
Approximating Reversal Distance for Strings with

Bounded Number of Duplicates in Linear Time

Petr Kolman ∗

February 17, 2005

Abstract

For a string A = a1 . . . an, a reversal ρ(i, j), 1 ≤ i < j ≤ n, transforms the string A into
a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an, that is, the reversal ρ(i, j) reverses the order of
symbols in the substring ai . . . aj of A. In a case of signed strings, where each symbol is given a
sign + or −, the reversal operation also flips the sign of each symbol in the reversed substring.
Given two strings, A and B, signed or unsigned, sorting by reversals (SBR) is the problem of
finding the minimum number of reversals that transform the string A into the string B.

Traditionally, the problem was studied for permutations, that is, for strings in which every
symbol appears exactly once. We consider a generalization of the problem, k-SBR, and allow
each symbol to appear at most k times in each string, for some k ≥ 1. The main result of
the paper is a simple O(k2)-approximation algorithm running in time O(k · n). For instances
with 3 < k ≤ O(

√
log n log∗ n), this is the best known approximation algorithm for k-SBR

and, moreover, it is faster than the previous best approximation algorithm. In particular, for
k = O(1) which is of interest for DNA comparisons, we have a linear time O(1)-approximation
algorithm.

Key words. Approximation algorithms, String comparison, Edit distance, Sorting by reversals.

1 Introduction

For a string A = a1 . . . an, a reversal ρ(i, j), 1 ≤ i < j ≤ n, transforms the string A into a string
A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an, that is, the reversal ρ(i, j) reverses the order of symbols
in the substring ai . . . aj of A. In a case of signed strings, where each symbol is given a sign +
or −, the reversal operation also flips the sign of each symbol in the reversed substring. Given
two strings, A and B, signed or unsigned, sorting by reversals (SBR) is the problem of finding the
minimum number of reversals that transform the string A into the string B; this number, denoted
by SBR(A,B), is called the reversal distance of A and B.

A necessary and sufficient condition for A and B to have a finite reversal distance is that each
letter appears the same number of times in A and B (for the signed version, we count together the
occurrences of a letter with positive and negative signs). We call such strings related.

To give an example, A = abcabc and B = bcbaac are related strings and ρ(3, 6), ρ(1, 4) is a
sequence of reversals that turns A to B, therefore SBR(A,B) ≤ 2. Similarly, ρ(1, 4), ρ(4, 4) turns
A′ = +a− c− b− a + b + c to B′ = +a + b + c + a + b + c and thus, SBR(A′, B′) ≤ 2.

∗Institute for Theoretical Computer Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech
Republic. kolman@kam.mff.cuni.cz. Research done while visiting University of California at Riverside. Supported
by project LN00A056 of MŠMT ČR and NSF grants CCR-0208856 and ACI-0085910.

1

In this paper we study a variant of the problem, denoted by k-SBR, in which each symbol
is allowed to appear at most k times in each string. Our particular interest is in the case that
k = O(1). The main contribution is a simple O(k2)-approximation algorithm for k-SBR running in
time O(k · n). Thus, for k = O(1), we have a linear time O(1)-approximation algorithm.

1.1 Terminology

For notational simplicity, we allow a few symbols to have slightly different meanings for signed and
unsigned strings. For a string P = a1 . . . an, we denote by −P the result of reversal ρ(1, n) of P
(e.g., for P = +a + b− d, we have −P = +d− b− a). We use two different equivalence relations.
Two strings A = a1a2 . . . an and B = b1b2 . . . bn, signed or unsigned, are identical, A = B, if ai = bi

for each i ∈ [n]. In a case of signed strings, by ai = bi we mean also equality of the signs. Signed
or unsigned strings A and B are congruent, A ∼= B, if A = B or A = −B.

The length of a string A is denoted by |A|. A partition of a string A is a sequence P =
(P1, P2, . . . , Pm) of strings whose concatenation is equal to A, that is, P1P2 . . . Pm = A. The strings
Pi are called the blocks of P and their number is the size of the partition. Given a partition
P = (P1, P2, . . . , Pm), of a string A, a pair l, l + 1 is a break of the partition P if l =

∑i
j=1 |Pj | for

some i ∈ [m− 1]. Informally, a break of a partition P of A is a pair of letters that are consecutive
in A but are not consecutive in P.

