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Abstract— We study the problem of computing minimal cost
multicast trees in multi-hop wireless mesh networks. This prob-
lem is known as the Steiner tree problem, and it has been
widely studied in fixed networks. However, we show in this paper
that in multi-hop wireless mesh networks, a Steiner tree is no
longer offereing the lowest bandwidth consumption. So, we re-
formulate the problem in terms of minimizing the numbrer of
transmissions. We show that the new problem is also NP-complete
and propose heuristics to approximate such trees. Or simulations
results show that the proposed heuristics offer a lower costthan
Steiner trees over a variety of scenarios.

I. I NTRODUCTION AND MOTIVATION

A wireless multihop network consists of a set of nodes
which are equipped with wireless interfaces. Nodes which are
not able to communicate directly, use multihop paths using
other intermediate nodes in the network as relays. When the
nodes are free to move, these networks are usually known as
”mobile ad hoc networks”. We focus on this paper in static
multihop wireless networks, also known as ”mesh networks”.
These networks have recently received a lot of attention in the
research community, and they are also gaining momentum as
a cheap and easy way for mobile operators to expand their
coverage and quickly react to temporary demands.

In addition, IP multicast is one of the areas which are
expected to play a key role in future mobile and wireless sce-
narios. Key to this is the fact that many of the future services
that operators and service providers forsee are bandwidth-avid,
and they are strongly based on many-to-many interactions.
These services require an efficient underlying support of multi-
cast communications when deployed over multihop extensions
where bandwidth may become a scarce resource.

The problem of the efficient distribution of traffic from a
set of senders to a group of receivers in a datagram network
was already studied by Deering [1] in the late 80’s. Several
multicast routing protocols like DVMRP [2], MOSPF [3],
CBT [4] and PIM [5]) have been proposed for IP multicast
routing in fixed networks. These protocols have not been
usually considered in mobile ad hoc networks because they do
not properly support mobility. In the case of mesh networks,
one might think that they can be a proper solution. However,
they were not designed to operate on wireless links, and they
lead to sub-optimal routing solutions which are not able to

take advantage of the broadcast nature of the wireless medium
(i.e. sending a single message to forward a multicast message
to all the next hops rather than replicating the message for
each neighbor). Moreover, their routing metrics do not aim
at minimizing the cost of the multicast tree, which limits the
overall capacity of the mesh network.

The problem of finding a minimum cost multicast tree is
well-known as the minimum Steiner tree problem. Karp [7]
demonstrated that this problem is NP-complete even when
every link has the same cost, by a transformation from the
exact cover by 3-sets. There are some heuristic algorithms [8]
to compute minimal Steiner trees. For instance, the MST
algorithm ([9], [10]) provides a 2-approximation, and Ze-
likovsky [11] proposed an algorithm which obtains a 11/6-
approximation. However, given the complexity of computing
this kind of trees in a distributed way, most of the existing mul-
ticast routing protocols use shortest path trees or sub-optimal
shared trees, which can be easily computed in polynomial
time.

Similarly, the multicast ad hoc routing protocols proposedin
the literature [6] do not approximate a minimal cost multicast
tree either. For ad hoc networks, most of the works in the
literature devoted to the improvement of multipoint forwarding
efficiency have been related to the particular case of flooding
(i.e. the broadcast storm problem). Only a few papers like Lim
and Kim [13] analyzed the problem of minimal multicast trees
in ad hoc networks, but they defined several heuristics based
on the minimum connected dominating set (MCDS) which are
only valid for flooding.

Although it is widely assumed that a Steiner tree is the
minimal cost multicast tree, we show in this paper that it is
not generally true in wireless multihop networks (see Fig. 1.
The problem of minimizing the cost of a multicast tree in an ad
hoc network needs to be re-formulated in terms of minimizing
the number of data transmissions. By assigning a cost to each
link of the graph computing the tree which minimizes the sum
of the cost of its edges, existing formulations have implicitly
assumed that a given nodev, needsk transmissions to send
a multicast data packet tok of its neighbors. However, in a
broadcast medium, the transmission of a multicast data packet
from a given nodev to any number of its neighbors can be



done with a single data transmission. Thus, in ad hoc networks
the minimum cost tree is the one which connects sources
and receivers by issuing a minimum number of transmissions,
rather than having a minimal edge cost.

