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We formulate the notion of a “good approximation” to a probability distribution over a
finite abelian group G. The quality of the approximating distribution is characterized by a
parameter ε which is a bound on the difference between corresponding Fourier coefficients of
the two distributions. It is also required that the sample space of the approximating distribution
be of size polynomial in log |G| and 1/ε. Such approximations are useful in reducing or eliminating
the use of randomness in certain randomized algorithms.

We demonstrate the existence of such good approximations to arbitrary distributions. In the
case of n random variables distributed uniformly and independently over the range {0, . . . ,d−1},
we provide an efficient construction of a good approximation. The approximation constructed has
the property that any linear combination of the random variables (modulo d) has essentially the
same behavior under the approximating distribution as it does under the uniform distribution over
{0, . . . ,d−1}. Our analysis is based on Weil’s character sum estimates. We apply this result to
the construction of a non-binary linear code where the alphabet symbols appear almost uniformly
in each non-zero code-word.

1. Introduction

Recently a family of techniques has emerged to reduce or eliminate the use of ran-
dom bits by randomized algorithms [2, 7, 8, 18, 21, 22, 23, 25]. Typically, these
techniques involve substituting independent random variables by a collection of de-
pendent random variables which can be generated using fewer truly independent
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random bits. Motivated by this work, we formulate the notion of a good approxi-
mation to a joint probability distribution of a collection of random variables.

We consider probability distributions over a finite abelian group G and, in par-
ticular, over Znd for any positive integers d and n. We measure the distance between
two distributions over G by the distance, in the maximum norm, of their Fourier
transforms over G. Given an arbitrary distribution D over G, a good approxima-
tion D̄ is a distribution with a small distance to D, which is concentrated on a small
subset of the sample space. Sampling from the approximating distribution requires
significantly fewer random bits than sampling from the original distribution.

Before describing our work in detail, we briefly review some related work. Alon,
Babai, and Itai [2] and Luby [21] observed that certain algorithms perform as well
using pairwise independent random bits, as on mutually independent bits. It turns
out that n uniform k-wise independent bits can be generated using sample spaces of
size O(nbk/2c); a lower bound of

( n
bk/2c

)
on the minimum size of such a sample space

is also known [2, 9]. Thus, these algorithms could be derandomized for constant
k by an exhaustive search of the (polynomial-size) sample space. Unfortunately,
this degree of independence is very restrictive and limits the applicability of the
approach. Berger and Rompel [7] and Motwani, Naor, and Naor [23] showed
that several interesting algorithms perform reasonably well with only (logn)-wise
independence. The resulting sample space, while of super-polynomial size, could
be efficiently searched via the method of conditional probabilities, due to Erdős and
Selfridge [12] (cf. [3, Chapter 15]), in time logarithmic in the size of the sample
space. This led to the derandomization of a large class of parallel algorithms [7,
23].

An alternate approach was proposed by Naor and Naor [25] based on the notion
of the bias of a distribution due to Vazirani [28].

Definition 1.1. Let X1, . . . ,Xn be {0,1} random variables. The bias of a subset S of
the random variables is defined to be

∣∣Pr
[∑

i∈SXi=0
]
−Pr

[∑
i∈SXi=1

]∣∣, where
the sum is taken modulo 2.

For mutually independent and uniform random variables, the bias of each non-
empty subset is zero. It is not hard to show that the converse holds as well. In
an ε-biased probability distribution, each subset of the random variables has bias
at most ε. Naor and Naor [25] showed how to construct such a distribution, for
any ε > 0, such that the size of the sample space is polynomial in n and 1/ε.
The ε-biased distribution can be viewed as an almost (logn)-wise independent
distribution. A result due to Peralta [26] implies a different construction of ε-
biased probability distribution using the properties of quadratic residues; this and
two additional constructions of two-valued ε-biased random variables are reported
by Alon, Goldreich, H̊astad, and Peralta [1].

We formulate and study the notion of a “good approximation” to a joint prob-
ability distribution of (possibly multi-valued) random variables. Let D be any joint
distribution of n random variables over the range {0, . . . ,d−1}. Informally, a good
approximation D̄ to D satisfies the following properties: there is a uniform bound
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ε/dn−1 on the absolute difference between corresponding Fourier coefficients over
the group Znd of the two distributions; and, the sample space required for D̄ is of
size polynomial in n, d, and 1/ε. We demonstrate the viability of such approxima-
tions by proving that for any distribution D, there exists a good approximation D̄.
In fact, this notion and the existence result extend to any probability distribution
over a finite abelian group. The quality of the approximation can be further char-
acterized by showing that the variation distance between the two distributions D
and D̄ is bounded by the sum of the differences between their Fourier coefficients.

