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Approximating rings of integers in number fields.

par J. A. Buchmann and H. W. Lenstra, Jr.

Résumé. – Nous étudions dans cet article le problème algorithmique de la

détermination de l’anneau des entiers d’un corps de nombres algébriques

donné. En pratique, ce problème est souvent considéré comme résolu mais

des résultats théoriques montrent que sa résolution ne peut être menée à

terme lorsque le corps étudié est défini par les équations dont les coefficients

sont très gros. Or de tels corps apparaissent dans l’algorithme du crible

algébrique utilisé pour factoriser les entiers naturels.

En appliquant une variante d’un algorithme standard donnant l’anneau

des entiers, on obtient un sous-anneau du corps de nombres qui peut être

regardé comme le meilleur candidat possible pour l’anneau des entiers.

Ce meilleur candidat est probablement souvent le bon. Notre propos est
d’exposer ce qui peut être prouvé sur ce sous-anneau. Nous montrons

que sa structure locale est transparente et rappelle celle des extensions

modérément ramifiées de corps locaux. La plus grande partie de cet article

est consacrée a l’étude des anneaux qui sont “modérés” en un sens plus

général que celui habituel. Chemin faisant nous établissons des résultats

de complexité qui prolongent un théorème de Chistov. L’article inclut

également une section qui discute des algorithmes en temps polynomial

pour les groupes abéliens de type fini.

Abstract. – In this paper we study the algorithmic problem of finding the

ring of integers of a given algebraic number field. In practice, this problem

is often considered to be well-solved, but theoretical results indicate that it

is intractable for number fields that are defined by equations with very large

coefficients. Such fields occur in the number field sieve algorithm for factor-

ing integers. Applying a variant of a standard algorithm for finding rings of

integers, one finds a subring of the number field that one may view as the
“best guess” one has for the ring of integers. This best guess is probably

often correct. Our main concern is what can be proved about this subring.

We show that it has a particularly transparent local structure, which is

reminiscent of the structure of tamely ramified extensions of local fields. A

major portion of the paper is devoted to the study of rings that are “tame”

in our more general sense. As a byproduct, we prove complexity results that

elaborate upon a result of Chistov. The paper also includes a section that

discusses polynomial time algorithms related to finitely generated abelian

groups.
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1. Introduction

In this paper we are concerned with the following problem from algorith-
mic algebraic number theory: given an algebraic number field K, determine
its ring of integers O. Paradoxically, this problem is in practice considered
well-solved (cf. [7, Chapter 6] and 7.2 below), whereas a result of Chistov [6]
(Theorem 1.3 below) suggests that from a theoretical perspective the prob-
lem is intractable. The apparent contradiction is easy to resolve. Namely,
all computational experience so far is limited to “small” number fields K,
such as number fields that are given as K = Q[X]/fQ[X], where Q is the
field of rational numbers and f is an irreducible polynomial of small de-
gree with small integer coefficients. The algorithms that are used for small
fields will not always work when they are applied to “large” number fields.
Large number fields are already making their appearance in applications of
algebraic number theory (see [14]), and the determination of their rings of
integers is generally avoided (see [5; 16, 9.4; 9]). The results of the present
paper are mainly theoretically inspired, but they may become practically
relevant if one wishes to do computations in large number fields.

In accordance with Chistov’s result, we shall see that there is currently
not much hope to find a good algorithm for the problem of constructing
rings of integers. This is true if “good” is taken to mean “running in
polynomial time”, and it is equally true if, less formally, it is taken to mean
“practically usable, also in hard cases”. The same applies to the problem of
recognizing rings of integers, i. e., the problem of deciding whether a given
subring of a given algebraic number field K is equal to O.

To appreciate the central difficulty it suffices to look at quadratic fields.
If m is an integer that is not a square, then determining the ring of integers
of Q(

√
m) is equivalent to finding the largest square divisor of m. The

latter problem is currently considered infeasible. Likewise, the problem
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of recognizing the ring of integers of a quadratic field is equivalent to the
problem of recognizing squarefree integers, which is considered infeasible as
well.

In the present paper we obtain some positive results. We shall prove
that, even though O may be hard to determine, one can at least construct
a subring B of K that comes “close” to O, that is perhaps even likely to
be equal to O, that in any case has some of the good properties of O, and
that in computational applications of algebraic number theory can probably
play the role of O. Before we state our main result we give an informal
outline of our approach.

Chistov [6] showed that the problem of determining the ring of inte-
gers of a given number field is polynomially equivalent to the problem of
determining the largest squarefree divisor of a given positive integer (see
Theorem 1.3 below). For the latter problem no good algorithm is known
(see Section 7). However, there is a näıve approach that often works. It is
based on the observation that positive integers with a large repeated prime
factor are scarce: for most numbers it is true that all repeated prime fac-
tors are small and therefore easy to find. Thus, dividing a given positive
integer d by all of its repeated prime factors that are less than a certain
upper bound b one finds a number that may have a good chance of being
the largest squarefree divisor of d, and that is often the best guess one has.
The success probability of this method depends on b and on the way in
which d was obtained in the first place. It is, of course, easy to construct
numbers d that defeat the algorithm.

One can attempt to determine the ring of integers O of a given number
field K in a similarly näıve manner. One starts from an order in K, i. e., a
subring A of O for which the index 〈O : A〉 of additive groups is finite; for
example, one may take A = Z[α], where α ∈ K is an algebraic integer with
K = Q(α). As we shall see, one can determine O if the largest squarefree
divisor m of the discriminant ∆A of A is known. This result suggests that
one can determine a “best guess” for O by working with the best guess q
that one has for m instead of m itself. If, in the course of the computations,
the hypothesis that q is squarefree is contradicted because an integer a > 1
is found for which a2 divides q, then one simply replaces q by q/a and one
continues as if nothing has happened.

This vague idea can be made perfectly precise. It gives rise to a polyno-
mial time algorithm that, given an order A ⊂ K, produces an order B ⊂ K
containing A as well as a positive integer q. One knows that B = O if q is
squarefree. It will often be considered very likely that q is indeed square-
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free, so that one is inclined to believe that B = O. Our main concern is
what one can prove about B without relying on any unproved assumptions
regarding q. In particular, we shall prove that B equals O if and only if q
is squarefree, and that finding an order in K that properly contains B is
equivalent to finding a square a2 > 1 dividing q.

Our results are derived from a local property of B that we refer to as
tameness at q. Loosely speaking, B is tame at q if B is trying to resemble
a full ring of integers as closely as is possible in view of the fact that q is
not known to be squarefree. Tameness is a strong property, which provides
us with substantial control over the ring. Before we give the definition we
remind the reader of the local structure of full rings of integers.

Let O be the ring of integers of an algebraic number field, let p be a
maximal ideal of O, and let Op be the p-adic completion of O (see [1,
Chapter 10]). Denote by p the unique prime number that belongs to p.
If the ramification index e(p/p) of p over p equals 1, then p is said to be
unramified over p, and in that case Op is a local unramified algebra over
the ring Zp of p-adic integers (see Section 3). Local unramified Zp-algebras
are easy to understand and to classify, and they have a very transparent
structure [25, Section 3-2]; for example, they are, just like Zp itself, principal
ideal domains that have, up to units, only one prime element, namely p. If,
more generally, p does not divide e(p/p), then p is said to be tame over p.
In this case there is a local unramified Zp-algebra T and a unit v of T such

that Op
∼= T [X]/(Xe(p/p) − vp)T [X] = T [(vp)1/e(p/p)] (see [25, Section

3-4]). Conversely, let p be a prime number, let T be a local unramified
Zp-algebra, let v be a unit of T , and let e be a positive integer that is
not divisible by p. Then there is an algebraic number field whose ring of
integers O has a maximal ideal p containing p for which the ring T [(vp)1/e]
is isomorphic to Op, and then e(p/p) = e. In summary, the rings T [(vp)1/e],
which are relatively simple to understand, provide a full description of the
completions of the rings of integers of all algebraic number fields at all tame
maximal ideals.

In the wild case, in which p does divide e(p/p), the structure of Op

is somewhat more complicated, but there is fortunately no need for us to
consider it: it occurs only if p is small, and small primes can be taken care
of directly.

Imitating the description above of Op we make the following definition.
Let B be an order in a number field, and let q be a positive integer. We call
B tame at q if for every prime number p dividing q and every maximal ideal
p of B containing p there exist a local unramified Zp-algebra T , an integer e
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that is not divisible by p, and a unit u of T such that the p-adic completion
Bp of B is, as a Zp-algebra, isomorphic to T [X]/(Xe−uq)T [X] (see Section
4). If q is squarefree then p divides q only once; in that case uq = vp for
some unit v of T , and we are back at the ring T [(vp)1/e] considered above.
However, if p2 divides q then T [X]/(Xe − uq)T [X] occurs as a ring Op as
above only in the trivial case that e = 1 (cf. 3.5).

One of our main results now reads as follows.

Theorem 1.1. There is a deterministic polynomial time algorithm that,

given a number field K and an order A in K, determines an order B in K
containing A and a positive integer q, such that B is tame at q and such

that the prime numbers dividing 〈O : B〉 are the same as the repeated prime

divisors of q; here O denotes the ring of integers of K.

This theorem is proved in Section 6, along with the other theorems stated
in this introduction. The algorithms referred to in our theorems will be
explicitly exhibited. Clearly, the ring B in Theorem 1.1 equals O if and
only if q is squarefree. Generally we shall see that exhibiting a square a2 > 1
dividing q is, under polynomial transformations, equivalent to finding an
order in K that strictly contains B (see Theorem 6.9).

Finding rings of integers is customarily viewed as a local problem, in the
sense that it suffices to do it prime-by-prime. Algorithmically, however, the
bottleneck is of a global nature: how to find the prime numbers that one
needs to look at? Once these are known, the problem admits a solution.
This is expressed in our next result. If m is an integer, then an order A in
K is said to be maximal at m if gcd(m, 〈O : A〉) = 1.

Theorem 1.2. There is a polynomial time algorithm that, given an alge-

braic number field K, an order A in K, and a squarefree positive integer

m, determines an order B in K containing A that is maximal at m.

From 1.2 we see in particular that if m is prime one can find, in polynomial
time, an order in K that is maximal at m. If m is taken to be the product
of the primes p for which p2 divides the discriminant of A, then the order
B in Theorem 1.2 equals O.

We next formulate a few complexity results of purely theoretical interest.

Theorem 1.3. Under polynomial transformations, the following two prob-

lems are equivalent:

(a) given an algebraic number field K, find the ring of algebraic integers

of K;
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(b) given a positive integer d, find the largest squarefree divisor of d.

Theorem 1.3 represents a slight improvement over a theorem of Chistov
[6], as explained in 6.11. We shall prove that the corresponding recognition
problems are also equivalent (Theorem 6.12).

Suppose that an order A in an algebraic number field is given. In the
proof of Theorem 1.3 we shall see that, given the largest squarefree divisor
of the discriminant ∆A of A, one can find the ring of integers O of K in
polynomial time. In 6.13 we argue that it is hard to go in the opposite
direction: if given O one can easily find the largest squarefree divisor of
∆A, then problem 1.3(b) is easy as well. It is possible, however, to compute
the largest square divisor of ∆A quickly from O; again it is hard to go in
the opposite direction (see 6.14).

If the ring of integers of a number field K is known, then the discriminant
of K is easy to compute. One may wonder whether, conversely, it is easy
to compute the ring of integers of K from the discriminant of K. In 6.10
we shall see that this is currently not the case. However, we do have the
following result.

Theorem 1.4. There are polynomial time algorithms that given an alge-

braic number field K and one of (a), (b), determine the other:

(a) the ring of algebraic integers of K;

(b) the largest squarefree divisor of the discriminant of K.

In the body of the paper we work with orders in products of number fields
rather than orders in number fields. This presents no additional difficulty.
One may remark, though, that the case of products of number fields can
in polynomial time be reduced to the case of a single number field, by the
main result of [15]. Also, several of our results are local in the sense that
they are directed not at constructing O, but at constructing an order that
is maximal at a given integer m, as in Theorem 1.2.

