
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1079

Approximating Pareto optimal compiler optimization
sequences—a trade-off between WCET, ACET and code size

Paul Lokuciejewski1,∗,†, Sascha Plazar1, Heiko Falk1, Peter Marwedel1

and Lothar Thiele2

1Computer Science 12, TU Dortmund University, D-44221 Dortmund, Germany
2Computer Engineering and Networks Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland

SUMMARY

With the growing complexity of embedded systems software, high code quality can only be achieved
using a compiler. Sophisticated compilers provide a vast spectrum of various optimizations to improve
code aggressively w.r.t. different objective functions, e.g. average-case execution time (ACET) or code
size. Owing to the complex interactions between the optimizations, the choice for a promising sequence
of code transformations is not trivial. Compiler developers address this problem by proposing standard
optimization levels, e.g. O3 or Os. However, previous studies have shown that these standard levels often
miss optimization potential or might even result in performance degradation. In this paper, we propose the
first adaptive worst-case execution time (WCET)-aware compiler framework for an automatic search of
compiler optimization sequences that yield highly optimized code. Besides the objective functions ACET
and code size, we consider the WCET which is a crucial parameter for real-time systems. To find suitable
trade-offs between these objectives, stochastic evolutionary multi-objective algorithms identifying Pareto
optimal solutions for the objectives 〈WCET, ACET〉 and 〈WCET, code size〉 are exploited. A comparison
based on statistical performance assessments is performed that helps to determine the most suitable multi-
objective optimizer. The effectiveness of our approach is demonstrated on real-life benchmarks showing
that standard optimization levels can be significantly outperformed. Copyright q 2011 John Wiley &
Sons, Ltd.

Received 11 July 2010; Revised 22 December 2010; Accepted 21 February 2011

KEY WORDS: real-time; WCET; compiler; optimization; multi-objective; Pareto optimal

1. INTRODUCTION

Modern systems require both highly efficient hardware and aggressively optimized software. In

particular, resource-restricted embedded systems rely on software tailored towards given specifi-

cations. With the growing complexity of embedded software, code generation and optimization

must be automatically carried out by compilers. Modern compilers provide a vast portfolio of opti-

mizations which exhibit complex mutual interactions and affect different objective functions, such

as average-case execution time (ACET), code size or energy dissipation in a hardly predictable

fashion.

Since compiler optimizations are not considered separately, the search for suitable optimization

sequences and optimization parameters that promise a positive effect on a single or multiple

objective functions is not straightforward. To cope with this problem, compiler developers construct

∗Correspondence to: Paul Lokuciejewski, Computer Science 12, TU Dortmund University, D-44221 Dortmund,
Germany.

†E-mail: paul.lokuciejewski@tu-dortmund.de

Copyright q 2011 John Wiley & Sons, Ltd.

P. LOKUCIEJEWSKI ET AL.

standard optimization levels, like O3 or Os, which are based on their experiences. However, there

is no guarantee that these optimization levels will also perform well on untested architectures or for

unseen applications. Previous studies like [1–4] have indicated the poor performance of standard

optimization levels and pointed out that more sophisticated approaches are required for finding

effective compilation optimizations.

Concerning the code generation for embedded systems acting as service-oriented hard real-time

systems, the optimization problem becomes even more complex. Embedded systems are charac-

terized by both efficiency requirements and critical timing constraints. Average-case performance,

power consumption and resource utilization are objectives describing the efficiency of a system.

Timing constraints are expressed by the worst-case execution time (WCET). Especially for safety–

critical application domains such as automotive and avionics, the satisfaction of the WCET must

be guaranteed to avoid system failure.

As a consequence, system designers of real-time systems must consider different objectives in

a synergistic manner. Concerning the compiler-based code generation, there is no single compiler

optimization sequence that satisfies all objectives. Therefore, multiple trade-offs must be consid-

ered enabling the system designer to choose among different solutions that best suit the system

specifications.

This paper proposes a novel modular and flexible framework to explore the performance of

compiler optimizations with conflicting goals. Since typical state-of-the-art compilers provide a

vast number of optimizations, the search space is too large to be exhaustively explored. To cope

with this complexity problem, we apply evolutionary multi-objective (EMO) algorithms, which

efficiently find a good approximation of Pareto fronts representing the best compromise between

the considered objectives. The advantages of our framework are threefold. First, our techniques

reduce the complexity of compiler design/usage by relieving compiler writers/users from the

tedious task of searching for appropriate optimization sequences. Second, the automatically deter-

mined optimization sequences clearly outperform commonly used standard optimization levels,

leading to higher system performance compared with the traditional system design. Third, the

computation of good optimization sequences can be done once using representative test code,

and these pre-computed sequences can afterwards be applied online to unseen codes without any

further computational overhead.

This paper is an extension of the ISORC conference paper entitled Multi-Objective Exploration

of Compiler Optimizations for Real-Time Systems [5]. Its main contributions are as follows:

1. We propose the first fully functional adaptive WCET-aware compiler to perform a multi-

objective compiler optimization level search for service-oriented real-time systems. To the

best of our knowledge, trade-offs with the objective WCET have not been considered yet.

2. Our framework approximates Pareto optimal solutions for the most crucial objectives in

resource-restricted real-time systems: we perform trade-offs and compare the objectives

〈WCET, ACET〉 and 〈WCET, code size〉.

3. In contrast to other works, we consider optimizations applied on both abstraction levels of the

code, the source code and assembly level, allowing the full exploitation of the optimization

potential.

4. In the first large study, different EMO optimizers are evaluated. Since the comparison of their

performance is not straightforward, we conduct a performance assessment based on reliable

statistical approaches.

5. To validate the effectiveness of the discovered optimization sequences, a cross-validation on

a test set of benchmarks is conducted, allowing to predict how effective these sequences will

be on unseen programs.

The remainder of this paper is organized as follows. Section 2 gives a survey of the related

work. In Section 3, concepts of adaptive compilers used for a search of the compiler optimization

level space as well as the considered objective functions are discussed. Evaluating the objectives

generates data that is used by evolutionary optimizers to explore the large multi-objective search

spaces. These algorithms and statistical approaches for their performance assessment are presented

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

in Section 4. Section 5 introduces our experimental environment, while results achieved on real-life

benchmarks are discussed in Section 6. Finally, Section 7 concludes the paper and gives directions

for future work.

2. RELATED WORK

The search for good compiler optimization sequences, also called iterative compilation, has been

thoroughly studied in the past. The general idea behind iterative compilation is to explore the

compiler optimization space by starting with a set of randomly chosen optimization sequences

used to generate a binary executable. Random sequences are used since good sequences as starting

point are usually not known. Measuring a single objective function, e.g. the ACET [1–3] or code

size [4], the fitness of each sequence is determined and subsequent generations of optimization

sequences yielding a higher fitness are computed. To reduce the cost of iterative compilation

resulting from the search in the large space, Kulkarni et al. [1] use genetic algorithms to avoid an

exhaustive search. In [6], a characterization of the search space by enumerations and explorations

is used to find good compilation sequences more efficiently. Enumerations examine a subset of the

optimizations and evaluate each point in that subspace for a single program and a sample input.

Explorations use a specific search algorithm to find good sequences for a variety of programs under

some objective function. To accelerate the search, Leather et al. [2] apply fixed sampling plans.

In [7], a framework statically predicting the impact of applied optimizations is presented. Agakov

et al. [3] use machine learning approaches to focus on promising areas of the search space.

All these aforementioned publications consider a single objective function. This approach

is, however, not sufficient for modern embedded systems where a trade-off between different,

conflicting optimization criteria is required. The only work addressing compiler optimization level

exploration was presented by Hoste and Eeckhout [8]. However, Hoste’s and our work differ in

several ways. Most important, our main focus is the worst-case behavior of real-time systems;

thus, the trade-off between the WCET and other crucial objective functions (ACET, code size) is

evaluated. Moreover, we do not rely on the performance of a single EMO algorithm, but evaluate

different algorithms by a statistical performance assessment to find the algorithm that performs

the best for a multi-objective exploration of compiler optimizations. In addition, our framework

is more flexible. In contrast to the GNU Compiler Collection (GCC) compiler used by Hoste

and Eeckhout [8], which performs all optimizations in a fixed order where each optimization can

be switched on or off, our compiler allows the construction of arbitrary optimization sequences.

This leads to an increased complexity of the problem but allows also the exploitation of a higher

optimization potential.

