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Abstract—Spare capacity allocation (SCA) is an important part of fault
tolerant network design. In the spare capacity allocation problem one seeks
to determine where to place spare capacity in the network and how much
spare capacity must be allocated to guarantee seamless communications
services survivable to a set of failure scenarios (e.g., any single link fail-
ure). Formulated as a multi-commodity flow integer programming prob-
lem, SCA is known to be NP-hard. In this paper, we provide a two-pronged
attack to approximate the optimal SCA solution: unravel the SCA struc-
ture and find an effective algorithm. First, a literature review on the SCA
problem and its algorithms is provided. Second, a integer programming
model for SCA is provided. Third, a simulated annealing algorithm using
the above InP model is briefly introduced. Next, the structure of SCA is
modeled by a matrix method. The per-flow based backup path informa-
tion are aggregated into a square matrix, called the spare provision matrix
(SPM). The size of the SPM is the number of links. Using the SPM as the
state information, a new adaptive algorithm is then developed to approxi-
mate the optimal SCA solution termed successive survivable routing (SSR).
SSR routes link-disjoint backup paths for each traffic flow one at a time.
Each flow keeps updating its backup path according to the current net-
work state as long as the backup path is not carrying any traffic. In this
way, SSR can be implemented by shortest path algorithms using advertised
state information with complexity of O(#Link2). The analysis also shows
that SSR is using a necessary condition of the optimal solution. The numer-
ical results show that SSR has near optimal spare capacity allocation with
substantial advantages in computation speed.

Keywords— network survivability, spare capacity allocation, survivable
routing, network optimization, multi-commodity flow, approximation algo-
rithm, online algorithm, simulated annealing

I. I NTRODUCTION

N
ETWORK survivability techniques have been proposed to
guarantee the seamless communication services in the face

of network failures. Most techniques use centralized planning
and are developed for circuit-switched networks such as pub-
lic switched telephone networks [1], SONET/SDH [2], [3], [4],
ATM [5], [6], [7], WDM networks [8], [9]. However, circuit-
switched backbone networks are being replaced or overlapped
with packet-switched networks which provide better manage-
ability of bandwidth granularity and connection types. This ar-
chitecture migration has been significantly accelerated by the
explosive expansion of Internet services. In addition to tra-
ditional requirements of cost-effectiveness and service surviv-
ability, the increasing Internet traffic and its flexible QoS re-
quirements have brought in many new issues such as scalabil-
ity, dynamic and distributed bandwidth provisioning for fluctu-
ating traffic. Therefore, it is of increasing importance and ne-
cessity for network survivability research to catch up with this
trend. Some initial efforts have been made in this direction,
for example, various preplanned fault-tolerant routing schemes
are studied in RSVP-based IntServ services [10] and IP/MPLS
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backbone networks [11]. These schemes focus on protecting
working traffic by reserving spare bandwidth in backup paths.
Though network redundancy is reduced to some degree by shar-
ing spare bandwidth, it is the interest of this paper to have re-
dundancy minimization as an optimization criterion without de-
teriorating the benefits of preplanned backup path routing. We
call this schemesurvivable routing. Our numerical results show
that this method is not only feasible, scalable, adaptive, and fast,
but also near optimal in redundancy reduction.

This paper is organized as follows. Section II overviews exist-
ing survivability techniques and SCA algorithms. In Section III,
an Integer Programming (InP) formulation is introduced and its
best solution with hop-limited path sets is solved by a commer-
cial Branch and Bound (BB) solver AMPL/CPLEX. By relaxing
the integrity of the design variables, we also determine a Linear
Programming model which provides the infeasible lower bound
of the InP optimal solution. Next, a Simulated Annealing (SA)
algorithm is implemented in Section IV to approximate the op-
timal solution.

The main contribution is in Section V and VI. The struc-
ture of SCA is modeled with a novel matrix method approach.
The per-flow based backup path information is aggregated into
a square matrix, called the spare provision matrix (SPM). The
size of the SPM is the number of links. Using the SPM as the
state information, a new adaptive algorithm termed successive
survivable routing (SSR) is then developed to approximate the
optimal SCA solution. SSR routes link-disjoint backup paths
for each traffic flow one at a time. Each flow keeps updating its
backup path according to the current network state as long as the
backup path is not carrying any traffic. In this way, SSR can be
implemented by shortest path algorithms using advertised state
information with complexity ofO(#Link2) instead of per-flow
based information. It is an on-line algorithm to approach the
InP optimal solution utilizing necessary conditions of the opti-
mal solution.

In Section VII, numerical results for a range of networks
are used to compare the proposed SSR with other algorithms,
namely: Linear Programming lower bound (LP), Integer Pro-
gramming (InP) using a branch and bound (BB) solution, Sim-
ulated Annealing (SA), Survivable Routing (SR), Sharing with
Partial Information (SPI) [11], and the Resource Aggregation
Fault Tolerance (RAFT) method [10]. These results show that
SSR has advantages in terms of its effective approximation to
the optimal SCA, fast computation speed, distributed implemen-
tation, and adaptive to traffic fluctuations as well as network evo-
lution. Section VIII summarizes our conclusions.
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II. RELATED WORK

A. Traditional Network Survivability Techniques

Traditional network survivability techniques have two as-
pects, survivable network design and network restoration [12].
These two phases are complementary to each other and cooper-
ate to achieve seamless service upon failures.