For two strings A and B, we say that S is a common substring with respect to the relation =
or ∼=, respectively, if S is a substring of A and there exists a substring R of B such that S = R
or S ∼= R, respectively. When not necessary, we will often avoid specifying the relation and will
talk only about a common substring. If S is a common substring of A, B, we use notations SA

and SB to distinguish between the occurrences of S (or −S) in A and B. Given two partitions
A = (A1, . . . , Am) and B = (B1, . . . , Bm′), a common substring of A and B is a string S such that
S is a common substring of Ai and Bj , for some indices i, j.

1.2 Related work

String comparison is a fundamental problem in computer science with applications in text process-
ing, data compression or computational biology. The problem of sorting by reversals drew a lot of
attention in the last years as a useful tool for DNA comparison [4, 12, 6, 1]. In that application, the
letters in the strings represent different genes and the reversal distance measures the similarity of
two genomic sequences. A common assumption that a genome contains only one copy of each gene
is unwarranted for genomes with multi-gene families such as the human genome [14]. On the other
hand, a weaker assumption that a genome contains at most k = O(1) copies of each gene is often
warranted (cf. [9]). That is why k-SBR is of interest. In this subsection we will briefly mention the
most relevant known results.

Under the assumption that every symbol appears in each input string exactly once, we have
the well known problem of permutation sorting by reversals. The problem 1-SBR is solvable in
polynomial time for strings with signs [12, 1] but is NP-hard [4] and even MAX-SNP hard [3] for
strings without signs; the best known approximation ratio for the unsigned 1-SBR is 1.375 by an
algorithm of Berman et al. [2]. A recent result of Chen et al. [5] shows that the signed k-SBR
is NP-hard even for k = 2 (the unsigned k-SBR is obviously NP-hard for all k ≥ 2). There are
O(1)-approximation algorithms for signed 2-SBR and 3-SBR [5, 7, 11]. The best approximation
ratio for 2-SBR is 2.2074 and the algorithm relies on semidefinite programming [11]; the algorithm
for 3-SBR runs in linear time and has an approximation ratio 8 [11]. The best approximation ratio

2

for the general signed SBR is O(log n log∗ n), using an O(n log∗ n)-time algorithm of Cormode and
Muthukrishnan [8].

Instead of bounding the number of duplicates, there is another way to restrict the general
problem of sorting by reversals with duplicates: bound the size of the alphabet. Unsigned SBR
with unary alphabet is trivial; the NP-hardness of unsigned SBR with binary alphabet was proved
by Christie and Irving [6].

Closely related is a minimum common string partition problem (MCSP). Given a partition P of
a string A and a partition Q of a string B, we say that the pair π = 〈P,Q〉 is a common partition
of A and B with respect to the relation Rel ∈ {=,∼=}, if there exists a permutation σ on [m] such
that for each i ∈ [m], (Pi, Qσ(i)) ∈ Rel. The minimum common string partition problem is to find a
common partition of A, B with the minimum size, denoted by MCSP(A,B). The restricted version
of MCSP, where each letter occurs at most k times in each input string, is denoted by k-MCSP.

Similarly as for SBR, there is a signed and an unsigned variant of the problem. In unsigned
MCSP, the input consists of two unsigned strings, and the relation = is used; in signed MCSP, the
input consists of two signed strings and the relation ∼= is used. For unsigned strings, we define
yet another variant of the problem, reversed MCSP (RMCSP), in which the (unsigned) strings are
compared by the relation ∼=.