We also consider the issue of an efficient construction of such an approximat-
ing distribution; specifically, for the uniform distribution over Znd . An efficient
construction must determine D̄ in time polynomial in the description length of D,
and also in 1/ε; clearly, this bound must apply to the size of the sample space of
the approximating distribution D̄. (Note that the description of a distribution D
over Znd may be of length as much as dn.) We provide an efficient construction of a
good approximation Ū to the uniform distribution U on Znd , i.e., for the joint dis-
tribution of uniform and independent d-valued random variables X1, . . . ,Xn. Since
the construction must guarantee that the Fourier coefficients of Ū are very close to
those of U , it is essentially an ε-biased distribution. This has the following natu-
ral interpretation in terms of linear combinations: for any vector A= (a1, . . . ,an),∑
aiXi (mod d) has “almost” the same distribution in the case where the random

variables X1, . . . ,Xn are chosen from U , as in the case where they are chosen from
Ū . The analysis of this construction is based on Weil’s character sum estimates,
and it generalizes the work of Peralta [26] to d-valued random variables. Our results
hold for non-prime values of d as well1.

This construction has found application in the work of H̊astad, Phillips, and
Safra [16]. They consider the approximability of the following algebraic optimiza-
tion problem: given a collection of quadratic polynomials over Fq, the field of order
q, find a common root to the largest possible sub-collection of these polynomials.
Our construction is used to show that finding an approximate solution (to within
a ratio of d−ε) is as hard as finding an exact solution, and hence is NP-hard; this
applies to polynomials over rationals and reals as well. The constructions of two-
valued ε-biased random variables due to Naor and Naor [25] and Alon, Goldreich,
H̊astad, and Peralta [1] are insufficient for this purpose, and our construction of
d-valued ε-biased random variables needs to be used.

We also show that the variation distance between two distributions can be
bounded in terms of the differences in their Fourier coefficients. This allows us
to demonstrate that our construction gives random variables which are “almost”
(logdn)-wise independent. Our construction is optimal in this respect. We also
explore some connections with the construction of linear codes. Our results provide
a construction of a linear code over an arbitrary alphabet which has the property
that for each non-zero codeword, the distribution of the alphabet symbols is almost

1 Following our work, Even [15] generalized one of the constructions of Alon, Goldreich,

H̊astad, and Peralta [1] to the d-valued case when d is a prime.
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uniform, and that the length of the codeword is polynomial (quadratic) in the
dimension of the code. Previously, such codes were known only over F2.

The remaining sections are organized as follows: Section 2 provides some
mathematical preliminaries; the existence of a good approximation to an arbitrary
distribution and bounds on the variation distance are shown in Section 3; Section 4
studies the notions of bias and k-wise independence. Section 5 gives a construction
of an ε-biased distribution; Section 6 studies the parameters of the construction;
finally, in Section 7 our construction is applied to linear codes.

2. Preliminaries

2.1. Characters of Finite Abelian Groups

Our discussion here follows the exposition of Babai [4] and Ledermann [20]. Let
T denote the multiplicative group of complex numbers with unit modulus. A
character of a finite abelian group G is a homomorphism χ :G→T. The characters
of G form the dual group Ĝ under pointwise multiplication (for χ,χ′ ∈ Ĝ we set
χχ′(x)=χ(x)χ′(x)). It is known that Ĝ∼=G (cf. [4]). The identity element of Ĝ is
the principal character χ0 defined by setting χ0(x)=1, for all x∈G. The order of
a character is its order as an element of Ĝ.

Let C(n) denote a cyclic group of order n, written multiplicatively. The
characters of G=C(n) are constructed as follows. Let z denote a generator of G.

Definition 2.1. For 0≤r≤n−1, the rth character of C(n), denoted by χr, is defined
as follows:

χr(zs) = e
(rs
n

)
,

where s=0, . . . ,n−1, and the function e(x) denotes e2πix for i=
√
−1.

It follows that χr has order n/gcd(r,n).
We remark that in the case that G is the multiplicative group of a finite field

F, the characters are usually extended to all of F by setting χ(0)=0.
Let now G be an arbitrary finite abelian group, given as the direct product

of cyclic groups: G = C(n1)× . . .×C(nk). Each element x ∈ G can be uniquely
expressed as

x = za1
1 za2

2 · · · z
ak
k ,

where zi is a generator of C(ni) and 0≤ ai<ni. We can thus represent x by the
k-tuple (a1, . . . ,ak) ∈ Zn1 × . . .×Znk . There is a character corresponding to each
k-tuple R=(r1, . . . ,rk)∈Zn1× . . .×Znk , defined as follows:

χR(x) = e

(
k∑
i=1

airi
ni

)
.
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We are particularly interested in the set of characters of the group Znd . In this
case, the preceding formula simplifies to

χR(a1, . . . , an) = e

(
1
d

n∑
i=1

airi

)
.

where R=(r1, . . . ,rn)∈Znd .

2.2. Discrete Fourier Transform

We give a brief overview of the basic concepts in discrete Fourier analysis; see [11],
[19], or [4] for more details.

