

Newcastle University ePrints - eprint.ncl.ac.uk

Dong C, Loukides G.

Approximating Private Set Union/Intersection Cardinality with Logarithmic

Complexity.

IEEE Transactions on Information Forensics and Security 2017

DOI: https://doi.org/10.1109/TIFS.2017.2721360

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/TIFS.2017.2721360

Date deposited:

30/06/2017

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=239376
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=239376
https://doi.org/10.1109/TIFS.2017.2721360
https://doi.org/10.1109/TIFS.2017.2721360

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

1

Approximating Private Set Union/Intersection
Cardinality with Logarithmic Complexity

Changyu Dong, Grigorios Loukides

Abstract—The computation of private set union/intersection cardinality (PSU-CA/PSI-CA) is one of the most intensively studied

problems in Privacy Preserving Data Mining (PPDM). However, existing protocols are computationally too expensive to be employed in

real-world PPDM applications. In response, we propose efficient approximate protocols, whose accuracy can be tuned according to

application requirements. We first propose a two-party PSU-CA protocol based on Flajolet-Martin sketches. The protocol has

logarithmic computational/communication complexity and relies mostly on symmetric key operations. Thus, it is much more efficient

and scalable than existing protocols. In addition, our protocol can hide its output. This feature is necessary in PPDM applications, since

the union cardinality is often an intermediate result that must not be disclosed. We then propose a two-party PSI-CA protocol, which is

derived from the PSU-CA protocol with virtually no cost. Both our two-party protocols can be easily extended to the multiparty setting.

We also design an efficient masking scheme for (1n)-OT . The scheme is used in optimizing the two-party protocols and is of

independent interest, since it can speed up (1n)-OT significantly when n is large. Last, we show through experiments the effectiveness

and efficiency of our protocols.

✦

1 INTRODUCTION

We are in an era where data becomes increasingly important.

On one hand, data drives scientific research, business analytics,

and government decision making. Advanced technologies for dis-

covering interesting knowledge from large amounts of data have

become an indispensable part of nearly everything. On the other

hand, data privacy becomes of paramount importance as evidenced

by the increasingly tighter legal obligation imposed by legislation

(e.g. HIPAA, COPPA, and GLB in the US, European Union

Data Protection Directive, and more specific national privacy

regulations). Driven by both, recently we have seen a significant

advancement in privacy preserving data mining (PPDM). In many

scenarios, mining the union of data held by two or more parties

could deliver a clear benefit. For example, online retailers want

to find correlations between products bought by their common

customers to boost sales, policy makers want to link healthcare

data held by public and private healthcare providers to develop

better public policies, and geneticists want to associate mutations

in human genomes with diagnoses in medical records to identify

genetic causes of cancers. In all these scenarios, privacy concerns

and/or privacy regulations prohibit the sharing of data between

parties. Thus, the application of conventional data mining methods

is not possible, and PPDM methods are needed to perform data

mining in a distributed fashion, without disclosing or pooling the

data of any party.

This paper investigates a long-established problem in PPDM:

how to securely compute the cardinality of the union or the in-

tersection of some private sets (PSU-CA/PSI-CA). More formally,

• Changyu Dong is with the School of Computing Science,

Newcastle University, Newcastle Upon Tyne, UK. Email:

changyu.dong@newcastle.ac.uk.

• Grigorios Loukides is with the Department of Informatics, King’s College

London, London, UK. Email: grigorios.loukides@kcl.ac.uk.

• This paper has supplementary downloadable material available at

http://ieeexplore.ieee.org, provided by the authors. The material includes

the appendices of this paper. Contact changyu.dong@newcastle.ac.uk for

further questions about this work.

consider two parties each holding a private set Si. The PSU-CA

problem is to securely compute the union cardinality |S1∪S2|, and

the PSI-CA problem is to securely compute the intersection cardi-

nality |S1 ∩ S2|. At the end, parties should obtain the cardinality

of the union/intersection but nothing else about other parties’ sets.

PSU-CA and PSI-CA can be defined similarly in the multiparty

(> 2) case. PSU-CA and PSI-CA are closely related: often solving

one problem leads to an easy solution to the other problem.

Thus they can be treated as one problem. The problem is of

practical importance because protocols for solving the problem are

important building blocks in PPDM. For example, PSU-CA/PSI-

CA protocols have been used as subroutines in privacy preserving

association rule mining [1], privacy preserving classification (e.g.

decision trees [2] and Support Vector Machine [3]), and privacy

preserving mining of social network data [4].

The PSU-CA/PSI-CA problem can be solved by using generic

secure computation protocols (e.g. garbled circuits [5], GMW

[6]). However those protocols have high computational and com-

munication costs and are difficult to scale to large sets that are

required in real-world data mining applications. Thus several

custom protocols have been proposed to solve the PSU-CA/PSI-

CA problem. Many of them aim to compute the exact cardinality

[7], [8], [9], [1], [10], [11], [12]. Yet, their high computational

cost makes their application to PPDM infeasible. For example,

let us consider a scenario in which two social network providers

need to find out the total number of friends of each user that has

registered in both networks. For each such user, the two providers

can locally construct a set that contains all friends of the user in

their own social network. Then the two providers can run a PSU-

CA protocol to find the union cardinality of the two sets, which

is equal to the total number of friends of the user. The input to

the protocol can be large because a user may have thousands of

friends. Even with the most efficient protocol to date, finding the

union cardinality would need tens or even hundreds of seconds.

Furthermore, there are millions of users registered in both social

networks. Thus, the protocol needs to run millions of times, and

the task may take months or even years. This is clearly impractical.

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

2

Recently, there has been much interest in approximate PSU-CA

and PSI-CA protocols [13], [14], [15]. It is well-known that in

data mining, a close approximation is often as good as the exact

result [16]. Approximation is widely used in data mining to handle

extremely large datasets when the exact answer is hard to compute

[17]. With a bounded loss of accuracy, it is possible to make

the whole data mining process much more efficient. The same

principle applies to PPDM. That is, approximation can simplify

protocol design and reduce the size of input to the protocol which

both could help making the protocol more efficient. Unfortunately,

the current approximate PSU-CA and PSI-CA protocols are either

insecure ([13], [14]) or not very efficient ([15]), as we discuss in

Section 2.

A more subtle problem of most of existing protocols ([7], [8],

[1], [11], [14], [9], [10], [13], [15], [12]) is that they output the

intersection/union cardinality directly to one or all parties. This is

perfectly fine as per the definition of the problems. However, the

cardinalities may not be the end result the parties want. Especially

in PPDM, these protocols are often used as subroutines and the

cardinalities are only intermediate results. Outputting cardinalities

increases the leakage of the PPDM protocol: ideally intermediate

results should be hidden and the only output should be the data

mining result. For instance, in the social network example above,

the two providers want to find out the k most influential users.

The union cardinality that represents the number of friends is only

a feature to be used in finding such users. It is too excessive if

the total number of friends of every user has to be revealed in

the mining process. Often what we need is, rather than outputting

the cardinalities directly, to keep the cardinalities secret and run a

secure sorting protocol on the secret cardinalities to output the

users who have the most friends, or run a secure comparison

protocol to output the users who have more friends than a pre-

defined threshold. Avoiding this leakage is not easy, due to the

design of the protocols. To find the cardinalities, those protocols

all depend on a party (or all parties) in the protocol to count either

the number of matches among some ciphertexts [7], [8], [1], [11],

[14] or the occurrences of a specific value (e.g. 0) [9], [10], [13],

[15], [12]. Then the party that does the counting inevitably learns

the cardinalities.

Contributions Our main contribution is a secure two-party

approximate PSU-CA protocol. The protocol is based on the

Flajolet-Martin (FM) sketch [18], which is a space efficient

data structure for cardinality estimation. The parties use their

FM sketches as inputs to the protocol and compute the union

cardinality. At the end each party gets a share that can be used to

reconstruct the cardinality, but none of them learns the cardinality

directly. The protocol has the following important features:

• Highly efficient and accurate. The protocol is efficient for two

reasons. First, unlike all existing protocols, our protocol has

computational and communication complexities logarithmic in

N , the maximum possible cardinality of the private sets1.

This is achieved by using FM sketches. Second, our protocol

is mainly based on symmetric key operations, while most

existing protocols (except generic protocols) are based on much

slower public key operations. The accuracy of the estimation

of our protocol is adjustable with a public parameter m. In

1. In this paper, we use N , N and Ñ to denote the maximum possible
cardinality of the private sets, the actual union cardinality, and the approximate
union cardinality. The complexity is in N because the protocol must not leak
the cardinality of the parties’ input sets. This is usually achieved by padding the
sets to a fixed size with random dummy elements or using fixed-size sketches.

practice, larger m values improve the estimation accuracy. More

precisely, by setting m to a large enough value, the protocol

can guarantee the relative error (|Ñ−N |)/N is at most ǫ with

probability at least 1 − δ for any arbitrary ǫ, δ ∈ (0, 1), where

N is the true cardinality and Ñ is the estimated cardinality. The

minimum allowable value for m depends on the parameters

δ and ǫ, as it will be explained in Section 4.1. We evaluated

the protocol based on our prototype implementation and found

that, to compute the union cardinality of two sets with size

up to 1 million, it only needed 2.97 seconds when ǫ = 1%
and δ = 0.001. In contrast, the state-of-the-art two-party

approximate protocol [15] took 488.48 seconds to do the same

computation with the same accuracy.

• Eliminates unwanted information leakage. We design the pro-

tocol such that by default, no party learns the cardinality at the

end of the protocol. The result is split into secret shares and each

party holds one share. The shares leak no information about

the result. If the cardinality is the final result, the parties can

reconstruct it from the shares easily and reveal the cardinality.

Or if the protocols are used as subroutines in a larger PPDM

protocol, the shares can be fed into the next step of the

PPDM protocol without leaking the cardinality. We decided to

output the result as secret shares for three reasons: (1) it is

simple and incurs virtually no cost to produce the shares; (2)

it allows local computation on the shares (e.g. summing the

output of Protocol 1); (3) the shares can be easily converted

into other encrypted forms using existing techniques (e.g. to

Boolean shares or garbled bit strings [19], to ciphertexts of

homomorphic encryption schemes [20], and to ciphertexts of

other encryption schemes [21]). The last reason is important

because the subsequent protocol that will use the cardinality is

dependent on the application and may require input other than

secret shares. Being able to convert shares into other encrypted

form makes our protocol flexible in such a situation.

• Extensible. We extend the PSU-CA protocol into a PSI-CA

protocol with virtually no cost using the inclusion-exclusion

principle. This is similar to the approach in [11], where the

authors extend a PSI-CA protocol into a PSU-CA protocol

using the same principle. We also extend the two-party PSU-CA

and PSI-CA protocols to the multiparty setting. The multiparty

extensions retain the good properties and can be implemented

easily using generic secret-sharing based multiparty secure

computation frameworks.