We have refrained from considering more general base rings than the
ring Z of rational integers. Over some base rings, the problem of finding
maximal orders is, in substance, equivalent to the problem of resolving sin-
gularities of curves (see [24]); but in that context there is a quick algorithm
for problem 1.3(b), so that the issues considered in this paper do not arise.
It may be interesting to consider base rings that are rings of integers of
number fields or, more generally, orders in number fields as produced by
our algorithms.

The contents of this paper are as follows. Sections 2, 3 and 4 contain the
commutative algebra that we need. No algorithms occur in these sections.



Approximating rings of integers in number fields 227

In Section 2 we assemble some well-known results concerning orders. Sec-
tions 3 and 4 are devoted to the notion of tameness, locally in Section 3 and
globally in Section 4. Sections 5 and 6 deal with algorithms. In Section 5
we recall a few basic algorithms for which a convenient reference is lacking;
they mostly concern linear algebra over the rings Z and Z/qZ, where q is
a positive integer. In Section 6 we present the algorithm that underlies the
proof of Theorem 1.1. It is a variant of an algorithm for determining max-
imal orders that is due to Zassenhaus [26; 27]. Section 6 also contains the
proofs of the theorems stated above. In Section 7 we discuss the practical
repercussions of our results.

For our conventions and notations on commutative algebra we refer to
Section 2. For conventions concerning algorithms we refer to Section 5 and
to [18].

2. Orders

In this section we establish the notation and terminology concerning
rings and orders that we shall use, and we recall a few well-known facts.
For background on commutative algebra, see [1].

2.1. Rings and algebras. All rings in this paper are assumed to be
commutative with a unit element. Ring homomorphisms are assumed to
preserve the unit element, and subrings contain the same unit element. By
Z, Q, Fp we denote the ring of integers, the field of rational numbers, and
the field of p elements, respectively, where p is a prime number. The group
of units of a ring R is denoted by R∗. Let R be a ring. An R-module M
is called free if it is isomorphic to the direct sum of a collection of copies
of R; if R 6= 0 then the number of copies needed is uniquely determined by
M , and it is called the rank of M ; if R = 0, then the rank of M is defined
to be 0. If an R-module M is free of finite rank n, then there is a basis of
M over R, i. e., a collection of n elements ω1, ω2, . . . , ωn ∈ M such that
for each x ∈ M there is a unique sequence of n elements r1, r2, . . . , rn ∈ R
such that x =

∑n
i=1 riωi. By an R-algebra we mean a ring A together with

a ring homomorphism R → A. An R-algebra A is said to admit a finite
basis if A is free of finite rank when considered as an R-module. If this is
the case, then the rank of A as an R-module is called the degree of A over
R, notation: [A : R].

2.2. Trace and discriminant. Let R be a ring and let A be an R-algebra
admitting a finite basis ω1, . . . , ωn. For each a ∈ A, the trace Tr a of a
is defined to be the trace of the R-linear map A → A sending x to ax; so
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if aωi =
∑n

j=1 rijωj with rij ∈ R, then Tr a =
∑n

j=1 rjj . The trace Tr
is an R-linear map A → R. In case of possible ambiguity, we may write
TrA or TrA/R instead of Tr. The discriminant ∆A or ∆A/R of A over R

is the determinant of the matrix
(

Tr(ωiωj)
)

1≤i,j≤n
. The discriminant is

well-defined only up to squares of units of R. The R-ideal generated by ∆A

is well-defined, and we shall also denote it by ∆A. If R′ is an R-algebra,
then A′ = A ⊗R R′ is an R′-algebra that also admits a finite basis. The
trace function A′ → R′ is obtained from the trace function A → R by base
extension, and the notation Tr, TrA, TrA/R used for the latter will also be
used for the former. We have ∆A′/R′ = ∆A/RR′ as ideals.

2.3. Orders. Let R be a principal ideal domain, and denote by F the field
of fractions of R. An order over R is an R-algebra A that admits a finite
basis and that satisfies ∆A 6= 0. An order over Z is simply called an order;
equivalently, an order can be defined as a ring without non-zero nilpotent
elements of which the additive group is free of finite rank as an abelian
group. Let A be an order over R, and write AF = A⊗R F . Then AF is, as
an F -algebra, the product of finitely many finite separable field extensions
of F . By a fractional A-ideal we mean a finitely generated A-submodule
of AF that spans AF as a vector space over F . If a and b are fractional
A-ideals, then the index 〈a : b〉 of b in a is defined to be the determinant
of any F -linear map AF → AF that maps a onto b; the index is an element
of F ∗ that is well-defined only up to units of R. If b ⊂ a then the index
belongs to R−{0}, and if in addition R = Z then it is, up to sign, equal to
the usual index. If a, b are fractional A-ideals, then we write a : b = {x ∈
AF : xb ⊂ a}; this is also a fractional A-ideal. A fractional A-ideal a is
called invertible if ab = A for some fractional A-ideal b; if this is true, then
b = A : a, and a = A : b = A : (A : a). An example of a fractional ideal
is the complementary module A† = {x ∈ AF : Tr(xA) ⊂ R}. If (ωi)

n
i=1 is

a basis for A over R, then a basis for A† over R is given by the dual basis

(ω†
i )

n
i=1, which is characterized by Tr(ωiω

†
j ) = 0 or 1 according as i 6= j or

i = j. One has A ⊂ A† and 〈A† : A〉 = ∆A. By an overorder of A we mean
a fractional A-ideal that is a subring of AF . If a is a fractional A-ideal,
then a : a is an overorder of A. Each overorder B of A is an order, and it
satisfies A ⊂ B ⊂ B† ⊂ A† and ∆A = ∆B〈B : A〉2. Among all overorders
of A there is a unique one that is maximal under inclusion; we shall denote
it by O. The ring O is equal to the integral closure of R in AF , and it is
the product of finitely many Dedekind domains. The discriminant of O is
also called the discriminant of AF . We call A maximal if A = O; this is the
case if and only if all fractional A-ideals are invertible. If m ∈ R, then the
order A is said to be maximal at m if gcd(m, 〈O : A〉) = 1; this happens,
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for example, if gcd(m,∆A) = 1, because 〈O : A〉2 divides ∆A. For the same
reason, A itself is maximal if and only if it is maximal at ∆A.

Proposition 2.4. Suppose that R is a principal ideal domain, that m ∈ R
is a non-zero element, and that A is an order over R. Then there are only

finitely many prime ideals p of A containing m, and they are all maximal.

Moreover, if b denotes the intersection of these prime ideals, then we have:

(a) b/mA is the nilradical of the ring A/mA, and there exists a positive

integer t such that b ⊃ mA ⊃ bt;

(b) for each prime ideal p of A containing m one has A : p 6⊂ A;

(c) A is maximal at m if and only if b : b = A.

Proof. Since A admits a finite basis over the principal ideal domain R, the
R-module A/mA is of finite length. Therefore the ring A/mA is an Artin
ring. From [1, Chapter 8] it follows that each prime ideal of A/mA is max-
imal, that there are only finitely many of them, and that their intersection
is nilpotent. This proves the first two assertions of 2.4, as well as (a). To
prove (b), we note that the annihilator of the prime ideal p/mA in the
Artin ring A/mA is non-zero, so mA : p properly contains mA. Therefore
A : p properly contains A. To prove (c), first assume that A is maximal
at m. From 〈O : A〉O ⊂ A and gcd(m, 〈O : A〉) = 1 it follows that for each
maximal ideal pR of R dividing m the localizations ApR and OpR are equal.
Hence the order ApR over RpR is a product of finitely many Dedekind do-
mains, and bpR is a product of non-zero ideals in those Dedekind domains.
Therefore bpR : bpR = ApR. The same equality also holds for maximal
ideals pR of R that do not contain m, since in that case bpR = ApR. It fol-
lows that b : b = A, as required. For the converse, assume that b : b = A.
The maximal ideals p of A containing m are pairwise coprime, so their
intersection b is equal to their product. Hence b : b = A implies that all
those p satisfy p : p = A. We claim that (A : p)p = A for each p, so that
each p is invertible. If not, then from p ⊂ (A : p)p ⊂ A and the maximality
of p one derives that p = (A : p)p, so A : p ⊂ p : p = A, contradicting (b).
From the invertibility of all maximal ideals containing m one deduces by
induction that all A-ideals that contain a power mk of m, with k ≥ 0,
are invertible, and the same is then true for all fractional ideals H with
A ⊂ H ⊂ m−kA for some k ≥ 0. Apply this to H = {x ∈ O : mix ∈ A for
some i ≥ 0}. This is a ring, so HH = H, and the invertibility of H implies
H = A. Therefore 〈O : A〉 is coprime to m. This proves 2.4.

Remark. Every maximal ideal p of an order A over a principal ideal domain
R that is not a field contains a non-zero element of R, by [1, Corollary 5.8].
So 2.4(b) shows that A : p 6⊂ A for each such p.
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Proposition 2.5. Let A be an order over a principal ideal domain, and let

a be a fractional A-ideal. Then a is invertible if and only if the overorder

(A : a) : (A : a) of A equals A, and if and only if both A : (A : a) = a and

a : a = A.

Proof. If a is invertible, then as we saw in 2.3 we have A : (A : a) = a, and
a : a = (a : a)A = (a : a)a(A : a) = a(A : a) = A; also, b = A : a is then
invertible as well, so for the same reason we have (A : a) : (A : a) = A.
Next suppose that a is not invertible. Then the A-ideal (A : a)a is different
from A, so there is a maximal ideal p of A containing (A : a)a. We
have A : p ⊂ A : ((A : a)a) = (A : a) : (A : a), so from 2.4(b) we see that
(A : a) : (A : a) 6= A. This proves that a is invertible if (A : a) : (A : a) = A.
Applying this to b = A : a, we find that b is invertible if A : b = a and
a : a = A, and then its inverse a is invertible as well. This proves 2.5.

2.6. Gorenstein rings. Let A be an order over a principal ideal domain.
We call A a Gorenstein ring if A : (A : a) = a for every ideal a of A
that contains a non-zero-divisor of A or, equivalently, for every fractional
A-ideal a. It is an easy consequence of [3, Theorem (6.3)] that this is, for
orders over principal ideal domains, equivalent to the traditional notion.
Note that A is a Gorenstein ring if it is a maximal order. The converse is
not true (cf. 2.8).

Proposition 2.7. Let A be an order over a principal ideal domain R, with

complementary module A†. Then the following properties are equivalent:

(a) A is a Gorenstein ring;

(b) for any fractional A-ideal a, we have a : a = A if and only if a is

invertible;

(c) A† is invertible.

Proof. From 2.5 and the definition of a Gorenstein ring it is clear that (a)
implies (b). To prove that (b) implies (c), it suffices to prove that A† : A† =
A. Generally, put a† = {x ∈ AF : Tr(xa) ⊂ R} for any fractional A-ideal a,
where AF is as in 2.3. Using dual bases one easily proves that a†† = a, and
from the definitions one sees that a† = A† : a. Applying this to a = A† one
obtains A† : A† = A, as required. Finally, we prove that (c) implies (a).
Suppose that A† is invertible, and let a be a fractional ideal. Applying the
equality a† = A† : a twice we find that a = a†† = A† : (A† : a). We need
to prove that this equals A : (A : a). If b = A : A† denotes the inverse of
A†, then we have A† : a = (A : b) : a = A : (ab) = (A : a) : b = (A : a)A†

and A† : (A† : a) = A† : ((A : a)A†) = (A† : A†) : (A : a) = A : (A : a).
This proves 2.7.
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2.8. Example. Let R be a principal ideal domain and let f ∈ R[X] be a
monic polynomial with non-vanishing discriminant. Then A = R[X]/fR[X]
is an order over R, and if we write α = (X mod f) ∈ A then A† = f ′(α)−1A
(cf. [25, Proposition 3-7-12]). This shows that A† is invertible, so 2.7 im-
plies that A is a Gorenstein ring. It is well-known that A is not necessarily
maximal.

Proposition 2.9. Let R be an Artin ring, let L be a free R-module of

finite rank, and let N ⊂ L be a submodule. Then N is free over R if and

only if L/N is free over R.