Survivable network design refers to the incorporation of sur-
vivability strategies into the network design phase in order to
mitigate the impact of a set of specific failure scenarios. Spare
capacity assignment is the major component in dimensioning
a survivable network when the network topology is given. It
ensures enough spare capacity for the physical network or the
virtual network to recover from a failure via traffic rerouting.
For example, given a SONET/SDH mesh-type network topol-
ogy, the normal traffic demand with their flow allocation, the
problems are how much spare capacity should be provisioned
and where it should be located in order for the network to tol-
erate a specified set of failure scenarios (e.g., loss of any single
link). The termmesh-typedoesn' t imply that the network topol-
ogy is a full mesh, but rather that the network nodes are at least
two-connected [13].

In network restoration, affected traffic demand pairs are
rerouted upon failure to backup paths that have enough spare
capacity provisioned in the survivable network design phase.
Compared to dynamic fault-tolerant routing where no spare ca-
pacity is pre-allocated before failure, pre-planning spare capac-
ity not only guarantees service restoration, but also minimizes
the duration and range of the failure impact. In packet-switched
networks, such service guarantees are especially important be-
cause backlog traffic accumulated during the failure restoration
phase might introduce significant congestion [14], [15]. Pre-
planning spare capacity can mitigate or even avoid this conges-
tion. On the other hand, reserving additional spare capacity in-
creases the network redundancy.

Therefore, the major interest in survivable network design
has been concentrated on providing cost-efficient spare capac-
ity reservation at a certain survivability level. Thesurvivability
levelgauges the percentage of restorable network traffic upon a
failure. In this paper, a 100% survivability level is considered
unless it is explicitly noted otherwise. Thenetwork redundancy
is measured by the ratio of the total spare capacity over the total
working capacity. It depends highly on the network topology
as well as the spare capacity allocation algorithms used. For
example, a self healing ring (SHR) topology has 100% redun-
dancy [2], [3]. In mesh-type networks, when working paths are
the shortest hop paths, more than 100% redundancy is needed
in reserving backup paths. However, the redundancy can be re-
duced by sharing spare capacity reservations and this reduction
is feasible only when failure scenarios are non-overlapping in
the network. Afailure scenarioincludes all the simultaneously
failed network devices or components. In this paper, we con-
sider the failure scenarios where only one network link can fail
at any one time.

Restoration schemes can be classified as eitherlink restora-
tion andpath restorationaccording to the initialization locations

of the rerouting process. In link restoration, the nodes adjacent
to a failed link are responsible for rerouting the affected traffic
flows. Thus it only patches around the failed link in the original
path. In contrast, in path restoration, the end nodes whose traf-
fic is traversing the failed link initiate the rerouting process. In
general, path restoration requires less spare capacity reservation
than link restoration [16]. Moreover, the selection of backup
paths can befailure dependentwhen different failures are pro-
tected by different backup paths. Afailure independentpath
restoration scheme requires a backup path which is link-disjoint
from the working path. This approach requires less signaling
support and is easier to implement at the cost of requiring more
spare capacity than failure dependent path restoration. In this
paper, we use link-disjoint backup paths in failure independent
path restoration.

A problem that arises in the failure independent path restora-
tion scheme is the existence oftrap topology[17], [4]. In a
trap topology, the working path may block all the possible link-
disjoint backup paths although the network topology is two-
connected. For example, when the traffic flow between node 13
and node 15 in Network 6 in Fig. 8 has working path routed via
nodes 1 and 22, this path does not have any link-disjoint backup
path available although the network is two-connected.

There are two ways to avoid this dilemma. One is to se-
lect multiple partially link-disjoint backup paths to protect the
working path. However, the resulting restoration scheme is fail-
ure dependent. The other way is to modify the working path
to render a link-disjoint backup path possible. It is equivalent
to routing the working and backup paths simultaneously. The
augmenting path algorithmcan be used for this purpose [18]. It
uses a modified network with the same topology where all links
have one-unit capacity and the traffic demand from the source
to the destination is two units. The algorithm can find two link-
disjointed paths and we can use the shorter one for working and
the other for backup. Although such working paths might not
be the shortest hop paths, they are the shortest among all work-
ing paths protected by link-disjoint backup paths. Although
this method introduces longer working paths and disturbs traffic
on the working paths already been routed, it is still a practical
method thanks to the rare occurrence of the trap topology [17]
and we use this method to deal with trap topologies.