As before, let G be a finite abelian group. The set CG={f :G→C} of complex
functions over the groupG forms a |G|−dimensional vector space over C. The inner
product of two functions f and g is defined as follows:

〈f, g〉 =
1
|G|

∑
x∈G

f(x)g(x)∗,

where ∗ denotes the complex conjugate operation. The characters of G form an
orthonormal basis of CG with respect to the inner product 〈 〉.

Any function f ∈ CG can be uniquely written as a linear combination of
characters:

f =
∑
χ∈Ĝ

f̂χχ.

The coefficients f̂χ are called the Fourier coefficients of f , and are given by f̂χ =

〈f,χ〉. We use the term principal Fourier coefficient for f̂χ0 , the Fourier coefficient
corresponding to the principal character.

The function f̂ :Ĝ→C is the Fourier transform of f .
A probability distribution over G is a function D :G→R such that for all x∈G,

D(x)≥0, and
∑
x∈GD(x)=1.

In our estimates of the distance between probability distributions over a finite
abelian group G, we shall make use of the Fourier transforms of these probability
distributions.

As usual, for 1 ≤ p ≤ ∞ we shall use ‖f‖p to denote the Lp-norm of the

function f ∈CG, i.e. for p<∞ we set ‖f‖p= (
∑
x∈G |f(x)|p)1/p; for p=∞ we set

‖f‖∞= max
x∈G
|f(x)|. Note that for the L2-norm this notion does not correspond to

the inner product 〈 〉.
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3. Approximating arbitrary distributions

In this section we suggest an approach to approximating arbitrary distributions.
Previous work concentrated on approximating the uniform distribution over two-
valued random variables. Let D be a probability distribution over a finite abelian
group G. We will show that there exists a small probability space which approxi-
mates D. The following is a somewhat strengthened version of our original theorem,
based on an observation due to Mario Szegedy.

Let Γ be a sample space of size `, and D be a probability distribution over Γ.
In what follows, we will often represent such a distribution D by a (probability)
vector D in ` dimensions.

Theorem 3.1. Let M be an `×` matrix of complex numbers with entries of absolute
value at most 1. For any probability distribution D represented by the vector D of
length `, and any ε> 0, there exists a probability distribution F represented by a

vector F with at most O(ε−2 log`) non-zero entries, such that

||D ·M − F ·M ||∞ ≤ ε.

Proof. We use the probabilistic method [13, 3] to demonstrate the existence of
a sample space Ω ⊂ Γ such that a uniformly chosen sample point from Ω has a
distribution approximating D; thus, F is the uniform distribution over Ω. We
choose Ω={ω1, . . . ,ωk} as follows: pick each ωi independently from Γ according to
the distribution D. Since the sample points ωi∈Γ need not be distinct, in general,
Ω will be a multi-set; if necessary, the repetitions can be eliminated by suitably
modifying the probability measure.

We index the rows of M by s∈S. We claim that, provided k is large enough,
for every s∈S the probability that |D ·Ms−F ·Ms|>ε is less than 1/`. Since the
number of rows is `, this implies that

Pr [∃ s, |D ·Ms − F ·Ms| > ε] < 1.
Note that the probability in the above expression is with respect to the random
choice of Ω. Thus, it follows that there exists a choice of the elements ωi ∈Γ, for
1≤ i≤k, which will yield the probability space (Ω,F) as required.

It remains to prove the claim. Let us now concentrate only on the row indexed
by a specific s. For 1≤ i≤k, let wi be the jth coordinate of the sth row, where j
is the index of the element that was chosen as ωi. It follows that

F ·Ms =
k∑
i=1

1
k
wi,

that is F ·Ms is proportional to the sum of k independent random variables. In what
follows, E and Pr denote expectation and probability with respect to the uniform
measure on the (multi-set) sample space Ω. We have that E[wi]=D ·Ms and

E[F ·Ms] = E

[
1
k

k∑
i=1

wi

]
= E[wi] = D ·Ms.
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To complete the proof we show that the sum of the wi does not differ from
its expected value by more than εk. Let S be sum of n independent variables,
each of which has an absolute value of at most 1. By a version of the Chernoff
bound [3, p.240], for any h≥0,

Pr[|S − E[S]| ≥ h] ≤ 2e−Ω(h2/n).

This bound implies that

Pr

[∣∣∣∣∣
k∑
i=1

wi − kD ·Ms

∣∣∣∣∣ > δ

]
≤ 2e−Ω(δ2/k).

In our case, the bound on the allowed deviation from the expected value is δ=εk.
We need to choose k such that e−Ω(δ2/k) < 1/2`. This is clearly true for k =
Θ(ε−2log `).

The following theorem shows the existence of a good approximation (Ω,F) to
the distribution D such that the sample space Ω is small.