Proof. Since each Artin ring is a product of finitely many local Artin rings,
the proof immediately reduces to the case that R is local. It is convenient
to use a few properties of projective modules, which can be found in [12,
Chapter 1, Section 1]. First suppose that L/N is free. Then the exact
sequence 0 → N → L → L/N → 0 splits, so N is projective, and therefore
free. For the converse, assume that N is free. Let m be the maximal
ideal of R, and let a ∈ R a non-zero element annihilated by m. Then
mN = {x ∈ N : ax = 0} = N ∩ {x ∈ L : ax = 0} = N ∩ (mL), so N/mN
is a subspace of the R/m-vector space L/mL. Supplementing an R/m-
basis of N/mN to one for L/mL and applying Nakayama’s lemma one
finds a surjection N ⊕ Rn → L, where n = rank L − rank N . Comparing
the lengths of the two modules we see that it is an isomorphism. Hence
L/N ∼= Rn. This proves 2.9.

3. Tame algebras over the p-adic integers

This section and the next one are devoted to a study of tameness, which
is one of the central notions of this paper.

We let in this section p be a prime number, and we denote by Zp the
ring of p-adic integers. We call a Zp-algebra T local if T is local as a ring
with a residue class field of characteristic p. A local Zp-algebra T is said to
be unramified if T ∼= Zp[Y ]/gZp[Y ] for some monic polynomial g ∈ Zp[Y ]
for which (g mod p) ∈ Fp[Y ] is irreducible. Equivalently, a local unramified
Zp-algebra is the integral closure of Zp in a finite unramified extension of
the field Qp of p-adic numbers (see [25, Section 3-2]).

Throughout this section, q denotes a non-zero element of pZp. Let S
be a Zp-algebra. If S is local, then we call S tame at q if there exist a
local unramified Zp-algebra T , a positive integer e that is not divisible by
p, and a unit u ∈ T ∗, such that S ∼= T [X]/(Xe − uq)T [X] as Zp-algebras.
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In general, we call S tame at q if S is the product of finitely many local
Zp-algebras that are tame at q.

If q is a prime element of Zp then tameness at q is equivalent to the
traditional notion, as expressed by the following result.

Proposition 3.1. Suppose that q ∈ pZp, q /∈ p2Zp, and let S be a Zp-

algebra. Then S is local and tame at q if and only if S is isomorphic to the

integral closure of Zp in a finite tamely ramified field extension of Qp.

Proof. This follows from the description of tamely ramified extensions given
in [25, Sections 3-2, 3-3, 3-4].

We now prove various properties of Zp-algebras that are tame at q.

Proposition 3.2. Let T be a local unramified Zp-algebra, let e be a positive

integer that is not divisible by p, and let u ∈ T ∗ be a unit. Let further

S = T [X]/(Xe − uq)T [X] = T [π], where π = (X mod Xe − uq). Then

S is local and tame at q, and its maximal ideal is generated by p and π.

Further, the residue class field k of S is the same as that of T , and it

satisfies [k : Fp] = [T : Zp] = [S : Zp]/e.

Proof. It is easy to see that the S-ideal pS + πS is maximal and that
its residue class field k is the same as the residue class field T/pT of T .
Conversely, let p ⊂ S be a maximal ideal. Since S is integral over Zp, we
have p∩Zp = pZp (see [1, Corollary 5.8]), so p ∈ p. Also, from πe = uq ∈ p

it follows that π ∈ p. This implies that p = pS + πS, and that S is local.
The fact that S is tame at q follows from the definition of tameness. The
relations between the degrees follow from [T/pT : Zp/pZp] = [T : Zp] and
[S : T ] = e. This proves 3.2.

Proposition 3.3. Let T , e, u, S and π be as in 3.2, and let Tr be the

trace function of S over Zp. Then we have:

(a) the complementary module S† of S over Zp is given by S† = πq−1S,

and S†/S is as a Zp-module isomorphic to the direct sum of [k :
Fp](e − 1) copies of Zp/qZp.

(b) ∆S/Zp
= q[k:Fp](e−1)Zp;

(c) the S-ideal a = {x ∈ S : Tr(xS) ⊂ qZp} satisfies a = πS, ae = qS,

and S/a is as a Zp/qZp-module free of rank [k : Fp];
(d) for each positive integer i the Zp/qZp-module (ai−1 + qS)(ai+1 +

qS)/(ai + qS)2 is free, and its rank equals 0 for i 6= e and [k : Fp]
for i = e.
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Proof. Since T is unramified over Zp, we have T † = T . Combining this
with Tr = TrT ◦TrS/T one finds that S† is also the complementary mod-

ule of S over T . A T -basis of S is given by 1, π, π2, . . . , πe−1. A
straightforward computation shows that the dual basis is given by e−1,
(euq)−1πe−1, (euq)−1πe−2, . . . , (euq)−1π, and this is a basis for πq−1S.
Hence S† = πq−1S, which is the first assertion of (a). Another T -basis for
S† is given by 1, q−1π, q−1π2, . . . , q−1πe−1, from which it follows that
S†/S is, as a T -module, isomorphic to the direct sum of e − 1 copies of
T/qT . Since T/qT is free of rank [k : Fp] over Zp/qZp this implies the last
assertion of (a).

To prove (b) it suffices, by 2.3, to compute the determinant of a Zp-linear
map that maps S† onto S (for example, multiplication by πe−1). This is left
to the reader. For (c) we note that a = (qS†) ∩ S = πS ∩ S = πS, so ae =
πeS = qS and S/a = S/πS ∼= T/qT ; the last isomorphism follows from S =
T [X]/(Xe −uq)T [X]. Finally, from (c) we obtain that ai +qS = πmin{e,i}S
for any positive integer i, so (ai−1 + qS)(ai+1 + qS)/(ai + qS)2 = 0 if i 6= e
and (ae−1 + qS)(ae+1 + qS)/(ae + qS)2 = π2e−1S/π2eS ∼= S/πS = S/a,
which implies (d). This proves 3.3.

3.4. Remark. Let S be a local Zp-algebra that is tame at q, and let k be
its residue class field. We shall call [k : Fp] the residue class field degree
of S over Zp. From 3.2 it follows that T and e are uniquely determined
by S. Namely, T is, as a local unramified Zp-algebra, determined by its
residue class field, which is k. Using Hensel’s lemma one can show that T
is even uniquely determined as a subring of S (cf. the construction of T
in the proof of 3.7). Next, e is determined by e = [S : Zp]/[k : Fp]. We
shall call e the ramification index of S over Zp. If e > 1, then from 3.3(a)
it follows that the ideal qZp is also uniquely determined by S. Hence a
local Zp-algebra that is not unramified cannot be tame at two values of q
that are not divisible by the same power of p. From 3.3(c) one can deduce
that, for e > 1, not only the ideal qZp but also the set uqT ∗e is uniquely
determined by S. Conversely, S is clearly determined by T , e and uqT ∗e.

Proposition 3.5. Let the notation be as in 3.2, and let the positive integer

g be such that qZp = pgZp. Denote by S̃ the integral closure of S in

S ⊗Zp
Qp. Then we have S̃ =

∑e−1
i=0 Tπip−[gi/e], and qp−1S̃ ⊂ S. Further,

S̃ is equal to S if and only if e = 1 or q /∈ p2Zp. We have ∆S̃/Zp
=

p[k:Fp](e−gcd(g,e))Zp, and this equals (1) if and only if g is divisible by e.

Proof. We first prove the expression for S̃ under the added assumption
that T contains a primitive eth root of unity ζ. In that case, there is a
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T -algebra automorphism σ of S with σπ = ζπ, and σ generates a group Γ
of order e. The action of Γ on S extends to an action of Γ on S ⊗Zp

Qp

and on S̃. We consider the structure of S̃ as a module over the group
ring T [Γ]. From e 6≡ 0 mod p it follows that there is an isomorphism of
T -algebras T [Γ] → T e = T ×T × . . .×T that sends σ to (ζi)e−1

i=0 . Therefore

S̃ is, as a T [Γ]-module, the direct sum of modules S̃i, 0 ≤ i < e, where

S̃i = {x ∈ S̃ : σx = ζix}. We have πi ∈ S̃i, so σ acts as the identity on

π−iS̃i, and therefore π−iS̃i is contained in the field T ⊗Zp
Qp. Because T

is unramified over Zp, any T -submodule of that field is determined by the
integral powers of p that it contains; so it remains to see which powers of p
belong to π−iS̃i. For j ∈ Z, we have pj ∈ π−iS̃i if and only if πipj is integral
over S, if and only if its eth power (uq)ipej is integral over S, if and only

if ej ≥ −gi, if and only if j ≥ −[gi/e]. This shows that π−iS̃i = p−[gi/e]T ,
as required.

Next we prove the expression for S̃ in the general case. From e 6≡ 0 mod p
it follows that there exists a local unramified Zp-algebra T ′ containing T
that contains a primitive eth root of unity. Apply the above to S′ = S⊗T T ′,
and use that S̃ equals the intersection of S⊗Zp

Qp with the integral closure
of S′ in S′ ⊗Zp

Qp. This leads to the desired result.

From [gi/e] < g we see that qp−1S̃ = pg−1S̃ ⊂ S. We have S̃ = S if and
only if [gi/e] = 0 for 0 ≤ i ≤ e − 1, if and only if g(e − 1) < e, if and only
if g = 1 or e = 1. This proves the second statement of 3.5.

The formula for the discriminant follows by an easy computation from
3.3(b) and the formula ∆S̃/Zp

= ∆S/Zp
/〈S̃ : S〉2 from 2.3. The last asser-

tion is obvious. This proves 3.5.

Let now S be a Zp-algebra that is tame at q but that is not necessarily
local. Then S is the product of the localizations Sp of S at its maximal
ideals p, of which there are only finitely many, and each Sp is a local Zp-
algebra that is tame at q. We shall denote the residue class field degree
and the ramification index of Sp over Zp by f(p) and e(p), respectively.

Proposition 3.6. Let S be a Zp-algebra that is tame at q, and put a =

{x ∈ S : Tr(xS) ⊂ qZp}, where Tr is the trace of S over Zp. Denote by S̃
the integral closure of S in S⊗Zp

Qp. Then S/a is free as a Zp/qZp-module,

and we have

(a) ∆S/Zp
= q

P

p
f(p)(e(p)−1)Zp = q[S:Zp]−[S/a:Zp/qZp ]Zp;

(b) for each positive integer i the Zp/qZp-module (ai−1 + qS)(ai+1 +
qS)/(ai + qS)2 is free of rank

∑

p, e(p)=i f(p);
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(c) if a = qS, then ∆S/Zp
= (1) and S̃ = S;

(d) if a 6= qS, then q divides ∆S/Zp
, we have qp−1S̃ ⊂ S, and S̃ equals

S if and only if q /∈ p2Zp;

(e) if e denotes the least common multiple of the numbers e(p), with p

ranging over the maximal ideals of S, then we have ∆S̃/Zp
= (1) if

and only if qZp is the eth power of an ideal of Zp.

Proof. The ideal a is the product of the similarly defined ideals ap of the
rings Sp. By 3.3(c), each of the Zp/qZp-modules Sp/ap is free, so the same
is true for S/a. To prove (a), we may likewise assume that S is local, in
which case it suffices to apply 3.3(b), 3.2, and 3.3(c). In the same way (b)
follows from 3.3(d). If a = qS, then we have [S : Zp]− [S/a : Zp/qZp] = 0,
which implies the first statement of (c); the second follows by 2.3. Next
suppose that a 6= qS. Then we have [S : Zp] − [S/a : Zp/qZp] > 0,
which implies the first statement of (d). Also, for at least one p we have
[Sp : Zp] − [Sp/ap : Zp/qZp] > 0, which means that ep > 1. Since S is
integrally closed in S ⊗Zp

Qp if and only if each Sp is integrally closed in

Sp ⊗Zp
Qp, it now follows from 3.5 that this is also equivalent to q /∈ p2Zp.

This proves (d). Finally, (e) follows from the last statement of 3.5. This
proves 3.6.

The main result of this section enables us to recognize whether a given Zp-
algebra is tame at q, provided that it has sufficiently small degree over Zp.