A second contribution is the design of a fixed-key masking

scheme for (1n)-OT . In the past, the computation cost of (1n)-OT
was dominated by the log(n) invocations of (12)-OT . Now since

(12)-OT can be obtained by OT extension, the cost of masking the

n strings becomes dominating. The idea of the fixed-key masking

scheme is similar to previous work in fixed-key garbling schemes

[22]. That is, we use a block cipher with a fixed key as a random

permutation, and apply the fixed-key block cipher to mask the

strings. The benefit of the fixed-key masking is significant: it

reduces the number of invocations of the encryption function from

log(n) per string to 1 per string; it can take advantage of the AES-

NI set that is widely available on recent X86 CPUs; and using

fixed-key avoids costly key scheduling so the encryption can be

fully pipelined. The efficiency of masking is improved by more

than one order of magnitude compared to the previous masking

scheme.

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

3

2 RELATED WORK

Since the groundbreaking work of [23], [24], there has been

extensive research in PPDM. Much research focuses on the

development of a few primitive protocols. This is because there

are many data mining techniques, and it is infeasible or not cost-

effective to develop solutions for individual ones. One observation

is that data mining techniques often perform similar computations

at various stages. Therefore a more viable strategy [7] is to

build a “toolkit” of primitive protocols that can be assembled to

solve specific real-world problems. PSI-CA/PSU-CA is one of the

primitive protocols identified in [7] and is widely used in PPDM.

Exact Protocols There are several exact PSI-CA/PSU-CA proto-

cols. However they all require at least O(N) public key opera-

tions, where N is the maximum possible cardinality of the private

sets. Thus they are less efficient than our protocol.

Both [7] and [8] proposed a PSI-CA protocol based on

commutative encryption. The ideas of the two protocols are

very similar. The main difference is that [7] was presented in

the multiparty setting and [8] in the two-party setting. Both

protocols require O(N) public key operations. In [9], a PSI-CA

protocol was proposed based on oblivious polynomial evaluation.

The computation requires O(N log logN) public key operations.

In [1], a multiparty PSI-CA protocol was proposed based on

commutative one-way hash functions that can be constructed from

public key encryption schemes such as Pohlig-Hellman. Each

party needs to hash τ · N times where τ is the number of

parties. In [10], a multiparty PSI-CA protocol was proposed based

on oblivious polynomial evaluation. The computation requires

O(N 2) public key operations. In [11] a PSI-CA protocol based on

an ElGamal like encryption was proposed. The protocol requires

O(N) public key operations and can be trivially extended to a

PSU-CA protocol. In [12], the authors proposed PSI-CA/PSU-

CA protocols based on Bloom filter and homomorphic encryption.

These protocols also require O(N) public key operations.

Approximate Protocols In data mining, approximation is widely

used when mining extremely large datasets. Approximate PSI-

CA/PSU-CA protocols were proposed in the hope that they can

be more efficient. However, unlike our protocol, they are either

insecure or still have complexity O(N).
In [13] a multiparty PSI-CA protocol was designed but it

is not secure. Adversaries can easily guess any other party’s

set elements, as explained in [15]. In [14], a two-party PSI-CA

protocol was proposed. The protocol uses [11] as a subprotocol

and is based on Minwise sketches [25]. The protocol estimates

Jaccard index from Minwise sketches and then approximates the

intersection cardinality from Jaccard index. However, this protocol

is not secure because party 2 in the protocol leaks the cardinality

of its private set to party 1. Our multiparty PSI-CA protocol

also estimates intersection cardinality from Jaccard index. The

differences are: (1) We use the Min-Max sketch [26], which is

more efficient than the Minwise sketch. The use of Min-Max

sketches also reduces the offline computation by a factor of 2

compared to Minwise sketches [26]. (2) The parties do not need

to reveal the cardinality of their own sets. In [15] the authors

proposed PSU-CA/PSI-CA protocols that use Bloom filters to

estimate the cardinalities. However, the protocols in [15] need

O(N) time. The reason is that Bloom filters were originally

designed for set membership queries, and thus they have to encode

much more information than needed to estimate cardinality.

From PSI to PSI-CA A related line of work is on Private Set

Intersection (PSI) which requires computing the intersection of

private sets (see e.g. [9], [10], [27], [28], [29], [30]). Intersection

cardinality can be obtained from PSI output, but PSI also reveals

the elements in the intersection. Thus PSI protocols cannot be

used as a replacement for PSI-CA in applications where only the

cardinality of a set must be revealed.

It is possible in some cases to extend PSI to PSI-CA. For

example, the PSI-CA protocols in [8], [9], [10], [11], [12] we

mentioned earlier are all extended from PSI protocols. However,

their underlying PSI protocols are public key based, which makes

the above protocols inefficient. There are PSI protocols that

require mostly symmetric key operations ([31], [27], [28], [29]).

Specifically [31], [28], [29], [30] propose Boolean circuits for the

PSI function that can be evaluated securely using generic secure

computation protocols. It is always possible to extend the PSI

Boolean circuits to support PSI-CA. The extended circuits would

have similar complexity as the PSI circuits, which is at least

O(N). On the other hand, the garbled Bloom filter [27] and OT

based [28], [29], [30] PSI protocols cannot be easily extended to

PSI-CA because one party always learns the intersection due to

the way the intersection is obtained. In the garbled Bloom filter

based PSI protocol, one party receives a garbled Bloom filter that

encodes the intersection and allows set membership query. The

party then queries the garbled Bloom filter using every element in

its own set. If the element is in the intersection, the query returns

a fixed string, otherwise it returns a random string. Similarly in

the OT-based PSI protocols, one party first gets some random-

looking strings for each element in its set by running OT. Then

the other party sends a set of strings that are mapped from its set

elements. Next, the first party checks, for each element, whether

there is a string associated with it in the set. If so this element is

in the intersection. The only obvious solution to extend [27], [28],

[29], [30] to support PSI-CA is to interactively blind and randomly

permute the set (of the party who obtains the intersection) at the

start of the protocol, so that at the end the party can query to check

whether a blinded element is in the intersection, without knowing

which element is being queried. This however seems to require at

least O(N) public key operations and cannot hide the cardinality

from the party.

3 PRELIMINARIES

3.1 Notation

For a set X , we denote by x
R
← X the process of choosing an

element x of X uniformly at random. For a vector V , we denote

by V [i] the ith element in the vector. The index of all vectors in the

paper starts from 0. For an integer a, we denote by JaKi the secret

share of a held by party i. In a loop or a multi-round protocol, we

use superscription in angle brackets to differentiate variables with

the same name in different iterations, e.g. r〈i〉 means variable r in

the ith iteration. All logarithms in this paper are base 2.

3.2 Oblivious Transfer (OT)

Oblivious transfer [32], [33] is a protocol between a sender and

a receiver. The most basic type of OT is 1-out-of-2 OT, which

will be denoted as (12)-OT . In (12)-OT , the sender holds a pair of

strings (x0, x1) and the receiver holds a bit b. The goal is for the

receiver to receive xb such that the receiver learns nothing about

the other string and the server learns nothing about b. The idea

can be extended naturally to 1-out-of-n OT, denoted as (1n)-OT ,

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

4

in which a sender holds a vector of n strings (x0, . . . , xn−1) and

the receiver holds an index 0 ≤ I ≤ n−1. At the end the receiver

only learns xI and the server learns nothing about I . A (1n)-OT
protocol can be constructed by invoking a (12)-OT protocol log(n)
times [34] as follows:

• The sender holds a vector of messages P = (x0, ..., xn−1) and

the receiver holds an index 0 ≤ I ≤ n− 1.

• The sender chooses l pairs of uniformly random keys

(k0,0, k0,1), . . . , (kl−1,0, kl−1,1) for a pseudorandom function

F , where l = ⌈log(n)⌉. For the ith message in P , the sender

masks the message P̃ [i]=(
⊕l−1

j=0
Fkj,bj

(i))⊕P [i] where bj is the

jth bit in the binary representation of i and ⊕ is the bitwise

XOR operation. The sender sends P̃ to the receiver.

• Let I0...Il−1 ∈ {0, 1}l be the binary representation of I, then

l (12)-OT are performed, where during the jth OT, the sender

sends (kj,0, kj,1) and the receiver uses Ij to receive kj,Ij .

• The receiver now has k0,I0 , ..., kl−1,Il−1
, then can unmask

P [I]=(
⊕l−1

j=0
Fkj,Ij

(I))⊕P̃ [I].

OT protocols inevitably require public key operations, thus

computing a large number of OTs is expensive. Fortunately, it

has been shown by Beaver [35] that it is possible to obtain a

large number oblivious transfers given only a small number of

actual oblivious transfer calls. This is called OT extension. The

first practical OT extension scheme was proposed by Ishai et.

al. [36]. Recently more efficient OT extension schemes were

proposed [37], [38], [39], [40]. In short, in those schemes only

a small number (a few hundred) of (12)-OT (“base OTs”) are

required at the bootstrapping phase, then the subsequent (12)-OT

can be obtained with the cost of just a few cheap symmetric key

operations. Therefore those schemes can significantly improve the

performance of protocols based on OT. Our two-party protocols

rely heavily on OT. Thus they can benefit from OT extension

schemes. To be clear, in the rest of paper when we write OT we

mean OT obtained though an OT extension scheme.

3.3 Secret Sharing

Secret sharing is widely used in secure computation protocols. In

general, in a (t, n)-secret sharing scheme, a dealer splits a secret

s into n shares. The scheme is correct if s can be reconstructed

efficiently with any subset of t or more shares. The scheme is

secure if given any subset of less than t shares, the secret is

unrecoverable and the shares give no information about the secret.

Some secret sharing schemes have homomorphic properties, i.e.

certain operations on the secret can be performed with the shares

as input. For example, Shamir’s secret sharing scheme [41] is

additively homomorphic.

In our two-party protocols, we will use a simple additively

homomorphic (2, 2)-secret sharing scheme. In this scheme, the

secret and shares are integers in the additive group Zq for some

integer q ≥ 2. Note q can be any integer and does not need to be

a prime number. To share a secret s, choose a uniformly random

r from Zq , and the two shares are JsK1 = r and JsK2 = s − r.

To reconstruct the secret, simply add the two shares together s =
JsK1 + JsK2. The correctness of the scheme is easy to verify and

the scheme is unconditionally secure if r is chosen uniformly at

random. The homomorphic property is obvious: let JaK1, JaK2 be

the two shares of a and JbK1, JbK2 be the two shares of b, then

JcK1 = JaK1 + JbK1 and JcK2 = JaK2 + JbK2 are the two shares of

c such that c = a+ b.

3.4 Security Model

All protocols in this paper are secure in the semi-honest

model [42]. In this model, adversaries are honest-but-curious, i.e.

they will follow the protocol specification but try to get more

information about the honest party’s input. The semi-honest model

is weaker than the malicious model, in which the adversaries can

deviate from the protocol in arbitrary ways. However, designing

protocols in the semi-honest model is still very meaningful as it

captures many realistic scenarios. For example, when the parties’

behaviors are monitored or audited. Also, protocols for the semi-

honest setting are often the stepping-stones towards protocols with

stronger security guarantees. There exist generic ways of obtaining

full security against malicious adversaries from protocols for the

semi-honest setting, e.g. by using zero-knowledge proofs. The

formal definitions can be found in Appendix B.