In contrast to traditional ACET optimizations, WCET-aware compilation is a novel research

area with an increasing academic and industrial interest as the number of embedded systems acting

as real-time systems is rapidly growing. Similar to ACET compilation, the published works in

the context of the WCET-aware compiler optimizations consider a single objective function, the

WCET. Most works in the domain of WCET minimization operate on assembly level and exploit

memory hierarchies. For example, the authors of [9] presented an algorithm for static locking of

I-caches based on a genetic algorithm, while compile-time cache analysis combined with static

data cache locking was presented in [10]. Other works regard a WCET-aware software-based cache

partitioning for multi-task systems [11] or a WCET-aware register allocation (RA) [12].

Further studies exploit fast scratchpad memories (SPM) for WCET minimization. Greedy algo-

rithms for a WCET-aware SPM allocation of data are presented in [13], while optimal approaches

based on an ILP formulation are explored for data and program code in [14, 15], respectively.

Besides the exploitation of memory hierarchies to reduce WCETs, Kadlec et al. [16] propose

code transformations applied by a compiler in order to avoid timing anomalies of modern processor

hardware. The authors observe that out-of-order pipelines of processors might lead to timing

anomalies. They propose to move all scheduling decisions from the hardware instruction scheduler

to the compiler’s instruction scheduler and propose three code re-scheduling techniques to avoid

timing anomalies.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

A complete compiler framework for the reduction of WCETs calledWCC is presented in [17]. It

consists of a complex infrastructure aiming at the tight and fully automated integration of a WCET

analyzer into the compilation process. For this purpose, interfaces at machine code level have been

exploited in order to establish communication between compiler and analyzer. Mechanisms have

been integrated into this compiler in order to maintain the so-called flow facts which are required

for the WCET analysis, and a loop analyzer is able to derive such flow facts automatically for

large classes of loops. On top of this infrastructure, a couple of WCET-aware optimizations are

presented (procedure cloning and positioning, scratchpad allocations for program code and data,

and RA). Although the present publication is technically based on this WCC compiler, [17] differs

from the present publication in the sense that no adaptive compilation and no multiple objectives

beyond WCET have been considered.

All these previous works have in common that novel optimizations driven by WCET data are

applied to achieve a WCET minimization. However, none of them studies the impact of stan-

dard ACET compiler optimizations on the program’s worst-case performance. The only work

addressing this gap was presented in [18]. The authors apply a genetic algorithm to find a

sequence of standard assembly,level optimizations yielding the highest WCET minimization.

However, in contrast to our work, the authors focus on a single objective function to be optimized

and do not consider trade-offs with other objectives. Moreover, just a single evolutionary algo-

rithm (EA) is applied; thus, it is not clear how good the algorithm performs and whether other

algorithms, like Hill climbing, might even produce better results. Finally, exclusively assembly

level optimizations are considered, neglecting the evaluation of source code optimizations on the

program’s WCET.

3. COMPILER OPTIMIZATION SEQUENCE EXPLORATION

This section discusses the exploration of the compiler optimization sequence search space. In

Section 3.1, we briefly introduce the general structure of adaptive compilers. Section 3.2 provides

an overview of the adaptive WCET-aware C compiler WCC [17, 19], which is employed for

our experiments. The compiler generates optimization sequences for the search of promising

solutions via EAs. Optimization sequence encoding and their performance evaluation are presented

in Sections 3.3 and 3.4, respectively. Based on this information, EMO objective algorithms, which

will be discussed in the next section, select promising sequences with conflicting goals.

3.1. Adaptive compilers

The general workflow of an adaptive compiler is depicted in Figure 1. Similar to standard compilers,

the source code is translated by a compiler frontend into an intermediate representation, enabling an

easier application of optimizations. However, in contrast to standard compilers, the optimizations

are not performed in a fixed order. The search algorithm selects optimization sequences (of arbitrary

order) that are exploited for code generation. Next, the code is evaluated and one or more objective

functions are determined depending on whether a single- or multi-objective optimization is applied.

Frontend

Source
Code

Backend Machine
Code

Search Algorithm

Optimized
Code

Figure 1. Workflow of an adaptive compiler.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

High-Level
IR

Register
Allocation

Figure 2. Internal code representation within the WCC compiler.

Subsequently, the determined objective functions serve as input for the search algorithm that refines

its selection of optimization sequences by choosing those optimizations for the next generation

that exhibits an improved performance. This process is repeated until a termination condition is

satisfied. Finally, the best optimization sequence is applied to generate optimized code.

Owing to the enormous number of supported optimizations within modern compilers, the main

problem with iterative compilation is the large search space, making an exhaustive evaluation

infeasible. For example, the GCC v4.1 [20] provides 60 compiler flags, which can be arbitrarily

enabled or disabled, yielding 260 possible combinations—a number of combinations that makes

an exhaustive evaluation infeasible.

3.2. Structure of the WCC compiler

The adaptive WCET-aware compiler WCC used in this work differs in two major aspects from

other adaptive compilers. First, it is tightly coupled to a static WCET analyzer, the tool aiT [21],

allowing an efficient estimation of the program’s WCET in a transparent manner. Second, the

compiler is more flexible than other compilers, since it allows an arbitrary order of equivalent

optimizations as will be explained in the following.

Internally, the input program is managed by three different intermediate representations (IRs)

as shown in Figure 2. After processing the input by a compiler frontend, it is transformed into a

high-level intermediate representation. Using a code selector, the source code level is lowered into

assembly level by translating the high-level IR into a virtual low-level IR. Virtual means that no

physical registers but place holders identifying dependencies among instructions are used. These

registers are not restricted in their number, thus provide a higher flexibility for the optimizations.

Next, an RA assigns each virtual register a physical CPU register; thus, the virtual low-level

IR is translated into a physical one. The latter is used by the compiler backend to generate

the final machine code. This compiler structure yields high optimization potential since analyses

and optimizations can be performed on different abstraction levels of the code. Consequently,

the available optimizations are subdivided into equivalent classes according to the three different

compiler’s intermediate representations.

Available compiler optimizations

The optimizations available within WCC are both standard ACET optimizations and WCET-driven

optimizations aiming at an automatic improvement of the worst-case performance. In this study, we

exclusively focus on the ACET optimizations for two reasons. First, WCET-aware optimizations are

typically too time-consuming since they perform a costly static WCET estimation multiple times

to keep their worst-case timing model up-to-date. This makes them not suitable for an iterative

search. Second, we want to explore the impact of standard compiler optimizations on the program’s

worst-case performance to show which trade-offs w.r.t. other objectives can be achieved. Using

standard optimizations, the results of this study are more general and allow to draw conclusions

for similar (standard) compiler frameworks.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

WCC provides 21 standard source code optimizations that are applied to the high-level IR (cf.

Figure 2). These optimizations are briefly summarized below. The reader is referred to the standard

compiler literature [22] for more details on these optimizations.

Constant folding evaluates constant arithmetic expressions like e.g. a = 3 * 7; and replaces

them by their pre-computed result (a = 21;).
Dead code elimination removes computations from the code whose results are not used anywhere

in the remaining code.

Common subexpression elimination replaces several occurrences of an arithmetic expression

(e.g. a = b * 3 + c; ... b * 3 + c ...) by accesses to temporary variables in order to avoid

the repeated computation of the same expression (tmp = b * 3 + c; a = tmp; ... tmp ...).
Merging of identical string constants like e.g. "\t%d\n" in printf("\t%d\n", i);
printf("\t%d\n", j); helps to reduce a program’s data segment.

Code simplifications e.g. eliminate double negations, remove unnecessary type casts or pointer

dereferences, or translate simple if-then-else statements into the ANSI-C select operator ?.
Value propagation propagates constant values in the code (e.g. a = 21; b = a + 14;

becomes a = 21; b = 21 + 14;) in order to create more optimization potential for constant

folding.

Creation of multiple function exits avoids unnecessary jumps by moving return statements in

the then- and else-parts of if-then-else statements if possible.

Life range splitting creates new local variables for any single local variable that is used for

different purposes, i.e. that has distinct life ranges. This increases the degree of freedom for

other optimizations and RA.

Loop collapsing transforms n-fold nested loops iterating over n-dimensional arrays to a one-

dimensional loop in order to reduce repeated tests of loop exit conditions and conditional

branching.

Loop deindexing replaces well-structured accesses to arrays inside loops by pointer accesses

and pointer arithmetic using the ++ and -- operators in order to support the auto-

increment/decrement addressing modes of embedded processors.

Loop unswitching moves if-statements whose conditions are not loop-dependent out of loops.

This helps to achieve a more linear and regular control flow in loop bodies.

Optimization of if-statements in loop nests removes if-statements whose conditions are provably

true or false during all loop iterations. Again, this helps to simplify the control flow in loop

bodies.

Removal of unused function arguments helps to keep parameter lists of functions small and

thus potentially reduces function calling overhead.