The signed MCSP problem was introduced by Chen et al. [5] as a tool for dealing with SBR; they
observed that for any two related signed strings A and B, d(MCSP(A,B) − 1)/2e ≤ SBR(A,B) ≤
MCSP(A,B) − 1 (note that MCSP(A,B) − 1 is the number of breaks in a minimum common
partition). Analogously, it is possible to show that for any two related unsigned strings A and B,
d(RMCSP(A,B)−1)/2e ≤ SBR(A,B) ≤ 2(RMCSP(A,B)−1). For k ≥ 2, k-MCSP is NP-hard, and
even APX-hard [11]. Due to the close relation between signed SBR and signed MCSP, the known
approximation ratios for signed MCSP are within a factor of 2 of the approximation ratios for signed
SBR: O(1) approximation ratios for 2-MCSP and 3-MCSP [7, 11], O(log n log∗ n) approximation
ratio for the general MCSP [8].

Chrobak et al. [7] analyzed the behavior of a natural greedy heuristic for MCSP: start with the
two strings A and B and iteratively, find the longest common substring of A and B that does not
overlap previously marked substrings, and mark this substring. They showed that though Greedy
is a 3-approximation algorithm for 2-MCSP, even for 4-MCSP its approximation ratio is Ω(log n).
For general MCSP, both signed and unsigned, the approximation ratio is between Ω(n0.43) and
O(n0.67). It is worth noting that the algorithms described in this paper are simple modifications of
Greedy, yet their approximation ratios for k-MCSP are better, namely O(k2), in contrast to the
Ω(log n) of Greedy for k ≥ 4.

In the edit distance problem, a set of string operations is given (e.g., delete, insert or change
a character, substring move or substring reversal) and the task is to find the minimum num-
ber of operations needed to convert one string to the other. SBR can be also viewed as an edit
distance problem where the only operation is substring reversal and the input strings are re-
lated. For any two related strings A and B, MCSP(A,B) differs by a constant multiplicative factor
from the edit distance of A and B with only substring move operations, and the edit distance
using only substring move operations differs also by a constant multiplicative factor from the edit
distance with operations {insert, delete a character, substring move } [15]. For the later prob-
lem, Cormode and Muthukrishnan [8] describe an O(n log∗ n)-time O(log n log∗ n)-approximation
algorithm which yields, by the relations described above, the O(log n log∗ n)-approximation for SBR
mentioned earlier in this subsection.

The edit distance problem with a different set of string operations was studied by Ergun et
al. [10]. For several edit distance problems that allow substring deletion, they describe an

3

O(1) approximation algorithm. This is in contrast to the above mentioned known approximations
of edit distance without substring deletion where the best approximation ratio is of order
Ω(log n log∗ n).

The rest of the paper is organized as follows. In Section 2.1 we describe how to modify Greedy
to get the O(k2) approximation for (reversed) k-MCSP and thus, for k-SBR. Section 2.2 explains
how to implement the algorithm in time O(k · n).

2 Algorithms

2.1 Refined Greedy: O(k2)-approximation

In the previous section, we briefly described Greedy algorithm and we recalled that its approx-
imation ratio for k-MCSP and k-SBR, for any k ≥ 4, is Ω(log n). In this section, we show that a
simple modification of Greedy, called Refined Greedy, has an O(k2) approximation ratio for
k-MCSP, which implies also an O(k2) approximation ratio for k-SBR.

A few more terms are needed. A duo is a string of length two. To cut a duo aiai+1 of a block
P = aj . . . ak of a partition of A, for some j ≤ i < k, means to replace the block P in the partition
by two blocks P1 = aj . . . ai and P2 = ai+1 . . . ak. For a substring S = ai . . . aj of A = a1 . . . an, if
i > 1 we say that ai−1ai is a (left) boundary duo of S, and similarly, if j < n ajaj+1 is a (right)
boundary duo of S.

For unsigned k-MCSP the algorithm is the following:

Algorithm Refined Greedy
Input: two related strings A and B
A← (A), B← (B)
while there are unmarked blocks in A and B do

S← longest common substring of A, B that does not overlap previously marked blocks
cut the boundary duos of SA in A and the boundary duos of SB in B
mark SA in A and SB in B
cut in unmarked blocks of A and B all occurrences of duos δ ∈ Φ, where Φ is the set of

boundary duos of SA and SB

Output: (A,B)

To extend the algorithm for signed k-MCSP and for k-RMCSP, apart from considering common
substrings with respect to the other equivalence relation ∼=, the difference is that in the cutting
steps, we cut not only all occurrences of δ ∈ Φ but also all occurrences of −δ.

