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Abstract——In this paper, a day-ahead electricity market bid‐
ding problem with multiple strategic generation company (GEN‐
CO) bidders is studied. The problem is formulated as a Markov
game model, where GENCO bidders interact with each other to
develop their optimal day-ahead bidding strategies. Considering
unobservable information in the problem, a model-free and da‐
ta-driven approach, known as multi-agent deep deterministic
policy gradient (MADDPG), is applied for approximating the
Nash equilibrium (NE) in the above Markov game. The MAD‐
DPG algorithm has the advantage of generalization due to the
automatic feature extraction ability of the deep neural net‐
works. The algorithm is tested on an IEEE 30-bus system with
three competitive GENCO bidders in both an uncongested case
and a congested case. Comparisons with a truthful bidding
strategy and state-of-the-art deep reinforcement learning meth‐
ods including deep Q network and deep deterministic policy
gradient (DDPG) demonstrate that the applied MADDPG algo‐
rithm can find a superior bidding strategy for all the market
participants with increased profit gains. In addition, the com‐
parison with a conventional-model-based method shows that the
MADDPG algorithm has higher computational efficiency, which
is feasible for real-world applications.

Index Terms——Bidding strategy, day-ahead electricity mar‐
ket, deep reinforcement learning, Markov game, multi-agent
deterministic policy gradient (MADDPG), Nash equilibrium
(NE).

I. INTRODUCTION

THE recent success of artificial intelligence (AI) comput‐
er program AlphaGo has brought the deep reinforce‐

ment learning (RL) and deep RL into the spotlight [1], [2].

Currently, it has been applied to a wide range of complex re‐
al-world multi-stage decision optimization scenarios includ‐
ing video game play and self-driving. In power systems, the

strategic electricity market bidding problem of generation

companies (GENCOs) belongs to the category [3]. The topic

remains interesting ever since the deregulation of electricity

markets. The problem is investigable because the deregula‐
tion introduces the competition among GENCOs and makes

them become strategic price-makers that directly exert im‐
pacts on market clearing results.

The main goal of investigating the strategic electricity

market bidding problem is to find the Nash equilibrium

(NE), where no player in the market will benefit from a uni‐
lateral deviation from its current bidding strategy with the

strategies of other players unchanged. In such a case, it is as‐
sumed that each player has offered its best responses to a

fixed set of its rivals’ strategies. In literature, NE in a strate‐
gic environment is the research focus. The most widely ap‐
plied method for achieving NE is to formulate a bi-level

mathematical problem with equilibrium constraints (MPEC),

where the upper-level problem maximizes the profit of each

strategic GENCO, and the lower-level problem solves the

market clearing. The simultaneous optimization of multiple

MPECs formulates an equilibrium problem with equilibrium

constraints (EPEC), and it can be solved via the diagonaliza‐
tion algorithm [4]-[6]. Considering the uncertainty related to

hydropower, [7] discusses two types of NE when solving the

EPEC model. They are the Bayesian NE which focuses on

maximizing the expected payoff in different scenarios and

the robust NE which focuses on maximizing the worst-case

payoff. In [8], the unit commitment is included in the optimi‐
zation model of GENCO bidding strategies, which introduc‐
es additional binary variables and fails the conventional pri‐
mal-dual approaches. A selective branch-and-cutting algo‐
rithm is designed instead of the optimization of the genera‐
tor scheduling. In [9], the market equilibria are studied in a

coupled electricity and natural gas market, where several ob‐
jective functions are designed for the EPEC model to achieve

NE solutions with different characteristics, e. g., maximizing

the profits of the producer or maximizing the welfare of the

consumer.

All the above work can be categorized as game-theoretic

modelling methods, where the strategic bidding behaviors of

the players are explicitly expressed by mathematical equa‐
tions. While the model-based methods have exhibited sound‐
ness and success in achieving NE. It is worth noting that the
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model-based methods mainly rely on the assumption that

each GENCO bidder has the full knowledge of its rivals’
bidding strategies as well as the market clearing algorithm,

which renders a limiting assumption in reality. In addition,

the game-theoretic model generally demonstrates nonlineari‐
ty and nonconvexity due to the existence of a large number

of complementarity conditions, the scale of which can grow

rapidly with increasing players and multi-period constraints.

As a result, a model that is mostly close to the physical

world can be highly complex and computationally intensive.

The data-driven RL method stands out as an efficient alter‐
native to the conventional game-theoretic modelling method.

The RL method requires no knowledge of the exact mathe‐
matical model, but it gradually learns a decision-making

strategy through continuous interaction with the actual envi‐
ronment, which circumvents any modelling or prediction er‐
ror. In addition, since the RL method relies on no comple‐
mentarity constraints, it is free from the afore-mentioned

computational challenge. Finally, the RL method holds the

generalization characteristic after learning and can adapt to

unseen instances where the game-theoretic model needs to

be recalculated with even the slightest changes of the model.

Existing researches have witnessed the application of Q-

learning, which is a type of value-based RL method for solv‐
ing the GENCO optimal bidding problem [10] - [13]. The

main idea of Q-learning is to construct a look-up table that

stores the action-values of all the state-action pairs. Thus,

the actions with highest action-values will constitute a de‐
sired bidding strategy. The action-values are obtained

through iterative interactions with the market. While the Q-

learning does not suffer from modelling complexity, it does

require the discretization of both the state and action spaces,

which brings in the curse of dimensionality, especially with

multi-dimensional continuous state or action. In such cases,

the exponential growth of the look-up table will leave the

problem intractable. Furthermore, the discretization of contin‐
uous variables also restrains the search space and may lead

to sub-optimal solutions.

Popularized by the AI computer program AlphaGo, an ad‐
vanced variant of RL, the deep RL, has recently become an

eye-catching technique for solving time-sequential decision-

making problem with partial or hidden information. Deep

RL is a combination of a deep neural network (DNN) and

RL. If compared with the conventional Q-learning, the high‐
light of the deep RL method is that it builds a generalized

mapping between the state inputs and the action values with

the universal function approximation property of DNN, in‐
stead of storing a concrete look-up table. Therefore, the deep

RL method can be applied to continuous environment set‐
tings. The success of deep RL has been spotted in the fields

of computer games, robotics, industrial automation, etc. In

power systems, the potentials of implementing deep RL for

demand-side energy management and electric vehicle charg‐
ing/discharging scheduling are shown in [14], [15]. The deep

deterministic policy gradient (DDPG) algorithm is applied to

solve the bidding problem of a load serving entity and GEN‐
COs in [16], [17].

When there exist multiple decision-makers with interde‐

pendent interactions, the multi-agent deep RL (MADRL) can

play an important role in optimizing the strategy of each in‐
dividual agent. In [18] and [19], MADRL is leveraged for

coordinating load frequency control and voltage regulation

for multi-area power systems, respectively. References [20]

and [21] explore the market equilibrium with multiple strate‐
gic GENCO bidders under both constrained and non-con‐
strained networks using policy-based deep RL methods.