4 TWO-PARTY PROTOCOLS

In this section, we present the PSU-CA and PSI-CA protocols in

the two-party setting. In this setting, there are two parties P1 and

P2 each holding a private set (S1 and S2 respectively). Our focus

is on computing the union cardinality because the intersection

cardinality can be obtained trivially by applying the inclusion-

exclusion principle: |S1 ∩ S2| = |S1| + |S2| − |S1 ∪ S2|. We

will start by reviewing the FM sketches, then present protocols

designed around this data structure, as well as a few optimizations.

4.1 Flajolet-Martin (FM) Sketches

We briefly review FM sketches. More details and analysis can

be found in [18]. An FM sketch is a probabilistic counter of the

number of distinct elements in a multiset2. The data structure is a

w-bit binary vector. We will use FS to denote an FM sketch built

from a set S, and FS [i] (0 ≤ i ≤ w − 1) to denote the ith bit

in FS . An FM sketch comes with a hash function h : {0, 1}∗ →
{0, 1}w that maps an input uniformly to w-bit output. A function

ρ : {0, 1}w → [0, w] is defined that takes a w-bit string as input

and returns the number of trailing zeroes in the string. Initially, all

bits in FS are set to 0. To count a multiset S, for each element

x ∈ S, we hash x and set FS [ρ(h(x))] = 1 if ρ(h(x)) < w.

The number of distinct elements in S can be estimated using an

estimator z that is the index of the first 0 bit in FS , i.e. FS [z] = 0
and ∀0 ≤ i < z, FS [i] = 1. The expected value of z is close to

log(φN), where φ = 0.77351 is a correction factor and N is the

number of distinct element in S. Given z, we can estimate N by

Ñ = 2z

φ . It is clear that the size of the sketch w must be larger

than log(φN), otherwise we might not be able to obtain z. It was

suggested in [18] that w ≥ log(N) + 4 should suffice.

The standard deviation of the estimator z is 1.12, which is too

high. An estimate Ñ using z will typically be one binary order of

magnitude off n. To remedy this problem, we can use m sketches

each with an independent hash function. We obtain m estimators

z〈0〉, ..., z〈m−1〉 and sum them Z = z〈0〉+ . . .+z〈m−1〉. We can

then use the average Z
m to estimate n. The standard deviation of

Z
m is 1.12√

m
, which is much smaller.

Another problem of FM sketches is that they give bad esti-
mates for small sets. This has been studied in [43] and the authors
suggested a modified formula to correct the small set bias:

Ñ =
2

Z
m − 2−κ· Z

m

φ
(1)

2. A set is treated as a special case of multiset (multiplicity = 1 for all
elements), and all the following applies to sets as well.

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

5

where Ñ is the cardinality estimate from m sketches, and κ =
1.75 is a correcting factor. Equation (1) gives very good estimates

for both small sets and large sets [43].

In Theorem 1, we show that the relative error between the true

and estimated cardinality does not exceed ǫ with probability at

least 1 − δ, when m is sufficiently large. This implies that the

accuracy of the estimation can be adjusted to the desired level, by

choosing a suitable m. The proof of Theorem 1 is in Appendix A.

Theorem 1. Let S1, S2 be two sets and N = |S1 ∪ S2|. Let Ñ
be the estimate obtained from computed using Equation (1). For

any ǫ, δ ∈ (0, 1), it holds that:

Pr[
|Ñ −N |

N
≤ ǫ] ≥ 1− δ (2)

when m ≥ 2.5088 · (erf−1(1−δ)
min(− log(1−ǫ),log(1+ǫ)))

2, where erf−1
is

the inverse error function3.

An important property of FM sketches that we use in the

design of our algorithms is that they can be merged. If we have

two FM sketches FS1
and FS2

built with the same hash function,

then bit-wisely ORing the two sketches produces a new FM sketch

FS1∪S2
that counts the union of the two sets S1 and S2. This

process is lossless: FS1∪S2
is exactly the same as the sketch built

using the union from the scratch. This extends to the union of

multiple sets easily. However, an FM sketch of set intersection

cannot be obtained by combining sketches. This is because there

are no known estimators for the intersection cardinality of two sets

that can be applied to a combined FM sketch, which is derived

from the two sketches by any bit-wise operation. In other words,

the bit patterns that appear in the combined sketch cannot be used

to derive an estimate of the set intersection cardinality. In fact,

union is the only supported set operation that can be performed by

combining FM sketches [44].

4.2 Secure Estimator Computation

To securely compute the cardinality of the union of two private

sets using FM sketches, the first step is to securely compute the

estimator of the union cardinality. The two parties each hold FS1

and FS2
that are FM sketches built from their private sets using

the same hash function and same sketch size w. As we have seen

in Section 4.1, the union sketch FS1∪S2
can be then computed by

bit-wisely ORing FS1
and FS2

in a secure way. However, how to

securely extract the estimator from FS1∪S2
is a non-trivial task.

4.2.1 Data Oblivious Algorithm

Recall that the estimator z is the index of the first 0 bit in the

sketch FS1∪S2
. When computing in the clear, z can be trivially

obtained by checking whether FS1∪S2
[i] = 0 from i = 0 and

return the index i when hits the first 0 bit in the sketch. However,

this algorithm is not data oblivious (i.e. the control flow and access

pattern are dependent on the data). Thus the algorithm execution

leaks information about the data and cannot be used in secure

computation. In fact this is one of the biggest challenges when

porting data structures to secure computation: most data structure

based algorithms are not data oblivious and generic approaches

for achieving data obliviousness incur a substantial cost.

3. The inverse error function: erf−1(x) =
∑∞

k=0
ck

2k+1
(
√

π

2
x)2k+1,

where ck =
∑k−1

m=0
cmck−1−m

(m+1)(2m+1)
and −1 < x < 1.

To solve this problem, we design a data oblivious algorithm to

combine the sketches and extract the estimator. The algorithm is

shown in Algorithm 1 and a small example is shown in Figure 1.

Conceptually, the algorithm does 3 things: (1) it creates FS1∪S2

by bitwisely ORing FS1
and FS2

; (2) it sets all bits in FS1∪S2

after the first 0 bit to 0; (3) it then adds up all bits. The sum equals

the estimator z.

Algorithm 1: Combine-then-sum(FS1
, FS2

, w)

input : Two w-bit FM sketches FS1
, FS2

and the size w
output: the index of the first 0 bit in FS1∪S2

1 F̂S1∪S2
= new w-bit FM sketch;

2 F̂S1∪S2
[0]= FS1

[0] ∨ FS2
[0];

3 sum = 0;
4 for i = 1 to w − 1 do

5 F̂S1∪S2
[i]=(FS1

[i] ∨ FS2
[i]) ∧ F̂S1∪S2

[i− 1];

6 sum = sum+ F̂S1∪S2
[i];

7 end

8 return sum;

1 0 0 1 0

1 1 0 1 0

1 1 0 1 0

1 1 0 0 0

FS1

FS2

∨
FS1∪S2

∧ ∧ ∧ ∧

z=2

sum =2

F̂S1∪S2

Fig. 1: Example of Combine-then-sum algorithm

The correctness of the algorithm is easy to prove. Let

FS1∪S2
= FS1

∨ FS2
and z be the estimator. If z > 0, then

by the definition of z, for all 0 ≤ i < z we have FS1∪S2
[i] = 1.

In Algorithm 1, F̂S1∪S2
[0]=FS1∪S2

[0]=1 and for 1 ≤ i < z,

F̂S1∪S2
[i]=(FS1

[i]∨FS2
[i])∧F̂S1∪S2

[i−1]=FS1∪S2
[i]∧F̂S1∪S2

[i−1]. By

induction, for all 0 ≤ i < z, we have F̂S1∪S2
[i]=1 as well.

Therefore,
∑z−1

i=0
F̂S1∪S2

[i]=z. For i ≥ z, since F̂S1∪S2
[z]=0, we

have F̂S1∪S2
[z+1]=FS1∪S2

[z+1]∧F̂S1∪S2
[z]=0, and similarly all the

bits after are 0. Then the sum of the whole F̂S1∪S2
is still z. If

z = 0, then all bits in F̂S1∪S2
are 0 and the sum equals z = 0.

It is also easy to verify that the algorithm is data oblivious:

for any two input tuples (FS1
, FS2

, w) and (F ′
S1
, F ′

S2
, w), the

memory access pattern and the control flow are exactly the same

when executing the algorithm.

4.2.2 Efficient Protocol

The protocol is presented as Protocol 1. In the protocol,P1 and P2

jointly compute F̂S1∪S2
and share each bit in it, then they use the

homomorphic property to sum their shares locally to get a share

of
∑w−1

i=0 F̂S1∪S2
[i], i.e. z. The key idea in the protocol design is

to fully utilize P1’s local knowledge to generate correlated secret

shares, and to base computation on the correlated shares. By using

secret sharing, the result can be obtained but is kept secret at the

end of the protocol.

In the following, we explain the protocol. Let’s start from step

1 which computes F̂S1∪S2
[0] = FS1

[0] ∨ FS2
[0], the first bit in

F̂S1∪S2
. In this step, P1 generates the shares for 0 and 1 in a

correlated way. Observe that r〈0〉+ r
〈0〉
0 = 0 and r〈0〉+ r

〈0〉
1 = 1,

therefore (r〈0〉, r〈0〉0) is a pair of shares for bit 0 and (r〈0〉, r〈0〉1)
is a pair of shares for bit 1. Although the shares are correlated,

this does not affect security because P2 can only get one of r
〈0〉
0 ,

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

6

Protocol 1 Secure Estimator Computation Protocol

Inputs The private inputs of P1 and P2 are the FM sketches FS1

and FS2
respectively. Each sketch encodes the party’s private set.

The auxiliary inputs include the security parameter λ, the sketch
size w and a group Zq where q = m(w− 1) + 1 for some integer
m.
Outputs Let z be the index of the first 0 bit in the union sketch
FS1∪S2

that will be used later to estimate the union cardinality
(see Section 4.1). P1 and P2 obtain JzK1, JzK2 ∈ Zq respectively.
Each party’s output is a secret share of z such that JzK1+JzK2 = z.