In this paper we show that the Steiner tree does not always
give an optimal solution. Additional contributions of this
papers are the demonstration that the problem of minimizing
the cost of a multicast tree in a wireless mesh network is
also NP-complete, and the proposal of enhanced heuristics
to approximate such optimal trees, which we call minimal
data overhead trees. Our simulation results show that the
proposed heuristics produce multicast trees with a lower cost
than the MST heuristic ([9]) for Steiner trees over a variety
of scenarios. In addition, they offer a huge reduction in the
cost compared to the shortest path trees used by most of the
ad hoc multicast routing protocols proposed so far.

The remainder of the paper is organized as follows: sec-
tion II describes our network model, formulates the problem
and shows that it is NP-complete. The description of the
proposed algorithm is given in section III. In section IV we
explain our simulation results. Finally, section V provides
some discussion and conclusions.

II. N ETWORK MODEL AND PROBLEM FORMULATION

A. Network model

We represent the ad hoc network as an undirected graph
G(V, E) where V is the set of vertices andE is the set
of edges. We assume that the network is two dimensional
(every nodev ∈ V is embedded in the plane) and mobile
nodes are represented by vertices of the graph. Each node
v ∈ V has a transmission ranger. Let dist(v1, v2) be the
distance between two verticesv1, v2 ∈ V . An edge between
two nodesv1, v2 ∈ V exists iif dist(v1, v2) ≤ r (i.e. v1 andv2

are able to communicate directly). In wireless mobile ad hoc
networks some links may be unidirectional due to different
transmission ranges. However, given that lower layers can
detect and hide those unidirectional links to the network layer,
we only consider bidirectional links. That is,(v1, v2) ∈ E iif
(v2, v1) ∈ E.

B. Problem formulation

Given a multicast sources and a set of receiversR in a
network, represented by a undirected graph, we are interested
in finding the multicast tree with the minimal cost in terms
of total number of transmissions required to deliver a packet
from s to every receiver. To formulate the problem, we will
need some previous definitions.

Definition 1. Given a graphG = (V, E), a sources ∈ V
and a set of receiversR ⊂ V , we define the setT as the set of
the possible multicast trees in G which connect the sources to
every receiverri ∈ R. We can define a functionCt : T → Z

+

so that given a treet ∈ T , Ct(t) is the number of transmissions
required to deliver a message from the source to every receiver
induced by that tree.

Lemma 1.Given a treet ∈ T as defined above, if we define
the setFt as the relay nodes int, thenCt(t) = 1 + |Ft|.

Proof: By definition relay nodes forward the message
sent out bys only once. In addition, leaf nodes do not forward
the message. Thus, the total number of transmissions is one
from the source, and one from each relay node. Making a total
of 1 + |Ft|.
So, as we can see from lemma 1, the to minimizeCt(t) we
must somehow reduce the number of forwarding nodes|Ft|.

Definition 2. Under the conditions of definition 1, lett∗ ∈ T
be the multicast tree such thatCt(t

∗) ≤ Ct(t) for any possible
t ∈ T, t 6= t∗. We define the data overhead of a treetinT ,
as ωd(t) = Ct(t

∗) − Ct(t). Obviously, with this definition
ωd(t

∗) = 0.
Based on the previous definitions, the problem can be

formulated as follows. Given a graphG = (V, E), a source
nodes ∈ V , a set of receiversR ⊂ V , and givenV ′ ⊆ V
defined asV ′ = R ∪ {s}, find a treeT ∗ ⊂ G such that the
following conditions are satisfied:

1) T ∗ ⊇ V ′

2) Ct(T
∗) is minimum

From the condition ofT ∗ being a tree it is obvious that it is
connected, which combined with condition 1) establishes that
T ∗ is a multicast tree. Condition 2) is equivalent to say that
ωd(T

∗) is minimum, and establishes the optimality of the tree.
As we show in the next theorem, this problem is NP-complete.