To give an example, consider an instance of MCSP,

A = abccccafccccddddIefccccebccccgggg , B = abccccddddafccccIefccccggggebcccc .

Refined Greedy first marks substring S1 = ccccdddd (we use overline to denote marking in
this example) and cuts all unmarked occurrences of duos from Φ = {fc, dI, bc, da}. In the sec-
ond iteration, Refined Greedy looks for the longest unmarked substring in partitions A =
(ab, ccccaf, ccccdddd, Ief, cccceb, ccccgggg) and B = (ab, ccccdddd, af, ccccIef, ccccggggeb, cccc),
marks substring S2 = ccccgggg and cuts duos from Φ = {ge}. In the third iteration, Refined Greedy
looks for the longest unmarked substring in partitionsA = (ab, ccccaf, ccccdddd, Ief, cccceb, ccccgggg)

4

and B = (ab, ccccdddd, af, ccccIef, ccccgggg, eb, cccc), marks substring S3 = cccc and cuts duos from
Φ = {ca, cI}. Eventually, Refined Greedy outputs the common partition

P = 〈(ab, cccc, af, ccccdddd, Ief, cccc, eb, ccccgggg), (ab, ccccdddd, af, cccc, Ief, ccccgggg, eb, cccc)〉 .

The optimal common partition has six blocks:

Popt = 〈(abcccc, afcccc, dddd, Iefcccc, ebcccc, gggg), (abcccc, dddd, afcccc, Iefcccc, gggg, ebcccc)〉 .

Before analyzing Refined Greedy, let us briefly look on the behavior of Greedy on the
same instance. The longest common substrings of A and B are ccccdddd and ccccgggg, therefore
Greedy starts by matching these substrings in the first two iterations. We observe that there
exists a common partition of A and B that uses ccccdddd and ccccgggg as blocks:

P ′ = 〈(ab, cccc, af, ccccdddd, Ief, cccc, eb, ccccgggg), (ab, ccccdddd, af, cccc, Ief, ccccgggg, eb, cccc)〉 .

Every common partition induces a matching between the letters (positions) of A and B. We note
that the common partition P ′ matches many of the letters ofA and B in the same way as the optimal
partition Popt does. However, after several steps Greedy will find another common partition:

Pgr = 〈(a, bcccc, a, f, ccccdddd, Ie, fcccc, e, b, ccccgggg), (a, b, ccccdddd, a, fcccc, Ie, f, ccccgggg, e, bcccc)〉 .

Intuitively, the problem of Greedy is that a wrong decision in one iteration can force the use
of several additional iterations, and in each of them Greedy may do another wrong decision, and
so on. In other words, a deviation from the optimal solution in one iteration encourages deviations
in later iterations. In our instance, after the first two iterations, it is still desirable, for example, to
match the first b from A with the first b from B, as the common partition P ′ does. However, since
bcccc is the longest common substring at this point, Greedy will decide to use the wrong match
between the first b from A and the third b from B.

To improve the performance of the algorithm, the idea is to prevent it from propagating “mis-
takes” from one iteration to later iterations. In our example, the first mistake was to use the
substrings ccccddd; a consequence of this was the use of the substrings bcccc, another mistake.
Refined Greedy attempts to suppress this problem by cutting a few additional duos that are
related to the current longest common substring, in each iteration. These breaks will constrain
later iterations and will confine the propagation of mistakes.

Theorem 2.1 Refined Greedy is a 2k2-approximation algorithm for unsigned and signed k-
MCSP and 2(2k − 1)2-approximation for k-RMCSP.

Proof: The output of the algorithm is clearly a common partition. We only have to prove
the bound on its quality. For simplicity of the presentation, we prove the claim in detail for the
unsigned k-MCSP and then we briefly outline the necessary modifications for signed k-MCSP and
for k-RMCSP.