1) In round 0, P1 chooses a random number r〈0〉
R
← Zq , then sets

r
〈0〉
0 = −r〈0〉 and r

〈0〉
1 = 1 − r〈0〉. Then P1 and P2 run a

(12)-OT in which P2 uses FS2
[0] as the selection bit and P1 uses

(r
〈0〉
0 , r

〈0〉
1) as input if FS1

[0] = 0 or (r
〈0〉
1 , r

〈0〉
1) if FS1

[0] = 1.
2) Then in round i (1 ≤ i < w), the two parties do the following:

a) P1 chooses a random number r〈i〉
R
← Zq , then sets r

〈i〉
0 =

−r〈i〉 and r
〈i〉
1 = 1− r〈i〉.

b) P1 prepares 4 strings to send:




(r
〈i〉
0 , r

〈i〉
0 , r

〈i〉
0 , r

〈i〉
1) if r

〈i−1〉
0 is even ∧ FS1

[i] = 0

(r
〈i〉
0 , r

〈i〉
0 , r

〈i〉
1 , r

〈i〉
1) if r

〈i−1〉
0 is even ∧ FS1

[i] = 1

(r
〈i〉
0 , r

〈i〉
1 , r

〈i〉
0 , r

〈i〉
0) if r

〈i−1〉
0 is odd ∧ FS1

[i] = 0

(r
〈i〉
1 , r

〈i〉
1 , r

〈i〉
0 , r

〈i〉
0) if r

〈i−1〉
0 is odd ∧ FS1

[i] = 1

c) Let x〈i−1〉 be the string received by P2 in round i− 1. Let bit
b0 = 0 if x〈i−1〉 is even and b0 = 1 if x〈i−1〉 is odd, let bit
b1 = FS2

[i]. P2 gets a 2-bit integer j = b0||b1.
d) P1 and P2 run a (14)-OT in which P1 uses the 4 strings

prepared in step 2b as input and P1 uses j obtained in step
2c as input.

3) P1 outputs JzK1 =
∑w−1

i=0 r〈i〉, P2 outputs JzK2 =
∑w−1

i=0 x〈i〉

where x〈i〉 is the string (an integer) received in round i.

r
〈0〉
1 through OT. In any case, P1 always keeps r〈0〉 and the actual

shared value then is determined by which share P2 receives. Now

if FS1
[0] = 1 then P1 knows the value FS1

[0] ∨ FS2
[0] = 1

regardless of whether FS2
[0] is 0 or 1. Thus in the OT, P1 can use

(r
〈0〉
1 , r

〈0〉
1) as input so that P2 always gets the share of bit 1. If

FS1
[0] = 0 then the value of FS1

[0]∨FS2
[0] depends on FS2

[0].

So in the OT, P1 uses (r
〈0〉
0 , r

〈0〉
1) as input so that P2 always gets

the share of 0 if FS2
[0] = 0 or the share of 1 if FS2

[0] = 1. Take

the example in Fig. 1: FS1
[0] = 1 so in the protocol P1 sends

(r
〈0〉
1 , r

〈0〉
1) and P2 always gets r

〈0〉
1 that is the share of bit 1.

In step 2, the two parties compute F̂S1∪S2
[i] = (FS1

[i] ∨
FS2

[i]) ∧ F̂S1∪S2
[i − 1]. At the end of each round in this step,

P2 should receive a share x〈i〉. If F̂S1∪S2
[i] = 0, P2 should

receive a share of bit 0, i.e. x〈i〉 = r
〈i〉
0 ; otherwise P2 should

receive a share of bit 1, i.e. x〈i〉 = r
〈i〉
1 . This step is much more

difficult than ORing two bits because F̂S1∪S2
[i− 1] is required in

the computation but may not be known by any party. Our insight

is that we can solve this problem by utilizing the parity of the

correlated shares. The two shares r
〈i〉
0 , r

〈i〉
1 always differ by 1,

therefore it is guaranteed that one of the shares is even and the

other is odd. Thus the two parties can carry out the computation by

matching parities of some shares which they can observe locally.

In step 2b of the protocol,P1 prepares strings to send by observing

the parity of the share of bit 0 generated in the last round (r
〈i−1〉
0)

and its current sketch bit FS1
[i], and later P2 receives a string

by observing the parity of the share received in the last round

(x
〈i−1〉
0) and its current sketch bit FSs

[i]. Again take the example

in Fig. 1: for the second bit, FS1
[1] = 0, thus if r

〈0〉
0 is even, P1

will send (r
〈1〉
0 , r

〈1〉
0 , r

〈1〉
0 , r

〈1〉
1). Now since FS2

[1] = 1 and P2

received x〈0〉 = r
〈0〉
1 in the last round that must be odd (because

r
〈0〉
0 is even), then j = (1||1)b = 3. So in this round P2 will

receive the last string r
〈1〉
1 that is a share of bit 1. If r

〈0〉
0 is odd,

P1 will send (r
〈1〉
0 , r

〈1〉
1 , r

〈1〉
0 , r

〈1〉
0). Now r

〈0〉
1 must be even, then

j = (0||1)b = 1. So in this round P2 will receive the second

string r
〈1〉
1 that is a share of bit 1.

The parity of r
〈i−1〉
0 , the parity of x〈i−1〉, the bit in FS1

[i]
and the bit in FS2

[i] each have two possible values, thus there are

24 = 16 combinations. The correctness of the protocol can be

shown through Figure 2 that depicts the correspondence between

each combination and the share received by P2 in round i. In

each branch of the tree in the figure, if r
〈i−1〉
0 and x〈i−1〉 have

the same parity then x〈i−1〉 must equal r
〈i−1〉
0 which is a share

of bit 0, thus F̂S1∪S2
[i − 1] = 0. Otherwise F̂S1∪S2

[i − 1] = 1.

F̂S1∪S2
[i] = (FS1

[i]∨FS2
[i])∧ F̂S1∪S2

[i− 1] can be computed

along the branch and the leaf nodes is the share that P2 receive.

For example, in the leftmost branch r
〈i−1〉
0 and x〈i−1〉 have the

same parity (even) so F̂S1∪S2
[i− 1] = 0 and FS1

[i], FS2
[i] both

are 0, so F̂S1∪S2
[i] = (0 ∨ 0) ∧ 0 = 0. Corresponding to this

branch, in the protocol step 2b P1 prepares four strings in case 1

because r
〈i−1〉
0 is even and FS1

[i] = 0, and P2 receives the first

of the four strings because x〈i−1〉 is even and FS2
[i] = 0. The

string received by P2 is r
〈i〉
0 which is a share of F̂S1∪S2

[i] = 0.

r
〈i−1〉
0

FMS1
[i]

x
〈i−1〉

FMS1
[i]

x
〈i−1〉

x
〈i−1〉

x
〈i−1〉

FMS2
[i] FMS2

[i]

r
〈i〉
0

r
〈i〉
0 r

〈i〉
1

r
〈i〉
0

r
〈i〉
1

r
〈i〉
0

r
〈i〉
1

r
〈i〉
0 r

〈i〉
1

r
〈i〉
0

FMS2
[i] FMS2

[i] FMS2
[i] FMS2

[i] FMS2
[i] FMS2

[i]

even odd

0 1 0 1

even odd even odd even odd even odd

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r
〈i〉
0

r
〈i〉
0 r

〈i〉
0

r
〈i〉
1

r
〈i〉
0 r

〈i〉
1() ()() ()

case 1 case 2 case 3 case 4

Fig. 2: All cases in step 2

In step 3, P1 and P2 locally sum the shares. Each r〈i〉 held by

P1 and each x〈i〉 held by P2 are the two shares of F̂S1∪S2
[i]. By

the homomorphic property, the sums
∑w−1

i=0 r〈i〉 and
∑w−1

i=0 x〈i〉

are the shares of z.

Our final remark is regarding the choice of q, which is m ·
(w − 1) + 1. The reason is that in order to increase accuracy, we

need to average estimators extracted from m sketches. The value

of z〈i〉 is at most w − 1, then the sum of m estimators is at most

m · (w− 1). We need Zq to be large enough to accommodate this

sum. Then q needs to be at least m · (w − 1) + 1. For efficiency,

we choose q to be exactly m · (w − 1) + 1.

4.2.3 Efficiency Comparison to the Generic Approach

It is possible to implement Algorithm 1 using generic techniques

such as garbled circuits (GC). The cost of the GC protocol consists

of two parts:

1) Transferring input wires: This requires w invocations of

(12)-OT , which can use the C-OT optimization in [37].

2) Building, transferring and evaluating a garbled Boolean cir-

cuit: The circuit consists of w OR-gates, w − 1 AND-gates

and a circuit to compute the Hamming weight of a w-bit

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

7

string. The most efficient Hamming weight circuit [45] requires

w − HW(w) AND-gates, where HW(w) is the Hamming

weight of the binary representation of the integer w. In total,

the number of non-free gates is 3w−1−HW(w). However, the

w OR-gates can be evaluated at the wire transferring step using

OT (similar to what we do in step 1 of Protocol 1), thus the

number of non-free gates can be reduced to 2w− 1−HW(w).

In comparison, our protocol (Protocol 1) requires 1 invocations of

(12)-OT and w − 1 invocations of (14)-OT . We can use the C-

OT optimization for the (12)-OT and the R-OT optimization (also

from [37]) for the (14)-OT (See Appendix D for details).

Fig. 3: Efficiency comparison

Computational Cost: We estimate the computational cost by

counting the number of cryptographic operations. Each (12)-OT
requires 3 symmetric key operations when obtained from OT

extension. The cost of each non-free gate is dependent on which

optimization technique is used. At present, the most popular

strategy for optimizing GC is to make the XOR gates free. To

do so, one can use either the Free XOR [46] with point-and-

permute [47] and garbled row reduction [48] technique (Free

XOR for short) or the Half Gates technique [49]. Free XOR

requires 4 symmetric key operations to garble and 1 symmetric key

operations to evaluate a non-free gate, while Half Gates requires

4 and 2 symmetric key operations respectively.

The total number of symmetric key operations required by the

GC protocol is then 3w+5 · (2w−1−HW(w)) = 13w−5−5 ·
HW(w) when using Free XOR or 3w+6 · (2w−1−HW(w)) =
15w − 6− 6 · HW(w) when using Half Gates. The total number

of symmetric key operations in our protocol is 3 · (2w − 1) + 4 ·
(w − 1) = 10w − 7. In practice, w is a small integer and the

computational cost of our protocol is about 80% of that of the GC

protocol if it uses Free XOR, or about 70% if it uses Half Gates.

Fig. 3(a) plots the number of symmetric key operations in each

protocol when w varies from 1 to 64.

Communication Cost: The total communication cost of the GC

protocol again depends on the optimization technique. Using Free

XOR, each non-free gate has 3 entries. Using Half Gates, each

non-free gate has 2 entries. The size of each entry is λ bits, where

λ is the security parameter. The cost for transferring input wires

is 2λ bits per wire (using C-OT) in both cases.

In total, the communication cost of the GC protocol is (2w −
1−HW(w)) ·3λ+w ·2λ = 8wλ−3λ−3 ·HW(w)λ bits if Free

XOR is used, or (2w−1−HW(w)) ·2λ+w ·2λ = 6wλ−2λ−
2 · HW(w)λ bits if Half Gates is used. The total communication

of our protocol is λ+log q bits for the first (12)-OT (using C-OT),

and (2w − 2) · λ+ 4(w − 1) · log q bits for the following w − 1
invocations of (14)-OT (using R-OT), where q = m · (w− 1)+1.

Roughly, for reasonable λ (128 or 256), w (1 to 64) and m (4,096

to 1,048,576), the communication cost of our protocols is about

35% of that of the GC protocol if it uses Free XOR, or 45% if

it uses Half gate. Fig. 3(b) plots the communication cost in each

protocol when fixing λ = 128,m = 65, 536 and varying w from

1 to 64.