Theorem 1.Given a graphG = (V, E), a multicast source
s ∈ V and a set of receiversR, the problem of finding a tree
T ∗ ⊇ R ∪ {s} so thatCt(T

∗) is minimum is NP-complete
Proof: According to lemma 1, minimizingCt(T

∗) is
equivalent to minimize the number of relay nodesF ⊆ T ∗.
So, the problem is finding the smallest set of forwarding nodes
F that connectss to everyr ∈ R. If we consider the particular
case in whichR = V − {s}, the goal is finding the smallest
F ⊆ T ∗ which covers the rest of nodes in the graph (V −{s}).
This problem is the well-known vertex cover problem [12],
which is NP-complete. So, by including a particular case
which is NP-complete, our problem is also NP-complete.

In the next theorem we show that in general the tree
with the minimal edge-cost is not the one with the minimal
data-overhead. Before presenting the theorem we give some
definitions used within the proof of the theorem.

Definition 3. Under the same conditions of definition 1,
and provided that each edgee ∈ E has an associated cost
w(e) > 0, we can define a functionCe : T → Z

+ so that
given a treet ∈ T , Ce(t) is the edge cost oft defined as:

Ce(t) =
∑

e∈E

w(e) (1)

For the particular case of ad hoc networks, we can consider
every edge to have the same cost. For simplicity in the
calculations we assume thatw(e) = 1, ∀e ∈ E. Even in that
particular case, the problem of finding the multicast treeT ∗
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Fig. 1. Differences in cost for several multicast trees overthe same ad hoc network

so thatCe(T
∗) is minimum (also called Steiner tree) is NP-

complete as R. Karp showed in [7]. In this particular case
of unitary edge cost,Ce(T

∗) equals to the number of edges,
which is |V | − 1 by a definition of tree.

Theorem 2. Let G = (V, E) be an undirected graph. Let
s ∈ V be a multicast source andR ⊆ V be the set of receivers.
The Steiner multicast treeT ∗ ⊆ G so thatCe(T

∗) is minimal
may not be the minimal data-overhead multicast tree.

Proof: To proof the theorem we will show that given
an Steiner treeT ∗, it is possible to find a treeT

′

such that
Ce(T

′

) ≥ Ce(T
∗) andCt(T

′

) ≤ Ct(T
∗). Let’s denote byF

′

andF ∗ the number of forwarding nodes in each of the trees.
For T

′

to offer a lower data overhead, the following condition
must hold:

1 + F
′

≤ 1 + F ∗

In a multicast tree, the number of forwarding nodes can be
divided into those which are also receivers and those who are
not. The latter are usually called Steiner nodes, and we will
denote the set of such nodes asS. The number of forwarding
nodes which are receivers can be easily computed as|R−L|
being L the set of leaf nodes. Of course, every leaf node is
also a receiver. Thus, the previous inequality, is equivalent to
the following one:

1 + |S
′

|+ (|R| − |L
′

|) ≤ 1 + |S∗|+ (|R| − |L∗|)⇒

|S
′

| − |L
′

| ≤ |S∗| − |L∗| ⇒

|S
′

| − |S∗| ≤ |L
′

| − |L∗| (2)

In addition, by the definition ofCe, Ce(T
′

) ≥ Ce(T
∗) ⇒

|V
′

|−1 ≥ |V ∗|−1. Given that the number of vertex is exactly
the sender plus the number of Steiner nodes plus the number
of receivers, we can derive the following inequality:

|S
′

|+ |R| ≥ |S∗|+ |R| ⇒ |S
′

| ≥ |S∗|

So, according to Eq. 2 it is possible to build a treeT
′

so
that Ct(T

′

) ≤ Ct(T
∗) provided that the number of additional

steiner nodes added (|S
′

| − |S∗|), is lower than the additional
number of leaf nodes (|L

′

| − |L∗|).
As expected, this means that the Steiner tree reduces the

cost by minimizing the number of Steiner nodes|S∗|. This
is equivalent to say that it tries to maximize the number of
receivers which are included inF ∗, which in turn reduces the
number of leaf nodes|L∗|. An example of such a tree is shown
in Fig.1.