B. SCA Algorithms

Previous research on spare capacity allocation of mesh-type
networks adopts the problem context above and uses either
mathematical programming techniques or heuristics to deter-
mine the spare capacity assignment as well as backup path allo-
cation for all traffic flows. Multi-commodity flow (MCF) mod-
els have been widely used to formulate spare capacity allocation
problems in different networks like SONET/SDH [19], [20],
[21], [6], [22], ATM [6], [7], WDM [8], [9], and IP/MPLS [23].
In these models, pre-calculated path sets for all traffic demand
pairs are used to compose the search space for the design vari-
ables and the objective is to minimize the total spare capacity re-
quired for the restoration from specific failure scenarios. Unfor-
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tunately, the resulting Integer Programming (InP) formulation is
NP-hard. Due to the rapid increase in the path set size with the
network size, the above models will not scale to many realistic
situations. Thus heuristic methods are needed to approach the
optimum.

Relaxation methods are widely used to approximate InP so-
lutions. Herzberg et. al. [19] formulate a linear programming
(LP) model for the spare capacity assignment problem and treat
spare capacity as continuous variables. A rounding process is
used to obtain the final integer spare capacity solution which
might not be feasible. They use hop-limited restoration routes
to scale their LP problem. This technique can also be extended
to input InP formulation when Branch and Bound (BB) is em-
ployed for searching the optimal solution [20], [6]. Lagrangian
relaxation with subgradient optimization are used by Medhi and
Tipper [24]. The Lagrangian relaxation usually simplifies a hard
original problem by dualizing the constraints and decomposing
it into multiple easier sub-problems. Subgradient optimization
is used to iteratively solve the dual variables in these subprob-
lems.

Genetic Algorithm (GA) based methods are proposed in [24]
and [22]. GA evolves the current population of “good solutions”
toward the optimality by using carefully designed crossover and
mutation operators. Al-Rumaih et. al. [22] encodes the link
spare capacity in the chromosomes. The crossover operator is
to swap partial spare capacities of two parent links. The muta-
tion operator is to randomly vary spare capacity. The crossover
and mutation repeat until feasible offspring are achieved. Then
the elitist offspring will evolve into next generation until a stop-
ing condition is met. In [24], the indices of the backup paths in
the path set for demand pairs are encoded into the chromosome.
The crossover is simply to exchange the backup path indices be-
tween two solutions and the mutation is to change the backup
path indices of certain traffic demands. Their results show cer-
tain resistivity to local optimum in the search space.

There are many other heuristic methods reported including
Tabu search [25], Simulated Annealing (SA) [8], Spare Link
Placement Algorithm (SLPA) [6], Iterated Cutsets InP-based
Heuristics (ICH) [26], Max-Latching Heuristics [6], Subset re-
laxation [27], and the column generation method [28].

All of the above methods are still in the pre-planning phase
which can only be implemented centrally. A distributed scheme,
Resource Aggregation for Fault Tolerance (RAFT), is proposed
by Dovrolis [10] for NGI IntServ services using the Resource
Reservation Protocol (RSVP) [29]. It utilizes a Fault Manage-
ment Table (FMT) on each link to keep track of all the traffic
flows having this link included in their backup paths. The shared
spare capacity can be calculated with this FMT. The routing is
independently carried out and thus the total spare capacity is not
minimized.

Two similar dynamic routing schemes with restoration,
Sharing with Partial routing Information (SPI) and Sharing
with Complete routing Information (SCI) were introduced re-
cently [11]. In SPI, the backup path routing is based on the
shortest path algorithm while the resource minimization is ap-

proximated by using modified link costs in routing. Although
SPI is simple and fast, as shown in our numerical results, the
redundancy that SPI achieves is not very close to the optimal
results. The SCI scheme is similar to the survivable routing
scheme in this paper. However, in [11] it is claimed that per-flow
based information is necessary for SCI, unlike the SSR scheme
proposed here.

C. SCA Structure

The structure of the SCA problem has recently been investi-
gated in a few works.

The channel dependency graphwas introduced by Duato to
analyze network fault tolerance when failure protection routes
exist in a parallel computing system [30]. Though it concen-
trates on the question of how many faults a fault tolerant rout-
ing function can deal with, the dependency relations between
links on working and backup paths is shown through a dual
graph. This provides an important hint for the SCA problem
structure we used here. Theforcer conceptwas proposed by
Grover and Li [31]. It utilizes the relationship between the
working and spare capacity reservations to solve the express
route planning problem in link restorable networks. This link
relationship focuses on pair wise relations among links but not
the whole structure of the spare capacity sharing operation be-
tween flows. Thefault management table(FMT) method is the
building foundation for the resource aggregation fault tolerant
(RAFT) scheme [10]. It provides a local data structure to store
the spare capacity sharing among different flows. It is very dif-
ficult to use FMT to share these information globally since such
information is per-flow based and hence, not scalable with the
network size and the number of flows. An equivalent mathemat-
ical formulation of FMT is provided by Medhi and Tipper [24].

From the above discussion, the spare capacity allocation
problem is still an important and challenging problem.