Theorem 3.2. For any probability distribution D defined over a finite abelian group
G and any ε∈ [0,1], there exists a probability space (Ω,F), such that:

1. ‖F̂ −D̂‖∞≤ε/|G|,
2. the size of the probability space Ω is at most O(ε−2log |G|).

Proof. The proof is an immediate consequence of Theorem 3.1. We choose M to
be the character table of the group G, i.e., the rows are indexed by the characters,
the columns by the elements of G, and Msx=χs(x).

The following Corollary shows the existence of a good approximation to the
uniform distribution over Znd .

Corollary 3.3. There exists a probability distribution F over Znd of sizeO(ε−2n logd)
such that the value of all of its Fourier coefficients (except for the principal coeffi-
cient) is at most ε/dn.

We now discuss the significance of Theorem 3.2.

Definition 3.4. Let D1 and D2 be two probability distributions over a finite abelian
group G. We define the variation distance between these two distributions as
‖D1−D2‖1.

The next theorem bounds the variation distance between D and F in terms of
their Fourier coefficients.

Theorem 3.5. Let the probability distributions D and F be defined over a finite
abelian group G. Then,

‖D − F‖1 ≤ |G| · ‖D̂ − F̂‖2 ≤ |G| · ‖D̂ − F̂‖1.
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Proof. The right inequality is immediate. Let H = D−F . Using the Cauchy–
Schwarz Inequality and Parseval’s Equality, we conclude that

‖H‖1 ≤
√
|G| · ‖H‖2 = |G| · ‖Ĥ‖2.

Let X1, . . . ,Xn be random variables taking values from Zd. Let D : Znd → R
denote their joint probability distribution. Let S ⊆ {1, . . .n} be of cardinality k.
For any x∈ Znd , let x|S denote the projection of the vector x specified by S. We
define DS , the restriction of D to S, by setting

DS(XS = y) =
∑

x∈Zn
d
,x|S=y

D(x)

for all y∈Zkd.
We first observe the following relation between the Fourier coefficients of D

and DS . Let A⊂Znd denote the set of elements (a1, . . . ,an) in Znd for which ai=0
for all i 6∈S.

Lemma 3.6. For all A∈A,

dn−k · u = v

where u is the Fourier coefficient of D corresponding to A, and v is the Fourier
coefficient of DS corresponding to A|S .

Proof. The proof follows directly by substituting appropriate values into the
definition of Fourier coefficients.

Corollary 3.7. Let D and F be probability distributions defined over Znd such that

‖D̂−F̂‖∞≤ε/dn for some 0≤ε≤1. Then, for any subset S of cardinality k of the
random variables,

‖DS −FS‖1 ≤ εd
k.

Proof. Applying Theorem 3.5 and Lemma 3.6, we conclude that

‖DS −FS‖1 ≤ dk · ‖D̂S − F̂S‖1
≤ d2k · ‖D̂S − F̂S‖∞
≤ d2k · dn−k · ‖D̂ − F̂‖∞

≤ dn+k · ε
dn

= εdk,

which completes the proof.

If ε is chosen to be polynomially small, then Corollary 3.7 implies that: for any
distribution D, there exists a distribution F over a polynomial size sample space
such that any subset S of the random variables is distributed in F “almost” as in
D, provided that |S|=O(logdn).
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4. Bias and k-wise near-independence

In this section we define the notion of a ε-biased distribution. (This distribution has
been studied earlier [25, 1] for the case d= 2). Generalized ε-biased distributions
represent a convenient formalization of the concept of “good” approximation to
the uniform distribution. Our main result here is a theorem that bounds the
Fourier coefficients of a probability distribution over Znd in terms of the bias of
the distribution. We also give a bound on the variation distance of a distribution
from the uniform distribution in terms of the Fourier coefficients.

We first generalize the definition of ε-biased distributions to the case of multi-
valued random variables. Let X = (X1, . . . ,Xn) be a random variable over a set
Ω⊆Znd . We define the bias of X with respect to any A∈Znd as follows.

Definition 4.1. Let A=(a1, . . . ,an) be any vector in Znd and let g=gcd(a1, . . . ,an,d).
The bias of A is defined to be

bias (A) =
1
g

max
0≤k< d

g

∣∣∣∣∣Pr

[
n∑
i=1

aiXi ≡ kg (mod d)

]
− g

d

∣∣∣∣∣ .
We introduce g in this definition because, regardless of the distribution of the

random variables, the only values that
∑n
i=1aiXi (mod d) can take are multiples

of g.

Definition 4.2. Let 0≤ε≤1 and let Ω⊆Znd . A probability space (Ω,P) is said to be
ε-biased if the corresponding random variable X = (X1, . . . ,Xn) has the following
properties.

1. For 1≤ i≤n, Xi is uniformly distributed over Zd.
2. For all vectors A∈Znd , bias(A)≤ε.

We first note that Theorem 3.1 implies that an ε-biased probability space of
small size exists. In Section 5 we provide an explicit construction which is somewhat
weaker.