Theorem 3.7. Let p be a prime number, and let q ∈ pZp, q 6= 0, where

Zp denotes the ring of p-adic integers. Let further S be a Zp-algebra that

admits a finite basis, with [S : Zp] < p. Put a = {x ∈ S : Tr(xS) ⊂ qZp},
where Tr is the trace of S over Zp. Then S is tame at q if and only if

a : a = S and both a/qS and (S : a)/S are free as Zp/qZp-modules.

Proof. We first remark that by 2.9, applied to R = Zp/qZp, L = S/qS, and
N = a/qS, the Zp/qZp-module a/qS is free if and only if S/a is. Hence we
may replace a/qS by S/a in the statement of Theorem 3.7.

For the proof of the “only if” part we may assume that S is not only
tame at q but also local, as in the proof of 3.6. Then by 3.3(c) we have
a = πS, so a : a = S. Also, S/a is free over Zp/qZp, by 3.3(c), and the
same applies to (S : a)/S = π−1S/S ∼= S/πS = S/a. This proves the “only
if” part.

Next we prove the “if” part. Assume that a : a = S and that both S/a
and (S : a)/S are free as Zp/qZp-modules. We first reduce to the case that
S is local. Since S is free of finite rank as a Zp-module, we may identify S



236 J. A. Buchmann and H. W. Lenstra, Jr.

with the projective limits of the rings S/pnS, n ≥ 0. From 2.4(a) we know
that there is a positive integer t such that

∏

p p ⊃ pS ⊃ ∏

p pt, where p

ranges over the prime ideals of S containing p. It follows that the system of
ideals (pnS)∞n=1 is cofinal with the system of ideals (

∏

p pn)∞n=1, so that S is

also the projective limit of the rings S/
(
∏

p pn
)

. For each n, the ideals pn

are pairwise coprime, so S/
(
∏

p pn
) ∼=

∏

p S/pn. Hence if we let Sp denote

the projective limit of the rings S/pn, n ≥ 0, then we have an isomorphism
S ∼=

∏

p Sp of Zp-algebras, the product extending over the prime ideals
p of S containing p. In addition, each Sp is local, and it is actually the
localization of S at p. As a Zp-module, each Sp is a direct summand of S,
so it is free, with [Sp : Zp] ≤ [S : Zp] < p. Also, the assumptions on a carry
over to each Sp. Since S is tame if each of the Sp is, we conclude that we
may assume that S is local, which we do for the remainder of the proof.

Denote by p the maximal ideal of S. As above, we have p ⊃ pS ⊃ pt

for some positive integer t, and S is p-adically complete.

We first prove that p = pS + a. From [S : Zp] < p it follows that
Tr 1 = [S : Zp] · 1 /∈ qZp, so 1 /∈ a. This implies that a ⊂ p, so pS + a ⊂ p.
To prove the other inclusion, we first note that the definition of a gives rise
to an exact sequence

0 → a/qS → S/qS → Hom(S/a,Zp/qZp) → 0

of Zp/qZp-modules, the third arrow mapping x mod qS to the map send-
ing y mod a to Tr(xy) mod qZp; this arrow is surjective because S/a and
Hom(S/a,Zp/qZp) are free of the same rank over Zp/qZp and hence have
the same cardinality. Since S/a is Zp/qZp-free, we have a natural isomor-
phism

Hom(S/a,Zp/qZp) ⊗Zp/qZp
Fp

∼= Hom((S/a) ⊗Zp/qZp
Fp,Fp)

= Hom(S/(pS + a),Fp).

Hence if we tensor the exact sequence above with Fp we obtain an exact
sequence

a/(qS + pa) → S/pS → Hom(S/(pS + a),Fp) → 0

of Fp-vector spaces. From this sequence we deduce that p ⊂ pS + a, as
follows. Let x ∈ p. We have pt ⊂ pS, so for any y ∈ S the multiplication-
by-xy map S/pS → S/pS is nilpotent and has therefore trace 0 when
considered as an Fp-linear map. This implies that x mod pS belongs to the
kernel of the map S/pS → Hom(S/(pS + a),Fp). This kernel equals the
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image of a/(qS + pa), so that x ∈ pS + a. This completes the proof of the
equality p = pS + a.

The next step in the proof is the construction of an unramified subring
T of S that has the same residue class field as S. Let k = S/p be the
residue class field of S, and let T be the unique unramified local Zp-algebra
with residue class field T/pT ∼= k. If T ∼= Zp[Y ]/gZp[Y ], then by Hensel’s
lemma g has a zero in S (see [1, Exercise 10.9]); at this point we use that
S is p-adically complete. This gives a Zp-algebra homomorphism T → S,
which makes S into a T -algebra. Let e be the dimension of S/pS as a vector
space over T/pT = k. By Nakayama’s lemma there is a surjective T -linear
map T e → S. We have e · [T : Zp] = e · [k : Fp] = [S/pS : Fp] = [S : Zp], so
comparing Zp-ranks we see that the map T e → S must be injective. This
implies in particular that the map T → S is injective. Hence we may view
T as a subring of S, and S is free of rank e as a T -module.

In the definition of a we may now replace Zp by T , i. e., we have a = {x ∈
S : TrS/T (xS) ⊂ qT}, where TrS/T is the trace map for the extension T ⊂
S. This is an immediate consequence of the formula Tr = TrT/Zp

◦TrS/T

and the fact that qT = {x ∈ T : TrT/Zp
(xT ) ⊂ qZp}; the last equality

holds because T is unramified over Zp.

Any T/qT -module N that is finitely generated and free as a Zp/qZp-
module is also free as a T/qT -module, the rank being [T : Zp] times as
small; one proves this by lifting a k-basis of N/pN to a T/qT -basis of N ,
in the same way as we proved above that S is free as a T -module. Hence
the hypotheses on a now imply that S/a and (S : a)/S are free as T/qT -
modules. The rank of S/a over T/qT can be computed over the residue
class field; using that pS + a = p we find that [S/a : T/qT ] = [S/(pS + a) :
T/pT ] = [k : k] = 1, so the natural map T/qT → S/a is an isomorphism.

Next we prove that a is invertible. From a ⊂ p and 2.4(b) we see that
S : a 6= S, so the module (S : a)/S is non-zero. Also, it is free over
T/qT = S/a, so the annihilator of (S : a)/S in S/a is zero. This means
that S : (S : a) = a. From our hypothesis a : a = S and 2.5 it now follows
that a is invertible, so a(S : a) = S.

We deduce that a is principal. Namely, choose ρ ∈ a with ρ(S : a) 6⊂ p.
Then 1 ∈ ρ(S : a), and multiplying by a we find a ⊂ ρS. Since we also
have ρS ⊂ a this proves that a = ρS.

We claim that S = T [ρ]. To see this, we first note that T [ρ] is local
with maximal ideal p′ = p ∩ T [ρ]. This follows from the fact that S is
integral over T [ρ] and local. Next, from T/qT ∼= S/a = S/ρS we see that
S = T + ρS and therefore S = T [ρ] +p′S. Applying Nakayama’s lemma to
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the T [ρ]-module S we now see that S = T [ρ].

Let f ∈ T [X] be the characteristic polynomial of ρ over T . Then f is
a monic polynomial of degree e, and f(ρ) = 0. Hence there is a surjective
T -algebra homomorphism T [X]/fT [X] → T [ρ] = S sending X mod f to ρ,
and comparing ranks over T we see that this is an isomorphism.

We show that f is an “Eisenstein polynomial at q”, i. e., if we write
f =

∑e
i=0 aiX

e−i then aj ∈ qT for 0 < j < e and ae ∈ qT ∗. We have

T/qT ∼= S/a = T [ρ]/ρT [ρ] ∼= T [X]/(fT [X]+XT [X]) ∼= T/f(0)T = T/aeT,

and therefore ae ∈ qT ∗. For each positive integer i, the element pi =
TrS/T (ρi) of T belongs to TrS/T a and therefore to qT . Hence Newton’s

formulas, which assert that jaj +
∑j

i=1 piaj−i = 0 for 1 ≤ j ≤ e, imply
that jaj ∈ qT for 1 ≤ j ≤ e. From p > [S : Zp] ≥ e it now follows that
aj ∈ qT .

The next step is to modify ρ so that its eth power becomes a unit times q.
From f(ρ) = 0 and the fact that f is Eisenstein at q we see that ρe =
−∑e

i=1 aiρ
e−i ∈ −ae(1+ρS). Hensel’s lemma and the fact that gcd(e, p) =

1 imply that each element of 1 + ρS is an eth power in S∗. Hence there
exists v ∈ S∗ such that π = ρv satisfies πe = −ae, which equals uq for some
u ∈ T ∗.

Since π is, just as ρ, a generator of the ideal a, anything that we proved
for ρ applies to π as well. In particular, there is a monic polynomial h ∈
T [X] of degree e such that there is an isomorphism T [X]/hT [X] ∼= S of
T -algebras that maps X mod h to π. Then Xe − uq is divisible by h,
and comparing degrees and leading coefficients we see that Xe − uq = h.
Therefore S ∼= T [X]/(Xe − uq)T [X], and S is tame at q. This proves
Theorem 3.7.

Remark. With only minor changes, the results of this section and their
proofs can be carried over to the case that Zp and q are replaced by a
one-dimensional noetherian complete local ring R and an element q of the
maximal ideal of R that is not a zero-divisor; in 3.1, 3.5, and 3.6(c, d, e)
it should in addition be required that R is regular, so that it is a complete
discrete valuation ring.

4. Tame orders

Let A be an order and let q be a positive integer. For a prime number
p, we write Ap = A ⊗Z Zp. We call A tame at q if for each prime number
p dividing q the Zp-algebra Ap is tame at q in the sense of the previous
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section. Note that, as in the third paragraph of the proof of Theorem 3.7,
one has Ap

∼=
∏

p Ap, where p ranges over the prime ideals of A containing
p and Ap denotes the completion of A at p; this implies that the present
definition of “tame” coincides with that given in the introduction.

We denote by O the maximal overorder of A, as in 2.3, and by Tr the
trace of A over Z.

Proposition 4.1. Let A be an order and let q be a positive integer with

the property that each prime dividing q exceeds [A : Z]. Put a = {x ∈ A :
Tr(xA) ⊂ qZ}. Suppose that both a/qA and (A : a)/A are free when

considered as Z/qZ-modules, and that a : a = A. Then A is tame at q. In

addition, we have:

(a) if a = qA, then gcd(q,∆A) = 1 and A is maximal at q;
(b) if a 6= qA, then q divides ∆A, and the primes dividing gcd(q, 〈O :

A〉) are those that appear at least twice in q.

Proof. Let p be a prime dividing q. One easily verifies that ap = a ⊗Z Zp

may be identified with the ideal {x ∈ Ap : Tr(xAp) ⊂ qZp} of Ap, and
that Op = O ⊗Z Zp may be identified with the integral closure of Ap in
Ap ⊗Zp

Qp. Proposition 4.1 now follows immediately from Theorem 3.7
and Proposition 3.6, applied to S = Ap.

Proposition 4.2. Let A be an order, let q > 1 be an integer dividing ∆A,

and suppose that A is tame at q. Put a = {x ∈ A : Tr(xA) ⊂ qZ}. Then

there exists an integer h with 2 ≤ h ≤ [A : Z] for which the Z/qZ-module

(ah−1 + qA)(ah+1 + qA)/(ah + qA)2 is non-zero; if for some such h that

module is actually free over Z/qZ, and gcd(q,∆O) = 1, then q is an hth

power.

Proof. Let p be a prime number dividing q, and let ap = a ⊗Z Zp ⊂
Ap. Since p divides ∆A, it divides ∆Ap/Zp

. Applying 3.6(a) we see that
there exists a maximal ideal p of Ap with e(p) > 1. By 3.6(b), we have
(ah−1

p + qAp)(a
h+1
p + qAp)/(a

h
p + qAp)

2 6= 0 for h = e(p), so also (ah−1 +

qA)(ah+1 + qA)/(ah + qA)2 6= 0. This implies the first assertion, since
2 ≤ h ≤ [A : Z].