III. PROPOSEDALGORITHMS

Given the NP-completeness of the problem, within the next
subsections we describe two heuristic algorithms to approx-
imate minimal data-overhead multicast trees. As we learned
from the demonstration of theorem 2, the best approach to
reduce the data overhead is reducing the number of forwarding
nodes, while increasing the number of leaf nodes. The two
heuristics presented below try to achieve that trade-off.

A. Greedy-based heuristic algorithm

The first proposed algorithm is suited for centralized wire-
less mesh networks, in which the topology can be known by
a single node, which computes the multicast tree.

Inspired on the results from theorem 2, this algorithm sys-
tematically builds different cost-effective subtrees. The cost-
effectiveness refers to the fact that a nodev is selected to be
a forwarding node only if it covers two or more nodes. The
algorithm shown in algorithm 1, starts by removing initializing
the nodes to cover (’aux’) to all the sources except those
already covered by the sources. Initially the set of forwarding
nodes (’MF’) is empty. After the initialization, the algorithm
repeats the process of building a cost-effective tree, starting
with the nodev which covers more nodes in ’aux’. Then,
v is inserted into the set of forwarding nodes (MF) and it
becomes a node to cover. In addition, the receivers covered
by v (Cov(v)) are removed from the list of nodes to cover
denoted by ’aux’. This process is repeated until all the nodes
are covered, or it is not possible to find more Steiner nodes,
guaranteeing the cost-effectiveness. In the latter case, the
different subtrees are connected by an steiner tree among their
roots, which are in the list ’aux’ (i.e. among the nodes which



are not covered yet). For doing that one can use any Steiner
tree heuristic. In our simulations we use the MST heuristic for
simplicity.

Algorithm 1 Greedy minimal data overhead algorithm

1: MF ← �/ ∗mcastforwarders ∗ /
2: V ← V - {s}
3: aux← R-Cov(s) +{s} / ∗ nodestocover ∗ /
4: repeat
5: node← argmaxv∈V (|Cov(v)|) s.t. Cov(v)≥2
6: aux← aux-Cov(v)+{v}
7: V ← V-{v}
8: MF ← MF + {v}
9: until aux =� or node =null

10: if V!=� then
11: Build Steiner tree among nodes in aux using MST

heuristic
12: end if

Theorem 3.The proposed algorithm results in a tree with a
lower or equal data-overhead than the one resulting from the
MST Steiner tree.

Proof: Let’s consider the worse case in which no cost-
effective tree can be formed. There are two possible cases:

1) There are no receivers in the range of the source. Then
Cov(s)=� and the resulting tree (T1) is exactly a Steiner
tree amongs and all the receivers computed using the
MST heuristic (T2). Thus,Ct(T1) = Ct(T2).

2) There are receivers in the range of the source. Then, the
resulting tree (T1) is a Steiner tree among the sources
and all the receivers except Cov(s) computed with the
MST heuristic. This tree is a subtree of the Steiner tree
from s to every receiver (T2), so Ct(T1) ≤ Ct(T2).

B. Distributed approximation algorithm

Centralized algorithm may be useful for some kind of net-
works, however a distributed approach is much more appealing
for the vast majority of scenarios. In this section we present a
slightly different version of the previous algorithm, being able
to be run in a distributed way.

The previous protocol consists of two different parts: (i)
construction of cost-efficient subtrees, and (ii) buildinga
Steiner tree among the roots of the subtrees.

To build a Steiner tree among the roots of the subtrees, the
previous protocol used the MST heuristic. However, this is a
centralized heuristic consisting of two different phases.Firstly,
the algorithm builds the metric closure on the whole graph,
and then, a minimum spanning tree (MST) is computed on the
metric closure. Finally, each edge in the MST is substitutedby
the shortest path tree between the to nodes connected by that
edge. Unfortunately, the metric closure of a graph is hard to
build in a distributed way. However, we can approximate such
an MST heuristic with the simple, yet powerful, algorithm
presented in algorithm 2. The source, or the root of the subtree

in which the source is (called source-root) will start flooding
a route request message (RREQ). Intermediate nodes, when
propagating that message will increase the hop count. When
the RREQ is received by a root of a subtree, it sends a
route reply (RREP) back through the path which reported the
lowest hop count. Those nodes in that path are selected as
multicast forwarders (MF). In addition, a root of a subtree,
when propagating the RREQ will reset the hop count field.
This is what makes the process very similar to the computation
of the MST on the metric closure. In fact, we achieve the
same effect, which is that each root of the subtrees, will add
to the Steiner tree the path from itself to the source-root, or
the nearest root of a subtree. The way in which the algorithm
is executed from the source-root to the other nodes guarantees
that the obtained tree is connected.