Removal of return values of a function f can be done if it is known that f’s return value is never

used. This reduces the overhead for returning from function calls.

Removal of unused symbols keeps the compiler’s symbol tables small and might result in smaller

overall code sizes.

Struct scalarization replaces an ANSI-C struct by a couple of atomic scalar variables (e.g.

struct {int x; int y;} point becomes int point_x; int point_y;). This makes

the struct’s elements eligible for RA so that they do not necessarily have to be stored in the

slow main memory.

Tail recursion elimination replaces simple classes of recursive functions by non-recursive func-

tions in order to remove function calling overhead and to increase the potential of subsequent

optimizations.

Transformation of head-controlled loops replaces for- and while-do-loops by do-while-
loops since this reduces the number of required tests of the loop’s exit condition.

Function inlining copies the body of a function to those places where the function is called. This

increases code size, but reduces function calling overhead and possibly enables other subsequent

optimizations.

Function specialization propagates constants passed to called functions as arguments into

the called function and creates a specialized version of the called function for the given

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

constant argument. In analogy to inlining, this increases code size, but reduces function calling

overhead and possibly enables other subsequent optimizations like e.g. constant propagation and

folding.

Loop unrolling by an unrolling factor n replicates a loop’s body n times (e.g. for (i=0; i<10;
i++) a += i; becomes for (i=0; i<10; i+=2) { a += i; a += i; } for n equal 2).

This reduces loop iteration overhead and possibly enables other optimizations, but obviously

increases code size.

Some of the optimizations are parametric. Function inlining, for example, allows the specification

of the maximal size of the callee function to be inlined. We consider each optimization used with

a different parameter as a distinct optimization. Three optimizations, namely function inlining,

function specialization and loop unrolling, use the constant values 20, 50, 100 and 200 to restrict

the number of optimized functions and loops, respectively. In total, 30 source code optimizations

are distinguished: 18 non-parametric and 3 parametric (4 parameters each).

The next class of optimizations are assembly level optimizations that operate on a virtual

low-level representation of the code. This class includes the following seven optimizations:

Constant folding, dead code elimination and value propagation are exactly the same tech-

niques as already explained above, except that they now operate on machine code instead of

C code.

Redundant code elimination is comparable to the common subexpression elimination described

above. However, WCC’s redundant code detection works at a much finer granularity and

is able to eliminate all those code regions which, bit per bit, compute exactly the same

results.

Peephole optimizations perform simple machine code transformations where e.g. redundant

load or store operations are removed or where operations implementing type casts are

eliminated.

Loop-invariant code motion is a technique that moves all machine operations that do not depend

on a surrounding loop out of this loop. This helps to keep loop bodies small and improves the

loop’s performance.

Instruction scheduling reorders machine instructions such that the parallelism available in the

processor’s pipelines is exploited in the best possible way.

Loop-invariant code motion is a parametric optimization depending on one parameter. In total,

eight virtual low-level optimizations are distinguished here: six non-parametric and one parametric

used in two different configurations.

Following the workflow in Figure 2, RA is applied next. This step can be considered as an

optimization but in contrast to other optimizations, its application is not optional but mandatory in

order to generate valid code. Our modular adaptive compiler supports different register allocators

which can be freely selected; thus, the register allocator is a part of the optimization sequence that

can be constructed by the search algorithm. WCC implements a standard graph coloring-based RA

[23] and a parametric optimal allocation [24] (using two different allocation strategies) leading

to three different choices in total for this optimization class. It should be mentioned that this

is the first work that considers different register allocators during iterative compilation. This is

important since different spilling strategies could lead to better performance w.r.t. one objective

while worsening another. Moving for instance spill code from the worst-case execution path to

a concurrent path could decrease the WCET, whereas it potentially increases the ACET of a

program.

Finally, a local instruction scheduling can be applied as assembly level optimization on the

physical low-level representation. An overview of all considered optimizations classified by WCC’s

standard optimization levels is depicted in Table I. Higher levels include all optimizations from

lower levels. The numbers in parentheses indicate the number of different parameter values used

for the corresponding optimization. Note that the order of the optimizations in the table does

not correspond to the order in which the optimizations are applied by WCC in the particular

optimization levels.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

Table I. Considered compiler optimizations.

O1 Constant folding O2 Loop deindexing
Dead code elimination Loop unswitching
Local common subexpression elimination Optimize if-statements in loop nests
Merge identical string constants Remove unused function arguments
Simplify code Remove unused returns
Value propagation Remove unused symbols
Low-level redundant code elimination Struct scalarization
Low-level dead code elimination Tail recursion elimination
Low-level loop-invariant code motion (2x) Transform head-controlled loops
Low-level constant folding Instruction scheduling before register allocation
Low-level value propagation Instruction scheduling after register allocation
Low-level peephole optimizations

O2 Create multiple function exit points O3 Function inlining (4x)
Life range splitting Function specialization (4x)
Loop collapsing Loop unrolling (4x)

HIR(31) pLIR(2)RA(3)vLIR(9)

ABCDEFGHIJKL...Zabcde fghijklmn o|p|q r|s

Figure 3. Encoding of optimization sequences.

Based on the optimizations described above, WCC’s adaptive compilation techniques might

produce various different optimization sequences for different objectives. These sequences might

differ in the order in which individual optimizations occur not only within the sequences, but

also in the sequences’ length. Since EAs are used within WCC to generate these sequences,

these algorithms should be able to deal with sequences of variable length. However, evolutionary

algorithms usually rely on fixed-length encodings. Choosing a too small length for this encoding

makes the EA find solutions of poor performance [25]. Thus, the encoding used within WCC

has a sufficient fixed length as described in the next section 3.3. In order to model variable-

length optimization sequences within a fixed-length evolutionary encoding, a so-called dummy

optimization is introduced per optimization class (except for RA). This dummy optimization does

not represent any existing optimization of WCC. Instead, it is simply a placeholder denoting that

no actual code optimization should be applied at the position where the dummy is placed within

an optimization sequence. In this way, positions in an optimization sequence can be left free by

the EAs so that they are able to produce sequences of variable length.

3.3. Encoding of optimization sequences

According to Figure 1, the search algorithmmaintains a population of optimization sequences. After

compiling the code, the objectives are determined and depending on their values, some sequences

are selected for the next generation. In addition, an EA, inspired by biological evolution, performs

the operators mutation and crossover to generate the next generation. For the exploration of

compiler optimization sequences, genetic algorithms are typically used. Each sequence is encoded

as a string where each character denotes a specific optimization. This problem representation can

be easily handled by the genetic algorithm operators.

Figure 3 shows a possible encoding for the optimization classes when all optimizations are chosen

in a sorted order. The numbers in parentheses denote the number of possible optimizations. For the

classes RA and physical low-level IR (pLIR), only one optimization is encoded in each sequence.

Based on this data, WCC’s compiler optimization level search space consists of 3131×99×3×2

(in the order of ≈1054) possible permutations. This huge number emphasizes that an exhaustive

search is beyond any feasible computation.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

Parents

Children

Figure 4. One-point crossover reproduction.

Using this string encoding, the algorithm for the one-character mutation operator works as

follows:

1. Randomly choose the optimization IR class Class∈{H I R,vL I R, RA, pL I R}.

2. In Class, choose a character c at a random position.

3. Replace c by a character c′ ∈Class, with c �=c′.

Note that mutation might result in sequences where the same character (optimization) occurs

multiple times in the string. Such optimization sequences are intended since equal optimizations

applied at different positions in the optimization chain might have a different impact on the code;

thus, such sequences represent unequal individuals.

The second operator one-point crossover is performed in a standard, well-known manner by

swapping two strings at a randomly chosen position. The reproduction of two parent chromosomes

using a single crossover point is depicted in Figure 4.

The randomness in the evolutionary operators ensures that the genetic algorithm does not get

stuck in locally optimal solutions and is likely to reach the global optimum if it is run for a

sufficient number of generations.

In summary, the goal of the genetic algorithm to create optimization sequences is twofold. The

algorithm

• specifies which optimizations are included in each sequence and whether some positions in

the optimization sequences are filled with dummy optimizations having no effect on the code;

• defines for each sequence the order of performed optimizations in each class. In contrast to

WCC’s standard optimization levels, the order inside each IR class is arbitrary.

3.4. Objective functions

The search algorithm requires information about the objective values when a particular opti-

mization sequence is applied. Since we are interested in the worst-case behavior of real-time

systems, the WCET has to be estimated for each generated machine code. This objective is

provided by a static WCET analyzer, which is tightly integrated into the WCC compiler. The

analyzer does not run the program but performs static program analyses to estimate the WCET.