In [20] and [21], while each strategic GENCO bidder has

its own deep RL agent, each RL agent only learns from its

local observation. However, given that a Markov game is

studied in a multi-agent environment, where each decision-

maker constantly changes the bidding strategies, the local ob‐
servation cannot capture the entire dynamics of the environ‐
ment and the policies learnt from local observations can get

stuck in local optimum. In [22], a centralized training and

decentralized execution mechanism is designed for MADRL,

where each RL agent can receive the state and action infor‐
mation of other agents during the training. The centralized

training allows the RL agents to become more adaptive in a

dynamic environment where every agent constantly changes

its bidding strategy as the learning evolves. It is believed

that a centralized training can lead to an improved learning

performance by enveloping global information. This frame‐
work is acceptable because the global information is only

needed during the training, e.g., from historical data. During

the test, it is assumed that the RL agents have mastered the

knowledge of its rivals, and the global information is no lon‐
ger needed.

Motivated by the above observation, we also focus on

finding NE in the day-ahead electricity market with multiple

strategic GENCOs by using MADRL. The main contribu‐
tions of the paper are summarized as follows.

1) A Markov game is formulated to describe the strategic

day-ahead electricity market bidding process of multiple

GENCOs as price makers. Each GENCO acts intelligently to

maximize its own benefits with the consideration of bidding

policies from other rivals.

2) A multi-agent deep deterministic policy gradient (MAD‐
DPG) algorithm is applied to solve the above Markov game.

A centralized training and decentralized execution mecha‐
nism proposed in [22] is implemented. MADDPG can deal

with non-stationary environments where the rational players

constantly change their strategies as well as high-dimension‐
al continuous state and action spaces.

3) An in-depth analysis of the RL policies from MAD‐
DPG algorithm is presented to provide insights into the logic

and rationality behind the “black-box” learning. It is discov‐
ered that the learnt bidding strategies are explainable and

sensible in reaching the NE status with different market sce‐
narios, which supports their feasibility in the real-world ap‐
plications.

4) A comprehensive simulation analysis is presented to

prove that the well-trained MADDPG algorithm can approxi‐
mate NE in unseen market environments with high computa‐
tional efficiency. The superiority of the applied method is

further verified by comparing with other state-of-the-art RL

methods and the model-based method.

We aim to build a solid theoretical foundation for the prac‐
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tical implementation of the applied MADDPG algorithm in

real-world electricity market bidding problems. The rest of

the paper is organized as follows. Section II provides the for‐
mulation of the multi-agent day-ahead electricity market bid‐
ding problem in the context of Markov game. Section III in‐
troduces the MADDPG algorithm for multi-agent decision-

making process within non-stationary environment. The sim‐
ulation results and analysis are shown in Section IV. Finally,

Section V concludes the paper.

II. FORMULATION OF MULTI-AGENT MARKET BIDDING

PROBLEM

A. Brief on Electricity Market and Bidding Strategies

A deregulated electricity market is usually composed of

two stages, a day-ahead market and a real-time market. In

the day-ahead market, GENCOs submit the amount of ener‐
gy they are willing to sell for the next 24 hours and the asso‐
ciated offer price. And consumers submit the amount of ener‐
gy they are willing to buy and the associated bid price. The

market operator clears the market by running an optimal

power flow (OPF) calculation and releases the market clear‐
ing prices and quantities to the supply side and the demand

side.

GENCOs with large capacity can execute market power

through the following two ways: ① physical withholding,

which means that they submit generation quantities that are

less than their capacity; ② economic withholding, which

means that they offer the prices that are higher than their

marginal cost [23]. However, executing market power can al‐
so be risky since GENCO bidders have incomplete informa‐
tion of their rivals.

There exist two market settlement methods: ① the margin‐
al price principle, where all suppliers receive the same mar‐
ket clearing price, which is the cost of the marginal bidding

block; ② the pay-as-bid principle, where each winning sup‐
plier receives a price based on their respective bid prices,

and it can be different from one to another. The marginal

price principle is applied in almost all the organized whole‐
sale markets in the United States [24], while the pay-as-bid

principle is mostly adopted in European countries like

France and Britain [25].

In term of auction theory, the pay-as-bid principle is a

variation of the sealed first-price auction and marginal price

is a variation of the sealed second-price auction [26]. It has

been proven that in the sealed second-price auction, truthful

bidding, which means no economic withholding, is a domi‐
nant strategy. While in the sealed first-price auction, truthful

bidding is a necessary but not sufficient condition to reach

NE [27].

We assume that the day-ahead electricity market is cleared

based on the marginal price principle, and GENCOs can exe‐
cute economic withholding to maximize their profits. Under

such condition, an NE bidding strategy of the GENCO g

should satisfy the following two conditions [27]: ①
max
g′≠ g cg′ ³ bg and ② max

g′≠ g bg′ ³ cg.
Under the above two conditions, index g′ refers to all the

other GENCO bidders except for GENCO g; cg is the mar‐

ginal generation cost of GENCO g; and bg is the bid price of

GENCO g. The profit of GENCO g will be bg–cg. Condition① means that GENCO g should bid at a sufficiently low

price to win the bid (lower than the marginal cost of all the

other GENCO bidders). Otherwise, if there is one GENCO

bidder g′ with cg′ < bg, then g′ could bid between the open in‐
terval (cg′,bg), causing GENCO g to lose the bid. Condition

② means that the marginal cost of GENCO g should be suf‐
ficiently low (lower than the bid price of all the other GEN‐
CO bidders) to make a profit. Otherwise, if there is one

GENCO bidder g′ with bg′ < cg, since the marginal price prin‐
ciple is applied, the market clearing price received by GEN‐
CO g will also be bg′ , and its profit will be bg′–cg, which is
negative. In Section IV, we will demonstrate that the applied

deep RL method is able to achieve an NE strategy that corre‐
sponds with the above two conditions through truthful bid‐
ding.

B. Mathematical Formulation of Day-ahead Electricity

Market Clearing

The day-ahead electricity market clearing model is shown

as the following direct current (DC) OPF:

min∑
t = 1

NT∑
g = 1

Ng∑
b= 1

Nb

λbidgb (t)P clearedgb (t) (1)

s.t.