Corollary 4.3. There exists a probability distribution F over Znd of sizeO(ε−2n logd)
such that for all A=(a1, . . . ,an)∈Znd , bias(A)≤ε.

Proof. The proof follows immediately from Theorem 3.1 by the following choice of
matrix M . Let the columns of M correspond to the elements of Znd , and the rows
of M correspond to all pairs (A,k) such that A = (a1, . . . ,an) ∈ Znd , 0 ≤ k < d/g,
where g=gcd(a1, . . . ,an,d). Let X=(X1, . . . ,Xn)∈Znd . We define:

M((A, k), X) =

{
1 if

n∑
i=1

aiXi ≡ kg (mod d)

0 otherwise.
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In order to apply Theorem 3.1, we transform matrix M into a square matrix by
adding zero rows.

Let D be an ε-biased distribution. We now relate the bias and the Fourier
coefficient for any A∈Znd as follows.

Lemma 4.4. For all non-zero A=(a1, . . . ,an)∈Znd , we have that

|D̂A| ≤
bias (A)
dn−1

.

Proof. Let g=gcd(a1, . . . ,an,d). By the definition of a Fourier coefficient,

D̂A = 〈D, χA〉

=
1
dn

∑
x

D(x)χA(x)∗

=
1
dn

∑
x

D(x)

(
e

(
1
d

n∑
i=1

aixi

))∗

=
1
dn

∑
x

D(x)e

(
−1
d

n∑
i=1

aixi

)
.

Taking absolute values, we have that

|D̂A| =
1
dn

∣∣∣∣∣∑
x

D(x)e
(
−1
d

∑
aixi

)∣∣∣∣∣
=

1
dn

∣∣∣∣∣∣∣
d
g
−1∑
k=0

e
(
−kg
d

)
Pr
[∑

aixi ≡ kg (mod d)
]∣∣∣∣∣∣∣ .

The probability is with respect to a random choice of x∈Znd with the distribution
D. Define Pkg=Pr[

∑
aixi≡kg (mod d)]. Then,

|D̂A| =
1
dn

∣∣∣∣∣∣∣
d
g
−1∑
k=0

e
(
−kg
d

)
Pkg

∣∣∣∣∣∣∣
=

1
dn

∣∣∣∣∣∣∣
g

d

d
g
−1∑
k=0

e
(
−kg
d

)
+

d
g
−1∑
k=0

e
(
−kg
d

)(
Pkg −

g

d

)∣∣∣∣∣∣∣
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Note that
∑

e
(
−kg
d

)
= 0 since the (d/g)th roots of unity sum to zero. We then

conclude that

|D̂A| =
1
dn

∣∣∣∣∣∣∣
d
g
−1∑
k=0

e
(
−kg
d

)(
Pkg −

g

d

)∣∣∣∣∣∣∣
≤ 1
dn

d
g
−1∑
k=0

∣∣∣∣e(−kgd
)∣∣∣∣ ∣∣∣Pkg − g

d

∣∣∣
≤ 1
dn
· d
g
· (g · bias (A))

=
bias (A)
dn−1

,

where the last inequality follows from the definition of the bias as well as the fact
that |e(−kg/d)|=1.

The following theorem is a generalization of a result due to Vazirani [28]. It
relates the biases of an arbitrary distribution to its variation distance from the
uniform distribution.

Theorem 4.5. Let D be an arbitrary probability distribution defined on Znd , and let

U denote the uniform distribution on Znd . Then,

||D − U||1 ≤ d
∑
A

bias (A),

where the bias is defined with respect to the distribution D.

Proof. We first evaluate D̂~0,

D̂(~0) = 〈D, χ~0〉 =
∑
x∈Zdn

D(x)
dn

=
1
dn
.

The variation distance is,

||D − U||1 =
∑
x∈Zdn

∣∣∣∣D(x) − 1
dn

∣∣∣∣ =
∑
x∈Zdn

∣∣∣∣∣∑
A

D̂AχA(x) − 1
dn

∣∣∣∣∣ .
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Since D̂~0 = 1
dn ,

∑
x∈Zdn

∣∣∣∣∣∑
A

D̂AχA(x)− 1
dn

∣∣∣∣∣ =
∑
x∈Zdn

∣∣∣∣∣∣
∑
A 6=~0

D̂AχA(x)

∣∣∣∣∣∣
≤
∑
x∈Zdn

∑
A 6=~0

∣∣∣D̂A∣∣∣ |χA(x)|

= dn
∑
A 6=~0

∣∣∣D̂A∣∣∣
≤ dn

∑
A

d

dn
bias (A),

where the last inequality follows from Lemma 4.4. Thus,

||D − U||1 ≤ d
∑
A 6=~0

bias (A).

Corollary 4.6. For ε = 0, an ε-biased distribution is the same as the uniform
distribution.

The following definition is similar to that of Naor and Naor [25] and Ben-
Nathan [6].