4.3 Secure Cardinality Estimation

4.3.1 The Protocol

In Section 4.2.2, we showed how to compute the estimator z of

the union cardinality from a pair of FM sketches. As mentioned

in Section 4.1, in order to increase accuracy, we need to compute

m estimators from m different pairs of sketches. This requires m
executions of Protocol 1. As illustrated in Fig. 4, in the ith run, P1

and P2 each obtains a share JzK
〈i〉
1 , JzK

〈i〉
2 respectively. Then the

two parties can locally sum the shares to get JZK1 =
∑m−1

i=0 JzK
〈i〉
1

and JZK2 =
∑m−1

i=0 JzK
〈i〉
2 , where JZK1 and JZK2 are shares of

Z =
∑m−1

i=0 z〈i〉. The two parties can then use Protocol 2 to

compute Equation 1 and estimate the union cardinality.

P1 P2

Protocol 1, 1st execution

F
〈0〉
S1

F
〈0〉
S2

.

.

.

.

.

.
F

〈m−1〉
S1

F
〈m−1〉
S2

Protocol 1, mth execution

!z"
〈0〉
1

!z"
〈0〉
2

.

.

.

!z"
〈m−1〉
1

!z"
〈m−1〉
2

.

.

.

.

.

.

!Z"1 =
∑

m−1

i=0
!z"

〈i〉
1 !Z"2 =

∑
m−1

i=0
!z"

〈i〉
2

Protocol 2

!Ñ"1 !Ñ"2

m executions of protocol 1

!Z"1 !Z"2

Fig. 4: Connection between Protocol 1 to Protocol 2

Our idea is to use a lookup table. A lookup table is a data

structure that encodes a function with a small input domain to

speed up computation. As we can see, in Equation 1, m,κ, φ
are all public constants. So the equation is a function with a single

argument Z which is an integer from Zq where q = m·(w−1)+1.

In practical cases, m needs to be of the order of 103 − 104 so the

standard deviation of Z is about 10−2, and w is unlikely to be

greater than 50. Then m · (w − 1) is of the order of 104 − 105

which is small enough for a lookup table. Our lookup table based

protocol is presented below (Protocol 2).

In the protocol,P1 first computes Equation 1 for each possible

value of Z , and stores the result in the lookup table. So T [i] stores

the estimated cardinality when Z = i. Note this computation is all

in plaintext, thus we avoid entirely the expensive secure floating

point computation. Each T [i] is an integer after rounding and is

in Z2w because the way we choose w ensures that 2w is larger

than any possible cardinality. Then P1 picks a single r and creates

correlated shares of all entries in T . Again, since later the protocol

uses OT and P2 is guaranteed to receive only one share, this is

secure. The next thing P1 does is to ensure that P2 can receive

the correct entry T ′[Z]. None of the parties knows Z but each

holds a share. The combined effect of shifting and OT is that

P2 will receive T ′′[JZK2] = T ′[JZK2 + JZK1] = T ′[Z], and

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

8

Protocol 2 Secure Cardinality Estimation Protocol

Inputs The private input of P1 is a secret share JZK1 and the
private input of P1 is a secret share JZK2 such that JZK1+ JZK2 =
Z =

∑m−1
i=0 z〈i〉, i.e. Z is the sum of m union cardinality

estimators. The auxiliary inputs include the security parameter λ,
the public parameters m,w, κ, φ, q = m(w − 1) + 1, and Z2w .

Outputs Let Ñ be the estimate to be computed, P1 and P2 obtain

JÑK1, JÑK2 ∈ Z2w respectively. Each party’s output is a secret

share of Ñ and satisfies JÑK1 + JÑK2 = Ñ .
1) P1 computes a lookup table T which is a vector that has q entries.
P1 first computes for 0 ≤ i ≤ q − 1

T [i] = ⌈
2

i
m − 2−κ· i

m

φ
⌋

P1 then picks a single r
R
← Z2w and for all 0 ≤ i ≤ q−1 computes

T ′[i] ≡ T [i]− r mod 2w. P1 then circularly shifts T ′ to the left
JZK1 places, i.e. let T ′′[i] = T ′[j] where j ≡ i+ JZK1 mod q.

2) P1 and P2 run a (1q)-OT in which P1 uses T ′′ as input, P2 uses
JZK2 as input and receives T ′′[JZK2].

3) P1 outputs JÑK1 = r and P2 outputs JÑK2 = T ′′[JZK2].

T ′′[JZK2]+ r = T ′[Z]+ r = T [Z]. So each party indeed obtains

a share of the estimated cardinality.

4.3.2 Efficiency Comparison to the Generic Approach

The computation of Equation 1 needs to be done in floating

point numbers. More concretely, Equation 1 requires 2 divisions,

2 exponentiations and 1 subtraction operations in floating point

numbers. In the past, secure floating point computation was both

complex and inefficient [50], [51], [52]. Recently, it has been

shown that optimized floating point circuits can be generated using

hardware circuits synthesis tools [53] and the GC protocol using

the optimized circuits can be quite efficient. We now compare the

efficiency of Protocol 2 against that of the GC protocol.

Computational Cost: The sizes of the floating point operation

circuits are dependent on the bit size of the floating point number.

For 32-bit single precision floating point operations, the addition

circuit has 1,820 AND-gates, the division circuit has 5,395 AND-

gates and the base 2 exponentiation gate has 9,740 AND-gates.

For 64-bit double precision floating point operations, the gate

numbers are 4,303, 22,741 and 21,431 respectively. For building

and evaluating a 32-bit circuit to compute the estimation, the total

number of symmetric key operations is 160,450 if the circuit uses

Free XOR, or 192,540 if it uses Half Gate. For building and

evaluating a 64-bit circuit to compute the estimation, the total

number of symmetric key operations is 463,235 if the circuit uses

Free XOR, or 555,882 if it uses Half Gate. There will also be some

other costs, e.g. converting the arithmetic shares from Protocol

1 to Boolean shares [20], and OT for transferring input wires.

However the additional costs are small (a few hundreds symmetric

key operations) and can be safely omitted. Our protocol requires

one invocation of (1q)-OT , in which the computation is dominated

by the q symmetric key operations for masking the strings. The

number q equals m · (w − 1) + 1. Therefore depending on the

value of the parameters m and w, one can decide whether to use

Protocol 2 or the GC protocol. In Table 1, we show some concrete

examples. In Table 1, each row corresponds to a fixed value for m,

and each cell in the row shows the largest value of w, for which

Protocol 2 is computationally more efficient than the GC protocol

based on Free XOR or Half Gates. For example, if m = 4096 and

single precision (32-bit) is enough, then we should use Protocol 2

whenever w ≤ 40 (or equivalently if the set cardinality will not

exceed 236); but if m = 65536, we should use a GC protocol in

almost all cases because w ≤ 3 is too small to be useful.

m

GC 32-bit 64-bit
Free XOR Half Gates Free XOR Half Gates

4096 40 48 114 136

16384 10 12 29 34

65536 3 3 8 9

TABLE 1: Each cell contains the largest value of w for which

Protocol 2 is computationally more efficient than the GC protocol

with Free XOR or with Half Gates.

Communication Cost: For the GC protocol that uses a circuit of c
gates, the communication cost is c ·3λ bits if Free XOR is used, or

c ·2λ bits if Half Gates is used. For Protocol 2, the communication

cost is dominated by transferring the q masked strings, which is

in total q · ℓ where ℓ is the bit-size of the floating point numbers.

Then which one is more efficient depends on the parameters and

the optimization technique. Again we worked out the largest value

of w for which Protocol 2 is more efficient than the GC protocol

with Free XOR and the GC protocol with Half Gates (see Table 2).

m

GC 32-bit 64-bit
Free XOR Half Gates Free XOR Half Gates

4096 95 63 136 91

16384 24 16 34 23

65536 6 4 9 6

TABLE 2: Each cell contains the largest value of w for which

Protocol 2 is more efficient than the GC protocol with Free XOR

or with Half Gates, in terms of communication cost.

4.4 Fixed-key Masking

The efficiency of Protocol 2 depends on the underlying (1n)-OT
(n = q in our protocol). As we have already shown in Section

3.2, the cost of (1n)-OT consists of two parts: log(n) invocations

of (12)-OT and n log(n) pseudorandom function invocations for

masking the sender’s strings. In the past when (12)-OT had to

be based on public key operations, the first part dominated the

cost. But now we can obtain (12)-OT through OT extension, then

the second part becomes dominating. A more efficient masking

scheme then implies more efficient (1n)-OT .

In this section, we present an efficient fixed-key masking

scheme. Our design is in line with the fixed-key garbling schemes

that have led to a significant improvement in the computation

of garbled circuits [22]. In the new masking scheme, the cost

of masking in (1n)-OT is reduced to n invocations of a random

permutation. The random permutation can be instantiated using a

block cipher such as AES with a public and fixed key. This allows

further efficiency improvement by taking advantage of the AES-NI

set [54] and avoiding the cost caused by frequent key scheduling.

Let (E ,D) be a block cipher where E ,D are the encryption

and decryption algorithms respectively. Let ck be a key generated

for the cipher and is public. We will model Eck(·) as a random

permutation π and Dck(·) as the inverse permutation π−1 [55].

The masking scheme has four algorithms:

• Gen(n, λ): given n the algorithm uniformly generates a l ×
2 key matrix K where l = ⌈log(n)⌉ and each cell Ki,j is

a uniformly random λ-bit key. Without loss of generality, we

assume the block size of the cipher is also λ bits.

• Key(K, i): given the key matrix K and an integer 0 ≤ i ≤
n− 1, return the ith masking key. Let the binary representation

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

9

of i be b0b1, ..., bl−1, the masking key mk =
⊕l−1

j=0 Kj,bj ,

where bj is the jth bit of i.
• Mask(K,P): Mask an n-vector P such that each element in P

is a bit string of λ-bit. For each element P [i], compute mki =
Key(K, i). The masked element P̃ [i] = π(mki)⊕mki⊕P [i]

• Unmask(P̃ , i): given the masked vector P̃ and an index i,
unmask P [i]=P̃ [i]⊕π(mki)⊕mki

This masking scheme is to be used with (1n)-OT . The sender

runs Gen,Key,Mask to mask the n strings that will be sent to the

receiver. The receiver will use its selection number I to receive

log(n) keys in log(n) (12)-OT . The keys will allow the receiver

to reconstruct mkI but not the other masking keys. With mkI ,

the receiver can unmask the sender’s Ith string P [I]. The formal

security definition and proof can be found in Appendix C. At a

high level, the masking scheme is secure if an adversary who

knows the log(n) keys corresponding to I and P̃ can learn P [I]
but nothing about all other P [j], j 6= I , even if the adversary has

oracle access to π and π−1.

A remark on (1n)-OT extension In our paper, we implement

(1n)-OT by invoking (12)-OT extension log(n) times and masking

the n strings to be sent. Alternatively, one can use (1n)-OT
extension with the masking scheme to implement (1n)-OT .