For technical reasons, it will be convenient to extend the notions of a partition and a com-
mon partition from strings to multisets of strings. A partition of the multiset of strings A =
{A1, . . . , Al} is a sequence of strings A1,1, . . . , A1,k1 , A2,1, . . . , A2,k2 , . . . , Al,1, . . . , Al,kl

, such that
Ai = Ai,1 . . . , Ai,ki

for i ∈ [l]. For two multisets of strings, the common partition is defined analo-
gously as for pairs of strings.

5

Observation 2.2 Let (Q,R) be a common partition of multisets of strings A and B, and let δ be
any duo that appears in Q and R. Let Q′ denote the partition of A that is obtained from Q by
cutting all occurrences of the duo δ, and let R′ denote the partition of B that is obtained from R
by cutting all occurrences of the duo δ. Then, (Q′,R′) is a common partition of A and B.

Proof: Since Q is a permutation of R, every block P from Q that contains δ appears also in
R, and vice versa. Thus, if we cut all occurrences of δ in Q and R, the resulting new partitions Q′

and R′ will be again permutations of each other. 2

Let π = (P,Q) be a minimum common partition of A and B, m be its size and let ∆ be the
set of all boundary duos of blocks in P and in Q. We are going to iteratively construct common
partitions πi of A and B that will help us to estimate the size of the common partition found by
Refined Greedy. We define π1 as the common partition derived from π by cutting all occurrences
of all duos in ∆ (the fact that π1 is a partition follows from Observation 2.2). For k-MCSP instances,
the number of blocks increases at most k times. The breaks in π1 are called initial breaks. Let Si

denote the substring that Refined Greedy used in iteration i and let Φi be the set of boundary
duos of SA

i and SB
i . For iteration i ≥ 1 of Refined Greedy, we define πi+1 as the common

partition derived from πi by cutting all occurrences of all duos in Φi.
We are going to compare the blocks used by Refined Greedy with the blocks in πi. For ease

of reference, we denote the sets A and B at the beginning of iteration i by Ai and Bi, and by si

the first position of SA
i in A, by ti the last position of SA

i in A, by s′i the first position of SB
i in B,

and by t′i the last position of SB
i in B.

Observation 2.3 For every iteration i and for every 0 ≤ l < |Si|: the pair si + l, si + l + 1 is an
initial break of A if and only if the pair s′i + l, s′i + l + 1 is an initial break of B.

Proof: The observations follow from the definition of π1: if one occurrence of a duo is cut in π1,
then all occurrences of this duo are cut. 2

Given a break l, l + 1 of a partition of A, and a substring S = ai . . . aj of A, we say that the
substring S goes over the break l, l + 1 if i ≤ l < j. Observation 2.3 can be informally stated like
this: If the block SA

i goes over one or more initial breaks, then the block SB
i goes over the same

number of initial breaks, and, moreover, the relative positions of the initial breaks in SA
i and SB

i

are the same.
Let A′

i ⊆ Ai and B′i ⊆ Bi denote the subsets of unmarked strings of Ai and Bi ,resp., at the
beginning of phase i, and let π′

i denote the restriction of πi to A′
i and B′i. Observation 2.3 implies

the following important claim.

Observation 2.4 For every i, π′
i is a common partition of A′

i and B′i.

Proof: The proof is by induction. For i = 1, nothing is marked, A′
1 = {A}, B′1 = {B}, π′

1 = π1

and the claim is obvious. For i > 1, Observations 2.3 and 2.2 imply that the blocks from πi

corresponding to the newly marked block SA
i−1 are the same as the blocks from πi corresponding

to the newly marked block SB
i−1. Observing that outside SA

i−1 and SB
i−1, cuts of the same duos

(i.e., duos from Φi−1) are used to obtain π′
i from π′

i−1 and (A′
i,B′i) from (A′

i−1,B′i−1), the proof is
completed. 2

Lemma 2.5 For every i,

• the block Si = asi . . . ati is an entire block in A′
i and B′i, or

6

• Si goes over an initial break or

• si − 1, si is an initial break or si = 1, and ti, ti + 1 is an initial break or ti = n.