III. I NTEGERPROGRAMMING MODEL

Consider a directed graph(N ;L), whereN andL are the
node set and the link set for the network. The total numbers of
nodes and links in the network areN = jN j andL = jLj re-
spectively. For a linkl 2 L, letwl denote the unit spare capacity
cost. In this paper, we usewl = 1 for minimum hop routing.
LetD denote the set of traffic flows, whereD � (N �N ) and
D = jDj � N � (N � 1) if we only consider bidirectional
point-to-point traffic flows. Traffic flowr(r 2 D) requiresmr

units of traffic demands with 100% restoration level for a set of
specific failure scenarios.

The path restoration with link-disjoint restoration scheme can
be represented as apath-linkmodel where the design variables
are indexed by the backup paths for traffic flows and the links
in the networks. For eachr 2 D, let Pr denote a candidate
set of loop-free backup paths which are link-disjointed from a
given working path. The path setPr is precalculated from the
network topology and the working paths selected. Thep-th path
in path setPr is represented by the binary path-link indicator
�
r;p

l
which will take “one” if and only if pathp uses linkl. Here
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we consider only the case of any single link failure. We letDf

denote the set of traffic flows affected upon the failure of link
f . Df is easily determined from the set of working path traffic
utilizing link f . Let xr;p be a binary decision variable which
equals one when pathp in Pr is used to protect the working
traffic of flow r. Further we letsl denote the required spare
capacity on linkl to protect against any single link failure.

TABLE I

NOTATION OF THE INP MODEL

N ;L;D Node set, link set and flow set
N;L;D numbers of nodes, links and flows
i; j; l indices of links
r index of flows
wl Unit cost of link l, l 2 L
mr Traffic demand of flowr, r 2 D
Df Set of affected flows upon failure of linkf , f 2 L
Pr The link-disjoint backup path set for flowr, r 2 D
�
r;p

l
1 if path p in the backup path setPr for flow r includes
link l, 0 otherwise

xr;p Binary decision variable, equals to 1 if flowr usesp for
its backup

sl Integer variable denoting spare capacity needed on linkl

Given the notation above (summarized in Table I), the spare
capacity allocation problem can be given as following:

min
sl;x

r;p

X
l2L

wlsl (1)

s.t.
X
p2Pr

xr;p = 1 8r 2 D (2)

sl �
X
r2Df

(mr

X
p2Pr

�
r;p

l
xr;p); 8l; f 2 L; l 6= f (3)

sl = integer; xr;p = 0 or 1 (4)

The objective function in (1) is to minimize the total cost of
spare capacity in the network. Constraints (2) and (4) guarantee
that there is only one link disjoint backup path selected for each
flow for each failure case. The total spare capacity needed on
each link is determined by constraints (3), which will pick the
maximum required spare bandwidth of each link under any sin-
gle link failure scenario. This InP formulation isNP-Hard. It is
topology dependent and does not scale withN , L andD.

By removingsl, we reach an equivalent formulation with ob-
jective function (5) subject to constraints (2) and (4). This new
objective function [24] can be evaluated easier in search-based
heuristics, such as simulated annealing.

min
X
l2L

wl

2
4 max
f2L�flg

f
X
r2Df

(mr

X
p2Pr

�
r;p

l
xr;p)g

3
5 (5)

IV. SIMULATED ANNEALING

Simulated Annealing (SA) is a stochastic hill-climbing
heuristic search method. It allows the search to explore a larger

area in the search space without being trapped in local optima
prematurely, and the best solution found during the search is re-
garded as the final result [32]. We use SA to solve the InP model
of Section III.

The probability of accepting non-improving moves,pa, is a
function of two parameters - the difference between the objec-
tive values (�) and the control temperatureT . This probability
is generally given bypa = e

��

T whereT is determined by a
so-called annealing, or cooling, scheme which will be discussed
later. Basically,T decreases as the search proceeds and hence
gradually reducingpa. As T approaches zero, the search re-
duces to a greedy search and will be trapped in the nearest lo-
cal optima. The generally accepted stopping criteria is that the
search experiences no improvement in the best objective value
found so far for some number of moves.

There are many possible annealing schemes for the update
of T . In our case, we use the annealing schemeTn = �� Tn�1
whereTn is the temperature at thenth temperature update, and
� is an arbitrary constant between 0 and 1. Usually,T is updated
periodically every number of accepted movesU . The parameter
� determines how slowlyT decreases. Values of� between 0.9
and 0.95 are typical. Parameters tuning forU , �, and the initial
value ofT (Tmax) is critical to the SA performance. The de-
tailed SA parameters are given in Section VII with their related
numerical results.