This data is automatically made available to the compiler. Further objectives used to construct

the Pareto fronts are the program’s ACET and the resulting code size. The ACET is deter-

mined by employing the instruction set simulator CoMET [26] from Synopsys. CoMET comprises

virtual system prototypes for diverse target platforms that enable the simulation of complex

embedded systems without the existence of silicon. Benchmarking on real hardware would also

not be feasible since it is hardly automatable and would require multiple evaluation boards

for parallel execution. Finally, the objective code size can be easily extracted from the binary

executable.

To accelerate the evaluation of different objectives, maps are utilized that hold the evaluated

objective values for each considered optimization sequence. Whenever an objective of a sequence

has to be determined that was already evaluated in the past, a costly re-evaluation is omitted and

the objective value is efficiently obtained from the map.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

After the introduction of the adaptive WCET-aware compiler WCC, which demonstrates the

communication between the compiler and the search algorithm to find good optimization sequences,

the focus of the following section is shifted toward evolutionary search algorithms.

4. MULTI-OBJECTIVE EXPLORATION OF COMPILER OPTIMIZATIONS

The discussion of the multi-objective exploration of compiler optimization sequences presented in

this section begins with an introduction to this topic and a definition of basic terms in Section 4.1.

The main characteristics of different popular EMO algorithms applied in this study are briefly

presented in Section 4.2. Since the comparison of the quality of EMO algorithms for a specific

problem, such as the compiler optimization level exploration, is not trivial, a performance assess-

ment based on statistical methods is performed. Principles of the performance assessment are

provided in Section 4.3.

4.1. Multi-objective optimization

In many real-life problems, the considered objectives exhibit conflicts. In case of code generation

for embedded real-time systems, a trade-off among the WCET, ACET and code size has to be taken

into account. As a consequence, optimizing the application w.r.t. a single objective might yield

unacceptable results for other objectives; thus, an ideal multi-objective solution simultaneously

optimizing each objective does not exist. To cope with this problem, a set of solutions is determined

having the characteristics that on the one hand, each solution satisfies the objectives at a tolerable

level, and on the other hand, none of the solutions is dominated by another solution. Solutions

meeting these characteristics are called Pareto optimal solutions.

Pareto front approximation

Without loss of generality, it should be assumed that all objectives are to be minimized. A translation

into a maximization problem can be easily achieved by multiplying the objectives by −1. Pareto

optimality, dominance and Pareto sets are formally defined as follows [27]:

Definition 1 (Pareto optimality, dominance, Pareto set)

Let X denote the decision space (or search space), Z represents the objective space, f : X→ Z is

a function that assigns each decision vector x ∈ X a corresponding objective vector z= f (x)∈ Z

and m denotes the number of objectives under consideration. A decision vector x∗ ∈ X is Pareto

optimal iff there is no other x ∈ X that dominates x∗. x dominates x∗, denoted as x≻ x∗, iff

fi (x)� fi (x
∗),∀i=1, . . .,m and fi (x)< fi(x

∗) for at least one index i . The set of all Pareto optimal

decision vectors X∗ is called Pareto set.

In other words, the decision vectors of the Pareto set cannot be improved w.r.t. any other

objective function without worsening at least one of the other objectives. Based on Definition 1,

the Pareto front is defined as follows:

Definition 2 (Pareto front)

Let X∗ be a Pareto set. F∗ = f (X∗) is the set of all Pareto optimal objective vectors and is denoted

as the Pareto front.

In practice, the generation of a set of decision vectors representing the entire Pareto front is

often infeasible due to several reasons. For example, the number of Pareto optimal decision vectors

may be too large, and even the determination of a single Pareto optimum may be NP-hard [28].

Therefore, the goal is to find a Pareto front approximation that is as close to the Pareto optimal

front as possible. The relationship among a Pareto optimal front, its approximation and dominated

solutions for a minimization problem involving two objective functions f1 and f2 is depicted in

Figure 5.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

0

2

4

6

8

10

12

0

Dominated

Pareto Optimal Front

Pareto Front Approx.

1

2

2 4 6 8 10 12

Figure 5. Pareto fronts.

In the compiler domain, Pareto front approximation can be finally used for two different purposes.

On the one hand, it helps compiler writers to find suitable optimization levels. By constructing an

approximation set for a large number of benchmarks, particular points from this set that satisfy

the given trade-offs between the considered objectives can be chosen. The optimization sequences

that represent these points will be implemented as optimization levels in the compiler and can

be used in the future for new applications. This is also the scenario that we address in this

paper. On the other hand, Pareto front approximations can be used by compiler users to tune the

optimization sequence toward a single application. In contrast to the construction of optimization

levels, the approximation set is computed for a particular application and the most suitable points are

selected.

4.2. EMO algorithms

EAs stem from the domain of artificial intelligence and try to implement the principles of biolog-

ical evolution. By employing reproduction mechanisms including mutation and recombination,

offspring generations are created from which stronger individuals w.r.t. a certain fitness function

are selected as parents for the next generation. With such an approach, preferably optimal solutions

are ‘cultured’ instead of tackling an optimization problem analytically.

In the past, it was shown that randomized EMO algorithms are the best suited for the approxi-

mation of Pareto fronts. The algorithms basically differ in the fitness assignment, their strategy to

maintain elitist solutions which will survive in the next generation and their promotion of diversity,

i.e. if a uniform distribution of solutions over the Pareto front can be attained.

In this study, we are interested in the evolutionary algorithm that performs best for our compiler

problem. Other works [8] studying the impact of multi-objective optimizations in the context of

iterative compilation explored almost exclusively single EMO algorithms. Thus, it is not clear

whether a selected algorithm is suitable or whether another optimizer would perform better in this

problem domain. To cover a broad spectrum of principles used by evolutionary algorithms, we

conduct a large study where three popular and credible algorithms, which have been exploited

for different application domains in the past, are evaluated. These state-of-the-art optimization

algorithms were chosen since each of them exhibits a different functionality. In the following, each

algorithm will be briefly introduced and its specific features will be pointed out.

Indicator-based evolutionary algorithm

In contrast to other algorithms, the indicator-based evolutionary algorithm (IBEA) [29] determines

fitness values by comparing individuals based on binary performance measures (called indicators)

such as the additive ε-indicator. This technique has two advantages. First, the algorithm can be

adapted to the user’s preferences. Second, a preservation of the diversity of solutions is not required.

Non-dominated sorting genetic algorithm 2

The fitness assignment of the computationally fast non-dominated sorting genetic algorithm (NSGA-

II) [30] involves a non-dominated sorting of individuals. Besides the low computational require-

ments, NSGA-II is a parameter-less approach. The only parameter defines the number of best

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

Compiler

...

SPEA2

NSGA-II

...

Optimization
Problems/
Variators

Optimization
Algorithms

Figure 6. Combining optimization problems and algorithms.

solutions that a selection operator determines from a mating pool combining the parent and child

population.

Strength Pareto evolutionary algorithm 2

The elitist strength Pareto evolutionary algorithm 2 (SPEA2) has three main characteristics. First,

the fitness assignment for each individual i in the archive (set of Pareto solutions among all so far

considered generations, used for creation of new generations) is based on the number of solutions

that i dominates. Second, the density estimation utilizes a kth nearest neighbor method in order

to discriminate between individuals with the same raw fitness value. Therefore, the inverse of the

distance to the kth nearest neighbor (data point) serves as the density estimate. Finally, an enhanced

archive truncation method ensures that extreme points are preserved in the solution space: if the

number of non-dominated individuals does not fit into the archive, the individual with the kth

nearest neighbor is selected for removal in each truncation iteration. This method only removes the

individual who has the minimum distance to another individual in order to keep extreme solutions.

For more details on fitness evaluation and archive truncation, the interested reader is referred to

[31], Sections 3.1 and 3.2.

4.3. Statistical performance assessment

The typical problem with multi-objective optimizations is indicated in Figure 6. As shown in the

left-hand side, numerous problem-specific modules exist. These modules serve as a representation

of the problem as well as for the evaluation and variation of the solutions. An example is a compiler

or a design space exploration for network processor architectures [32]. Owing to their purpose,

these modules are often called variators. To approximate Pareto optimal solutions, each of these

modules can be arbitrarily combined with any EMO algorithm.

While an algorithm expert is interested in the performance of his novel optimizer on real-life

problems, application engineers are looking for an EMO optimizer that generates the best results for

their specific problem. Typically, each user group represents experts of their own domain lacking

an in-depth knowledge for the other field. Thus, it is good practice to separate the optimization

problem from the algorithm and to allow arbitrary combinations of both parts for an independent

performance evaluation.