∑
g = 1

Ng∑
b= 1

Nb

P clearedgb (t)=∑
d = 1

Nd

P loadd (t) (2)

-limit l £∑
i = 1

n

GSF l - i ( )∑
gÎ i
∑
b= 1

Nb

P clearedgb (t)-∑
d Î i

P loadd (t) £ limit l (3)

0£P clearedgb (t)£P bidgb (t) "g"b (4)

where NT is the number of time intervals; Ng is the number

of GENCOs; Nb is the number of bidding blocks submitted

by the gth GENCO; Nd is the number of loads; λbidgb (t) and
P clearedgb (t) are the bid price and the cleared quantity of the bth

bidding block, respectively; limit l is the line capacity of the

lth transmission line; n is the set of buses; GSF l - i is the

called generation shift factor, which represents the power

flow change on the lth transmission line if one unit power in‐
jection takes place at bus i; P loadd (t) is the quantity of the d th

load; and P bidgb is the bidding quantity of the b
th bidding block

of the g th GENCO. Equation (2) is the power balance con‐
straint, where the total amount of cleared generation should

equal the total amount of load; (3) is the transmission line

capacity constraint; and (4) ensures that the cleared quantity

does not exceed the bidding quantity submitted by the GEN‐
CO bidders.

In the DCOPF model (1)-(4), λbidgb (t) and P bidgb (t) are known
values submitted by GENCO bidders. The GENCO bidders

decide the bid price λbidgb (t) by solving the following profit-
maximizing problem:

∑
t = 1

NT ( )∑
b= 1

Nb

P clearedgb (t)λclearedg (t)-Cg∑
b= 1

Nb

P clearedgb (t) (5)
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s.t.

Cg∑
b= 1

Nb

P clearedgb (t) =∑
b= 1

Nb

λcostgb P
cleared
gb (t) (6)

λbidgb (t)= εg (t)λcostgb (t) (7)

1£ εg (t)£ εgmax (8)

∑
b= 1

Nb

P bidgb (t)=Pmaxg (9)

where λclearedg (t) is the locational marginal price (LMP) at the

bus with the gth generator connected; λcostgb (t) is the marginal

cost of the bth bidding block; εgmax is the upper bound of the
bidding factor; and Pmaxg is the upper limit of the generation.

In (5), the first item is the income of selling power at the

day-ahead electricity market, and the second item is the gen‐
eration cost, which is calculated by (6). Equation (7) indi‐
cates the economic withholding of the GENCO bidder. (8)

shows the range of εg (t), which indicates that the GENCO
bidder can deliberately submit a higher marginal cost to in‐
crease its profit. Equation (9) is the capacity limit of the bid‐
ding block.

The above two mathematical models, i. e., model (5) - (9)

and model (1) - (4), formulate a bi-level optimization prob‐
lem. For the lower-level market clearing problem, the deci‐
sion variable is the cleared quantity P clearedgb (t). At the upper-

level profit-maximizing problem, the decision variable is the

bidding factor εg (t). For simplicity, we assume that only the
bid price λbidgb (t) is variable, and the capacity of the bidding
block P bidgb (t) is constant. In literature, one of the most com‐
monly used methods to solve the above bi-level optimization

problem is to transform the lower-level market clearing mod‐
el into its equivalent Karush-Kuhn-Tucker (KKT) conditions

and add them as constraints to the upper-level profit-maxi‐
mizing model, which formulates an MPEC. With multiple

GENCO bidders, multiple MPECs will be formulated, and to

obtain an equilibrium point among them is not a trivial task.

In addition, solving MPECs requires the full knowledge of

the market clearing process as well as the bidding informa‐
tion of the rival GENCO bidders, which remains as hidden

information in real-world situations. Hence, the model-based

method fails due to this unobservability. In the following sec‐
tions, the multi-agent day-ahead electricity market bidding

problem will be transformed to a Markov game, and a model-

free deep RL method will be introduced as a solution method.

C. Markov Game Model of Day-ahead Electricity Market

Bidding

Before building the Markov game model, we propose the

following assumptions regarding the day-ahead electricity

market bidding problem [28]:

1) GENCOs submit hourly bidding blocks for the next 24

hours in the day-ahead market. The bidding quantities are

their true generation capacities, and only the bid price can

be changed.

2) The bid price for the same bidding block can vary

from hour to hour. However, the ratio of the highest bid

price to the lowest bid price for the same bidding block

should not exceed a threshold th1.

3) For any two consecutive hours, the ratio of the bid prices

for the same bidding block should not exceed a threshold th2.

The reason for making assumption 3 is to avoid high fluc‐
tuation of marginal prices during peak hours and to prevent

the GENCO bidders from speculation. From assumption 3, it

can be discovered that the bid price for the current hour is

related to the bid price in the previous hour, which leads to

a finite Markov decision process (MDP) with discrete time

steps. An MDP is composed of four essential elements

(s, a, p, r), where s is the finite number of states; a is the fi‐
nite number of actions; p is the state transition probability

that falls within [0,1]; and r is the reward function.

In an MDP, at each time step, the agent firstly observes

the environment state and takes an action. Then, the agent re‐
ceives an immediate reward from the environment, and the

environment transfers to the next state based on the transi‐
tion probability. The process repeats until termination.

When multiple agents are considered in the day-ahead

electricity market bidding, the above MDP is extended to a

partially observable Markov game. A Markov game for N

agents consists of a set of states s, a set of observations

made by each agent at the current state, o1o2oN, and a
set of actions a1a2aN taken by each agent based on
their respective observations. After the execution of the ac‐
tions, the environment will transfer to the next state follow‐
ing a transition probability p: s´ a1 ´ a2 ´´ aN ´ s®[01].
Each agent will receive a reward ri: s´ a i®R (i = 12N)
and a private observation for the next state oi: s® o i. The ob‐
jective of each agent is to maximize the total discounted re‐

ward for the finite time steps: R i =∑
t = 1

NT

γt - 1r it, where γ is a dis‐

count factor to convert future rewards to the present value.

In the day-ahead electricity market bidding problem, with

the context of a Markov game, the agent is an independent

GENCO bidder. The private observation for each GENCO is

the demand quantity for the current hour and its bid price at

the previous hour; the state is simply defined as the summa‐
tion of the observations of all GENCOs; the action is the bid

price for the current hour; and the reward is the hourly prof‐
it. The day-ahead electricity market bidding process is a se‐
quential decision-making problem with multiple decision

makers involved, which requires that each GENCO bidder is

far-sighted enough to consider potential future outcomes in

order to maximize the total profit.

Note that in the general day-ahead electricity market bid‐
ding, the GENCO bidders are required to submit their bid‐
ding blocks for the next 24 hours in one shot. While in the

above Markov game, the bidding decision process is decom‐
posed to discrete time steps and the bid price for each time

step is decided sequentially. This decomposition is accept‐
able because at each time step, the private observation only in‐
cludes the current hourly load and the bid price at the previous

hour without involving any market clearing results. Hence, af‐
ter the applied deep RL method is well-trained for achieving

NE in the above Markov game model, it will only need the

load data for the next 24 hours as the input and can generate
the bid prices for the next day in one shot (with an initial bid
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price) during the test process. Therefore, the algorithm can be

physically implemented without violating market rules.