The move operation dictates how one obtains another solution
in the neighborhood search space of the current solution. A solu-
tion is represented by a set of selected link-disjoint backup path
p 2 Pr, one for each demand pairr 2 D. We define a move op-
eration as selecting a traffic demand pair uniformly fromD and
altering its current backup path in the current solution. In order
to select a new backup path for the move, we assign each backup
path a weight which is simply its index in the path setPr. Then,
we multiply the weight of each path above with a standard uni-
form [0 � 1] variate. The backup path with smallest product is
chosen for the next move operation. It can be shown that by us-
ing this method, the probability of selectingith backup path in
the path setPr is pi =

1=iP
Pr

j=1
1=j

. Since the backup paths in the

path set are ordered in ascending with the number of hops, those
with smaller number of hops (smaller index) are more likely to
be selected.

If the new objective value (On) after the move is better
(smaller) than the current objective value (Oc), we accept the
new solution. Otherwise, we accept it with probabilitypa =

e(
Oc�On

T
) whereT depends on the temperature period of the an-

nealing schedule described earlier. Note that since the objective
function in (5) is the minimization, non-improving moves result
in Oc � On and hence yieldpa � 1.

The backup path altering process above does not need ad-
ditional information about the topology. Instead, it simply
changes the index of the backup path of a randomly chosen flow.
This shields the best possible moving direction which might
need additional shortest path calculation. Therefore, we trade
off simplicity with optimality in the SA algorithm.
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V. SPARE PROVISION MATRIX METHOD

The restoration scheme considered in this paper is the path
restoration with link disjoint routes, where the backup path of a
flow is link disjointed from its working path. The failure scenar-
ios considered are all single link failures. Given network topol-
ogy, traffic flows and their working paths in SCA, the objective
is to minimize the total spare capacity reservation in the net-
work. The decision variables are backup paths. In order to min-
imize this objective function, backup paths can share capacity
on common links if their working paths are link disjointed. For
example, there are two flows in the network in Fig. 1, and the
link-disjointed working paths are a-b-c and e-d. If the backup
paths are a-e-c and e-c-d, they can share the spare capacity reser-
vations on link 6 (e-c).

TABLE II

NOTATION OF THE MATRIX METHOD

A = farg = farjg working path-link incidence matrix
B = fbrg = fbrig backup path-link incidence matrix
m = fmrg vector of traffic demands
M = Diag(m) diagonal matrix of traffic demands
C = fcijg spare provision matrix
C

r = fcr
ij
g contribution of flowr toC

s = fsig vector of spare capacity reservations
W;S total working, spare capacity

� = S=W network redundancy

Our notation is summarized in Table II. A network is repre-
sented by a graph ofN nodes andL links with D traffic flows.
Both links and flows are numbered sequentially. The link ca-
pacity is unlimited for simplicity of analysis. Without loss of
generality, we assume that links and flows are undirected. Each
flow r;1 � r � D is specified by its origin/destination node pair
(or; dr) and traffic demandmr, whereor < dr;81 � r � D

due to our undirected flow assumption. Working and backup
paths are represented by two1 � L binary row vectorsar =

farlg andbr = fbrlg. Thel-th element in these vectors equals
to one if and only if the corresponding path passes linkl. Path-
link incidence matrices for working and backup paths are the
collections of all the incidence vectors, formingD�L matrices
A = farlg andB = fbrlg respectively. The traffic demand
matrixM = Diag(fmrgD�1) is a diagonal matrix.

The spare provision matrixC = fcijgL�L can be found in
two ways. The first is given in (6). The value ofcij is the mini-
mum spare capacity required on linki when linkj fails. More-
over, the spare capacity reservations on the links are given by
the column vectors = fsigL�1 in (7). The “row-max” opera-
tor returns a column vector, with each entry being the maximum
item in each row of a given matrix.

C = B
T
MA (6)

s = row-maxC (7)

The second way to findC is through aggregating per-flow
based information, including working and backup paths. First,

the contribution of a single traffic flowr toC is given byCr
=

fcr
ij
gL�L in (8), wherear andbr are the row vectors inA and

B representing flowr's working and backup paths respectively.
The spare provision matrixC is thus given in (9).

C
r
= mr(b

T

r
ar); r = 1; : : : ; D (8)

C =

DX
r=1

C
r (9)

From these equations (6)-(9), per-flow based information in
A andB is replaced byC as the stored network state informa-
tion. The space complexity is decreased fromO(DL) down to
O(L2) and it is independent of the number of flows. This im-
proves the scalability of the spare capacity sharing. It also pro-
vides privacy and transparency among traffic flows in an open
network environment.

a

b c

de

1

2

3

4 56

7

Fig. 1. Example five-node network

TABLE III

MATRICESA;B;C AND s IN THE FIVE-NODE NETWORK

Flows A B C s

r or dr 1234567 1234567 l 1234567
1 a b 1000000 0101000 1 0211101 2
2 a c 1010000 0100101 2 2021100 2
3 a d 0100001 1010100 3 0100011 1
4 a e 0100000 1001000 4 1110010 1
5 b c 0010000 0001010 5 1110002 2
6 b d 0010100 1100001 6 0010101 1
7 b e 0001000 1100000 7 1020200 2
8 c d 0000100 0000011
9 c e 0000010 0011000
10 d e 0000001 0000110