Algorithm 2 Distributed approximation of MST heuristic
1: if thisnode.id = source− root then
2: Send RREQ with RREQ.hopcount=0
3: end if
4: if rcvd non duplicate RREQ with better hopcountthen
5: prevhop← RREQ.sender
6: RREP.nexthop← prevhop
7: RREQ.sender← thisnode.id
8: if thisnode.isroot then
9: send(RREP)

10: RREQ.hopcount← 0
11: else
12: RREQ.hopcount++;
13: end if
14: send(RREQ)
15: end if
16: if received RREPand RREP.nexthop =thisnode.id then
17: Activate MF FLAG
18: RREP.nexthop← prevhop
19: send(RREP)
20: end if

The second part of the algorithm to make distributed is
the creation of the cost-effective subtrees. However, thispart
is much simpler and can be done locally with just a few
messages. Receivers flood a SubtreeJoin (STJOIN) message
only to its 1-hop neighbors indicating the multicast group
to join. These neighbors answer with a SubtreeJoin Ack
(ST ACK) indicating the number of receivers which covers.
This information is known locally by just counting the number
of (ST JOIN) messages received. Finally, receivers send again
a SubtreeJoin Activation (STJOIN ACT) message including
their selected root, which is the neighbor which covers a
higher number of receivers. This is also known locally from
the information in the (STACK). Those nodes which are
selected by any receiver, repeat the process acting as receivers.
Nodes which already selected a root do not answer this time
to ST JOIN messages.

In the next section, we shall see that this distributed version
of the algorithm offers is not as efficient as the centralizedone,



but offers a good approximation to the centralized scheme.
This is because instead of really computing the metric closure
in the graph, we just approximate it. However, the performance
of the distributed approach is still better than the one offered
by the Steiner tree.

IV. SIMULATION RESULTS

In order to assess the effectiveness of our proposed algo-
rithms we have simulated them under different conditions.
The algorithms that we have simulated are the two proposed
approaches as well as the MST heuristic to approximate
Steiner trees. In addition, we also simulated the shortest path
tree algorithm, which is the one which is used by most
multihop multicast routing protocols proposed to date.

A. Performance metrics

We are interested in evaluating the optimality of the the
topology of the multicast tree produced by the different algo-
rithms. That is the reason why we use different metrics from
the typical performance measurements (e.g. packet delivery
ratio) which strongly depend upon the underlying wireless
technology under consideration. In our particular case, the
metrics under consideration are:

• Number of transmissions required. The total number of
packet transmitted either by the source or by any relay
node to deliver a data packet from the source to all the
receivers.

• Mean number of hops. The number of multicast hops
from a receiver to the source averaged over the total
number of receivers.

So, by considering these metrics along with a perfect MAC
layer (i.e. without collisions, retransmissions or interferences)
we guarantee an unbiased comparison.

B. Simulation methodology

All the approaches have been evaluated under a different
number of receivers, and a varying density of the nodes in
the network. In particular, the number of receivers considered
was between 1 and 40% of the nodes, which corresponds to
the range from 5 to 200 receivers. The density of the network
varied between 100 and 500nodes/Km2.

For each combination of simulation parameters, a total of 91
simulation runs with different randomly-generated graphswere
performed, making a total of more than 100000 simulations.
The error in the graphs shown below are obtained using a 95%
confidence level.

C. Performance evaluation

In the figures below, SPT refers to the shortest path tree and
MST corresponds to the MST heuristic to approximate Steiner
trees. Finally, MNT and MNT2 correspond to the proposed
centralized and distributed heuristics respectively.