III. MADDPG ALGORITHM FOR DAY-AHEAD ELECTRICITY

MARKET BIDDING

A. Overview of RL Method

The RL method aims to solve the MDP process and maxi‐

mize the total discounted reward R i =∑
t = 1

NT

γt - 1r it. An action-

value function Qπ (s t,a t) is further defined in RL as an esti‐
mation of the total discounted reward:

Qπ (s ta t)=Eπ ( )∑
k = 0

NT

γkr t + k + 1 |s ta t (10)

where Eπ is the expectation. Qπ (s t,a t) is equal to the expect‐
ed return starting from state s t, taking action at, and thereaf‐
ter following policy π for a horizon with length NT. The goal
of RL is to find the optimal policy π* that maximizes the ac‐
tion-value function:

Q* (s ta t)= maxπ Qπ (s ta t) (11)

One typical way for solving (11) is to update the action

value based on the temporal difference (TD) error [29]:

Q(k + 1)
π (s ta t)= r t + γ maxat + 1

Q(k)
π (s t + 1a t + 1) (12)

where k is the iteration index. In conventional RL methods

such as Q-learning, a look-up table is established to store

the action values of all the possible state-action pairs and it

is updated iteratively according to (12) until convergence.

However, the method encounters the curse of dimensionality

when the state or action space becomes continuous. The

deep RL method is developed to overcome the drawbacks of

the tabular-based RL method. In deep RL, a neural network

is designed to estimate the action-value function and it can

form a continuous mapping between the state-action pair and

the action value. In this way, more complex control or opti‐
mization problem with high dimensionality can be solved

through tweaking the neural network model.

B. DDPG Algorithm for Continuous Control

In this subsection, we will briefly introduce a deep RL

method and a DDPG to solve continuous control prob‐
lems [30].

In DDPG, there are two types of neural networks: the crit‐
ic network and the actor network [31]. The function of the

critic network is to estimate the action value. The input to

the critic network is the current state and the taken action,

and the output is the associated action value. The mean

square error (MSE) is used as the loss function for updating

the parameters of the critic network, as shown as:

Qtarget( j) (t)= r( j) (t)+ γ max
aj (t + 1)

Q(s( j) (t + 1)a( j) (t + 1); θQ′) (13)

L(θQ)=
1

Ns
∑
j = 1

Ns

(Qtarget( j) (t)-Q(s( j) (t)a( j) (t); θQ))2 (14)

Two critic networks are involved for calculating the MSE

in (14). In the target critic network, the weights are noted as

θQ′ . In the behavior critic network, the weights are noted as
θQ. In (13), the target action value at time step t is the sum
of the current reward r(t) and the discounted value of the

maximum action value at the next time step t + 1, generated

by the target critic network. The superscript j is the index of

state-action pair samples. Then, the target action value is

sent to (14) for calculating the loss. The output from the tar‐
get critic network is served as the “labelled” data for the be‐
havior network to learn. During the training, the target critic

network is updated at a slower speed than the behavior critic

network, which helps stabilize the learning process.

The actor network is designed to utilize the estimated ac‐
tion value to obtain the optimal policy, i. e., π(s( j) (t))=
argmax

a(t)

Q(s( j) (t)a j (t)) for all time step t. The input to the ac‐

tor network is the current state s( j) (t), and the output is the

action a( j) (t) that results in the maximum Q(s( j) (t)a j (t)). To
achieve this goal, the loss function for the actor network is

designed as:

max J(θμ)=
|

|
||

1

Ns
∑
j = 1

Ns

Q(s( j) (t)a j (t)θQ)
aj (t)= μ(s( j) (t)θμ)

(15)

where μ(s( j) (t)θμ) is the current policy generated by the ac‐
tor network and θμ is the network weights. θμ is updated in
the direction of maximizing the Q value using the gradient:

ÑJ(θμ)=
1

Ns
∑
j = 1

Ns

ÑQμ (s
( j) (t)a j (t); θQ)Ñθμμ(s

( j) (t); θμ) (16)

θμ = θμ - ημÑJ(θμ) (17)

where ημ is the learning rate.
In (16), the chain rule is applied to calculate the gradient

of the action value to the weights of the actor network.

The above introduction covers the basic idea behind the

DDPG algorithm. Note that in the above actor and critic net‐
works, only the action and the Q value at the current state

are generated, and there is no need to store all the possible

state-action pairs and their action values. The relationship be‐
tween the state-action pair and the action value is encoded

in the weights of the neural network. Therefore, DDPG can

be applied to optimize continuous control strategies without

suffering from the dimensionality explosion.

C. MADDPG for Solving Markov Game in Day-ahead

Electricity Market Bidding

DDPG algorithm can be applied to optimize the single

agent decision-making process. However, in the case of day-

ahead electricity electricity market bidding, where multiple

strategic GENCO bidders are involved, directly applying the

above DDPG algorithm since each GENCO cannot achieve

the ideal results. This is because when multiple agents are

optimizing their decisions simultaneously, the environment

becomes dynamic. And the reward received at the same state

with the same action can constantly change due to the chang‐
ing policies of other agents, which invalidates the experience

learnt by the target critic network and can result in incorrect

settings of target value and algorithm divergence.

Driven by the above concerns, there are some recent re‐
search works in AI that include multi-agent (MA) learning
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as an extension of the DDPG algorithm to form MADDPG

[22]. The main idea of MADDPG is to implement a central‐
ized training, where the input to the critic network includes

not only the observation and action of the current agent, but

also the observations and actions of other agents. This as‐
sumption is acceptable because the critic network is only re‐
quired during the training process. Once the algorithm is

well-trained, only the actor network is needed to be tested in

new environments, and the information of other agents are

no longer required.

In this paper, the general-purposed MADDPG algorithm is

applied and customized to solve the Markov game in day-

ahead electricity market bidding. The proposed customized

MADPPG algorithm flow is shown in Algorithm 1.