The five-node network in Fig. 1 is given as an example of the
SPM method in the spare capacity sharing operation. Consid-
ering only unit traffic demands, we setM = I whereI is the
identity matrix of sizeD. Then,C = B

T
A. The matrices

A, B, C ands are given in Table III. Note that all the diago-
nal elements ofC are zeroes because the working and backup
paths for each flow are link disjointed. The total spare capac-
ity reservation is given byS = e

T
s = 11, wheree is the

unit column vector with lengthL. We can also get the total
working capacity reservationW = e

T
MAe = 13 and the

total spare capacity reservation without spare capacity sharing
S0 = e

T
MBe = 23. ComparedS to S0, the total spare capac-

ity reservation is reduced significantly with the spare capacity
sharing operation.

The matrix method for more complicated SCA problems,
such as cases with directed links, node failures, link modular-
ity, and multi-layer networks, are discussed in [33].
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VI. SUCCESSIVE SURVIVABLE ROUTING

In SSR, each traffic flow routes its working path first, then its
backup path in the source node next. The reason of sequential
selection of working and backup paths is that they have differ-
ent levels of importance. The working path is used most of the
time while the backup path is evoked only after failures. It is
more cost-effective to optimize working paths than backup paths
over time. This also makes the protocol implementation simpler.
Based on the above matrix method, the SSR implementation in
the source node of a flowr is given in Fig. 2.

1. Given working pathar
and flow destination nodetr

2. Periodically update topology
and spare provision matrixC

3. Calculate incremental
spare reservationwr

4. Update backup pathbr by
shortest path algo. with costwr

5. Update spare reservations
along backup pathbr

Fig. 2. Flow chart of the SSR algorithm in the source node of flowr

In step 1, each flow is initialized by giving its working path
ar and destination nodetr.

In step 2, current network state information is collected and
updated periodically. The update period should be long enough
to guarantee the stability of the network state. In this paper,
flows update their backup paths sequentially. This assumption
can be achieved when the period is long enough comparing to
the state synchronization time and traffic arrival intervals. But
too long period might affect the response time of the protocol.
How to decide this period is left for future work.

KeepingC up-to-date is important for protocol efficiency.
There are two methods in collectingC over the network. The
first method is a link-based method. Each link calculates its ca-
pacity reservation row vector inC from the working path of a
flow whose backup path passing it. The information about work-
ing paths will be discarded after that. A node collects all such
row vectors from its adjacent links to form a link state packet
with packet size ofO(NL). The packet is then broadcasted to
other nodes.

The second method is a node-based method. The source node
of a flow r calculates its contribution matrixCr. Each node
aggregates allCr locally, then disseminates such information
though link state packets. Comparing to the link-based method,
it does not require to spread the working path information along
the backup path, but it increases the size of the link state packets
fromO(NL) toO(L2).

Both of the methods collect the state informationC at the
space complexity ofO(L2). The per-flow based information
is not required for backup path routing and reservation. This
advantage makes SSR suitable for distributed implementation.

In step 3, we define following notations to calculated the in-
cremental spare reservation vector. Given the spare provision
matricC, the backup pathbr andCr for flow r, we define
C
�

= C � C
r ands� = row-max(C�

) as the state infor-
mation after flowr is removed. Assuming an alternate backup

path for flowr is b+
r

, we haveCr+
(b
+
r
) = mrb

+
r

T

ar. This
produces a spare capacity reservation vector ass

+(b
+
r
) = row-

max(C�
+C

r+
(b
+
r
)). Finally, whenb+

r
= e the incremental

spare reservationvector for traffic flowr is defined by

vr = fvrigL�1 = s
+(e)� s�: (10)

If the originalC is an optimal solution, we know that any al-
ternate backup pathb+

r
will resultS+ � S. The optimal backup

path br should result the minimumeT b+r among all backup
pathsb+r � e � ar. Hence, the minimization of the incremen-
tal spare capacity is anecessary conditionof the global optimal
SCA solution.

In step 4, the possible better backup path is calculated by us-
ing the shortest path algorithm withvr as the link cost. We call
this scheme asSurvivable Routing(SR). It has a low complexity
atO(N logN). This makes the resulted SSR a fast algorithm.

In step 5, if the backup path is changed in the former step,
the spare capacity reservations along the path will be updated
accordingly. Since the backup path and its spare capacity are
not used unless failure happens, it is possible to modify current
backup paths as well as the reserved spare capacity to improve
the global cost-effectiveness according to the changing traffic
requirements and network states.

After this step, the algorithm returns to step 2 for the next
backup path update period.

When there is no backup path update in the network, the al-
gorithm stops at a local optimum where no flow can improve
the global solution individually. In this way, the SSR reaches an
approximation of the global optimum through iterative backup
path routing and state information collection procedure.