In Fig. 2 we show for a network with an intermediate density
how the number of transmissions required varies with respect
to the number of receivers. As expected, when the number of
receivers is lower than 20, the proposed schemes do not offer
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significative differences compared to the Steiner tree heuristic.
This is clearly explained by the fact that the nodes tend to be
very sparse and it is less likely that it is possible to build cost-
effective trees. However, as the number of receivers increases,
the creation of cost-effective trees is favored, making the
the proposed schemes to achieve significative reductions in
the number of transmissions required. In addition, given that
the SPT approach doesn’t aim at minimizing the cost of the
trees, it shows a lower performance compared to any of the
other approaches. Regarding the two proposed approaches
the distributed approach, by avoiding the use of the metric
closure, gets a slightly lower performance compared to the
centralized approach. However, both of them have a very
similar performance which allow them to offer substantial
bandwidth savings compared to the Steiner tree (i.e. MST
heuristic).

To evaluate the impact on the length of the paths, we
performed the analysis shown in Fig. 3. As expected the SPT
the one offering the lowest mean path length. The Steiner
tree heuristics as well as the proposed ones offer a higher
mean path length. This is clearly due to the fact grouping
paths for several receivers makes them not to use their shortest
paths. As we can see, the this metric is much more variable
to the number of receivers than the number of transmissions
was for the heuristic approaches. This is why the error bars
are reporting a larger confidence interval for MST, MNT and
MNT2.

Another important aspect to consider is how the perfor-
mance varies regarding the density of the network. This
results are of paramount importance to determine under which
scenarios the proposed approaches behave better. In particular
we consider two different cases: a medium number of receivers
represented by a 20% of the nodes, and a high number of
receivers represented by a 36% of the nodes. As we show
before, the case of a very low number of receivers is no
interesting because most of the approaches offer a similar
performance.
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In Fig. 4 and Fig. 5 we present the results for the medium
number of receivers and high number of receivers respectively.
As the figure depicts, the higher the density, the better is the
performance of all the approaches. This makes sense, because
the higher the density the lower the path lengths, so in general
one can reach the receivers with less number of transmissions
regardless of the routing scheme. However, if we compare the
performance across approaches, we can see that the reduction
in the number of transmissions that our proposed heuristics
achieve compare to the other approaches is higher as the
density of the network increases.

This can be easily explained by the fact that for higher
densities it is more likely that several receivers can be close to
the same node, which facilitates the creation of cost-effective
subtrees.

In addition, the higher the density, the closer in performance
are the centralized and the distributed approaches. This is
because in dense networks, the number of hops between any
pair of nodes is also reduced. This makes the difference
between metric closure and its approximation in number of
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hops to be reduced as well. This makes our approach very
appealing for dense networks such as sensor networks in which
the mean degree of a node is usually very high.

If we compare the two figures we can see that the difference
in the number of receivers just varies a little bit the con-
crete performance differences among approaches. However,
the density of the network has an strong effect on the overall
performance of the solutions.

V. CONCLUSIONS AND DISCUSSION

As we have shown, the generally considered minimal cost
multicast tree (Steiner tree) does not offer an optimal solution
in multihop wireless networks. The problem is that the original
Steiner tree problem formulation does not account for the
reduction in bandwidth that can be achieved in a broadcast
medium. Given those limitations we re-formulate the problem
in terms of minimizing the number of transmissions required
to send a packet from a multicast source to all the receivers
in the group.

We have shown that this formulation is adequate for mul-
tihop wireless networks, and we have also demonstrated that
this problem is NP-complete. So, we have introduced two new
heuristic algorithms to deal with the problem of optimizing
multicast trees in wireless mesh networks. Our simulation
results show that the proposed heuristics manage to beat the
Steiner tree MST heuristic over a variety of scenarios and
network densities.

In particular, our results show that the higher the density of
the network, the higher are the performance gains introduced
by our heuristics compared to the other approaches. These
results seem very promising as a possible future direction to
address similar issues in sensor networks in which the network
topology is generally very dense, and reverse multicast trees
are very common as a mechanism to gather information from
the sensor network.
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