Proof: The lemma follows from Observation 2.4 and from the greedy nature of Refined Greedy:
for every common substring S of A′

i and B′i not satisfying any of the conditions in the lemma, there
exists another common longer substring S′ of A′

i and B′i such that S is a proper substring of S′. 2

We are ready to finish the proof of Theorem 2.1. In every iteration, the number of duos in A
that Refined Greedy cuts, is at most 2k. If Refined Greedy chooses for S an entire block of
A′

i, then there are no new cuts introduced in this iteration. If Refined Greedy chooses for S a
string that is not an entire block of A′

i, then, by Lemma 2.5, S either goes over an initial break
or (roughly) S starts and ends at an initial break. In the former case, we charge all cuts done by
Refined Greedy in this iteration to this initial break; in the later case, we charge half of the new
cuts to each of these two new breaks (in the special case that si = 1 or ti = n, we charge all new
cuts to the only initial break). In this way each cut done by Refined Greedy is charged to one
initial break, and the total number of breaks charged to one initial break is not more than 2 · k.
Since there are at most k · (m−1) initial breaks, there are at most 2 ·k2 · (m−1) breaks in the final
partition found by Refined Greedy. The total number of blocks used by Refined Greedy is
at most 2 · k2 · (m− 1) + 1 = 2 · k2 ·m.

For signed k-MCSP and k-RMCSP we only need to adjust the proof to reflect the thing that
now a substring S from A can be matched with a substring R from B even if S 6= R but S = −R.
Thus, in Observation 2.2 we cut not only all occurrences of duo δ but also all occurrences of duo
−δ. To get the common partition π1 from π, for each δ ∈ ∆ we cut all occurrences of δ as well
as all occurrences of −δ; for signed k-MCSP the number of breaks in π1 increases again at most k
times, for k-RMCSP it increases at most 2k − 1 times. In Observation 2.3, we distinguish whether
SA

i = SB
i or SA

i = −SB
i . In the later case, we count the relative positions of the initial breaks in

SB
i backwards (i.e., the claim is: si + l, si + l + 1 is an initial break of A if and only if the pair

t′i − l − 1, t′i − l is an initial break of B); the former case is as before. For signed k-MCSP, the
number of duos cut in A in one iteration is at most 2k, for k-RMCSP it is at most 2(2k − 1). 2

We note that the same approximation ratio holds even with respect to the number of breaks
in common partitions (not only with respect to the number of blocks). Considering the relation
between signed MCSP and signed SBR, and between RMCSP and unsigned SBR, we get the following
theorem.

Theorem 2.6 There exists a polynomial time 4k2-approximation algorithm for signed k-SBR, and
8(2k − 1)2-approximation algorithm for unsigned k-SBR.

Concerning the running time of Refined Greedy, observe that just finding the longest com-
mon substring ofA and B in linear time requires an involved algorithm [13, 16], and Refined Greedy
looks for the longest common substring in every iteration.

2.2 Educated Greedy: O(k2)-approximation in time O(k · n)

In the previous analysis we never used the fact that S was the longest common substring; we
only used that it was not possible to extend SA and still have a matching substring in B (proof
of Observation 2.5). Based on this observation, here we present more efficient implementation of
the algorithm. As in the case of Refined Greedy, we describe Educated Greedy in detail for

7

unsigned k-MCSP; the necessary modifications for signed k-MCSP and k-RMCSP are the same as
before.

Algorithm Educated Greedy
Input: two related strings A = a1 . . . an and B = b1 . . . bn

A← (A), B← (B)
i = 1
while i ≤ n do

S← longest common substring of A, B that starts in A on position i and
does not overlap previously marked blocks

cut the boundary duos of SA in A and the boundary duos of SB in B
mark SA in A and SB in B
cut in A and B all unmarked occurrences of duos δ ∈ Φ, where Φ is the set of

boundary duos of SA and SB

i← i + |S|
Output: (A,B)

Theorem 2.7 There exist an O(k2)-approximation algorithms for unsigned and signed k-MCSP,
k-RMCSP and k-SBR running in time O(k · n).