VII. N UMERICAL EXPERIMENTS

Eight network topologies shown in Fig. 3–10 are used to as-
sess the proposed SSR algorithm. The networks have an average
node degree�d from 2.31 to 4.4 as given in Table IV. Without
loss of generality, we assume symmetrical traffic flows between
the same node pair are on the same path but reversed direc-
tions. All flows have one unit bandwidth demand in the eight
networks, i.e.,mr = 1;8r 2 D. This unit traffic demand is
only for easy comparison. For network 3 and 5, the results with
demands between one and five units are also given in cases 3b
and 5b in Table IV–VI and Fig 11.

The best total spare capacity allocations come from Branch
and Bound with hop-limited backup path sets solved in the com-
mercial software AMPL/CPLEX [34], [35]. The computation
time for the smaller networks is within hours on a SUN Ultra
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Fig. 5. Network 3 (13 nodes, 23 links,�d = 3:54)
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Fig. 6. Network 4 (17 nodes, 31 links,�d = 3:65)
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Fig. 7. Network 5 (18 nodes, 27 links,�d = 3:00)
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Fig. 8. Network 6 (23 nodes, 33 links,�d = 2:87)
2 3

15

1

4

11

6

10

9

8

5 7

18 19 23

21

22

20

16

17

26

24

25

14 13 12

Fig. 9. Network 7 (26 nodes, 30 links,�d = 2:31)
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Fig. 10. Network 8 (50 nodes, 82 links,�d = 3:28)

TABLE IV

NETWORK INFORMATION

Network 1 2 3 4 5 6 7 8 3b 5b
N 10 12 13 17 18 23 26 50 13 18
L 22 25 23 31 27 33 30 82 23 27
�d 4.4 4.17 3.54 3.65 3 2.87 2.31 3.28 3.54 3
D 90 132 156 272 306 506 650 2450 156 306
mr 1 1 1 1 1 1 1 1 1 – 5 1 – 5
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TABLE V

TOTAL SPARE CAPACITY

Network 1 2 3 4 5 6 7 8 3b 5b
Working 142 224 324 640 826 1670 2732 11104 972 2430

LP 49.7 100.5 121.5 227 469 1103 1820 - 381 1340
BB 52 102 124 240 472 1122 1820 - 382 1346
SA 54 112 132 246 474 1216 1830 - - -

SSRmin 54 108 134 252 486 1138 1822 5568 410 1394
SSRmax 66 120 154 272 504 1164 1834 5654 476 1462

SRmin 56 110 134 258 490 1142 1822 5592 432 1422
SRmax 74 128 162 284 516 1176 1862 5670 516 1512
SPImin 84 152 186 366 594 1386 1932 7286 584 1770
SPImax 100 180 210 398 648 1434 2032 7792 658 1936

RAFT 88 178 200 374 620 1448 1994 7516 626 1810
NS 198 326 456 898 1308 2708 5638 16154 1338 3836

TABLE VI

EXECUTION TIME (IN SECOND)

Network 1 2 3 4 5 6 7 8 3b 5b
LP 52 380 150 1500 650 2100 41 - 140 610
BB 7100 5500 3500 11000 3700 16000 230 - 2000 2900
SA 957 4031 1062 4600 2772 1020 1571 - - -

SSR 0.5 1 1.2 3.2 3 6.5 7.3 191.8 1.34 3.67
SR 0.2 0.3 0.3 0.6 0.7 1.3 1.8 25.5 0.32 0.73
SPI 0.2 0.27 0.29 0.52 0.54 1.11 1.42 21.3 0.3 0.63

RAFT 0.01 0.01 0.01 0.03 0.03 0.07 0.07 0.76 0.01 0.03
NS 0.01 0.01 0.01 0.03 0.03 0.07 0.07 0.75 0.01 0.03

Enterprise server with 4GB memory and 250MHz UltraSparc
CPU. The results from linear programming (LP) relaxation are
also given. In LP, the backup path sets include all possible
paths1. The decision variablesxr;p in the InP model of Sec-
tion III are relaxed to non-integer value. Hence, the results from
LP might not be feasible for the InP model but it provides a
lower bound of the optimal solution.

Simulated Annealing (SA) algorithm introduced in Sec-
tion IV is also used to find near optimal solutions. The pa-
rameters include the annealing schedule constant� = 0:9, the
maximum number of no improvementb = 2000, and the initial
temperatureTmax = 100. In Table VI, the simulated annealing
takes less time in the SUN server than BB but it still needs a lot
of time for convergence.

For SSR, we assume that the state information can be syn-
chronized immediately and all flows are determined before the
algorithm starts. The sequence of the flow updates in SSR is an
important factor. Different sequences of flow will results differ-
ent solution. We use 64 different seeds for generating random
number sequences. In this way, we can collect the statistically
significant results, the maximum and minimum solutions among
64 results, in Table V. These random seeds are also used in the
SR and SPI schemes. The achieved redundancy levels of all
schemes except NS are plotted in Fig 11. In SSR, SR and SPI
schemes, the minimum redundancies from 64 random cases are
the top of the solid columns and the maximums are the top of the
error bars. These schemes are executed for all 64 random cases
in a Pentium III 533MHz machine. The total execution time

1An exception is network 4 where the LP lower bound is not found in one day
and the limited path set is used instead.

for all 64 cases is given in Table VI. RAFT and No Sharing
(NS) [11] schemes are run in the same machine, but the execu-
tion time recorded is only for single case.