In [38], a (1n)-OT extension protocol was presented such that

the log(n) invocations of (12)-OT extension can be replaced by

one invocation to the (1n)-OT extension (the masking part remains

the same). This protocol works when n ≤ 2 ·λ, where λ is the se-

curity parameter. The cost of one invocation of (1n)-OT extension

is about the same as 2 invocations of (12)-OT extension. In [56], a

new protocol for (1n)-OT extension based on pseudorandom code

was presented. The new protocol works for arbitrary n. The cost

of one invocation is about the same as the cost of 4 invocations of

(12)-OT extension.

We present some analysis regarding whether (1n)-OT exten-

sion could improve the efficiency of our protocols:

• The (1n)-OT extension protocol requires an additional 2λ ([38])

or 3λ to 4λ ([56]) base OTs to setup. Since we use OT extension

already, these base OTs can obtained through OT extension.

• In Protocol 1, we need (14)-OT . If we use [38], the cost of 1

invocation is the same as 2 invocations of (12)-OT extension.

If we use [56], the cost of 1 invocation is actually higher.

Thus, using (1n)-OT extension will not improve the efficiency

of Protocol 1.

• In Protocol 2, we need (1q)-OT . The parameter q is too large

for [38]. We can use [56] in this case. If so, we will use 1

invocation of the (1n)-OT extension instead of log(q) invoca-

tions of (12)-OT extension. However, since Protocol 2 is only

invoked once in the PSU-CA protocol, this improvement will

be offset by the increased number of base OT. Recall that q
equals m · (w − 1) and in most practical cases, q is of the

order of 104 − 105. Therefore log(q) is usually no more than

20. In comparison, when λ = 128, the (1n)-OT extension in

[56] requires at least 384 more invocations of base OT (that

can be obtained using the same (12)-OT extension). Thus, using

(1n)-OT extension will not improve the efficiency of Protocol 2.

4.5 PSU-CA and PSI-CA Protocols

We now present the PSU-CA and PSI-CA protocols. As we men-

tioned earlier, the PSI-CA protocol can be obtained from the PSU-

CA protocol. The PSU-CA protocol is presented in Protocol 3 and

the security analysis of the protocol can be found in Appendix B.

Building sketches does not involve cryptographic operations and

can be done offline, as this does not require interacting with the

other party. Thus we assume the parties have pre-computed the

sketches before running the protocol and they use the sketches as

the input to the protocol.

Protocol 3 PSU-CA Protocol
Inputs The private inputs of P1 and P2 are the m FM sketches

F
〈0〉
S1

, ..., F
〈m−1〉
S1

and F
〈0〉
S2

, ..., F
〈m−1〉
S2

respectively. Each pair of

sketches (F
〈i〉
S1

, F
〈i〉
S2

) encodes the private sets of the parties, using
the same hash function hi. The auxiliary inputs include the security
parameter λ, the sketch size w = log(N) + 4 where N is the
max possible cardinality of the private sets, the parameter m that
controls accuracy, and constants κ, φ.
Outputs P1 and P2 obtain JÑK1,JÑK2∈Z2w respectively. Each
party’s output is a secret share of Ñ and satisfies JÑK1+JÑK2=Ñ,
where Ñ is the estimated union cardinality.

1) P1 and P2 run Protocol 1 exactly m times. In the ith run, they use

(F
〈i〉
S1

, F
〈i〉
S2

) and obtain JzK
〈i〉
1 , JzK

〈i〉
2 respectively.

2) P1 and P2 compute locally JZK1 =
∑m−1

i=0 JzK
〈i〉
1 and JZK2 =∑m−1

i=0 JzK
〈i〉
2 .

3) P1 and P2 run Protocol 2 with JZK1 and JZK2 as input and obtain

JÑK1 and JÑK2 respectively.

4) P1 outputs JÑK1, P2 outputs JÑK2.

For the PSI-CA protocol, the only difference is that in the

last step P1 outputs JĨK1 = |S1| − JÑ K1, P2 outputs JĨK2 =
|S2| − JÑK2. In this step each party converts its own share of the

union cardinality to a share of the intersection cardinality using the

cardinality of its own set. This step is done locally and the parties

do not need to know the cardinality of the other party’s set. The

output of P1 and P2 in PSI-CA adds up to |S1| − JÑ K1 + |S2| −
JÑK2 = |S1|+ |S2|− Ñ ≈ |S1|+ |S2|− |S1∪S2| = |S1∩S2|.
Complexity: In both the PSU-CA and PSI-CA protocols, the

parties first run m times of Protocol 1, whose cost is 2w − 1
invocations of (12)-OT . Then the parties run Protocol 2 whose

cost is one (1q)-OT and q = m · (w− 1)+1. The parameter m is

a constant once the desirable error bound is fixed. The parameter

w = log(N) + 4 where N is the maximum possible cardinality

of the private sets. So the computational and communication

complexities are both O(log(N)). Note that N is the maximum

possible cardinality instead of the actual cardinalities of the private

sets. This is because the parties do not and should not know the

cardinality of the other party’s private set. They can set a large

enough w so that the sketches can encode any set that is smaller

than 2w−4. For example, to encode any sets with size up to 1

million, we set w = 24.

Relative Error of PSI-CA: In the PSI-CA protocol we obtain the

intersection cardinality from the estimated union cardinality. The

relative error then is in terms of the union cardinality
|Ñ−|S1∪S2||

|S1∩S2| .

We can adjust m to control the relative error if |S1∩S2| is not very

small compared to |S1∪S2|. In many data mining applications the

condition often holds and intersection cardinality can be estimated

fairly well based on the inclusion-exclusion principle [57], [58].

5 MULTIPARTY PROTOCOLS

Since Protocol 1 and Protocol 2 require OT, they cannot be directly

migrated to the multiparty setting. However, the protocols can

be re-implemented with standard secret sharing-based multiparty

secure computation schemes e.g. [59], [60], [61]. Computing the

estimator requires bitwise OR and AND protocols, and an integer

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

10

addition protocol. Those are standard building blocks that are

readily available in all schemes mentioned above. We use a lookup

table in estimating union cardinality, and secure lookup tables are

also available [62]. Then the PSU-CA protocol can be easily built

after the two building blocks are built. Note here our intention is

to show feasibility. More efficient protocols are possible but we

do not intend to do any optimization now and leave this for future

investigation. Working with standard secure computation building

blocks implies that the protocol is secure (by the composition

theorem [63]), thus the security proof for the multiparty protocols

is omitted.

However, migrating the PSI-CA protocol to multiparty setting

is not easy. This is because computing the intersection cardi-

nality of τ sets using the inclusion exclusion principle requires

exponential time in τ . For example, in the three-parties setting,

|S1∩S2∩S3| = |S1∪S2∪S3|−|S1|−|S2|−|S3|+ |S1∩S2|+
|S1∩S3|+|S2∩S3|. Therefore in the multiparty setting we do not

use the inclusion and exclusion principle. Instead we use Min-Max

sketches [26] to compute the intersection cardinality from shared

union cardinality. This reduces the complexity to linear in τ . In

the following, we introduce Min-Max sketches and then present

the protocol.

5.1 Min-Max Sketches

A Min-Max sketch [26] is a summary of a set that can be used for

estimating Jaccard index of sets. In this paper, we use it to obtain

the cardinality of the intersection of multiple sets.

A Min-Max sketch consists of 2 vectors of k hash values. Let

S be a set and h0, . . . , hk−1 be k independent collision resistant

hash functions that map inputs uniformly to l bit integers. We

define hmin
i (S) as the element in S that has the lowest hash value,

i.e. hmin
i (S) = x such that x ∈ S and ∀y ∈ S ∧ y 6= x, hi(x) <

hi(y). Similarly, we define hmax
i (S) as the element in S that has

the highest hash value. A k-Min-Max sketch of S (denoted by

MS) consists of two vectors: Mmin
S = (hmin

0 (S), ..., hmin
k−1(S))

and Mmax
S = (hmax

0 (S), ..., hmax
k−1 (S)) .

For two sets S1 and S2, the Jaccard index is defined as

J = |S1∩S2|
|S1∪S2| . Given two k-Min-Max sketches MS1

and MS2

built with the same set of k hash functions, it is clear that

Pr[hmin
i (S1) = hmin

i (S2)] = J since hmin
i (S1) = hmin

i (S2)
only happens when the element is in the intersection and the

probability that this element is the minimal is 1
|S1∪S2| . Similarly,

Pr[hmax
i (S1) = hmax

i (S2)] = J follows the same line of

reasoning
Thus we have an unbiased estimator of J :

J̃ =
1

2k

k−1∑

i=0

(eq(Mmin
S1

[i],Mmin
S2

[i]) + eq(Mmax
S1

[i],Mmax
S2

[i])) (3)

where eq is the equality function such that eq(x, y) = 1 if x =
y and eq(x, y) = 0 otherwise. The standard deviation of J̃ is√

J
2k ·

|S1∪S2|+|S1∩S2|−2
|S1∪S2|−1 − J2

k ≤
√

J(1−J)
2k ≤

√
1
8k .

This can be generalized to τ sets case where the generalized

Jaccard index is defined as Jτ =
|⋂τ

i=1
Si|

|⋃τ
i=1

Si| . Now J̃τ with τ

sketches MS1
, . . . ,MSτ

is defined similarly as:

J̃τ =

∑
k
i=0

(eq(Mmin
S1

[i], . . . ,Mmin
Sτ

[i]) + eq(Mmax
S1

[i], . . . ,Mmax
Sτ

[i]))

2k
(4)

where eq now is the equality function over multiple values

such that eq(x1, . . . , xτ) = 1 if x1 = . . . = xτ and

eq(x1, . . . , xτ) = 0 otherwise. The accuracy of the estimation

using Min-Max sketches can be adjusted by changing k. More

specifically:

Theorem 2. Let S1 . . . , Sτ be sets and Jτ be the generalized

Jaccard index. Let J̃τ be the estimate obtained from computed

using Equation (4). For any ǫ, δ ∈ (0, 1), it holds that:

Pr[
|J̃τ − Jτ |

Jτ
≤ ǫ] ≥ 1− δ (5)

when k ≥ (erf−1(1−δ))2

2ǫ2J2
τ

where erf−1
is the inverse error function.

The proof of Theorem 2 is similar to that of Theorem 1 and

is omitted. As we can see, the threshold for k depends on Jτ . For

example, if we fix δ = 0.001, then when ǫ = 0.04, k should be

at least 364
J2
τ

; when ǫ = 0.01, k should be at least 5817
J2
τ

.

5.2 Multiparty PSI-CA Protocol

Given the generalized Jaccard index (GJI) over τ sets and the

union cardinality of the τ sets, we can compute the intersection

cardinality |
⋂τ

i=1 Si| = Jτ ·|
⋃τ

i=1 Si|. We can estimate the union

cardinality using FM sketches, then what is left is to estimate

the GJI over the sets. To estimate GJI and then compute the

intersection cardinality, we only need secure equality test, integer

multiplication and floating point division protocols, which are also

basic building blocks in secret sharing-based multiparty schemes

(e.g. [64], [65]). We can just use them as black boxes. The protocol

is shown in Protocol 4.