Next let h be a positive integer for which M = (ah−1 + qA)(ah+1 +
qA)/(ah+qA)2 is a free non-zero Z/qZ-module, and suppose that gcd(q,∆O)
= 1. Let p again be a prime number dividing q. Tensoring M with Zp we
see that the Zp/qZp-module (ah−1

p + qAp)(a
h+1
p + qAp)/(a

h
p + qAp)

2 is free
of positive rank. Thus e(p) = h for some maximal ideal p of Ap, by 3.6(b).
Since p does not divide ∆O/Z, we have ∆Op/Zp

= (1), so by 3.6(e) the ideal
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qZp is the hth power of an ideal of Zp. This means that the number of
factors p in q is divisible by h. Because p is arbitrary, this implies that q is
an hth power. This proves 4.2.

The following result describes a natural class of examples of tame orders.

Proposition 4.3. Let f ∈ Z[X] be a monic polynomial of which the dis-

criminant ∆ is non-zero, and let q be the largest divisor of ∆ that is not

divisible by any prime number p ≤ deg f . Put A = Z[X]/fZ[X] = Z[α],
where α = (X mod f). Then A is tame at q if and only if A/f ′(α)A has

an element of additive order q.

Remark. Note that the order of A/f ′(α)A equals |∆|, which is divisible by q.
The proposition asserts that A is tame at q if and only if the exponent of
A/f ′(α)A is divisible by q as well. This condition is satisfied, for example,
if A/f ′(α)A ∼= Z/∆Z.

Proof. Let p be a prime number dividing q, and put Ap = A ⊗Z Zp. As
we saw in 2.8, the complementary module A†

p of Ap over Zp is given by

A†
p = f ′(α)−1Ap, and the order of A†

p/Ap equals that of Zp/qZp. Assume

now first that A is tame at q. Then by 3.3(a) the Zp/qZp-module A†
p/Ap is

free, and the rank must be 1. It follows that we have Ap/f
′(α)Ap

∼= Zp/qZp.
Since this is true for each prime number p dividing q one concludes that
A/f ′(α)A contains an element of order q. This proves the “only if” part.
For the “if” part, assume that A/f ′(α)A contains an element of order q.
Then we have A†

p/Ap
∼= Ap/f

′(α)Ap
∼= Zp/qZp. Hence the ideal ap = {x ∈

Ap : Tr(xAp) ⊂ qZp} is given by ap = (qA†
p) ∩ Ap = qA†

p = qf ′(α)−1Ap.

Then we have ap/qAp = qA†
p/qAp

∼= A†
p/Ap

∼= Zp/qZp, which is free over
Zp/qZp. Also, because ap is principal we have ap : ap = Ap and (Ap :
ap)/Ap

∼= Ap/ap, which is free over Zp/qZp because of 2.9. From Theorem
3.7 it now follows that the Zp-algebra Ap is tame at q. Therefore A is tame
at q. This proves 4.3.

Proposition 4.4. Let A be an order, and let q and q′ be positive integers

dividing ∆A such that A is tame both at q and at q′. Let p be a prime number

dividing gcd(q, q′). Then the number of factors p in q equals the number of

factors p in q′. Also, the number of factors p dividing the exponent of the

finite abelian group O/A is smaller than the number of factors p in q.

Proof. The order Ap over Zp is tame at q, and because q divides ∆A not
all ramification indices of Ap are equal to 1. Thus by 3.4 the ideal qZp

is uniquely determined by Ap. Therefore we have qZp = q′Zp. The last
assertion follows from 3.6(d). This proves 4.4.
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Suppose that the order A is tame at q. If q is not squarefree, then A is
not necessarily maximal at q, by 4.1(b), but it does have many agreeable
properties that distinguish it from arbitrary orders. These can be deduced
from the results of Section 3. For example, each maximal ideal p of A
containing q satisfies dimA/p p/p2 ≤ 2, which means that locally (and even
globally) it can be generated by two elements (see 3.2). In geometric terms,
this means that all singularities of A are plane singularities. The following
two propositions mention a few additional properties of orders that are tame
at q. Roughly speaking, they express that even though not all fractional
A-ideals need be invertible, at least many of them are (cf. 2.7). Since these
results do not play a logical role in the rest of the paper we only sketch
their proofs.

Proposition 4.5. Let A be an order and let q be a positive integer, and

suppose that A is tame at q. Put a = {x ∈ A : Tr(xA) ⊂ qZ}, where

Tr denotes the trace of A over Z. Then all fractional A-ideals that one

can obtain from A, a and qA by applying the operations +, ∩, ·, :, (− ∩
Q) ·A a finite number of times are invertible, and these ideals form, under

multiplication, a finitely generated free abelian group.

Proof. In the situation of Proposition 3.3—with Z and A replaced by Zp

and a local Zp-algebra S that is tame at q—the corresponding set of ideals is
equal to the set {πnS : n ∈ Z}, and the assertions are clear. The reduction
of 4.5 to the situation of 3.3 is straightforward. This proves 4.5.

Proposition 4.6. Let A be an order and let q be a positive integer, and

suppose that A is tame at q. Then for each prime number p dividing q the

order Ap over Zp is a Gorenstein ring. If in addition A is maximal at all

prime numbers not dividing q, then A is a Gorenstein ring.

Proof. In the local situation of 3.3 this follows from 2.7 and the fact that
S† is invertible (3.3(a)). The first assertion follows immediately. If A is
maximal at all primes p not dividing q, then Ap is a Gorenstein ring for all p.
From this it follows in a straightforward way that A itself is a Gorenstein
ring. This proves 4.6.

5. Basic algorithms

All algorithms in this section and the next one are deterministic. For a
general discussion of basic notions related to algorithms in algebraic number
theory we refer to [18, Section 2]. In particular, one finds in [18, 2.9] the
definition of the phrase “given an algebraic number field K” that occurs
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in the theorems formulated in the introduction. In the present section we
elaborate upon several points that were only briefly mentioned in [18], and
we provide some of the proofs that were left out in [18].

5.1. Linear algebra (cf. [18, 2.4]). Let q ∈ Z, q > 1. If q is a prime
number, then Z/qZ is a field, and the traditional algorithms from linear
algebra can be used to do computations with vector spaces over Z/qZ. We
shall see that if q is not necessarily prime, then the same algorithms lead
either to a non-trivial divisor q′ of q or to a result that can be interpreted
in terms of free modules over Z/qZ. Here we call a divisor q′ of q non-trivial
if 1 < q′ < q.

As in [18, 2.4], giving a free Z/qZ-module of finite rank means giving its
rank n (in unary). The elements of such a module are encoded as sequences
of n elements of Z/qZ. Homomorphisms between two such modules are
encoded as matrices in the usual way. A free submodule of a free module is
encoded as a sequence of elements of the free module that is a basis for the
submodule. When we write, in this paper, that an algorithm determines a
submodule of a free module, we will always mean that it determines a basis
for that submodule. In particular, if an algorithm determines a submodule,
then that submodule is free.

Proposition 5.2. There is a polynomial time algorithm that, given an in-

teger q > 1 and a homomorphism f from one free Z/qZ-module of finite

rank to another one, either determines a non-trivial divisor q′ of q or de-

termines the kernel of f and the image of f . There is a polynomial time

algorithm that, given an integer q > 1 and two free submodules of a free

Z/qZ-module of finite rank, either determines a non-trivial divisor q′ of q
or determines the sum and the intersection of these submodules.

Proof. An m × n matrix H = (hij) with entries hij ∈ Z/qZ is said to be
row reduced if the following conditions are satisfied: (i) there exists k ≤ m
such that the ith row of H is zero if and only if i > k; (ii) for each i ≤ k,
there exists ji ∈ {1, 2, . . . , n} such that hiji

= 1, hij = 0 for j < ji, and
hi′ji

= 0 for all i′ 6= i; (iii) ji < ji′ whenever 1 ≤ i < i′ ≤ k.

Let H = (hij) be a row-reduced m×n matrix over Z/qZ, and let j1, j2,
. . . , jk ∈ {1, 2, . . . , n} be as above. Then one verifies easily that several
modules associated to H are free. First of all, the row space of H, which is
the submodule of (Z/qZ)n generated by the rows of H, is free of rank k, a
basis being formed by the non-zero rows of H. Secondly, the column space
of H, which is the submodule of (Z/qZ)m generated by the columns of H,
is likewise free of rank k, a basis being formed by the columns with indices
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j1, j2, . . . , jk. Thirdly, the nullspace of H, which equals {x ∈ (Z/qZ)n :
Hx = 0}, is free of rank n − k, and one obtains a basis by taking, for each
j ∈ {1, 2, . . . , n}−{j1, j2, . . . , jk}, the vector whose jith coordinate equals
−hij , for 1 ≤ i ≤ k, whose jth coordinate equals 1, and that is 0 at the
remaining n − k − 1 positions.

It is well-known from elementary textbooks in linear algebra that, if q
is prime, so that Z/qZ is a field, there exists for every m × n matrix H
over Z/qZ an invertible m × m matrix U over Z/qZ such that UH is row
reduced. In addition, given H one can find the row reduced matrix UH by
performing the following operations O(m2) times: (i) interchange two rows;
(ii) divide a non-zero row by its first non-zero entry; (iii) add a multiple of
one row to another one.

If q is not necessarily prime, the same operations can still be performed,
except that (ii) is impossible if the first non-zero entry a mod q that one
wishes to divide by does not have an inverse. In that case the divisor
q′ = gcd(a, q) of q is non-trivial. It follows that there is a polynomial time
algorithm that, given q and an m×n matrix H over Z/qZ, either determines
a non-trivial divisor q′ of q or a row reduced matrix that is obtained from
H by finitely many applications of the three operations above. Clearly, the
matrix that is obtained in the latter case is of the form UH, where U is an
invertible m × m matrix over Z/qZ.

We can now prove 5.2. Let f : (Z/qZ)n → (Z/qZ)m be a homomorphism,
and let it be given by the m × n matrix H. Then the image of f is the
column space of H, and the kernel of f is the nullspace of H. We can
in polynomial time either determine a non-trivial divisor q′ of q or a row-
reduced matrix of the form UH, with U invertible. Assume that we are
in the latter case. As we saw above, we can write down a basis for the
nullspace of UH, and this is the same as the nullspace of H. Further, if
the columns with indices j1, j2, . . . , jk form a basis for the column space
of UH, then the columns of H with the same indices form a basis for the
column space of H.

Determining the sum and intersection of two free submodules V1, V2 of
(Z/qZ)n can be reduced to determining images and kernels, as follows. Let
f :V1 ⊕ V2 → (Z/qZ)n be the map that sends (x1, x2) to x1 + x2. Then
V1 + V2 is equal to the image of f , and V1 ∩ V2 is the isomorphic image of
the kernel of f under the natural projection V1 ⊕V2 → V1. This proves 5.2.

5.3. Hermite normal form. We shall say that an m×n matrix H = (hij)
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with entries hij ∈ Z is in Hermite normal form if the following conditions
are satisfied: (i) there exists k ≤ m such that the ith row of H is zero if and
only if i > k; (ii) for each i ≤ k, there exists ji ∈ {1, 2, . . . , n} such that
hiji

> 0, hij = 0 for j < ji, and 0 ≤ hi′ji
< hiji

for all i′ < i; (iii) ji < ji′

whenever 1 ≤ i < i′ ≤ k. This definition is a little more general than
the one commonly found in the literature (see [10]), so as to accommodate
matrices of rank less than n. For each m × n matrix H over Z there is
a unique matrix of the form UH that is in Hermite normal form, and for
which U is an invertible m×m-matrix over Z (however, U is not necessarily
unique); the matrix UH is called the Hermite normal form of H.

Proposition 5.4. There is a polynomial time algorithm that given an m×
n matrix H = (hij) over Z finds an invertible m × m matrix U over Z for

which UH is in Hermite normal form.