Algorithm 1: MADDPG algorithm for day-ahead electricity market bid‐
ding with N GENCO bidders

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

Initialize the parameters of the critic network Q(s, a; θQ) and actor
network μ(o; θμ) for each GENCO bidder
Initialize the target networks with θQ and θμ

for episode is 1 to M do

Initialize the electricity market bidding from a random day

for t = 1 to NT do

Observe the current state
s(t)=[P load (t), λbid1 (t - 1), λbid2 (t - 1),, λbidg (t - 1),, λbidN (t - 1)]
For each GENCO bidder g, select the bid price λbidg (t)=
μg (og (t); θμ), where og (t)= [P load(t), λbidg (t - 1)]

Run DCOPF (1)-(5) to complete the market clearing, obtain the
cleared quantity P clearedg (t), cleared price λclearedg (t), and the re‐
ward rg (t) for each GENCO, and observe the next state
[P load (t + 1)λbidg (t)]
Store the transition (s(t)λbidg (t)λbid -g (t)rg (t)s(t + 1)) for each
GENCO

for GENCO g = 1 to N do

Randomly sample a minibatch of S samples (s(j)(t), λbid( j)g (t),

λbid - ( j)g (t), r ( j)g (t), s
(j)(t+1)) from the stored transitions

Set Qtarget( j)g (t)= r ( j)g (t)+ γQg (s( j)(t + 1),
λbid( j)g (t + 1)λbid - ( j)g (t + 1);θQ′), for λbid( j)g (t + 1)=μg (o( j)g (t + 1);θμ

′)

Update the critic network by minimizing MSE:

Lg (θQ)=1/Ns∑
j

(Qtarget( j)g (t)-Qg (s
( j) (t)λbidg (t)λbid -g (t); θQ)

θQ = θQ - ηQÑθQ Lg (θQ)
Update the actor network by maximizing the expected Q value:

ÑJg (θμ)=1/Ns∑
j

ÑμgQg (s( j) (t)λbidg (t)λbid -g (t);θQ)Ñθμμg (o( j)g (t);θμ)

θμ = θμ - ημÑJg (θμ)
end for

Update the target network parameters for each GENCO:

θQ′ = (1–τ)θQ + τθQ′
θμ′ = (1–τ)θμ + τθμ′

end for

end for

In Algorithm 1, the state is defined as the hourly load and

the bid prices of all the agents in the previous hour. The pri‐
vate observation of each agent is defined as the hourly load,

and its bid price at the previous hour is shown by lines 6

and 7. For simplicity, we use λbidg (t) to represent the bid price
and ignore the subscript b. The reward rg (t) is the hourly

power selling profit:

rg (t)=∑
b= 1

Nb

P clearedgb (t)λclearedg (t)-Cg∑
b= 1

Nb

P clearedgb (t) (18)

The state is sent to the critic network to calculate the tar‐
get action value, as shown by line 12. λbid - ( j)g (t + 1) represents
the bid prices of all GENCOs except for the gth GENCO.

Note that the bid price for the next time step t + 1 is generat‐
ed by μg (θμ′) instead of μg (θμ) in line 12. Similar to the tar‐
get critic network, μg (θμ′) represents the target actor network,
which also aims to stabilize the training process.

After the weights of the behavior critic network and the

behavior actor network are updated as shown by line 15 and

18, the weights of the target critic network and the target ac‐
tor network are updated accordingly at a slower speed as

shown by lines 21 and 22, where τ has a value close to 1.
The reason for this slow update is also to increase the stabili‐
ty of the learning.

To obtain an easy and clear understanding of the MADDPG

algorithm for an MA day-ahead electricity market bidding

problem, an illustration of the algorithm is shown in Fig. 1.

IV. SIMULATION ANALYSIS

A. Test System Description

IEEE 30-bus system with 9 generators is applied as the

transmission-level electricity market. The topology of the

system is shown in Fig. 2.
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Fig. 2. Topology of IEEE 30-bus system.
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The generators at bus 27, bus 23, and bus 13 are consid‐
ered as strategic bidders that will conduct economic with‐
holding to maximize their profits. All other generators will

submit their true marginal cost. In addition, the transmission

lines 4-12 and 23-24 have a capacity limit of 10 MW. There‐
fore, nearby GENCOs, GENCO 2 and GENCO 3, will be

given the market power to manipulate the clearing price,

which will be shown in the simulation results.

The generation cost function of GENCOs is assumed to

be a piecewise linear function, which includes three segments.

The parameters of the cost function are shown in Table I.

It is assumed that at each hour, only one bidding block is

submitted by each GENCO. The bidding quantity is 60 MW,

which is also their capacity. For GENCOs 1-3, the bid price

is λbidg (t)= εg (t)λcostg (t). For other GENCOs, the bid price is

λcostg (t). In this case, λcostg (t) is 50 $/MWh.

Following the assumptions presented at Section II-C, the

values of the bid price thresholds, th1 and th2, are set to be

1.5 and 1.1, respectively, which means λbidg (t) should comply
with the following condition:

ì

í

î

ï
ï
ï
ï

max λbidg (t)
min λbidg (t)

£ 1.5

0.9£
λbidg (t)
λbidg (t - 1)

£ 1.1
"tg = 123 (19)

B. Design of Neural Network and Simulation Platform

The detailed structures of the actor network and critic net‐
work in the proposed MADDPG as well as the structure of

the deep Q network (DQN) are shown in Table II.

The output from the actor network is a value δ between 0
and 1. The bid price λbidg (t) is calculated as:

λbidg (t)= (0.9+ 0.2δ)λbidg (t - 1) (20)

The value of λbidg (t) will be further adjusted to be within
the range of 1λcostg (t) to 1.5λcostg (t):

ì

í

î

ïï
ïï

λbidg (t)= 1.5λcostg (t) λbidg (t)> 1.5λcostg (t)

λbidg (t)= λcostg (t) λbidg (t)< λcostg (t)

δ = (λbidg (t) λbidg (t - 1)- 0.9)/0.2
(21)

The neural network model is built and trained by the open-

source deep learning platform TensorFlow. The day-ahead

market clearing process is completed by the smart market

module in MATPOWER toolbox [32]. The hardware environ‐
ment is a laptop with Intel®CoreTM i7-7600U 2.8 GHz CPU,

and 16 GB RAM.

C. NE Strategy from MADDPG: Uncongested Case

In this subsection, we first investigate the bidding strate‐
gies of the three GENCOs with marginal pricing mechanism

in uncongested case, where the capacity limits on lines 4-12

and 23-24 are removed. The goal is to show that MADDPG

algorithm can achieve the NE strategies that satisfy the two

conditions as introduced in Section II-A, when no GENCO

bidder has access to market power.

The load profile in June, 2019 from PJM wholesale mar‐
ket [33] is used to train the deep RL. The load data in the

31 days in July, 2019 from PJM market is used to test the

deep RL after training. The load profiles of the training days

and the test days are shown in Fig. 3.

There exist differences between the load levels in the two

months. However, since the deep RL is a generalized model,

it can adapt to the changes in the environment and produces

optimal strategies, which will be shown in the following test

results.

TABLE I

GENCO GENERATION COST FUNCTION

Segment

1

2

3

Marginal price ($/MWh)

20

40

50

Generation range (MW)

0-12

12-36

36-60

TABLE II

DESIGN OF DNNS IN DEEP RL

Neural network

Input

No. of hidden layers

No. of neurons

Output

Activation function

Learning η
τ

Optimizer

Actor

[P load(t)λbidg (t - 1)]

2

[2, 64], [64, 64]

δ ∈[0, 1]
ReLU (hidden layer); sigmoid (output layer)

0.001

0.99

Adam

Critic

[P load (t)λbidg (t - 1)λbid -g (t - 1)λbidg (t)λbid -g (t)]

2

[7, 64], [64, 64]

Qg (s(t)λbidg (t)λbid -g (t)

ReLU (hidden layer)

0.002

0.99

Adam

DQN

[P load (t)λbidg (t - 1)]

2

[2, 64]

Qg (s(t)λbidg (t))

ReLU (hidden layer)

0.001

0.99

Adam
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Fig. 3. Load profiles of training days and test days in June and July of

year 2019.