Protocol 4 Multiparty PSI-CA Protocol

Inputs The private inputs of P1, ...,Pτ are the Min-Max
sketches MS1

, ...,MSτ and shares of estimated union cardinality
JÑK1,...,JÑKτ respectively. The sketches are generated using the
same set of hash function h0, ..., hk−1. The auxiliary inputs
include the security parameter λ, the sketch size k.
Outputs P1, ...,Pτ obtain the shares JĨK1,...,JĨKτ respectively,
where Ĩ is the estimated intersection cardinality, i.e. JĨK1+···+JĨKτ=

Ĩ= J̃·Ñ
2k

.
1) For 0 ≤ i ≤ k − 1, P1, ...,Pτ run the equal-

ity test protocol to compute eq(Mmin
S1

[i], . . . ,Mmin
Sτ

[i]) and
eq(Mmax

S1
[i], . . . ,Mmax

Sτ
[i]). The two equality test results are

output as shares to each party and the party can sum the shares
locally. At the end of each iteration, each party holds a share
Jt〈i〉K1, ..., Jt

〈i〉Kτ of the result of eq(Mmin
S1

[i], . . . ,Mmin
Sτ

[i]) +
eq(Mmax

S1
[i], . . . ,Mmax

Sτ
[i]).

2) For each Pj , the party computes the sum of shares locally JuKj=∑k−1

i=0
Jt〈i〉Kj . Each JuKj is a share of

u =

k−1∑

i=0

(eq(Mmin
S1

[i], . . . ,Mmin
Sτ

[i]) + eq(Mmax
S1

[i], . . . ,Mmax
Sτ

[i]))

3) P1, ...,Pτ run the multiplication protocol and the floating point

division protocol to compute Ĩ = u·Ñ
2k

, using their shares
JuK1, ..., JuKτ and JÑK1,...,JÑKτ . The output are shares JĨK1,...,JĨKτ .

Note if the cardinality is the final output, then in the last step

the multiparty division can be omitted. The parties can compute

just u · Ñ using their shares and output the result. Then each

party can locally compute u·Ñ
2k since k is public. This makes the

protocol more efficient.

6 PERFORMANCE EVALUATION

In this section, we show performance figures for our two-party

protocol. We implemented the two-party protocol. We did not

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

11

implement the multiparty protocols because the performance relies

largely on the implementation of the underlying secret sharing-

based multiparty secure computation framework. Our prototype is

written in C and uses TCP sockets for communication between two

distributed parties. We used OpenSSL for the underlying crypto-

graphic operations. We implemented the OT extension protocol in

[36] with the C-OT and R-OT optimizations from [37]. The base

OT protocol is the Naor-Pinkas OT [34]. In all experiments, we set

the security parameter to 128 and chose key size and cryptographic

functions accordingly as recommended by NIST [66]. This should

provide adequate security for most applications in median and

long term (2031 and beyond) [66]. All experiments were run on

two commodity computers: party 1 ran on a Ubuntu PC with an

Intel Core i7 3.4 GHz CPU (i7-3770) and 8 GB RAM, party 2

ran on a Macbook pro (2011) with an Intel Core i7 2.2 GHz

CPU (i7-2720QM) and 16 GB RAM. Switching computers for the

parties did not cause significant difference in performance. The

two computers are connected by switched 1 Gbit Ethernet. Our

prototype is single-threaded, although the computation is fairly

easy to parallelize.

We first show the accuracy of the estimates obtained from FM

sketches. The sketches were built using Murmurhash 3 that has

been widely used in large systems like Hadoop and Cassandra. Our

initial tests showed that the difference in accuracy using sketches

built from Murmurhash and SHA-1 is negligible and Murmurhash

is much faster (3.3 ns per hash) than SHA-1 (170 ns per hash). We

tested with sets of random 64-bit integers whose union cardinality

ranges from 10 to 106 (1 million). For each union size, we tested

with different m = 4096, 16384, and 65536 to guarantee that the

relative error does not exceed ǫ = 4%, 2% and 1% respectively

with a probability at least 1 − δ = 0.999 4. All experiments

were repeated 100 times. Figure 5 shows the mean and the ranges

of the estimation errors measured from our experiments5. The

accuracy is good for both small and large sets. In all cases the

mean of estimation error is less than 0.3% and falls within the

desired range (±4%, ±2%, and ±1%). For extremely small sets

(union cardinality = 10), we observed no errors. This shows that

the formula with correction (Equation 1) is very effective.

Fig. 5: Mean and range for estimation error N−Ñ
N . For m =

4096, 16384, 65536, the estimation error is in [-4%,4%], [-2%,

2%], [-1%,1%] with probability 0.999.

Then we show the pre-computation performance, i.e. the time

for generating the FM sketches. The result is shown in Table 1.

In the experiment, we set w = 24 and used random sets with

different cardinalities from 10 to 106. For each set, we measured

4. The m values are slightly larger than the required values for the (ǫ, δ)
pairs calculated from the formula in Theorem 1. We rounded them to the
nearest powers of 2 for the ease of implementation.

5. Appendix E includes histograms showing more detailed error distribu-
tions.

Card.

m
4096 16384 65536

10 1.53 × 10−4 6.42 × 10−4 2.61 × 10−3

102 1.40 × 10−3 6.01 × 10−4 2.32 × 10−2

103 1.37 × 10−2 5.62 × 10−2 2.25 × 10−1

104 1.32 × 10−1 5.58 × 10−1 2.21

105 1.26 5.50 2.19 × 101

106 1.25 × 101 5.45 × 101 2.19 × 102

TABLE 1: Performance: FM sketches generation (in seconds).

the time for generating m = 4096, 16384 and 65536 sketches

from it. Note that sketch generation does not require cryptographic

operations. Thus the sketches can be generated once and reused

many times. This is often not possible in protocols that take sets

as input. Although parties may be able to encrypt the sets before

engaging in such protocols, the encrypted sets cannot be re-used

because fresh randomness is needed to keep the protocol secure.

Our pre-computation is also different from offline computation in

some protocols that generate data independent values, which will

be consumed in protocol execution and need to be regenerated for

each protocol execution. We consider pre-computation as a one-

off cost and do not include it in the protocol running time that will

be shown later.

Next, we compare the performance of our protocol to existing

protocols. The result is shown in Table 2. All numbers in the

table are obtained by averaging 100 executions, except for the

test of the exact protocol with 106-element private sets which

was too slow (an execution took about 1 hour). The protocols we

compared to are the two-party exact PSI-CA protocol in [11] and

the two-party approximate PSU-CA protocol in [15], the state-of-

the-art in each kind. We implemented these two protocols in C

and use OpenSSL for the cryptographic operations. For the ease

of implementation, we did not implement socket communication

for these two protocols. Instead, we simply ran both parties on

the Linux PC and let the two parties communicate through shared

memory. This clearly favors [11] and [15] in terms of running

time. In the experiment, both parties’ private sets have the same

cardinality. The running time of the approximate protocol in [15]

does not include the time for building Bloom filters (as they can

be pre-computed). Adding this time, as well as the times from

Table 1 for our protocol, does not change the results qualitatively

(our protocol is still faster). In the experiment, we use random sets

with cardinality ranging from 10 to 106. For our protocol we set

w = ⌈log(N)⌉ + 4, so that the sketches are large enough for

the cardinality N , e.g. w = 24 for N = 106. As we can see in

Table 2, for small sets (cardinality in the order of 102 or less),

the exact protocol in [11] is a better choice. But for larger sets

(cardinality ≥ 103) which are commonly encountered in PPDM,

the approximate protocols are better and the difference becomes

larger when the sets get larger. We tested with m = 4096, 16384
and 65536 so that the relative error bounds are ǫ = 1%, 2% and

4% respectively (δ = 0.001). In all cases, the performance of our

protocol is much better than the protocol in [15]. The difference is

about 1 - 2 orders of magnitude.

In Figure 6a, we show the break down of the running time

of our protocol (cardinality = 106). For bootstrapping the OT

extension scheme, we need λ base OT where λ is the security

parameter. In the experiment λ = 128. The base OT cost is about

0.16 second. Recall that if the protocol needs to run multiple

times, the base OT only needs to run once and its cost can be

amortized. Most of the time is spent on the m iterations of Protocol

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

12

Cardinality 10 102 103 104 105 106

[11] (exact) 0.035 0.35 3.54 35.35 356.93 3507.38

ǫ = 4%
[15] (approximate) 0.65 0.71 1.50 6.92 45.09 337.51
Ours (m = 4096) 0.29 0.31 0.33 0.35 0.38 0.40

ǫ = 2%
[15] (approximate) 2.33 2.42 3.37 10.19 56.72 397.13
Ours (m = 16384) 0.46 0.54 0.62 0.73 0.82 0.89

ǫ = 1%
[15] (approximate) 9.06 9.17 10.22 18.69 77.06 488.48
Ours (m = 65536) 1.17 1.51 1.84 2.29 2.64 2.97

TABLE 2: Performance comparison: computation time (in seconds, δ = 0.001 for approximate protocols)

0

1

2

4096 16384 65536
m

T
im

e
 (

s
e
c
o
n
d
s
) Protocol 2

Protocol 1

Base OT

(a)

4096 16384 65536

m

0

20

40

60

80

T
o

ta
l

T
ra

ff
ic

 (
M

b
y

te
s

)

n=10
4

n=10
5

n=10
6

(b)

Fig. 6: PSU-CA protocol: (a) computation time breakdown, and

(b) communication cost.

of pairs 103 104 105 106

Non-fixed Key 0.28 3.90 44.50 489.638

Fixed Key 0.009 0.14 1.23 9.92

Improvement 28× 28× 36× 49×

TABLE 5: Fixed-key vs non-fixed key masking (time in ms)

1 to extract the estimators. After that, the cardinality estimation

which involves one (1q)-OT is very fast. We also measured the

communication cost with different m and cardinalities. The result

is shown in Figure 6b. With the smallest parameters (cardinality

= 104 and m = 4096) the cost is about 4 MB, and with the

largest parameters (cardinality = 106 and m = 65536) the cost

is about 82 MB.

Last we show the performance of the fixed-key masking in

Table 5. We compare it against non-fixed masking. The experiment

ran on the Linux PC. As we can see the fixed-key masking scheme

is more than one order of magnitude faster. In our implementation,

we used the AES-NI set indirectly through the OpenSSL EVP

engine. The performance can be further improved by writing code

that directly uses the AES instructions.

7 DISCUSSION

A limitation of our protocols is that they are not suitable for

applications requiring exact computation of the cardinality of set

union or intersection. However, in PPDM, this is often not a

problem, as long as the approximation accuracy can be tuned

according to the requirements of the PPDM algorithm. Firstly,

data mining is about extracting useful information from data such

as finding frequent patterns or finding similar regions or clustering

the data. To some degree approximation is inherent in all mining

algorithms that seek to approximate the unknown ground truth

from data. Secondly, real world data is never perfect. For example

past research suggested that the average error rate of a dataset in a

data mining application is around 5%-10% [67], [68]. Although

pre-processing can remedy the problem, it cannot completely

remove the noise. To ensure robustness of the mining results, data

mining algorithms are often designed to tolerate noise to some

level. Thirdly, in cases such as mining extremely large data and

data streams, approximation is more commonly used than exact

algorithms. In these cases, computing exact answers is usually not

possible because of limited computational resources such as RAM,

CPU and disk space. Fourthly, as we have already mentioned,

exact PPDM protocols often fail to deliver timely answers due to

their huge computational cost. With time constraints, approximate

but timely answers are often preferable.