Proof. First suppose that H has rank n. In this case the Hermite normal
form UH can be found in polynomial time by [10, Theorem 2.1] (applied
to the transpose of H), and U can be found in polynomial time as well (see
[10, Section 5, end]). To reduce the general case to the case of rank n, we
let J be the set of those j, 1 ≤ j ≤ n, for which the jth column of H is not
a Q-linear combination of the earlier columns. If J = {j1, j2, . . . , jk} with
j1 < j2 < . . . < jk, then k = rank H, and jl is, for each l ∈ {1, 2, . . . , k},
equal to the smallest value of j for which the matrix formed by columns
j1, . . . , jl−1, j of H has rank l. Since ranks of matrices over Z can be
computed in polynomial time (see [10, Proposition 2.3]), this shows that
J can be determined in polynomial time. The m × k matrix HJ that is
formed by columns j1, . . . , jk of H now has rank k, so by the above we can
find, in polynomial time, the Hermite normal form UHJ of HJ , as well as
the matrix U . It is easy to verify that UH is then also in Hermite normal
form. This proves 5.4.

5.5. Free abelian groups of finite rank (cf. [18, 2.5]). Giving a free
abelian group of finite rank means giving its rank n (in unary). The ele-
ments of such a group are encoded as sequences of n integers, and homo-
morphisms between two such groups are encoded as matrices, in the usual
way. A subgroup of a free abelian group of finite rank is itself free, and
it is encoded by means of a sequence of elements that is a basis for the
subgroup.

Proposition 5.6. There is a polynomial time algorithm for each of the

following problems: given a homomorphism f from one free abelian group

of finite rank to another one, find the kernel of f and the image of f ; given
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two subgroups of a free abelian group of finite rank, find the sum and the

intersection of these subgroups; given a homomorphism f from one free

abelian group of finite rank to another one, and a subgroup L of the latter,

find f−1L.

Proof. Let f :Zm → Zn be a homomorphism, and let it be given by the
transpose of the m× n matrix H. By 5.4, we can find an invertible m×m
matrix U such that UH is in Hermite normal form. Then the non-zero rows
of UH form a basis for the image of f , and if k is equal to the number of
non-zero rows of UH, so that k = rank H, then the last m−k rows of U−1

form a basis for the kernel of f . This implies the assertion on finding the
kernel and image of f . Finding sums and intersections of subgroups can be
reduced to finding kernels and images, as in the proof of 5.2. Finally, let
f :F1 → F2 be a homomorphism, and let L ⊂ F2 be a subgroup. Denote
by g:F1 ⊕ L → F2 the map sending (x, y) to f(x) − y. Then f−1L is the
isomorphic image of the kernel of g under the projection F1⊕L → F1. This
implies the assertion concerning f−1L. This proves 5.6.

5.7. Orders and fractional ideals. As in [18, 2.7 and 2.10], an order A
will be given by its degree n over Z and the multiplication map A ⊗ A →
A. This comes down to specifying a system of n3 integers aijk such that
ωiωj =

∑n
k=1 aijkωk for some basis ω1, ω2, . . . , ωn of A over Z. Note

that one can verify in polynomial time whether or not a given system of
n3 integers aijk encodes an order, by checking the ring axioms and the
non-vanishing of the discriminant ∆A in a straightforward way; here ∆A is
computed directly from its definition (see 2.2). An ideal of an order A will
be specified by means of a basis of the ideal over Z, expressed in terms of
the given basis of A over Z, as was done for subgroups in 5.5; this may for
practical purposes not always be the most efficient representation, but for
theoretical purposes it will suffice. To make the representation of an ideal a
unique, we may require that the given basis consists of the rows of a matrix
in Hermite normal form. In that case all entries of the matrix are bounded
by the index of a in A. This is often useful if an algorithm deals with many
ideals and one wishes to control the growth of the numbers occurring in
the algorithm. A fractional ideal a is given by means of a pair d, b, where
d is a positive integer and b is an ideal of A of finite index; then a = d−1b.
This is unique if we require that d is coprime to the largest integer e for
which b ⊂ eA.

Proposition 5.8. There are polynomial time algorithms that given an

order A and fractional A-ideals a1, a2, determine a1 + a2, a1 · a2, a1 ∩ a2,

and a1 : a2.
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Proof. For sum and intersection this follows directly from Proposition 5.6.
The computation of a1 · a2 is easily reduced to the case that a1, a2 are
contained in A. In that case, a1 · a2 is the image of the multiplication map
a1⊗a2 → A, which can be calculated by Proposition 5.6. The computation
of a1 : a2 can be reduced to the case that a2 ⊃ A ⊃ a1. In that case, we
have a1 : a2 ⊂ A : A = A, which implies that a1 : a2 is equal to the inverse
image of Hom(a2,a1) under the map A → Hom(a2,a2) that sends x ∈ A to
the multiplication-by-x map. This inverse image can, again, be calculated
by Proposition 5.6. This proves 5.8.

5.9. Overorders. Let A be an order, given by integers aijk as above.
Overorders of A and their fractional ideals will be represented as fractional
ideals of A itself. Several algorithms in Section 6 compute many overorders
of A, and for the complexity analysis of these algorithms it is important to
note that the length of the data encoding any overorder B of A is uniformly
bounded by a polynomial function of

∑

i,j,k log(|aijk|+2), i. e., of the length
of the data encoding A itself. This follows from what was said above about
fractional ideals and the fact that the index of A in B divides ∆A.

6. Approximating maximal orders

In this section we prove the results stated in the introduction. We begin
with an auxiliary algorithm that corresponds to the case that the number
m in Theorem 1.2 is a prime number.

Algorithm 6.1. We describe an algorithm that, given an order A and a
prime number p, determines an overorder B of A that is maximal at p. The
algorithm begins by putting B = A. Let t be the least positive integer for
which pt ≥ [A : Z].

Calculate the kernel b of the Fp-linear map B/pB → B/pB that sends

every x ∈ B/pB to xpt

, as well as the inverse image a of b under the natural
map B → B/pB; this can be done by the algorithms of Section 5. Calculate
the overorder B′ = a : a of B (see 5.8). If B′ = B, then the algorithm
stops. If B′ 6= B, then replace B by B′ and iterate. This completes the
description of the algorithm.

Proposition 6.2. Given an order A and a prime number p, Algorithm 6.1
determines in polynomial time the unique overorder B of A that is maximal

at p and for which 〈B : A〉 is a power of p.

Proof. Let B be any overorder of A that is encountered in the algorithm.
Then B/pB is a finite ring containing Fp, and we have [B/pB : Fp] = [B :
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Z] = [A : Z]. Let y ∈ B/pB. Then two of the subspaces

B/pB ⊃ y(B/pB) ⊃ y2(B/pB) ⊃ . . . ⊃ y[A:Z](B/pB) ⊃ y[A:Z]+1(B/pB)

of B/pB must have the same dimension over Fp and are therefore equal.
Hence there exists i, 0 ≤ i ≤ [A : Z], such that yi(B/pB) = yi+1(B/pB),
and this space is then equal to yj(B/pB) for all j ≥ i. In particular, y is

nilpotent if and only if y[A:Z] = 0, and if and only if ypt

= 0. This proves
that an element x of B belongs to a if and only if (x mod pB) belongs
to the nilradical of B/pB. Therefore a is an ideal of B containing pB.
This implies that B ⊂ B′ ⊂ p−1B, so that 〈B′ : B〉 is a power of p. It
follows that either B′ = B or ∆B′ = ∆B/p2s for some positive integer s.
Hence the algorithm goes through at most (log |∆A|)/ log(p2) iterations
before it stops. From Section 5 one sees that each iteration can be done
in polynomial time. Hence the entire algorithm runs in polynomial time.
We also find that 〈B : A〉 is a power of p for each B that occurs in the
algorithm.

Let now B be the final overorder that is obtained. Then we have B =
B′ = a : a, so by 2.4(c) the order B is maximal at p. From gcd(p, 〈O :
B〉) = 1 and the fact that 〈B : A〉 is a power of p it follows that B/A
is the p-primary subgroup of the quotient O/A of additive groups. This
determines B uniquely. This completes the proof of 6.2.

The second auxiliary algorithm corresponds to the case that the number m
in Theorem 1.2 is built up from prime numbers that exceed the degree of
A over Z, but without the squarefree-ness assumption.

Algorithm 6.3. In this algorithm, an order A and an integer q > 1 are
given with the property that each prime divisor p of q satisfies p > [A : Z].
The algorithm determines an overorder B of A and a divisor q′ of q, such
that either q′ is non-trivial or B is well-behaved, as expressed in 6.4. The
algorithm begins by putting B = A.

Let a be the B-ideal {x ∈ B : Tr(xB) ⊂ qZ}, and b = a/qB. Note that
b is the kernel of the map B/qB → Hom(B/qB,Z/qZ) that sends each
(x mod q) ∈ B/qB to the map sending (y mod q) to Tr(xy) mod q. Use
the algorithm of Proposition 5.2 to find a basis of b over Z/qZ; this fails
only if a non-trivial divisor q′ of q is found, in which case the algorithm
stops. If it is found that b = 0, then a = qB, and the algorithm stops,
with q′ = 1. Now suppose that b 6= 0, so that a 6= qB. Determine
the overorder B′ = a : a of B (Proposition 5.8). If B′ 6= B, replace
B by B′ and iterate. Next suppose that B′ = B. Determine B : a,
and attempt to find a basis of (B : a)/B as a Z/qZ-module, using the
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algorithm of Proposition 5.2. If this attempt is not successful, then one
has found a non-trivial divisor q′ of q, and the algorithm stops. If the
attempt is successful, one searches for the smallest integer h > 1 for which
(ah−1 + qB)(ah+1 + qB)/(ah + qB)2 is non-zero (we shall see below that
h exists and is at most [A : Z]). Using the algorithm of Proposition 5.2,
one attempts to find a basis for (ah−1 + qB)(ah+1 + qB)/(ah + qB)2 as a
Z/qZ-module. If this attempt is not successful, then one has found a non-
trivial divisor q′ of q, and the algorithm stops. If the attempt is successful,
one tests whether q is the hth power of an integer; this can be done with
Newton’s method, or simply by means of a bisection. If this is not the case,
then one stops at this point, with q′ = q. If q is an hth power, then one
puts q′ = q1/h, and again the algorithm stops.

Proposition 6.4. Given A and q as in Algorithm 6.3, the method above

determines in polynomial time a pair B, q′ such that 〈B : A〉 divides a

power of q and such that exactly one of (a), (b), (c) is true:

(a) q′ divides q, and 1 < q′ < q;
(b) q′ = 1, the order B is maximal at q, and gcd(q,∆B) = 1;
(c) q′ = q; the order B is tame at q and has discriminant divisible by

q; if O denotes the maximal overorder of A then gcd(q,∆O) > 1,
and the prime numbers dividing gcd(q, 〈O : B〉) are exactly those

that appear at least twice in q; and the order B is maximal at q if

and only if q is squarefree.

Proof. In each iteration of the algorithm, the order B is replaced by a
strictly larger one. This implies, as in the proof of 6.2, that the algorithm
runs in polynomial time. At each step, a is a B-ideal containing q, so
B ⊂ B′ ⊂ q−1B. Hence each index 〈B′ : B〉 divides a power of q, and the
same is then true for the final index 〈B : A〉.

It is clear that the number q′ obtained from the algorithm divides q and
satisfies 1 ≤ q′ ≤ q. Hence if (a) is not satisfied then we have q′ = 1 or
q′ = q.

First suppose that q′ = 1. This means that, when the algorithm ter-
minates, we have a = qB. Then B : a = q−1B, so a/qB and (B : a)/B
are both free as modules over Z/qZ. Also, we have a : a = qB : qB = B.
Hence by 4.1(a) the order B is maximal at q and satisfies gcd(q,∆B) = 1,
so we are in case (b).

Next suppose that q′ = q. Then we have a 6= qB and a : a = B, and the
Z/qZ-modules a/qB = b and (B : a)/B are free. Hence by 4.1 the order
B is tame at q, and by 4.1(b) all assertions of (c) except the one about



Approximating rings of integers in number fields 249

gcd(q,∆O) are true. By 4.2 the integer h that the algorithm is looking
for exists, and it satisfies h ≤ [A : Z]. Also, from q′ = q it follows that
(ah−1 + qB)(ah+1 + qB)/(ah + qB)2 is free as a Z/qZ-module, and that q
is not an hth power. By 4.2 this implies that gcd(q,∆O) > 1. This proves
Proposition 6.4.