540



DU et al.: APPROXIMATING NASH EQUILIBRIUM IN DAY-AHEAD ELECTRICITY MARKET BIDDING WITH MULTI-AGENT DEEP...

Figure 4 presents the convergence of MADDPG in uncon‐
gested case over 500 training episodes. The average rewards

for the three GENCOs gradually stabilize as the training pro‐
ceeds, which indicates the convergence of the MADDPG al‐
gorithm.

The test results of MADDPG with the data of July are

shown in Fig. 5 and are also compared with the truthful bid‐
ding baseline case in Table III, where the three GENCOs al‐
ways bid at their true marginal cost.

In Fig. 5, y axis is the bidding parameter εg (t) in (7). One
thing should be pointed out is that since the state of GEN‐
CO bidder requires the bid price at the previous hour, we as‐
sume that the bid price at hour zero is always the true marginal

cost. It can be observed that in the uncongested case, all GEN‐
COs bid at their true marginal cost, regardless of the system

load level. This is a logical and explainable behavior because

when the capacity limit is removed, GENCOs 2 and 3 cannot

manipulate the market clearing price. Since all other GENCOs

are bidding at their true marginal cost, the optimal bidding

strategy for GENCOs 1-3 is also truthful. According to the NE

conditions in Section II-A, cg and bg are λcostg (t) and λbidg (t), re‐
spectively. In the truthful bidding, λbidg (t)= λcostg (t) satisfies the

equality constraint in conditions 1 and 2. In Table III, the total

profit from MADDPG is the same as the baseline because they

both bid truthfully. Therefore, it can be safely concluded that

the well-trained MADDPG algorithm can find the optimal bid‐
ding strategy of the three GENCO bidders in a constraint-free

market environment.

D. Solving Markov Game with MADDPG: Congested Case

In this subsection, the MADDPG algorithm is applied to

solve the Markov Game in day-ahead electricity electricity

market bidding with congestions. The same training data are

used and the training results are shown in Fig. 6.

The algorithm is trained for 200 episodes. The average re‐
ward converges for all three GENCO bidders. The well-

trained RL agents are then tested with the data of July, and

are also compared with the truthful bidding case, as shown

in Figs. 7 and 8, and Table IV.
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TABLE III

COMPARISON OF MADDPG WITH BASELINE IN UNCONGESTED CASE

GENCO

1

2

3

Total profit (104 $)

MADDPG

44.64

44.64

40.26

Truthful bidding

44.64

44.64

40.26
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3
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Figure 7 shows that GENCO 2 always bids at the highest

price, which is 1.5λcostg (t) at the peak hours when congestions

are mostly likely to occur. Since GENCO 1 does not have

market power, it always bids at the true marginal cost,

where εg (t) is 1. GENCO 3 also bids at the true marginal

cost. However, because the principle of marginal price is ap‐
plied to clear the market, GENCOs 1 and 3 still benefit

from the high bid price offered by GENCO 2. As can be ob‐
served in Fig. 8, the cleared prices for all three GENCOs are

higher than their marginal generation cost 50 $/MWh. In Ta‐
ble IV, all three GENCOs obtain higher total profits than the

truthful bidding case. On average, the increase of the profit

is 41%. This phenomenon is called “free riding” in game
theory, where GENCOs 1 and 3 can bid at a lower price to

get more of their quantity cleared at a higher marginal price.

The above bidding strategies form one NE and the reason

is as follows: according to the definition of NE, no player

can benefit by changing its strategy while the strategies of

other players remain unchanged. Firstly, since GENCO 1 has

no market power, increasing its bid price will only reduce its

cleared quantity and the profit. GENCO 1 will not bid high‐
er than the true marginal cost. Secondly, if GENCO 2 de‐
creases the bid price to the marginal cost, all three GENCOs

will bid truthfully like the baseline case, and all of them will

receive a lower profit. Lastly, if GENCO 3 also adopts a

similar strategy like GENCO 2, which is to bid high price at

peak hours, the amount of its cleared power will be greatly

reduced, which results in a lower profit. And this has been

tested through the simulation. Therefore, no GENCO is will‐
ing to change its bidding strategy alone with the other two

unchanged, which indicates an NE status.

E. Comparison with Model-based Method

To further verify that biding strategies obtained from

MADDPG are approximated NE strategies, we compare the

bidding results from MADDPG with those from solving the

original MPEC models (5)-(9) and (1)-(4). Because there is

one MPEC for each GENCO bidder, we apply the diagonal‐
ization algorithm (DIAG), which solves each MPEC itera‐
tively. In each iteration, MPEC of each GENCO bidder is

solved by setting the bid prices of all other GENCO bidders

to the values from the last iteration. The iteration continues

until there is no change in the bid price or the maximum

number if iterations is reached. Table V compares the total

profit from MADDPG and MPEC for one test day in the

congested case.

Table V shows that the total profits from the two methods

are close to each other, which verifies that the well-trained

MADDPG algorithm can obtain an approximated NE for un‐
seen cases. With regard to computation efficiency, the com‐
putation time for solving MPEC via DIAG is around 212 s

for one test day. However, the total computation time for the

well-trained MADDPG algorithm to generate bidding strate‐
gies for three GENCOs in the 31 test days is around 160 s.

The acceleration ratio of the latter over the former is over

40 times, which proves the high computational efficiency of

the deep RL method. This is because the well-trained algo‐
rithm does not require any iterative calculation process, but

it can directly map the current observation to the bidding

strategy with the function approximation property of DNN,

which greatly saves computation efforts.

F. Comparison with State-of-the-art RL Methods

The major merit of MADRL over the existing deep RL

method lies in its centralized training mechanism. During

the training, the observations and actions of the rival agents

are collected and analyzed by the critic network of each RL

agent to develop a good grasp of the environment dynamics.

It is believed that the extra information provided by the cen‐
tralized training can facilitate a more effective and intelli‐
gent policy learning. The mechanism is applicable since dur‐
ing the testing phase, only the actors of the RL agents will

be executed, who only have access to local observations

without global information.

To demonstrate the advantages of MADDPG over the oth‐
er deep RL methods, we compare the learning performance

of MADDPG with two representative deep RL methods with

the congested case. For each algorithm, we randomly gener‐
ate 10 seeds, and for each seed, the algorithm is trained for
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Fig. 8. Hourly market clearing price with MADDPG bidding strategy. (a)

GENCO 1. (b) GENCO 2. (c) GENCO 3.