8 CONCLUSION AND FUTURE WORK

The secure computation of the union or intersection cardinality

of sets belonging to different parties is a fundamental primitive

in PPDM. However, the existing protocols are too inefficient

for practical use in PPDM and may cause unwanted informa-

tion leakage when used as subroutines. Thus, in this paper, we

proposed novel protocols for the PSU-CA/PSI-CA problems. Our

two-party protocols are very efficient and accurate, substantially

outperforming the existing state-of-the-art protocols as shown in

our experimental evaluation. The protocols compute the resulting

PSI-CA and PSU-CA in a secret-shared form before disclosing

them, which makes them more flexible and thereby more suitable

for PPDM. The protocols can be extended to multiparty settings

while retaining the good properties. A by-product of the protocol

optimization is a fixed-key masking scheme that can significantly

speed up (1n)-OT when n is large.

Efficiency and scalability are already big challenges for data

mining in the clear, and even bigger challenges for PPDM that

requires more computation on the data in order to preserve data

privacy. To this end, we would like to investigate the following

directions: (1) protocols with sub-linear complexities which would

greatly improve the efficiency; (2) protocols that are secure in

a concurrently composable model. In this paper the protocols

guarantee sequential composability. This could be a limitation

because parallelization is another key tool to improve scalability

and concurrent composability is necessary to ensure security in

parallel protocol executions.

List of Appendices

The appendices of this paper are downloadable as supplementary

material at http://ieeexplore.ieee.org. The appendices include:

A Proof of Theorem 1

B Security Analysis of the Two-party PSU-CA protocol (and its

sub-protocols)

C Security of Fixed-key masking

D Optimized OT Extension in Our Protocols

E Estimation Error Distribution

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

13

Acknowledgements

We would like to thank the anonymous reviewers. The first author

is supported in part by an EPSRC research grant (EP/M013561/2).

REFERENCES

[1] J. Vaidya and C. Clifton, “Secure set intersection cardinality with
application to association rule mining,” Journal of Computer Security,
vol. 13, no. 4, pp. 593–622, 2005.

[2] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S. Patterson, “Privacy-
preserving decision trees over vertically partitioned data,” TKDD, vol. 2,
no. 3, 2008.

[3] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving SVM classification
on vertically partitioned data,” in PAKDD, 2006, pp. 647–656.

[4] B. Liu and U. Hengartner, “Privacy-preserving social recommendations
in geosocial networks,” in PST, 2013, pp. 69–76.

[5] A. C. Yao, “Protocols for secure computations (extended abstract),” in
FOCS 1982, 1982, pp. 160–164.

[6] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,” in
STOC, 1987, pp. 218–229.

[7] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools
for privacy preserving data mining,” SIGKDD Explorations, vol. 4, no. 2,
pp. 28–34, 2002.

[8] R. Agrawal, A. V. Evfimievski, and R. Srikant, “Information sharing
across private databases,” in SIGMOD, 2003, pp. 86–97.

[9] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in EUROCRYPT, 2004, pp. 1–19.

[10] L. Kissner and D. X. Song, “Privacy-preserving set operations,” in
CRYPTO, 2005, pp. 241–257.

[11] E. D. Cristofaro, P. Gasti, and G. Tsudik, “Fast and private computation
of cardinality of set intersection and union,” in CANS, 2012, pp. 218–231.

[12] A. Davidson and C. Cid, “Computing private set operations with linear
complexities,” IACR Cryptology ePrint Archive, vol. 2016, p. 108, 2016.
[Online]. Available: http://eprint.iacr.org/2016/108

[13] V. G. Ashok and R. Mukkamala, “A scalable and efficient privacy
preserving global itemset support approximation using bloom filters,”
in DBSec, 2014, pp. 382–389.

[14] C. Blundo, E. D. Cristofaro, and P. Gasti, “Espresso: Efficient privacy-
preserving evaluation of sample set similarity,” Journal of Computer

Security, vol. 22, no. 3, pp. 355–381, 2014.
[15] R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J. Tillmanns,

“Privately computing set-union and set-intersection cardinality via bloom
filters,” in ACISP, 2015, pp. 413–430.

[16] D. Hand, P. Smyth, and H. Mannila, Principles of Data Mining. MIT
Press, 2001.

[17] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New
York, NY, USA: Cambridge University Press, 2011.

[18] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,
1985.

[19] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in NDSS, 2015.

[20] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: tool for automating secure two-party computations,” in ACM

CCS, 2010, pp. 451–462.

[21] G. Couteau, T. Peters, and D. Pointcheval, “Encryption switching proto-
cols,” in CRYPTO, 2016, pp. 308–338.

[22] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in IEEE Symposium on Security

and Privacy, 2013, pp. 478–492.

[23] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in CRYPTO,
2000, pp. 36–54.

[24] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in SIG-

MOD, 2000, pp. 439–450.
[25] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-

wise independent permutations,” in STOC, 1998, pp. 327–336.

[26] J. Ji, J. Li, S. Yan, Q. Tian, and B. Zhang, “Min-max hash for jaccard
similarity,” in ICDM, 2013, pp. 301–309.

[27] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets
big data: an efficient and scalable protocol,” in ACM CCS, 2013, pp.
789–800.

[28] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in USENIX Security, 2014, pp. 797–812.

[29] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
set intersection using permutation-based hashing,” in USENIX Security,
2015, pp. 515–530.

[30] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on OT extension,” IACR Cryptology ePrint Archive, vol. 2016, p.
930, 2016. [Online]. Available: http://eprint.iacr.org/2016/930

[31] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS, 2012.

[32] M. O. Rabin, “How to exchange secrets by oblivious transfer,” Technical

Report TR-81, Harvard Aiken Computation Laboratory, 1981.

[33] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for
signing contracts,” Commun. ACM, vol. 28, no. 6, pp. 637–647, 1985.

[34] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,”
in STOC, 1999, pp. 245–254.

[35] D. Beaver, “Correlated pseudorandomness and the complexity of private
computations,” in STOC, 1996, pp. 479–488.

[36] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO, 2003, pp. 145–161.

[37] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in ACM

CCS, 2013, pp. 535–548.

[38] V. Kolesnikov and R. Kumaresan, “Improved OT extension for transfer-
ring short secrets,” in CRYPTO, 2013, pp. 54–70.

[39] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer extensions with security for malicious adversaries,” in
EUROCRYPT, 2015, pp. 673–701.

[40] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension with
optimal overhead,” in CRYPTO, 2015, pp. 724–741.

[41] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
1979.

[42] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic

Applications. Cambridge University Press, 2004.

[43] B. Scheuermann and M. Mauve, “Near-optimal compression of prob-
abilistic counting sketches for networking applications,” in DIALM-

POMC, 2007.

[44] K. S. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sisma-
nis, “Distinct-value synopses for multiset operations,” Commun. ACM,
vol. 52, no. 10, pp. 87–95, 2009.

[45] J. Boyar and R. Peralta, “The exact multiplicative complexity of the
hamming weight function,” Electronic Colloquium on Computational

Complexity (ECCC), no. 049, 2005.

[46] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP 2008, 2008, pp. 486–498.

[47] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols (extended abstract),” in STOC, 1990, pp. 503–513.

[48] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in EC, 1999, pp. 129–139.

[49] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole - reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT,
2015, pp. 220–250.

[50] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure computation
on floating point numbers,” in NDSS, 2013.

[51] L. Kamm and J. Willemson, “Secure floating point arithmetic and private
satellite collision analysis,” Int. J. Inf. Sec., vol. 14, no. 6, pp. 531–548,
2015.

[52] P. Pullonen and S. Siim, “Combining secret sharing and garbled circuits
for efficient private IEEE 754 floating-point computations,” in WAHC,
2015, pp. 172–183.

[53] D. Demmler, G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in ACM CCS, 2015, pp. 1504–1517.

[54] S. Gueron, “Intel advanced encryption standard (AES) new instructions
set,” Intel, Tech. Rep., 2012.

[55] P. Rogaway and J. P. Steinberger, “Constructing cryptographic hash
functions from fixed-key blockciphers,” in CRYPTO, 2008, pp. 433–450.

[56] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,” in
ACM CCS, 2016, pp. 818–829.

[57] S. Michel and T. Neumann, “Search for the best but expect the worst -
distributed top-k queries over decreasing aggregated scores,” in WebDB,
2007.

[58] M. Kamp, C. Kopp, M. Mock, M. Boley, and M. May, “Privacy-
preserving mobility monitoring using sketches of stationary sensor read-
ings,” in ECML/PKDD, 2013, pp. 370–386.

[59] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” in ESORICS, 2008, pp. 192–206.

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2721360, IEEE
Transactions on Information Forensics and Security

14

[60] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asynchronous
multiparty computation: Theory and implementation,” in PKC, 2009, pp.
160–179.

[61] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in CRYPTO 2012,
2012, pp. 643–662.

[62] J. Launchbury, I. S. Diatchki, T. DuBuisson, and A. Adams-Moran,
“Efficient lookup-table protocol in secure multiparty computation,” in
ICFP, 2012, pp. 189–200.

[63] R. Canetti, “Security and composition of multiparty cryptographic pro-
tocols,” J. Cryptology, vol. 13, no. 1, pp. 143–202, 2000.

[64] T. Nishide and K. Ohta, “Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol,” in PKC, 2007, pp.
343–360.

[65] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO, 1991, pp. 420–432.

[66] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation
for key management - part 1: General (revision 3),” NIST, Tech. Rep. SP
800-57, July 2012.

[67] K. Orr, “Data quality and system theory,” Commun. ACM, vol. 41, no. 2,
pp. 66–71, 1998.

[68] J. I. Maletic and A. Marcus, “Data cleansing: Beyond integrity analysis,”
in IQ, 2000, pp. 200–209.

Changyu Dong holds a PhD from Imperial Col-
lege London. He is currently a senior lecturer
at the School of Computing Science, Newcastle
University. His research interests include applied
cryptography, trust management, data privacy
and security policies. His recent work focuses
mostly on designing practical secure computa-
tion protocols. The application domains include
for example privacy preserving medical data an-
alytics, secure cloud computing, privacy preserv-
ing data mining and private data processing in

mobile and wireless networks. He has over 30 publications in interna-
tional journals and conferences.

Grigorios Loukides is an Assistant Profes-
sor (Lecturer) in the Department of Informatics,
King’s College London. Prior to that, he was a
Royal Academy of Engineering Research Fellow
(2011-2016). His research interests are in data
mining, with a focus on privacy-preserving data
mining and social network optimization. He has
published over 60 papers on these topics, includ-
ing in top venues (KDD, ICDM, SDM).