An application of Algorithm 6.3 is considered successful if one is in case (b)
or (c). If the algorithm is unsuccessful (case (a)), one is inclined to repeat
the algorithm first with q′ and next with q/q′ in the role of q. However,
in order to keep the logical structure of the resulting algorithm as clear
as possible, it is desirable that once an order B has been made maximal
or tame at q, one does not change it “at q” any more. This leads to the
problem of refining the factorization q = q′ · q/q′ to a factorization into
pairwise coprime factors. For an extensive discussion of this problem we
refer to [2]. In our case the following simple result suffices. We say that an
integer a can be built up from integers c1, . . . , ct if there exist non-negative
integers n1, . . . , nt such that a =

∏t
i=1 cni

i .

Proposition 6.5. There is a polynomial time algorithm that, given two

integers a and b with a > 1, b > 1, computes a collection of pairwise

coprime divisors c1, . . . , ct of ab, such that ci > 1 for each i and such that

each of a and b can be built up from c1, . . . , ct.

Proof. We first describe the algorithm. It works with finite sequences c1,
. . . , cr of positive integers from which a and b can be built up, with the
property that gcd(ci, cj) = 1 whenever |i − j| > 1, and such that there
does not exist an index i < r with ci = ci+1 = 1. At the beginning of
the algorithm the sequence has only the two members a and b. The al-
gorithm proceeds with a given sequence as follows. First it searches for
two successive members d, e of the sequence that are both greater than 1.
If these cannot be found, then the members of the sequence are pairwise
coprime, and the algorithm terminates after deletion of the 1’s in the se-
quence. Next suppose that d, e can be found. Then one uses the Euclidean
algorithm to calculate f = gcd(d, e), and one replaces the terms d, e of the
sequence by d/f , f , e/f (in that order). If this creates two successive 1’s
in the sequence, delete one of them, and do this until no two successive 1’s
remain. Next one iterates the algorithm on the new sequence; it is easy to
see that it satisfies the same conditions as the original one. This completes
the description of the algorithm.

The correctness proof of this algorithm is straightforward. To estimate
the running time we remark that for integers d > 1, e > 1 one can compute
gcd(d, e) in O((log d)(log e)) steps (cf. [11, Exercise 4.5.2.30]). From this it



250 J. A. Buchmann and H. W. Lenstra, Jr.

follows by induction that the running time of the algorithm, when starting
with a sequence c1, . . . , cr, is O

(
∑r−1

i=1 (log(cici+1))
2
)

. For the sequence a,

b this is O((log(ab))2). This proves 6.5.

We now combine the algorithms above into a single algorithm, which
will prove Theorem 1.1.

Algorithm 6.6. In this algorithm, an order A and a positive integer m are
given. The algorithm determines an overorder B of A and a collection Q of
pairwise coprime divisors > 1 of m such that B and Q have the properties
listed in Theorem 6.7. At each stage of the algorithm, one has an overorder
B of A. The algorithm begins by putting B = A. Also, we put m0 = m.

Step 1. For each prime number p ≤ [A : Z] do the following. Test
whether p divides m0; if it does, apply Algorithm 6.1 to B and p, replace B
by the order that one obtains from 6.1, and divide m0 by the largest power
of p that divides it. When all primes p ≤ [A : Z] have been processed, m0 is
equal to the largest divisor of m that is not divisible by any prime number
p with p ≤ [A : Z]. If now m0 = 1 then the algorithm stops at this point,
with Q = ∅.

In each stage of the remaining part of the algorithm one keeps track of
two collections M , Q of pairwise coprime divisors > 1 of m0; the elements
of M are the numbers that need to be processed, and Q consists of the
numbers that have been processed. One begins with M = {m0}, Q = ∅.

Step 2. If the set M is empty, the algorithm stops. Next suppose that
M is non-empty. Choose an element q ∈ M , and apply Algorithm 6.3 to
B and q. Replace B by the order that one obtains from 6.3. Next there
are three cases, depending on the value of the number q′ that is obtained
from 6.3. First suppose that q′ = 1. In this case, remove q from the set M
and iterate Step 2. Next, suppose that q′ = q. Then transfer q from M to
Q, and iterate Step 2. Finally, let it be supposed that 1 < q′ < q. In this
case, apply the algorithm of Proposition 6.5 to q′ and q/q′. This gives rise
to a collection of pairwise coprime divisors c1, . . . , ct of q. Now remove q
from M , add each of c1, . . . , ct to M , and iterate Step 2.

This completes the description of the algorithm.

Theorem 6.7. Given an order A and a positive integer m, Algorithm 6.6
determines in polynomial time an overorder B of A and a set Q of pairwise

coprime divisors q > 1 of m that have the following properties: all primes

dividing 〈B : A〉 divide m; each q ∈ Q divides ∆B; the order B is tame

at each q ∈ Q and maximal at all prime numbers that divide m but not
∏

q∈Q q; if O denotes the maximal overorder of A then the prime numbers
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dividing gcd(m, 〈O : B〉) are exactly those that appear at least twice in some

q ∈ Q, and one has gcd(q,∆O) > 1 for each q ∈ Q; and B is maximal at

m if and only if
∏

q∈Q q is squarefree.

Proof. We first show that Algorithm 6.6 runs in polynomial time. By 5.9,
all orders B that occur in the algorithm are specified by data of length
polynomial in the length of the data specifying A itself, and all numbers
p, q, q′ are bounded by m. From this and 6.2, 6.4, 6.5 it follows that each
time that Algorithm 6.1 or 6.3 or the algorithm of 6.5 is invoked, it runs
in time polynomial in the length of the original data. This implies, first of
all, that Step 1 runs in polynomial time, since there are at most [A : Z]
values of p to consider. To show that Step 2 runs in polynomial time it
suffices to show that the number of iterations is polynomially bounded.
Each iteration calls Algorithm 6.3 once, and this call is either successful
(q′ ∈ {1, q}) or not (1 < q′ < q). If the call is successful, then M is
replaced by M −{q}, which implies that q is coprime to any later value of q
for which Algorithm 6.3 is called. This implies that the number of successful
calls of Algorithm 6.3 is bounded by the number of distinct prime divisors
of m0. To bound the number of unsuccessful calls of Algorithm 6.3, we
consider the quantity n(M) =

∏

q∈M
q

P (q)
, where P (q) denotes the largest

prime divisor of q. Each time that M is changed in the algorithm, n(M)
is replaced by a divisor, and this is a proper divisor when the change is
made after an unsuccessful call of Algorithm 6.3. Therefore the number of
unsuccessful calls of 6.3 is bounded by the total number of prime divisors
of m0, counting multiplicities. Since this is O(log m), this concludes the
proof that the algorithm runs in polynomial time.

Next we prove that the final B and Q have the properties listed in the
theorem. The assertion about 〈B : A〉 is clear from 6.2 and 6.4. Note
that Q consists of those numbers q for which Algorithm 6.3 has been called
successfully in Step 2 with q′ = q. As we have just seen, these numbers q
are pairwise coprime, and they divide m. Fix q ∈ Q, and let B(q) be the
order that was obtained from the corresponding successful call of Algorithm
6.3. Since later calls of 6.3 concern only numbers that are coprime to q, the
first assertion of 6.4 implies that 〈B : B(q)〉 is coprime to q. Also, B(q) has
the properties listed in Proposition 6.4(c), and from gcd(〈B : B(q)〉, q) = 1
it then follows easily that B itself has these properties as well. This implies
the assertions made in the theorem, except those relating to prime numbers
dividing m that do not divide

∏

q∈Q q. Let p be such a prime number. If

p ≤ [A : Z], then in the course of Step 1 an order is obtained that is maximal
at p, by 6.2, and the overorder B of this order is then also maximal at p.
Next let p > [A : Z]. Then p divides m0, so at the beginning of Step 2
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the number p divides a member of M , but at the end it doesn’t, since then
M = ∅. Since the set of primes dividing the elements of M does not change
after an unsuccessful call of 6.3, it must have happened that p divides a
number q for which 6.3 was called successfully; and since p does not divide
∏

q∈Q q, this successful call must have led to q′ = 1. Thus Proposition

6.4(b) implies that it also led to an order that is maximal at p, and the
final B, which is an overorder of this order, is then likewise maximal at p.
This completes the proof of Theorem 6.7.

Corollary 6.8. There is a polynomial time algorithm that, given an order

A and a positive integer m, decides whether or not gcd(m,∆O) = 1, where

O denotes the maximal overorder of A; in addition, if gcd(m,∆O) = 1,
then the algorithm determines an overorder of A that is maximal at m.

Proof. Run Algorithm 6.6 on A and m to obtain B and Q. If Q 6= ∅, then
gcd(m,∆O) > 1, by 6.7. If Q = ∅, then B is maximal at m, by 6.7, so
gcd(m,∆O) = 1 if and only if gcd(m,∆B) = 1. This proves 6.8.

Theorem 6.9. There are polynomial time algorithms that, given an order

A, a positive integer m dividing ∆A such that A is tame at m, and one of

the following, construct the other:

(a) an integer a > 1 for which a2 divides m;

(b) an overorder B 6= A of A for which 〈B : A〉 divides a power of m.

Proof. First suppose that we know an integer a as in (a). Applying Algo-
rithm 6.6 to A and a we find an overorder B of A and a set Q of divisors
of gcd(a,∆B) with the properties listed in Theorem 6.7 (with a in the role
of m). Then B is an overorder of A for which 〈B : A〉 divides a power
of m. We need to prove that B 6= A. To this end, let p be a prime number
dividing a. We distinguish two cases. First suppose that p does not divide
any q ∈ Q. In that case, B is maximal at p, by 6.7, but A is not, by
4.1(b), so B 6= A. Next, suppose that p does divide some q ∈ Q. Then
p divides q and m to different positive powers, so 4.4 shows that A is not
tame at q; but B is tame at q, by 6.7, so B 6= A. This shows that (a) can
be used to construct (b). For the converse, suppose that a ring B as in
(b) is given. Denote by d the exponent of the finite abelian group B/A.
From dZ = Z∩ (A : B) and Section 5 it follows that d can be computed in
polynomial time. From B 6= A we see that d > 1. Proposition 4.4 implies
that d divides m, and that every prime factor of m divides m/d. Therefore
a = gcd(d,m/d) has the properties in (a). This proves 6.9.

Proof of Theorem 1.1. Consider the following algorithm: given an order A
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in a number field K, calculate the discriminant m of A, and apply Algorithm
6.6 to A and m to find an order B in K and a finite set Q of integers; let
q be the product of the elements of Q.

It is obvious that this algorithm runs in polynomial time. From Theorem
6.7 it follows that B, q have the properties stated in 1.1. This proves
Theorem 1.1.

Proof of Theorem 1.2. This is a consequence of Theorem 6.7, since if m is
squarefree then so are all its divisors q ∈ Q.

Proof of Theorem 1.4. Let it first be supposed that the ring of integers O of
K is given, and let d be the exponent of the abelian group O†/O; note that
dZ = Z ∩ (O : O†), so d can be computed in polynomial time. Since the
order of O†/O equals the discriminant ∆ of K, the prime divisors of d are
the same as those of ∆. Also, if p is a prime dividing ∆, and p > [K : Q],
then 3.1 and 3.3(a) (applied to q = p) imply that p occurs only once in d.
Hence if one removes the repeated prime factors ≤ [K : Q] from d one
obtains the largest squarefree divisor of ∆.

Next suppose that the largest squarefree divisor m of the discriminant
∆ of K is given. As in [18, 2.10], one can construct an order A in K.
Using Euclid’s algorithm one readily calculates the largest divisor m1 of ∆A

that is coprime to m. Then gcd(m1,∆) = 1, so by Corollary 6.8 one can
calculate, in polynomial time, an overorder B of A that is maximal at m1.
By Theorem 1.2 one can determine, in polynomial time, an overorder of B
that is maximal at m. The latter order is maximal at ∆A, so it is equal to
the ring of integers of K. This proves 1.4.