Proof: The proof of Lemma 2.5 is the only place in the proof of Theorem 2.1 that refers to
the choice of the common substring S used by Refined Greedy. However, as mentioned above,
the proof only needs the fact that S cannot be extended on either side. Thus, Lemma 2.5 holds
also for the choices of Educated Greedy and the O(k2) approximation ratio follows by the same
reasoning as for Refined Greedy.

Concerning the running time, Educated Greedy goes once through A from left to right, and
in every iteration, there are at most k possibilities (resp., 2k for k-RMCSP) where to look for the
common substring Sj . Educated Greedy spends at most k · |Sj | (resp., 2k · |Sj |) steps in iteration
j and advances by |Sj | positions to the right in A. Thus, the common partition is computed in
time O(k · n) and the proof is completed. 2

3 Conclusion

We presented a simple, O(k2)-approximation algorithms for k-MCSP and k-SBR, running in time
O(k · n). For instances with 3 < k ≤ O(

√
log n log∗ n), this is the best approximation ratio and,

moreover, Educated Greedy is faster than the previous best approximation algorithm.
We conclude with a few challenging open problems. Is it possible to implement Refined Greedy

in linear time? Is there a simple O(k)-approximation algorithm for k-SBR? What is the best pos-
sible approximation ratio for the general SBR? Is it possible to get below the O(log n log∗ n) upper
bound? Is it NP-hard to approximate better than within Ω(log n)?

Acknowledgment

We would like to thank Jǐŕı Sgall for suggestion to implement Refined Greedy more efficiently.

8

References

[1] A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and fortresses. In
Proceedings of 15th Annual Combinatorial Pattern Matching Symposium (CPM), volume 3109
of Lecture Notes in Computer Science, pages 388–399. Springer-Verlag, 2004.

[2] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for sorting
by reversals. In Proceedings of the 10th Annual European Symposium on Algorithms (ESA),
volume 2461 of Lecture Notes in Computer Science, pages 200–210, 2002.

[3] P. Berman and M. Karpinski. On some tighter inapproximability results. In Proceedings of the
26th International Colloquium on Automata, Languages and Programming (ICALP), volume
1644 of Lecture Notes in Computer Science, pages 200–209, 1999.

[4] A. Caprara. Sorting by reversals is difficult. In Proceedings of the First International Confer-
ence on Computational Molecular Biology, pages 75–83, 1997.

[5] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment of
orthologous genes via genome rearrangement. Submitted, 2004.

[6] D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions. SIAM
Journal on Discrete Mathematics, 14(2):193–206, 2001.

[7] M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum common
string partition problem. In Proceedings of the 7th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), volume 3122 of Lecture
Notes in Computer Science, pages 84–95, 2004.

[8] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
In Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete Mathematics (SODA),
pages 667–676, 2002.

[9] N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments duplications
and reversals. Journal of Computer and System Sciences, 65(3):442–464, 2002.

[10] F. Ergun, S. Muthukrishnan, and S. C. Sahinalp. Comparing sequences with segment re-
arrangements. In Proceedings of the 23rd Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), volume 2914 of Lecture Notes in
Computer Science, pages 183–194, 2003.

[11] A. Goldstein, P. Kolman, and J. Zheng. Minimum Common String Partition Problem: Hard-
ness and Approximations. In Proceedings of the 15th International Symposium on Algorithms
and Computation (ISAAC), Lecture Notes in Computer Science, 2004.

[12] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: polynomial algorithm
for sorting signed permutations by reversals. Journal of the ACM, 46(1):1–27, Jan. 1999.

[13] J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm. Report 40, University
of California, Berkeley, 1970.

[14] D. Sankoff and N. El-Mabrouk. Genome rearrangement. In T. Jiang, Y. Xu, and M. Q. Zhang,
editors, Current Topics in Computational Molecular Biology. The MIT Press, 2002.

9

[15] D. Shapira and J. A. Storer. Edit distance with move operations. In Proceedings of the
13th Symposium on Combinatorial Pattern Matching (CPM), volume 2373 of Lecture Notes
in Computer Science, pages 85–98, 2002.

[16] P. Weiner. Linear pattern matching algorithm. In Proceedings of the 14th Annual IEEE
Symposium on Switching and Automata Theory, pages 1–11, 1973.

10