TABLE IV

COMPARISON OF MADDPG WITH BASELINES: CONGESTED CASE

GENCO

1

2

3

Total profit (104 $)

MADDPG

57.24

131.36

184.37

Truthful bidding

50.01

88.96

114.34

Profit increase (%)

14.45711

47.66187

61.24716

TABLE V

COMPARISON OF MADDPG WITH MPEC

GENCO

1

2

3

Total profit (104 $)

MADDPG

2.01

4.51

6.38

MPEC

2.07

4.94

6.07

Relative error (%)

2.81

8.80

-5.23
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200 episodes, with each episode containing 24 time steps. In

Fig. 9, the solid line stands for the average episodic reward

over the five random seeds from the three RL methods, and

the shaded area is the one-tenth of the standard deviation

over the five runs. As can be observed in the figure, the av‐
erage reward gradually becomes stable in all the three algo‐
rithms, which indicates the convergence. However, the final

average reward obtained from MADDPG is higher than that

from DQN and DDPG for all the three generators. The aver‐
age reward increases of the three GENCO bidders over

DQN and DDPG are 38.5% and 18.2%, respectively. This in‐
crease in the learning performance can be attributed to the

deployment of the centralized training mechanism in MAD‐
DPG, where global information is adopted to obtain a com‐
prehensive approximation of the multi-agent models. While

in both DQN and DDPG algorithms, only local observations

are utilized to train the neural networks within each RL

agent, which can be biased from the actual market dynam‐
ics. Note that the average reward obtained by DQN method

is lower than that of MADDPG and DDPG, owing to that

DQN applies discretization to the continuous action domain,

which can limit the search space and results in sub-optimal

policy.

V. CONCLUSION

We present an MADDPG algorithm to approximate NE of

the Markov game in the day-ahead electricity market. The

MADDPG algorithm can learn a profitable bidding strategy

for multiple GENCO bidders through centralized training

and decentralized execution. In the simulation studies, the

MADDPG-based bidding strategy is compared with a naive

truthful bidding strategy, and the former achieves an average

profit increase of 41% over the latter. The MADDPG algo‐
rithm is also compared with a model-based method to dem‐
onstrate its computational efficiency. The acceleration ratio

of the former over the latter is over 40 times. Finally, MAD‐
DPG is compared with other state-of-the-art RL methods in‐
cluding DQN and DDPG, and achieves an average reward

increase of 38.5% and 18.2% over the two methods. The uti‐
lization of complete information during the training allows

the individual RL agent to formulate a more accurate approx‐
imation of the system dynamics and gain an improved learn‐
ing performance.

One limitation of the proposed work is that only the day-

ahead electricity market is considered in the paper, while in

the real-world, the electricity market is composed of multi‐
ple market stages including day-ahead, intra-day, and real-

time market. In such cases, MADDPG can still be applied to

solve the associated Markov game through continuous inter‐
action with the environment. Another limitation is that in the

proposed work, only GENCOs act as strategic bidders, while

in the real-world market, large consumers can also submit

their bids to change the market clearing results. Modeling

the multi-stage electricity market bidding and two-sided bid‐
ding will be the directions for our future researches.

REFERENCES

[1] F. Li and Y. Du, “From AlphaGo to power system AI,” IEEE Power
and Energy Magazine, vol. 16, no. 2, pp. 76-84, Feb. 2018.

[2] Y. Du and F. Li, “Intelligent multi-microgrid energy management
based on deep neural network and model-free reinforcement learning,”
IEEE Transactions on Smart Grid, vol. 11, no. 2, pp.1066-1076, Mar.
2020.

[3] H. Huang and F. Li, “Bidding strategy for wind generation consider‐
ing conventional generation and transmission constraints,” Journal of
Modern Power Systems and Clean Energy, vol. 3, no. 1, pp. 51-62,
Mar. 2015.

[4] T. Dai and W. Qiao, “Finding equilibria in the pool-based electricity
market with strategic wind power producers and network constraints,”
IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 389-399,
Jan. 2017.

[5] C. Wang, W. Wei, J. Wang et al., “Strategic offering and equilibrium
in coupled gas and electricity markets,” IEEE Transactions on Power
Systems, vol. 33, no. 1, pp. 290-306, Jan. 2018.

[6] Y. Ye, D. Papadaskalopoulos, and G. Strbac, “Investigating the ability
of demand shifting to mitigate electricity producers market power,”
IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3800-3811,
Jul. 2018.

[7] E. Moiseeva and M. R. Hesamzadeh, “Bayesian and robust nash equi‐
libria in hydrodominated systems under uncertainty,” IEEE Transac‐
tions on Sustainable Energy, vol. 9, no. 2, pp. 818-830, Apr. 2018.

[8] M. Loschenbrand and M. Korpas, “Multiple Nash equilibria in electric‐
ity markets with price-making hydrothermal producers,” IEEE Trans‐
actions on Power Systems, vol. 34, no. 1, pp. 422-431, Jan. 2019.

[9] S. Chen, A. J. Conejo, R. Sioshansi et al., “Equilibria in electricity
and natural gas markets with strategic offers and bids,” IEEE Transac‐
tions on Power Systems, vol. 35, no. 3, pp. 1956-1966, May 2020.

[10] H. Kebriaei, A. Rahimi-Kian, and M. N. Ahmadabadi, “Model-based
and learning-based decision making in incomplete information cournot
games: a state estimation approach,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 45, no. 4, pp. 713-718, Apr. 2015.

[11] M. R. Salehizadeh and S. Soltaniyan, “Application of fuzzy Q-learn‐
ing for electricity market modeling by considering renewable power
penetration,” Renewable and Sustainable Energy Reviews, vol. 56, pp.
1172-1181, Apr. 2016.

[12] D. E. Aliabadi, M. Kaya, and G. Sahin, “Competition, risk and learn‐
ing in electricity markets: an agent-based simulation study,” Applied
energy, vol. 195, pp. 1000-1011, Jun. 2017.

[13] N. Rashedi, M. A. Tajeddini, and H. Kebriaei, “Markov game ap‐
proach for multi-agent competitive bidding strategies in electricity mar‐
ket,” IET Generation, Transmission & Distribution, vol. 10, no. 15,
pp. 3756-3763, Jan. 2016.

[14] E. Mocanu, D. C. Mocanu, P. H. Nguyen et al., “On-line building en‐
ergy optimization using deep reinforcement learning,” IEEE Transac‐
tions on Smart Grid, vol. 10, no. 4, pp. 3698-3708, Jul. 2019.

[15] Z. Wan, H. Li, H. He et al., “Model-free real-time EV charging sched‐
uling based on deep reinforcement learning,” IEEE Transactions on
Smart Grid, vol. 10, no. 5, pp. 5246-5257, Sept. 2019.