For our scenario dealing with the exploration of compiler optimizations, a manual combination

and evaluation of the WCC compiler and the considered EMO algorithms is time-consuming

and error-prone. Moreover, a reliable comparison of the quality of the stochastic multi-objective

optimizers is not trivial. An example is crossing Pareto fronts where a visual comparison is not

intuitive anymore. To this end, an automatic and reliable performance assessment is required.

Since many EMO algorithms, as well as those that we consider in this study, are based on a

randomized search, the evaluation of the approximated Pareto optimal solutions generated for a

specific seed is not sufficient. To deal with the stochastic nature of the algorithms, each algorithm

has to be run multiple times for each problem with different seeds to generate a sample of different

Pareto approximation sets that can be statically analyzed, i.e. a statistical hypothesis testing is

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

conducted to indicate if the results are significantly different [28]. A result is considered significantly

different if it is unlikely that it occurred by chance. A measure of evidence to accept that the

result is unlikely to have arisen by chance is known as the significance level �. A widely used

value for � is 5%.

For statistical testing, we apply dominance ranking [28]. Its main idea is to rank the points of

the approximation sets based on the dominance relation. The approximation sets of all considered

optimizers are collected into a pool and each set z is assigned a rank representing its dominance

relation, i.e. how many sets in the pool are dominated by z. The lower the rank, the better the

considered set is w.r.t. the pool. Finally, ranks between the optimizers are compared by statistical

means to determine statistical significance.

Our performance assessment of the stochastic multi-objective optimizers is based on techniques

proposed in [28] and comprises the following steps:

1. Preprocessing: The computed approximation sets of the three considered EMO algorithms

are collected for runs with different seeds. Based on this collection C , the lower and upper

bounds of the objective vectors are computed. The bounds are used to normalize all objective

vectors, such that all values lie in the interval [1,2]. Moreover, based on all Pareto solutions

in C , a non-dominated front of objective vectors is determined, serving as reference set for

the subsequent step. The reference set can be seen as an overall Pareto front approximation

considered for all optimizer results.

2. Dominance ranking: For each normalized optimizer approximation set, the dominance

ranking procedure is applied. The EMO algorithms are considered in ordered pairs and

the Mann–Whitney rank sum test [33] for the determination of the statistical significance

is performed.

For a thorough discussion of the performed statistical performance assessment, the interested

reader is referred to [34].

5. EXPERIMENTAL ENVIRONMENT

To indicate the efficacy of the found multi-objective optimization sequences, we performed an

evaluation on a large number of real-life benchmarks using a cross-validation. One set of bench-

marks, the training set, is used during the multi-objective search. The determined sequences are

subsequently evaluated on unseen benchmarks, the test set. This approach enables an estimation

of the generalization ability, i.e. the results suggest which improvements of the objective functions

can be expected for unseen programs.

Benchmarking was performed on a total of 70 programs from the suites DSPstone [35], Media-

Bench [36], MiBench [37], MRTC [38], NetBench [39] and UTDSP [40]. Owing to these different

benchmark suites, programs from various application domains were used for benchmarking: digital

signal processing, scientific computing, audio, image and video en- and decoding and embedded

control. The benchmarks’ complexity ranges from rather simple filter and matrix computation

kernels having two functions and only a dozen basic blocks up to entire GSM or ADPCM codecs

with more than 50 functions and hundreds of basic blocks. This large variety of benchmark suites

emphasizes our focus on generality. Covering a large number of different service-oriented appli-

cations, future software should benefit in a similar fashion from our optimization sequences. For

our study, the training and test set each contain 35 arbitrarily selected benchmarks.

The workflow for the multi-objective exploration of compiler optimizations is depicted in

Figure 7. As mentioned in Section 3, the WCET-aware C compiler WCC is used to generate

code transformed by different optimizations. Besides the previously discussed intermediate code

representations, it can be seen that different optimizations are applied at different abstraction levels

of the code. WCET-aware optimizations are excluded for previously mentioned reasons.

The considered C programs are annotated with flow facts within the ANSI-C source code.

This data provides information about the code structure, such as the number of loop iterations

or recursion depths, and is mandatory for a static WCET analysis. WCC supports the annotation

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

ICD-C
Parser Selector

aiT WCET
Analysis

ANSI-C
High-Level

ICD-C

Code
Generator

Low-Level
LLIRStandard ACET

Register
Allocation

Optimized

Assembly/

Binary

IBEA NSGA-II SPEA2

Variator

CoMET
Simulator

Figure 7. Workflow for the multi-objective exploration of compiler optimizations.

of the so-called loop bound and flow restriction flow facts. Using loop bounds, the developer

can specify minimal and maximal iteration counts for regular for-, while-do- and do-while-loops.

Irregular loops, recursions or other control flow structures can be described using flow restrictions

that allow to relate the execution frequency of one C statement with that of other statements based

on linear inequalities. WCC uses flow fact translation in order to close the semantic gap between

the place where flow facts are specified (C code) and where they are actually used for static WCET

analysis (assembly code). Flow fact update techniques guarantee that the flow facts passed to the

WCET analyzer are semantically equivalent to the specifications provided at the source code level.

In particular, WCC’s loop optimizations restructure loops heavily so that iteration counts might

change as a result. These changes of iteration counts are automatically considered during flow fact

update so that always valid and consistent flow facts are used for the WCET analysis. For more

details, the interested reader is referred to [17].

The communication betweenWCC via a variator and the different EMO algorithms (cf. Figure 7)

is fully automated. The process starts with the variator that generates random compiler optimization

sequences, representing the initial population. The optimizations are encoded as strings. The

sequences are passed to the adaptive WCC framework, which is extended by an adaptive optimizer

that can perform code transformations in an arbitrary order (cf. Section 3.2). WCC uses these

sequences to generate code that is processed by the WCET analyzer aiT and the TriCore simulator

CoMET . The estimated WCET, ACET and code size (obtained from LLIR) are returned to the

variator. In this way, the variator manages for each optimization sequence the corresponding

objective values. For distinction, each sequence is indexed using a unique ID.

In the next step, for each evaluated optimization sequence of a particular generation, the variator

passes the corresponding indices and objective vectors to the EMO algorithms. Exclusively based

on the objective vectors, the EMO algorithms compute the approximated Pareto front and return

the respective indices of the Pareto solutions back to the variator. The returned solutions are finally

used by the mutation and crossover operators to generate individuals for the next generation of

optimization sequences. Moreover, the computed Pareto front approximations serve as input to the

statistical performance assessment.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

Both, the collection of the EMO algorithms and the performance assessment, are part of the

Platform and Programming Language Independent Interface for Search Algorithms (PISA) frame-

work [41]. An existing PISA variator was re-implemented in order to be applicable with the WCC

framework.

For the conducted experiments, the genetic algorithms used to explore the compiler optimiza-

tion space were configured as follows, according to the settings already described in the related

literature [8, 18]:

• the algorithms IBEA, NSGA-II and SPEA2 were run 5 times with different random seeds;

• for each run, each population comprises 50 individuals (optimization sequences);

• the archive of Pareto solutions among all generations considered during the evolutionary

algorithms [41] holds 25 individuals;

• a one-character mutation (cf. Section 3.3) with a probability of 10%;

• a one-point crossover probability of 90%;

• optimization was run for 50 generations;

• statistical performance assessment with a significance level �=5%.

In the following, aiT was configured such that WCET analyses were performed with the highest

precision. This particularly means that context-sensitive WCET analysis was enabled for all bench-

marks by setting aiT’s virtual unrolling factor and call string length to infinite. Only for a few

extremely complex benchmarks, these settings lead to situations where WCET analysis using aiT

does not terminate in reasonable time. For these few cases, context sensitivity of aiT was reduced

by manually setting the above parameters to small values.

For all experiments, the Infineon TriCore TC1796 processor heavily used in the automotive

domain was considered. It is a 32-bit RISC controller with the following features:

• DSP-like instruction set with extensions to support SIMD and bit-packet processing;

• single-precision floating-point unit;

• 16 32-bit address registers, out of which 10 can be used freely by the compiler; 16 32-bit

general-purpose data registers;

• three pipelines for parallel ALU operations, memory transfers and zero-overhead hardware

loops;

• Harvard architecture with separate busses and memories for instructions and data;

• 48 kB L1 instruction scratchpad memory, 16 kB L1 I-cache (2-way set associative, least-

recently used replacement, 32B line size), 2MB L2 instruction flash memory;

• 56 kB L1 data scratchpad memory, 64 kB L2 data memory, no data caches.