Definition 4.7. Let X1, . . . ,Xn be random variables taking values from Zd. Let
D : Znd → R denote their joint probability distribution. For any x ∈ Znd , let x|S
denote the projection of the vector x specified by S. Let DS denote the restriction
of D to S, by setting

DS(XS = y) =
∑

x∈Zn
d
,x|S=y

D(x)

for all y∈Zkd . We say that the variables X1, . . ., Xn are k-wise δ-dependent if for
all subsets S such that |S|≤k,

||D(S)− U(S)||1 ≤ δ,

where U denotes the uniform distribution.

The next Corollary follows from Theorem 4.5 and Corollary 3.7.

Corollary 4.8. If the random variables X1, . . . ,Xn taking values from Zd are ε-

biased, then they are also k-wise δ-dependent, for δ= εdk. In particular, they are
(logdn)-wise (1/poly(n))-dependent with a polynomially small ε.
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5. Constructing an ε-biased probability distribution

In this section we show how to approximate a uniform probability distribution over
Znd . We present an explicit construction of ε-biased random variables such that the
sample space Ω has size which is bounded by a small polynomial in n, d and 1/ε.
This implies that we have an explicit construction for random variables which are
almost (logdn)-wise independent, such that the corresponding sample space is of
polynomial size, where ε is polynomially small.

We describe the ε-biased probability distribution implicitly by specifying an
algorithm for choosing a random sample point. In what follows, we assume that
the prime power q and a character χr of F∗q are chosen such that d= (q−1)/r is
the order of the character; further, we assume that q−1≥n. Let z be a generator
for F∗q . Let b1, b2, . . . , bn be some fixed distinct elements in Fq.

Random Sampling Algorithm.

1. Choose the value of the random variable Y from F∗q uniformly at random. For
1≤ i≤n, let Yi=Y +bi.

2. For 1≤ i≤n:

(a) Let Zi=
{
Yi if Yi 6=0
bi otherwise.

(b) Let si be such that Zi=zsi .
(c) Choose Xi=si mod d.

In Step 2(a), we take care of the case where one of the random variables Yi=Y+bi is
zero and, therefore, not in F∗q . This guarantees that each Zi is uniformly distributed
over F∗q .

Let Θ be a primitive dth root of unity and let χr(x) = Θlogx, where logx
denotes the discrete log of x to the base z. Notice that for all i, provided each Yj
is non-zero,

(1) χr(Y + bi) = χr(Zi) = χr(zsi) = Θsi = ΘXi .

We will establish that these random variables have the desired properties via
Weil’s character sum estimates (see Schmidt [27, page 43, Theorem 2C]). Let f be a
polynomial over a field F. Let k be the greatest common divisor of the multiplicities
of the roots of f over the algebraic closure of F. We shall say that k is the greatest
common multiplicity of f .

Theorem 5.1. (Weil’s Theorem) Let F be a finite field of order q and let χ be a
multiplicative character of order d. Let f ∈ F[x] be a polynomial with n distinct
zeros in the algebraic closure of F. Suppose d does not divide the greatest common
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multiplicity of f . Then ∣∣∣∣∣∣
∑
x∈F

χ(f(x))

∣∣∣∣∣∣ ≤ (n− 1)
√
q.

To analyze the properties of our construction, we need the following corollary.

Corollary 5.2. Let F be a finite field of order q and let Θ be a primitive dth root
of unity. Let f ∈F[x] be a polynomial with n distinct roots in the algebraic closure
of F. Assume that the greatest common multiplicity of f is relatively prime to d.

Define rk to be the number of solutions x∈F to the equation χ(f(x))=Θk. Then,∣∣∣rk − q

d

∣∣∣ ≤ (n− 1)
√
q.

Proof. The definition of rj implies that for 0≤`≤d−1,

(2)
∑
x∈F

(χ(f(x)))` =
d−1∑
j=0

rjΘ`j .

(Here for `=0 we set 0`=0.) Denoting the number of distinct roots of f in F by ν
(ν≤n), it follows that

q − ν +
d−1∑
`=1

∑
x∈F

(χ(f(x)))` =
d−1∑
`=0

∑
x∈F

(χ(f(x)))`

=
d−1∑
`=0

d−1∑
j=0

rjΘ`j

= dr0 +
d−1∑
j=1

rj

d−1∑
`=0

Θj`

= dr0.

Hence,

|dr0 − q| ≤ ν +

∣∣∣∣∣∣
d−1∑
`=1

∑
x∈F

(χ(f(x)))`

∣∣∣∣∣∣ ≤ ν +
d−1∑
`=1

∣∣∣∣∣∣
∑
x∈F

(χ(f(x)))`

∣∣∣∣∣∣ .
The order of the character χ` is d′=d/gcd(d,`) which is greater than 1 for 0<`<d
and it is relatively prime to the greatest common multiplicity of f , hence we may
apply Theorem 5.1 to each term on the right hand side. We obtain

|dr0 − q| ≤ ν +
d−1∑
`=1

(n− 1)
√
q ≤ ν + (d− 1)(n− 1)

√
q < d(n− 1)

√
q.
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This implies that ∣∣∣r0 − q

d

∣∣∣ ≤ (n− 1)
√
q.