[16] H. Xu, H. Sun, D. Nikovski et al., “Deep reinforcement learning for
joint bidding and pricing of load serving entity,” IEEE Transactions
on Smart Grid, vol. 10, no. 6, pp. 6366-6375, Nov. 2019.

[17] Y. Ye, D. Qiu, M. Sun et al., “Deep reinforcement learning for strate‐
gic bidding in electricity markets,” IEEE Transactions on Smart Grid,
vol. 11, no. 2, pp. 1343-1355, Mar. 2020.

[18] Z. Yan and Y. Xu, “A multi-agent deep reinforcement learning method
for cooperative load frequency control of multi-area power systems,”
IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4599-4608,

MADDPG; DQN; DDPG

0 100 2000 100 2000 100 200

0.6

0.4

0.8

1.0

1.2

1.6

1.4

(a)

Episode EpisodeEpisode

(b)

6.0

(c)

A
v

er
ag

e 
re

w
ar

d
 (

1
0

4
 $

)

A
v

er
ag

e 
re

w
ar

d
 (

1
0

4
 $

)

A
v

er
ag

e 
re

w
ar

d
 (

1
0

4
 $

)

2.5
3.0
3.5
4.0
4.5
5.0
5.5

2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

Fig. 9. Comparison of learning performance of different RL methods. (a)

GENCO 1. (b) GENCO 2. (c) GENCO 3.

543



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 3, May 2021

Nov. 2020.
[19] S. Wang, J. Duan, D. Shi et al., “A data-driven multi-agent autono‐

mous voltage control framework using deep reinforcement learning,”
IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4644-4654,
Nov. 2020.

[20] Y. Liang, C. Guo, Z. Ding et al., “Agent-based modeling in electricity
market using deep deterministic policy gradient algorithm,” IEEE
Transactions on Power Systems, vol. 35, no. 6, pp. 4180-4192, Nov.
2020.

[21] Y. Ye, D. Qiu, J. Li et al., “Multi-period and multi-spatial equilibrium
analysis in imperfect electricity markets: a novel multi-agent deep rein‐
forcement learning approach,” IEEE Access, vol. 7, pp. 130515-
130529, Sept. 2019.

[22] R. Lowe, Y. Wu, A. Tamar et al., “Multi-agent actor-critic for mixed
cooperative-competitive environments,” in Proceedings of 2017 Ad‐
vances in Neural Information Processing Systems (NIPS 2017), Long
Beach, USA, Jan. 2017, pp. 6379-6390.

[23] D. R. Biggar and M. R. Hesamzadeh, The Economics of Electricity
Markets. New York: John Wiley & Sons, 2014.

[24] S. F. Tierney, T. Schatzki, and R. Mukerji. (2018, Mar.). Uniform-pric‐
ing versus pay-as-bid in wholesale electricity markets: does it make a
difference? [Online]. Available: http://citeseerx. ist. psu. edu/viewdoc/
download?doi=10.1.1.365.2514&rep=rep1&type=pdf

[25] A. G. Vlachos and P. N. Biskas, “Demand response in a real-time bal‐
ancing market clearing with pay-as-bid pricing,” IEEE Transactions
on Smart Grid, vol. 4, no. 4, pp. 1966-1975, Dec. 2013.

[26] Y. Ren and F. D. Galiana, “Pay-as-bid versus marginal pricing–part I:
strategic generator offers,” IEEE Transactions on Power Systems, vol.
19, no. 4, pp. 1771-1776, Nov. 2004.

[27] K. R. Apt. (2020, Oct.) Strategic games: chapter 7 sealed-bid auctions.
[Online]. Available: https://homepages.cwi.nl/~apt/stra/ch7.pdf

[28] Y. Huang, J. Shang, and C. Kang, “An operation mechanism and mod‐
el of the day-ahead electricity market,” Automation of Electric Power
Systems, vol. 27, no. 3, pp. 23-27, Feb. 2003.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc‐
tion. Cambridge: MIT press, 2018.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al. (2015, Jan.). Continuous
control with deep reinforcement learning. [Online]. Available: http:arX‐
iv:1509.02971

[31] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529-533, Jun. 2015.

[32] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT‐

POWER: steady-state operations, planning, and analysis tools for pow‐
er systems research and education,” IEEE Transactions on Power Sys‐
tems, vol. 26, no. 1, pp. 12-19, Feb. 2011.

[33] PJM. (2020, Jul.). PJM website. [Online]. Available: https://www.pjm.
com/markets-and-operations.aspx

Yan Du received the B.S. degree from Tianjin University, Tianjin, China, in
2013, the M.S. degree from the Institute of Electrical Engineering, Chinese
Academy of Sciences, Beijing, China, in 2016, and the Ph.D. degree from
University of Tennessee, Knoxville, USA, in 2020. Her research interests in‐
clude power system control and optimization and deep learning.

Fangxing Li received the B.S.E.E. and M.S.E.E. degrees from Southeast
University, Nanjing, China, in 1994 and 1997, respectively, and the Ph.D.
degree from Virginia Tech, Blacksburg, USA, in 2001. He is currently a
James McConnell Professor at the University of Tennessee, Knoxville,
USA. He is a Fellow of IEEE (Class of 2017) and a recipient of the 2020
R&D 100 Award. Presently, he is the Editor-in-Chief of the IEEE Open Ac‐
cess Journal of Power and Energy and the Chair of IEEE Power System Op‐
eration, Planning, and Economics (PSOPE) Committee. His research inter‐
ests include renewable energy integration, demand response, power markets,
power system control, and power system artificial intelligence.

Helia Zandi received the B.S. degree in computer science from the Univer‐
sity of Tehran, Tehran, Iran, in 2010, and the M.S. degree in computer engi‐
neering from the University of Florida, Gainesville, USA, in 2012. She is
currently pursuing the Ph.D. degree in computer engineering with the Uni‐
versity of Tennessee, Knoxville, USA. She is also a Modeling and Simula‐
tion Software Engineer with the Oak Ridge National Laboratory, Oak
Ridge, USA. Her research interests include home energy management, statis‐
tical methods, machine learning and their applications in buildings, and
smart grid related applications.

Yaosuo Xue received the B.Sc. degree from East China Jiaotong University,
Nanchang, China, in 1991, and the M.Sc. degrees in electrical engineering
from the University of New Brunswick, Fredericton, Canada, in 2004. He is
currently a R&D Staff with the Oak Ridge National Laboratory, Oak Ridge,
USA. He is currently serving as an Associate Editor for the IEEE Transac‐
tions on Power Electronics and an Editor for the IEEE Open Access Journal
of Power and Energy. His research interests include multilevel converters
and smart inverter controls for renewable energy and utility applications.

544