6. RESULTS

The multi-objective optimizations are carried out for pairs of objective functions. The consideration

of 2-dimensional Pareto fronts is motivated by two issues:

• Since the impact of standard optimizations is unknown so far for the trade-off between the

WCET and other objectives, this work is the first case study to investigate this issue. The

results help to understand the basic interferences between different objectives. Starting with

the investigation of more than two objectives may hide some objective interferences, leading

to a lack of the fundamental understanding.

• Compiler writers typically consider a trade-off between two objective functions; thus, the

results of this work are more valuable for them than the presentation of complex, often not

intuitive, objective interferences.

6.1. Statistical evaluation

Table II presents the results for dominance ranking using the Mann–Whitney rank sum test for the

possible combinations of the considered algorithms IBEA, NSGA-II and SPEA2. Columns 2–4

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

Table II. Dominance ranking results for WCET & ACET and WCET &
code size using Mann–Whitney rank sum test.

〈WCET, ACET〉 〈WCET, code size〉

IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2

IBEA — 0.760 0.949 — 0.5 0.5
NSGA-II 0.240 — 0.011 0.5 — 0.016
SPEA2 0.051 0.899 — 0.5 0.984 —

56

58

60

62

64

66

68

56 61 66 71

R
e
la

ti
v
e

A
C

E
T

[%
]

Figure 8. NSGA-II Pareto front approximation for 〈WCET, ACET〉.

indicate results for the objective functions 〈WCET, ACET〉, whereas columns 5–7 present results for

the objectives 〈WCET, code size〉. The statistical tests are performed pairwise using a significance

level �=0.05. The tests are performed w.r.t. the alternative hypothesis that the dominance ranks

for the algorithms in the first column are significantly better than those for the algorithm in the

following columns. The results are expressed by the probability value, called p-values, which allow

to draw conclusions about the statistical significance: if the p-value is less than the significance

level �, then the null hypothesis is rejected. This implies that the alternative hypothesis can be

accepted, i.e. there is a statistically significant difference between the ranking of the corresponding

algorithms.

For the objectives 〈WCET, ACET〉, the p-value of 0.011 in the fourth row and fourth column

denotes that the difference between NSGA-II and SPEA2 is significant, i.e. NSGA-II outperforms

SPEA2. For other optimizer pairs, no significant differences were observed. The results for the

objectives 〈WCET, code size〉 lead to the same conclusion. NSGA-II outperforms SPEA2 since

the dominance ranking results significantly differ (p-value=0.016) for �=5%. Hence, NSGA-II

seems to be the most promising EMO for the given problems. There are also differences between

other combinations of the algorithms, but they are not significant.

These results conform with the results reported in [42] where the authors observed that NSGA-II

is able to outperform SPEA2 for problems with two objectives. This behavior does not conform

to the results determined in various other publications [31, 43–45], where SPEA2 outperforms

NSGA-II for different number of objectives. Although the evaluation of different selection algo-

rithms in this paper does not provide significant evidence that NSGA-II always performs the best

for all problems, we have shown that different EMO algorithms should be evaluated for solving

new problem constellations.

Provided that Pareto front approximation has been done once using the above EMO algorithms,

dominance ranking is computationally cheap since it is based on simple sorting of the approximation

sets. Therefore, the runtime of dominance ranking by itself is negligible.

6.2. Analysis of Pareto front approximations

Figure 8 visualizes the Pareto front approximation generated by the algorithm NSGA-II, which

achieved the best performance assessment results for the objective functions WCET and ACET.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

O1O2O370

120

170

220

270

68 78 88 98 108

Relative WCET [%]

R
e
la

ti
v
e

C
o

d
e

S
iz

e
[%

]

Approx. 50th Gen.

Approx. 20th Gen.

Approx.1st Gen.

Extreme Solution

Figure 9. NSGA-II Pareto front approximation for 〈WCET, code size〉.

The horizontal axis indicates the relative WCET w.r.t. the non-optimized code, i.e. 100% represents

the WCET with all disabled WCC optimizations. In a similar fashion, the vertical axis repre-

sents the relative ACET w.r.t. to the non-optimized code. Furthermore, the figure shows the results

of the Pareto front approximation for the 1st, 20th and 50th generation. Based on this figure, the

following can be concluded:

• It is worthwhile to invest time in the evolutionary search. While the first generation achieves

WCET and ACET reductions of 36.9 and 35.0%, respectively, on average for all benchmarks

of the training set, the 50th generation reduces the WCET and ACET by up to 42.9 and

42.8%, respectively.

• The discovered sequences significantly outperform the standard optimization levels, having

the (WCET, ACET)-coordinates (96.0,89.1) for O1, (95.2,90.4) for O2 and (88.4,84.7)

for O3 (in order to enable better readability of the approximated Pareto front, the figure has

been scaled and these points are not included in the figure).

For example, the performance of O3 is outperformed by 31.3% and 27.5% for WCET and

ACET, respectively, when the extreme situations (circled in Figure 8) are selected. If a trade-

off between WCET and ACET is chosen (58.5,60.8), O3 can still be outperformed by 29.9%

for WCET and 23.9% for ACET.

The lower optimization levels O2 and O1 are outperformed by 38.1 and 38.9% for WCET as

well as 27.4% and 33.1% for ACET.

• Standard compiler optimizations have a similar impact on the WCET and ACET. This obser-

vation provides an important answer to the question that concerns all designers of real-time

systems: which impact can be expected from standard ACET optimizations on the system’s

worst-case behavior? This case study shows that similar effects on the average-case and

worst-case behavior are likely.

The Pareto front approximation computed by NSGA-II for the objectives WCET and code size

is depicted in Figure 9. The relative WCET estimation w.r.t. the non-optimized code (corresponds

to 100%) is represented by the horizontal axis, whereas the relative code size w.r.t. to the non-

optimized code is shown on the vertical axis. Again, Pareto front approximations of the 1st, 20th,

and 50th generation are visualized and are constructed of Pareto solutions found in the 5 runs

of the algorithm. The 50th-generation front comprises 53 points. Compared with the Pareto front

approximations for 〈WCET, ACET〉, the interpretation equals in two points:

• The evolutionary search pays off for both objective functions. For the first generation, a

WCET reduction of 21.2% at the cost of the code size increase of 197.4% can be achieved

(left-most solutions of the corresponding front). If code size is the crucial objective, a code

size reduction of 0.4% with a simultaneous WCET increase of 4.5% can be observed. For

the 50th generation, the following extreme solutions were observed (marked by circles): a

WCET reduction of 30.6% with a simultaneous code size increase of 133.4%, or a WCET

degradation of 9.6% with a simultaneous code size reduction of 16.9%. Hence, the results

for later generations yield substantially better results.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

• The Pareto solutions outperform WCC’s standard optimization levels, which are depicted in

Figure 9. The standard optimization levels perform well for the code size reduction compared

with the Pareto solutions. Using O2, which does not include code expanding optimizations, a

code size reduction of 14.9% can be achieved on average, while NSGA-II reduces the code

size by up to 16.9%. Moreover, WCC’s maximal WCET reduction of 13.6% found by O3 can

be outperformed by the found Pareto solutions by 17.0%, amounting to a WCET reduction

of 30.6% as found by NSGA-II.

However, there are also two major differences compared with the results of the objective pair

〈WCET, ACET〉. The WCET and the code size are typical conflicting goals. If a high improvement

of one objective function is desired, a significant degradation of the other objective must be

accepted. This is an important conclusion for memory-restricted real-time systems. To achieve a

high WCET reduction, the system must be possibly equipped with additional memory to cope

with the resulting code expansion. Also, compiler writers developing WCET-aware optimizations

must be aware of these conflicting objectives and should always consider the impact of their

optimizations on the code size. The second difference is that standard compiler optimizations

available in WCC are not capable of accomplishing a notable code size decrease (up to 16.9%

which is approximately half of the achievable WCET reduction). Therefore, tailored optimizations

are required if code size reduction is the primary goal.

6.3. Analysis of the optimization sequences

A closer look at the Pareto optimal optimization sequences for the objective pair 〈WCET, ACET〉

reveals the following observations:

• Most of the optimization sequences contain an aggressive loop unrolling or function inlining

in the very beginning. Aggressive means that loops/callees with a maximal size of 200

expressions (maximal parameter value considered during exploration) were transformed.

• In addition to these two optimizations, the found Pareto sequences often contain the opti-

mization procedure cloning. Since cloning, unrolling and inlining are all contained in WCC’s

optimization levelO3, it can be concluded that this standard optimization level holds promising

optimizations for maximal WCET/ACET reduction.

• Other optimizations frequently found in the Pareto solutions are: instruction scheduling applied

at physical LLIR, ILP-based RA (hence, the optimization’s complexity pays off) and loop-

invariant code motion.