To conclude the proof, observe that if both sides of (2) are multiplied by Θ−k`,
then the same result is obtained for any rk.

We now analyze the properties of the random variables defined above.

Theorem 5.3. Let the random variables X1, . . . ,Xn be defined by the Random
Sampling Algorithm. Then the following two conditions hold:

1. For 1≤ i≤n, Xi is uniformly distributed over Zd.
2. For all A∈Znd , bias(A)≤2n/

√
q.

Proof. For each i, distinct values of Y ∈F∗q yield distinct values for Zi∈F∗q . Since Y
is chosen uniformly at random from F∗q , it follows that Zi is uniformly distributed
over F∗q . Since F∗q is cyclic, we conclude that the random variable si is uniformly
distributed over {0,1, . . . ,q−2}. By our choice of q, we have d|q−1, and this implies
that Xi≡si (mod d) is uniform over the set Zd, thereby establishing the first part
of the theorem.

Let A=(a1, . . . ,an) be any vector in Znd and let g=gcd(a1, . . . ,an,d). Assume
first that g=1. We define the polynomial fA(x) as follows:

fA(x) =
n∏
i=1

(x+ bi)ai .

Let us now restrict ourselves to the case where all values Yj are non-zero.
By (1),

χr(fA(Y )) =
n∏
i=1

[χr(Y + bi)]ai =
n∏
i=1

(ΘXi)ai = Θ
∑n

i=1
aiXi .

The number of values of Y ∈F∗q such that
∑n
i=1 aiXi≡j (mod d) is exactly equal

to the value of rj defined in Corollary 5.2 for the polynomial fA(x). However, we
are only considering the case where all values Yj are non-zero. This can create at
most an additive error of n in the bounds given in Theorem 5.1 and Corollary 5.2.
It then follows from the definition of the bias that

bias (A) ≤ max
j

∣∣rj − q/d∣∣+ n

q
.

The assumption g = 1 means the greatest common multiplicity of f is relatively
prime to d. From Corollary 5.2 it follows that

bias (A) ≤ n
√
q

+
n

q
≤ 2n
√
q
.
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Consider now the case g > 1, and let βi = ai/g. Let g′ = gcd(a1, . . . ,an) and
ci = ai/g

′. By the preceding argument, the bias of the vector C = (c1, . . . , cn) is
bounded by 2n/

√
q. For 0≤ j≤ d/g−1, the number of vectors X that satisfy the

equation
n∑
i=1

aiXi ≡ jg (mod d).

is equal to the number of vectors X that satisfy

n∑
i=1

ciXi ≡ j +
dl

g
(mod d),

where 0≤ l≤g−1. Since g′/g is relatively prime to d/g, the number of such vectors
is also equal to the number of vectors X that satisfy

n∑
i=1

ciXi ≡ j′ +
dl′

g
(mod d)

where j≡j′(g′/g) (mod d/g). By Definition 4.3,

bias (A) =
1
d
· d · bias (G) = bias (G),

which establishes the second part of the theorem.

The parameters of our construction are described in the following theorem.
Let q(d,k) denote the smallest prime power such that d|q−1 and d≥k.

Theorem 5.4. For any ε>0, n≥2, and d≥2, the probability space (Ω,P) defined
by the Random Sampling Algorithm generates n random variables over Zd which

are ε-biased, and the size of the sample space is |Ω|=q(d,4n2ε−2)−1.

Proof. Generating the random variables X only requires choosing Y ∈F∗q uniformly
at random. Hence the sample space is Ω=F∗q where q is a prime such that d|q−1

and q≥4n2ε−2. Choose the smallest prime power satisfying these constraints.

6. Estimates for q(d,k)

In this section we review results from number theory relevant to estimating q(d,k).
Let p(d,k) denote the smallest prime such that d|p−1 and d≥k. Clearly q(d,k)≤
p(d,k).

For any d and k, the quantity p(d,k) can be estimated using Linnik’s Theorem
establishing the existence of small primes in arithmetic progressions: among the
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integers ≡ t (modm) (where gcd(m,t) = 1) there exists a prime p = O(mC ).
Heath-Brown [17] proves C ≤ 11/2. Note that this result does not depend on any
hypothesis. Under the Extended Riemann Hypothesis, Bach and Sorenson [5] prove
that p can be chosen to be ≤2(m lnm)2, hence C≤2+o(1).

