

∥

∥

∥

∥

∥

p

subject to

k
∑

i=1

αi = 1

αi ≥ 0 ∀i ∈ [k].

K.K.T. conditions imply that the optimal is achieved by setting αi = 1/k for all i ∈ [k]. Hence,

the p-norm distance between ē and u is at least
(

k
(

1
k − 1

d

)p)1/p
. The choice of k and the assumption

that 1
εp/(p−1) < d guarantee that ‖ē− u‖p > 3ε

41/p
. Since p ≥ 2, we get the desired claim.
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