• Optimizations that were infrequently contained in the sequences—hence can be considered

less beneficial–are: instruction scheduling applied at virtual LLIR, loop collapsing, life range

splitting and loop deindexing.

• There is no clear separation that optimizations are the best suitable for a particular objective;

hence in general, many optimizations have a comparable effect on the estimated WCET and

ACET.

The analysis of the Pareto optimal optimization sequences for the objective pair 〈WCET, code

size〉 leads to the following observations:

• Function inlining can often be found in code size-oriented sequences. Although widely

believed that the optimization always yields a code expansion, inlining can also reduce code

size if functions, which are invoked once in the code, are inlined and further optimized.

• Especially for the code size-oriented solutions, many sequences begin with procedure cloning

of small functions (limited to 20 expressions). A possible explanation is that cloning of small

function has a negligible impact on the code size but may significantly improve the estimated

WCET; thus, overall good Pareto solutions can be generated that way. Moreover, some of the

clones can be inlined afterwards, possibly leading to a code size decrease.

• In contrast to the WCET-oriented sequences, none of the code size-oriented optimization

strategies contained loop unrolling. Hence, it can be expected that unrolling is likely to yield

a code size increase.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

50

60

70

80

90

100

WCET-oriented

R
e
la

ti
v
e

W
C

E
T

/A
C

E
T

[%
]

WCET ACET

WCET-ACET Trade-off ACET-oriented

Figure 10. Objectives 〈WCET, ACET〉: comparison of three Pareto optimal
optimization sequences with optimization level O3.

• Loop unswitching is another optimization that is rarely found in the code size-oriented

sequences. This is due to the fact that unswitching also increases code size and thus should

be used with caution if code size is critical.

• As shown above, the objectives WCET and code size have conflicting goals. Therefore,

some standard optimizations, such as peephole optimizations or dead-code elimination, have

a positive effect on both objectives, while other optimizations should be applied only if

improvements of one objective at the cost of the other can be tolerated.

6.4. Cross-validation

To estimate the generalization ability of the discovered sequences, a cross-validation was performed,

i.e. optimization sequences found by NSGA-II in the 50th generation for the training set are applied

to unseen benchmarks from the test set.

Among the large number of solutions constructing a Pareto front approximation, three solutions

are discussed in more detail since they provide typical optimization scenarios. If the system designer

is interested in a maximal reduction of a particular objective function, an optimization sequence

represented by one of the extreme points from the fronts should be considered. Another alternative

is to choose a Pareto solution from the middle of the front that represents a trade-off between the

respective objectives.

For the objective pair 〈WCET, ACET〉, the optimization sequences defined by the extreme points

in Figure 8 as well as the trade-off, which is represented by the solution with the coordinates

(58.7,60.9), were evaluated. These three optimization sequences were applied to each of the

35 benchmarks from the test set. For each benchmark, the results for the estimated WCET and

ACET using the new sequence were compared with the WCET/ACET results when the benchmark

was compiled with WCC’s highest optimization level O3. The averaged results for all benchmarks,

with 100% being the base line representing results achieved with O3, are shown in Figure 10. The

following results can be observed:

• Using the WCET-oriented optimization sequence, which is represented in Figure 8 by the

left-most Pareto solution with the WCET , ACET coordinate (57.1,62.8), outperforms WCC’s

default optimization level O3 by 28.0 and 18.0% for the estimated WCET and ACET reduc-

tion, respectively. It can also be seen that the estimated WCET was improved at the cost

of ACET.

• The optimization sequence (labeled with WCET-ACET Trade-off) was determined by NSGA-

II as a compromise between the WCET estimation and ACET for the training set (see

solution with coordinate (58.7,60.9) in Figure 8). For the test set, the results are slightly

worse than for the training set, since a relative WCET estimation of 76.2% and a relative

ACET of 80.5% were observed. However, the optimization level O3 can still be significantly

outperformed by 23.8 and 19.5% for WCET and ACET, respectively. Hence, the discovered

optimization sequence is a promising candidate for the substitution of WCC’s optimization

level O3.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

50

75

100

125

150

175

WCET-oriented WCET-Code Size Trade-

off

Code Size-orientedR
e
la

ti
v
e

W
C

E
T

/C
o

d
e

S
iz

e
[%

]

WCET Code Size

Figure 11. Objectives 〈WCET, code size〉: comparison of three Pareto optimal
optimization sequences with optimization level O3.

• The optimization sequence (coordinate (59.9,57.2) in Figure 8) aiming at the maximal ACET

reduction (labeled with ACET-oriented) could achieve the maximal ACET reduction of 23.4%

among the considered optimization strategies. This sequence has even a slightly better impact

on the average WCET than on the average ACET. Hence, again O3 can be improved.

Analogously, Figure 11 reflects the performance of the sequences found for 〈WCET, code size〉

in Figure 9. Using the WCET-oriented optimization scenario, WCET reduction of 17.4% can be

achieved on average for the test set. However, this improvement comes at the cost of a code size

increase of 58.7%. The optimization sequence labeled with WCET–code size Trade-off not only

improves the WCET by 7.8% w.r.t. O3 but also results in a slight code size increase of 1.0%.

Concerning the Code Size-oriented strategy, the WCET and code size can be reduced by 4.25 and

1.9%, respectively, compared with O3.

6.5. Optimization runtime

The runtime of the multi-objective exploration of optimization sequences was measured for each

EMO algorithm. Five optimization runs with different seeds, each computing 50 generations, took

about 6 days on a Intel Quad-Core Xeon 2.4GHz machine with 8GB RAM. This optimization

runtime might seem long. However, it should be noted that these automatic tests have to be

performed once off-line, while the results (optimization sequences) can be reused without additional

overhead for a large number of devices. Therefore, the high-performance requirements imposed

on today’s systems fully justify the observed optimization times.

The application of the new optimization sequences found by the EMO algorithm NSGA-II does

not considerably increase the compilation time compared with WCC’s O3. In some cases, like for

an extensive loop unrolling or function inlining, slight increases of the compilation time (typically

few seconds) could be observed.

7. CONCLUSIONS

The search for good compiler optimization sequences is challenging since optimizations exhibit

complex interactions that have unpredictable effects on different objective functions. We propose

the first adaptive WCET-aware compiler framework for service-oriented real-time systems, which

automatically finds Pareto optimal solutions that represent trade-offs among the WCET, ACET

and code size. To find the best EMO optimizer for the search of the compiler optimization

space, a statistical performance assessment is performed. The discovered optimization sequences

significantly outperform standard optimization levels: the highest standard optimization level O3

can be outperformed for the WCET and ACET on average by up to 28.0 and 23.4%, respectively.

Moreover, for a trade-off between the WCET and code size, an improvement of one objective

function can be only achieved at the cost of the other one. Providing the discovered optimization

sequences, compiler writers and compiler users can select those solutions that best suit their system

specifications.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

APPROXIMATING PARETO OPTIMAL COMPILER OPTIMIZATION SEQUENCES

In the future, we want to explore Pareto fronts with more than two dimensions. In addition,

energy dissipation as a further objective will be included for the approximation of Pareto fronts. We

also intend to investigate the performance of further EMO optimizers and the impact of different

variator settings, e.g. mutation probability, on Pareto fronts.

We plan to categorize classes of programs by evaluating a set of features in order to distinguish

multimedia, network or DSP algorithms in the future. For such classes of algorithms, special

optimization sequences should be derived. If classes of algorithms are automatically determined,

the WCC compiler should choose the most promising set of optimizations in order to achieve the

best possible performance of the generated code.

ACKNOWLEDGEMENTS

The authors thank AbsInt Angewandte Informatik GmbH for their support concerning WCET analysis
using the aiT framework. The authors also thank Synopsys for the provision of the instruction set simulator
CoMET enabling the determination of the average-case execution times.

The research leading to these results has been partially funded by the European Community’s Artist-
Design Network of Excellence and by the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 216008.

REFERENCES

1. Kulkarni PA, Hines SR, Whalley DB, Hiser JD, Davidson JW, Jones DL. Fast and efficient searches for effective

optimization-phase sequences. Transactions on Architecture and Code Optimization 2005; 2(2):165–198.

2. Leather H, O’Boyle M, Worton B. Raced profiles: Efficient selection of competing compiler optimizations.

Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded

Systems (LCTES), Dublin, Ireland, 2009; 50–59.

3. Agakov F, Bonilla E, Cavazos J, Franke B, Fursin G, O’Boyle MFP, Thomson J, Toussaint M, Williams CKI.

Using machine learning to focus iterative optimization. Proceedings of the Fourth Annual IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), New York, U.S.A., 2006; 295–305.