Let now p(d) denote the smallest prime such that d|p−1. Let further m(d,k)
be the smallest integer m such that d|m and m≥k. Note that m(d,k)<d+k. Note
further that p(d,k)≤p(m(d,k)). Summarizing, there exist absolute constants c and
C such that

(3) p(d, k) < c(d+ k)C .

Here C is the exponent in Linnik’s Theorem discussed above.
The exponent C can be reduced to 1 if d is small compared to k. For fixed d

we have

(4) p(d, k) < (1 + o(1))k.

Moreover, for any constant c>0 and for any d≤ logc k we have

(5) p(d, k) < c1k,

where the constant c1 depends only on c. These bounds follow from results that in
this range, the primes are nearly uniformly distributed among the mod d residue
classes which are relatively prime to d (prime number theorem for arithmetic
progressions, cf. [10, pp. 132-133]).

In conclusion we summarize the bounds obtained for the size of the sample
space.

Theorem 6.1. For any ε > 0, n ≥ 2, and d ≥ 2, the probability space (Ω,P)
defined by the Random Sampling Algorithm generates n random variables over

Zd which are ε-biased, and the size of the sample space is |Ω| < c0(d+n2ε−2)C

where C is the constant in Linnik’s Theorem. Moreover, if d≤ logc(n2ε−2) then

we have |Ω| < c1n
2ε−2 where c1 depends on c only. For constant d we have

|Ω|<(1+o(1))n2ε−2.

Note that the bounds obtained in the above theorem are not the best possible,
compare with Corollary 4.3. Theorem 6.1 together with Corollary 4.8 imply that we
can construct (logdn)-wise (1/poly(n))-dependent random variables over Znd using a
polynomially large sample space. Also, Theorem 6.1 together with Lemma 4.4 imply
that we can approximate the Fourier coefficients of the uniform distribution on Znd
within ε/dn with a sample space of size O(ε−2n2d2) for small d. This construction
may not be the best possible since Corollary 3.3 guarantees the existence of an
approximating sample space whose size is O(ε−2n logd).
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7. Linear codes

In this section we observe that the ε-biased distribution can also be looked upon
as a construction of a nearly uniform linear code. The linear code that we obtain
has a large distance and the interesting property that each non-zero codeword has
roughly the same number of occurrences of each possible symbol in the alphabet, or
the field, over which the code is defined. Also, the length of the codewords is only
polynomial (quadratic) in the dimension of the code and thus the code is relatively
dense.

A code C is called an [n,k] code if it transforms words of length k into codewords
of length n. The dimension of C is defined to be k. A linear code C is a linear
subspace of Fn, for some field F. A generator matrix G for a linear code C is a k×n
matrix whose rows form a basis for C. If G is a generator matrix for C, then the
code can be defined as

C = {a ·G |a ∈ Fk}.

The distance between two codewords is defined to be their Hamming distance. The
weight of a codeword is the number of non-zero symbols that it contains.

We may interpret the sample space of an ε-biased distribution as the generator
matrixG of a particular linear code Cε. Let q be a prime power chosen in accordance
with Theorem 5.4; the generator matrix G is of dimension n×q and every column in
G is a possible assignment to the random variables X1, . . . ,Xn. Let N(c,k) denote
the number of occurrences of the letter k in codeword c. The following corollary is
a consequence of Theorem 5.3.

Corollary 7.1. For every codeword c∈Cε and letter k ∈{0, . . . ,d−1} where d is a
prime,

∣∣∣N(c, k)− q

d

∣∣∣ ≤ qε = 2n
√
q.

It is well known that for linear codes, the minimum distance between any
two codewords is equal to the minimum (positive) weight among all codewords. It
follows from the above theorem that a codeword can contain at most q(ε+1/d) zero
entries and hence, the minimum distance of Cε is q(1−ε−1/d).

We note that a construction of a code which has the property that for every
codeword, the distribution of the alphabet symbols is almost uniform and that the
length of the codeword is polynomial in the dimension has been known for the case
of a binary alphabet. The dual code of a binary BCH code has this property and
the proof follows from Weil’s Theorem (see MacWilliams and Sloane [24, pages
280–282]).
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8. Open Problems

An important direction for further work is to efficiently construct (in time polyno-
mial in the number of random variables n) probability distributions that approx-
imate special types of joint distributions. In particular, can we construct in time
polynomial in n a good approximation to the joint distribution where each random
variable independently takes value 1 with probability p and 0 with probability 1−p?
Note that this is only known for the case where p=1/2.

It is also not clear that our construction of an ε-biased distribution on n d-
valued random variables is the best possible. Theorem 3.2 guarantees the existence
of such a distribution using a smaller sample space (by a factor of n). Can this be
achieved constructively?
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Kiadó, Budapest, 1974.

[14] T. Estermann: Introduction to Modern Prime Number Theory, Cambridge Univer-

sity Press, 1969.

[15] G. Even: Construction of small probability spaces for deterministic simulation,

M.Sc. Thesis, Technion, Haifa, Israel (1991).
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