In experiments of first seven networks, SSR achieves stable
solutions after at most four backup path update for all flows.
For the larger network 8, the maximum number of update is ten.
It means that SSR converges very fast.

Among all the algorithms, BB gives the best feasible solu-
tions. The optimal solutions are bounded narrowly between BB
and LP. In the other end, NS does not provide spare capacity
sharing and consequently it requires the highest redundancy ra-
tio, which is above 100%.

Among all other schemes supporting spare capacity sharing,
RAFT and SPI are the next highest schemes. Their results are
close. SPI requires on-line link metrics calculation, while RAFT
is much simpler since it uses hop count as link cost. SSR is
much lower than SPI and RAFT and slightly lower than SR. It
improves the total spare capacity by iteratively updating backup
routes upon an SR solution. Furthermore, the results of SSR is
slightly higher than SA and BB. SSR is only 1% to 4% more
than BB. Considering the small gap from BB to the optimal so-
lution, SSR is very close to the optimal SCA solution as well.

The network topology is also an important factor. The sparser
networks such as network 7 have higher redundancy. The dif-
ference between SSR and BB results are closer. On the other
hand, the denser networks can achieve lower network redun-
dancy around 40% where the difference between SSR and BB
results expands up to 4%.

The maximum value and minimum results in 64 different SSR
random cases provide ranges from 0.4% to 8.5%. This indicates
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that the flow sequence of updating the backup paths is a critical
factor for the SSR algorithm. It is an interesting topic for further
research.

Moreover, the computation time for different algorithms are
significantly different. BB takes hours to compute in most net-
works and can not scale to larger networks, such as network 8.
SA has faster speed comparing to BB and less optimality. But
it still needs parameter tuning and it takes minutes to converge.
RAFT is very fast but the results are far from the optimal so-
lution. SSR gives solutions to all networks in seconds and it
achieves very good near optimal solutions.

From above results, we conclude that SSR achieves surpris-
ingly good approximation results with very fast speed.

We use the matrix method to explain why SSR achieves such
surprisingly good results comparing to RAFT.

First, RAFT routes backup paths through minimum hop
paths. The corresponding operation in matrixC

r is to minimize
the summation of its elements after the working path is given.
Consequently, Minimizing the summation of all elements inC
is the objective. This operation is equivalent to minimize the
rightmost formula in (11) which is a lower bound of the network
redundancy. In Section VII, RAFT can not achieve good redun-
dancy ratio compared to SSR and BB solutions. The reason can
be explained as: reducing the lower bound of redundancy does
not necessary reduce the achievable redundancy itself.

� =
S

W
=
e
T
s

W
�

1

W

e
T
Ce

L� 1
(11)

In SSR, we utilize the necessary condition discussed after
(10) to find apartial optimal for a single traffic flow under the
given network state. Hence, SSR has better chance in approx-
imating the optimal solution than RAFT. We use “partial” here
to distinguish it from the global optimal solution for the multi-
commodity flow SCA problem.

One more benefit from using the incremental spare reserva-
tion vector in (10) as link cost is the possible iteration pro-
cedure to approximate the global optimal solution. The prop-
erty of the reserved spare capacity is also making this itera-
tion procedure possible. The backup path and its spare capac-
ity are not used unless failure happens. It is reasonable to up-
date current backup paths as well as the spare capacity to im-
prove the cost-effectiveness when the traffic demand and net-
work state are changed. Hence, beyond above survivable rout-
ing, we can achieve such iterations by successively updating the
backup paths. This leads to the successive survivable routing
algorithm.

VIII. C ONCLUSION

This paper first overviews the spare capacity allocation prob-
lem. It is an NP-hard multi-commodity flow problem. Next,
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an Integer Programming model is formulated and solved by a
simulated annealing approximation algorithm.

The major contribution of the paper is a two-pronged attack
to SCA: model the SCA structure in a novel matrix method
approach and construct an effective approximation algorithm
termed successive survivable routing. The matrix method aggre-
gates the state information for backup path routing to a square
matrix, called the spare provision matrix. Based on the SPM, the
Successive Survivable Routing (SSR) algorithm is given as an
approximation algorithm for SCA. It has the advantages in dis-
tributed implementation, easy protocol complexity, and adaptive
to traffic fluctuations as well as network evolution. The exten-
sive numerical results show that SSR has advantages in terms of
effective approximation to the optimal solutions and fast com-
putation speed. Moreover, we also use the SPM to justify why
SSR can achieve better results than the other algorithm RAFT –
a necessary condition of the optimal SCA solution was used in
SSR.

In conclusion, SSR is an excellent candidate to allocate spare
capacity for the survivable network services in the mesh type
networks.
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