4. Cooper KD, Schielke PJ, Subramanian D. Optimizing for reduced code space using genetic algorithms. ACM

SIGPLAN Notes 1999; 34(7):1–9.

5. Lokuciejewski P, Plazar S, Falk H, Marwedel P, Thiele L. Multi-objective exploration of compiler optimizations for

real-time systems. Proceedings of the 13th IEEE International Symposium on Object/Component/Service-oriented

Real-time Distributed Computing (ISORC), Carmona, Spain, 2010; 115–122.

6. Almagor L, Cooper KD, Grosul A, Harvey TJ, Reeves SW, Subramanian D, Torczon L, Waterman T.

Finding effective compilation sequences. Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems (LCTES), Washington, U.S.A., 2004; 231–239.

7. Zhao M, Childers B, Soffa ML. Predicting the impact of optimizations for embedded systems. Proceedings of the

ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), San Diego,

U.S.A., 2003; 1–11.

8. Hoste K, Eeckhout L. COLE: Compiler optimization level exploration. Proceedings of the Sixth Annual IEEE/ACM

International Symposium on Code Generation and Optimization (CGO), Boston, U.S.A., 2008; 165–174.

9. Campoy AM, Puaut I, Ivars AP, Mataix JVB. Cache contents selection for statically-locked instruction caches:

An algorithm comparison. Proceedings of ECRTS, Palma de Mallorca, Spain, 2005; 49–56.

10. Vera X, Lisper B, Xue J. Data cache locking for higher program predictability. Proceedings of the ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),

San Diego, U.S.A., 2003; 272–282.

11. Plazar S, Lokuciejewski P, Marwedel P. WCET-aware software based cache partitioning for multi-task real-time

systems. Proceedings of the Ninth International Workshop on Worst-case Execution Time Analysis (WCET),

Dublin, Ireland, 2009; 78–88.

12. Falk H. WCET-aware register allocation based on graph coloring. Proceedings of the 46th Design Automation

Conference (DAC), San Francisco, U.S.A., 2009; 726–731.

13. Deverge JF, Puaut I. WCET-directed dynamic scratchpad memory allocation of data. Proceedings of the 19th

Euromicro Conference on Real-time Systems (ECRTS), Pisa, Italy, 2007; 179–190.

14. Suhendra V, Mitra T, Roychoudhury A, Chen T. WCET centric data allocation to scratchpad memory. Proceedings

of the 26th IEEE International Real-time Systems Symposium (RTSS), Miami, U.S.A., 2005; 223–232.

15. Falk H, Kleinsorge JC. Optimal static WCET-aware scratchpad allocation of program code. Proceedings of the

46th Design Automation Conference (DAC), San Francisco, U.S.A., 2009; 732–737.

16. Kadlec A, Kirner R, Puschner P. Avoiding timing anomalies using code transformations. Proceedings of the

13th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing

(ISORC), Carmona, Spain, 2010; 123–132.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

P. LOKUCIEJEWSKI ET AL.

17. Falk H, Lokuciejewski P. A compiler framework for the reduction of worst-case execution times. The International

Journal of Time-critical Computing Systems (Real-time Systems) 2010; 46(2):251–300.
18. Prasad WZ, Kulkarni P, Whalley D, Healy C, Mueller F, Uh G-R. Tuning the WCET of embedded applications.

Proceedings of the 10th IEEE Real-time and Embedded Technology and Applications Symposium (RTAS), Toronto,

Canada, 2004; 472–481.
19. Falk H, Lokuciejewski P, Theiling H. Design of a WCET-aware C compiler. Proceedings of the 2006

IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia (ESTIMedia), Seoul, Korea, 2006;

121–126.
20. GCC, GNU Compiler Collection. Available at: http://gcc.gnu.org/ [10 June 2010].
21. AbsInt Angewandte Informatik GmbH. Worst-case execution time analyzer aiT for triCore. Available at:

http://www.absint.com/ait [10 June 2010].
22. Muchnick SS. Advanced Compiler Design and Implementation. Morgan Kaufmann: San Francisco, U.S.A., 1997.
23. Briggs P. Register allocation via graph coloring. PhD Thesis, Rice University, Houston, U.S.A., 1992; 1–104.
24. Goodwin DW, Wilken KD. Optimal and near-optimal global register allocation using 0–1 integer programming.

Software—Practice and Experience 1996; 26(8):929–965.
25. Guo Y, Subramanian D, Cooper KD. An effective local search algorithm for an adaptive compiler. Proceedings

of the First Workshop on Statistical and Machine Learning Approaches Applied to Architectures and Compilation

(SMART), Ghent, Belgium, 2007; 7–11.
26. Synopsys, Inc. Available at: http://www.synopsys.com [10 June 2010].
27. Laumanns M, Thiele L, Zitzler E, Welzl E, Deb K. Running time analysis of multi-objective evolutionary

algorithms on a simple discrete optimization problem. Proceedings of the Seventh International Conference on

Parallel Problem Solving from Nature (PPSN), Granada, Spain, 2002; 44–53.
28. Knowles J, Thiele L, Zitzler E. A tutorial on the performance assessment of stochastic multiobjective optimizers.

Proceedings of Third International Conference on Evolutionary Multi-criterion Optimization (EMO), Guanajuato,

Mexico, 2005; 1–35.
29. Zitzler E, Künzli S. Indicator-based selection in multiobjective search. Proceedings of the Ninth International

Conference on Parallel Problem Solving from Nature (PPSN), Birmingham, U.K., 2004; 832–842.
30. Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-

objective optimisation: NSGA-II. Proceedings of the Sixth International Conference on Parallel Problem Solving

from Nature (PPSN), Paris, France, 2000; 849–858.
31. Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective

optimization. Proceedings of the Conference on Evolutionary Methods for Design, Optimisation and Control

with Application to Industrial Problems (EUROGEN), Athens, Greece, 2001; 95–100.
32. Thiele L, Chakraborty S, Gries M, Künzli S. A framework for evaluating design tradeoffs in packet processing

architectures. Proceedings of the 39th Design Automation Conference (DAC), New Orleans, U.S.A., 2002;

880–885.
33. Conover WJ. Practical Nonparametric Statistics. Wiley: New York, U.S.A., 1971.
34. Lokuciejewski P, Marwedel P. Worst-case Execution Time Aware Compilation Techniques for Real-time Systems.

Springer: Dordrecht, Netherlands, 2010.
35. Zivojnović V, Martinez J, Schläger C, Meyr H. DSPstone: A DSP-oriented benchmarking methodology.

Proceedings of the International Conference on Signal Processing and Technology (ICSPAT), Dallas, U.S.A.,

1994; 715–720.
36. Lee C, Potkonjak M, Mangione-Smith WH. MediaBench: A tool for evaluating and synthesizing multimedia

and communications systems. Proceedings of the 30th Annual International Symposium on Microarchitecture

(MICRO), Washington, DC, U.S.A., 1997; 330–335.
37. Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB. MiBench: A free, commercially

representative embedded benchmark suite. Proceedings of the Fourth IEEE International Workshop on Workload

Characteristics (WWC), Austin, U.S.A., 2001; 3–14.
38. Mälardalen WCET Research Group. WCET benchmarks. Available at: http://www.mrtc.mdh.se/projects/wcet [10

June 2010].
39. Memik G, Mangione-Smith WH, Hu W. NetBench: A benchmarking suite for network processors. Proceedings

of the International Conference on Computer-aided Design (ICCAD), San Jose, U.S.A., 2001; 39–42.
40. TDSP Benchmark Suite. Available at: http://www.eecg.toronto.edu/∼corinna/DSP/infrastructure/UTDSP.html [10

June 2010].
41. Bleuler S, Laumanns M, Thiele L, Zitzler E. PISA—A platform and programming language independent

interface for search algorithms. Proceedings of Second International Conference on Evolutionary Multi-criterion

Optimization (EMO), Faro, Portugal, 2003; 494–508.
42. Künzli S, Bleuler S, Thiele L, Zitzler E. A computer engineering benchmark application for multiobjective

optimizers. Application of Multi-objective Evolutionary Algorithms. World Scientific: Singapore, 2004; 269–294.
43. Maneeratana K, Boonlong K, Chaiyaratana N. Compressed-objective genetic algorithm. Parallel Problem Solving

from Nature—PPSN IX (Lecture Notes in Computer Science). Springer: Berlin, 2006; 473–482.
44. Künzli S. Efficient design space exploration for embedded systems. PhD Thesis, Swiss Federal Institute of

Technology Zurich, Switzerland, 2006.
45. Khare VR, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. EMO, Faro, Portugal,

2003; 376–390.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)

DOI: 10.1002/spe