6.10. Remark. One may wonder whether there is a polynomial time
algorithm that, given K and the discriminant ∆ of K, determines the ring
of integers O of K. We argue that such an algorithm is currently beyond
reach by showing that it would enable us to factor integers n that are
known to be of the form p2q3, where p, q are distinct prime numbers; no
good algorithm, practically or otherwise, is known for the latter problem.

To prove this, let n be such an integer. To factor n, we may clearly
assume that p and q are odd. Let K = Q(n1/4). This is a fourth degree
number field, and it is a straightforward exercise to show that its discrimi-
nant ∆ is of the form ∆ = −4hn (cf. 3.5), where h is a positive integer that
by Theorem 1.2 (with m = 2) can be computed in polynomial time. Thus,
we can compute ∆. By hypothesis, we can compute O from ∆ in polyno-
mial time, so by Theorem 1.4 we can now determine the largest squarefree
divisor 2pq of ∆ as well. This obviously enables us to factor n completely,
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which finishes the proof.

Proof of Theorem 1.3. We first reduce (a) to (b). Given an algebraic
number field K, one can in polynomial time construct an order A in K (see
[18, 2.10]). If the algorithm of Theorem 1.2 is applied with m equal to the
largest squarefree divisor of ∆A, then the overorder B of A determined by
the algorithm is maximal at ∆A and therefore equal to O. Hence O can be
determined in polynomial time if m is known. This shows that (a) can be
reduced to (b).

For the opposite reduction, let d be the positive integer of which the
largest squarefree divisor is to be found. Determine the least positive integer
n for which (n+1)n > d, and the least prime number l not dividing d. Note
that both n and l are O(1 + log d), and that they can be found by a direct
search. Let d0 be the largest divisor of d that is free of prime factors ≤ n.
Since we can deal with the small prime factors directly, it will suffice to
determine the largest squarefree divisor of d0. By Eisenstein’s criterion,
Xn − d0l is irreducible, so K = Q((d0l)

1/n) is an algebraic number field of
degree n. We claim that from the ring of algebraic integers O of K one can
compute, in polynomial time, the largest squarefree divisor of d0. Namely,
there is no prime number p dividing d0 with the property that the number
of factors p in d0 is divisible by n; this follows from (n + 1)n > d0 and the
fact that all primes dividing d0 are at least n + 1. By 3.5, this implies that
each prime factor p of d0 divides ∆O. Hence if we use 1.4 to compute the
largest squarefree divisor d1 of ∆O, then the largest squarefree divisor of
d0 is given by gcd(d1, d0). This proves 1.3.

6.11. Remark. Chistov’s reduction of 1.3(b) to 1.3(a) makes use of

a sequence of number fields of the form K = Q(
√

b), where b divides d
(see [6]). His reduction is, in the language of [8], a “Turing reduction”.
Our proof shows that, for a given d, a single algebraic number field K
suffices. For this reason we used the term “polynomial transformation” in
1.3 (cf. [8]).

Theorem 6.12. Under polynomial transformations, the following two prob-

lems are equivalent:

(a) given an algebraic number field K and a subring A of the ring of

integers O of K, decide whether A is equal to O;

(b) given a positive integer d, decide whether d is squarefree.

Proof. We first reduce (a) to (b). Applying the algorithm of Theorem 1.1 to
the order A, we find in polynomial time an overorder B of A and a positive
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integer q. If B 6= A, then clearly A is not maximal. If B = A, then A is
maximal if and only if q is squarefree, by Theorem 1.1. This shows that
(a) can be reduced to (b). For the opposite reduction, let d be a positive
integer. If d ≡ 0 mod 4, then d is not squarefree. If d ≡ 1 or 2 mod 4, then d
is squarefree if and only if the order A = Z[

√
−d] equals the ring of algebraic

integers of the algebraic number field K = Q(
√
−d). If d ≡ 3 mod 4, then

d is squarefree if and only if the order A = Z[(1 +
√
−d)/2] equals the ring

of algebraic integers of K = Q(
√
−d). This shows that (b) can be reduced

to (a) and concludes the proof of Theorem 6.12.

6.13. Remark. Suppose that an order A in an algebraic number field K
is given. As we saw in the proof of 1.3, we can compute the ring of integers
O of K in polynomial time if the largest squarefree divisor m of ∆A is
known. However, computing m from O is currently intractable. Namely,
suppose we had a good algorithm to do this; applying it to A = Z[d

√
−1],

which has ∆A = −4d2 and O = Z[
√
−1], we would then easily find the

largest squarefree divisor of an arbitrary positive integer d, for which no
good algorithm is known.

6.14. Remark. Suppose, again, that an order A in an algebraic number
field K is given. Then from O one can compute, in polynomial time, the
largest square dividing ∆A. This is a fairly straightforward consequence of
1.4 and the fact that ∆A/∆O is a square. However, computing O from the
largest square dividing ∆A is currently intractable. Namely, suppose we
had a good algorithm to do this. Let d be an integer that is not divisible
by 3 and that is not a cube. The order A = Z[d1/3] has ∆A = −27d2, and
the largest square dividing ∆A is (3d)2. Thus the algorithm could be used
to find O. Since A is tame at d we have gcd(d, 〈O : A〉) = 1 if and only if d
is squarefree. This would provide an easy squarefreeness test for d, which
is not known to exist.

7. Practical considerations

7.1. Finding largest squarefree divisors. Theorem 1.3 expresses that
finding the ring of integers of a given algebraic number field is essentially
equally hard as finding the largest squarefree divisor of a given positive
integer. In [13] one finds a discussion of complexity results concerning the
latter question. We make here a few remarks that are mostly of a practical
nature.

The problem of determining the largest squarefree divisor a of a given
positive integer m is a very hard one, and the best methods that are known
for its solution are derived from methods for factoring m. When applying
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factoring methods to this problem, one has to keep in mind that in order to
determine a it suffices to know all prime divisors of m up to the cube root
of m, rather than up to its square root. Namely, let m = n ·∏p pt(p), where

p ranges over the primes ≤ m1/3 dividing m, and n has no prime factor
≤ m1/3; then a = n′ · ∏p p, where n′ =

√
n if n is a square and n′ = n

otherwise. This leads to the following complexity bounds for the problem
of finding the largest squarefree divisor of a given positive integer m, for
m → ∞. The best completely proved deterministic algorithm is derived
from the “fast factorials” factoring method of Pollard and Strassen (see
[22, Section 4]), and it runs in time at most m1/6+o(1). The fastest com-
pletely proved probabilistic algorithm is the class group relations method
(see [21]), which runs in expected time Lm[1/2, 1 + o(1)], where Lx[a, b] =
exp

(

b(log x)a(log log x)1−a
)

. The elliptic curve method (see [19]) is conjec-

tured to solve the problem in expected time at most Lm[1/2,
√

2/3+ o(1)],
and the number field sieve (see [5]) in time Lm[1/3, O(1)].

In practice, one would apply a variety of factoring methods to m, with a
preference for methods that are apt at finding small prime factors, such as
the elliptic curve method. For the unfactored part of m one then hopes that
it is squarefree, this hope being based on the fact that a random integer
that has no small prime factors is very likely to be squarefree. It depends,
of course, on the way in which the integer m has been obtained in the first
place whether the latter fact is relevant at all; for example, in our context
one may wonder to which extent discriminants of random polynomials can
be viewed as random integers for this purpose. See also the remarks made
in [16, Section 2].

Any algorithm for finding the largest squarefree divisor of a given positive
integer can clearly also be used for recognizing squarefree integers. There
is not much else that we know about the latter problem. One can prove
that an integer m > 4 is squarefree if there exists a positive integer n with
gcd(n,m) = 1 such that an ≡ 1 mod m for all positive integers a with
a < (log m)2 (cf. [20, Theorem 2]). However, such a value for n does not
exist for each squarefree m; if it does exist it may be hard to find; and once
it has been found it is very likely—though unproved—that it can be used to
factor m completely. For numbers that are not squarefree the situation is
even worse: any numerical evidence that we can think of that would imply
that a specific number m is not squarefree can be used to readily find a
non-trivial square factor of m. As an example, we mention the following. If
A is a Z/mZ-algebra that admits a finite basis and for which ∆A is a unit
(for example, A may be equal to Z/mZ itself), and A contains a nilpotent
element x with x 6= 0, then one can prove that m is not squarefree; and
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indeed there exists a deterministic polynomial time algorithm that, given
such A and x, finds a non-trivial square factor of m.

7.2. Finding the ring of integers. Suppose that one is given an al-
gebraic number field K, and that one wishes to approximate its ring of
integers O. Elaborating upon a procedure sketched in the introduction, we
describe how one might, in principle, proceed in practice. Let A be the
largest order in K that one knows; this is often an order of the form Z[α],
with α ∈ K, but depending on additional information that is available
about K one may know a larger order that is possibly not of this form.
Next, one determines a sequence q1, q2, . . . , qt of positive integers with
the property that

∏t
i=1 qi is divisible by each prime number p for which p2

divides ∆A; in addition, one tries to make
∑t

i=1 qi as small as possible. If
one knows the complete prime factorization of |∆A| one can simply let the
qi be the prime numbers that appear at least twice in ∆A, but in general
one isn’t so lucky. Of course, it is always possible to take t = 1, q1 = |∆A|,
but in many cases one can do better. For example, one can determine the
complementary module A† (see 2.3), write the finite abelian group A†/A

of order |∆A| as
⊕t

i=1 Z/diZ where di+1 divides di for 1 ≤ i < t, and
put qi = di/di+1, where dt+1 = 1. Also, one may profit from non-trivial
factors of ∆A that one happens to know, either from known properties of
K or from attempts to factor |∆A|. In order to try and improve a sequence
q1, q2, . . . , qt, one can apply a factoring algorithm to the qi. Using the
algorithm of 6.5 one can achieve that the qi are pairwise coprime. It is
easy to see that one may also assume that none of the qi is a square or a
higher power of an integer. Let it now be supposed that q1, q2, . . . , qt are
as above, and that any attempt to improve the sequence—i. e., to decrease
∑t

i=1 qi—has failed. Then one applies Algorithm 6.6 successively to all
qi, and one ultimately obtains an overorder B of A as well as a set Q of
pairwise coprime integers q > 1, with each q ∈ Q dividing gcd(qi,∆B) for
some i, such that B is tame at

∏

q∈Q q and maximal at all prime numbers
not dividing that product. This is as close to O as one gets: one can only
hope that B = O or, equivalently, that all q ∈ Q are squarefree; this hope
is fulfilled if all qi are squarefree. In any case, B is a Gorenstein ring, and
many ideals of B are invertible, by 4.5 and 4.6. If it is later discovered that
some q ∈ Q has a non-trivial square factor, then by Theorem 6.9 one can
enlarge B.

There are cases in which the original order A is never enlarged during
the entire procedure. Suppose, for example, that A = Z[α] 6= Z and that
A†/A is cyclic of order |∆A|. Then one can show that ∆A is odd and that it
is not a square. If in fact ∆A has no small prime factors and is not a higher
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power of an integer either, then none of the methods mentioned above is
likely to improve the sequence given by t = 1, q1 = |∆A|. The order A
is tame at q1 (cf. 4.3), and it can be argued that in these circumstances
Algorithm 6.6 is unlikely to enlarge A.

The procedure described above may lead to an order that is not guar-
anteed to be the maximal order. Whether it can nevertheless be used for
the purpose one has in mind clearly depends on what that purpose is. Two
things may happen. The first is, that during any subsequent calculations
that one performs with the order, the hypothesis that it is the maximal
order is never contradicted. In this case, one may be able to show that
the same conclusions can be drawn from these calculations that one could
draw if the order were known to be maximal. For this to be feasible, it is
obviously desirable that much of our theoretical and algorithmic knowledge
of maximal orders be extended to more general orders. This has been done
for orders in quadratic fields (cf. [4; 21]). Orders in general number fields
have been less thoroughly studied (cf. [23; 5, Section 7]).

The second thing that may happen is that during later computations
one does obtain evidence that the order is not maximal. In all situations
known to us in which this can occur such evidence readily yields a strictly
larger order. In this case one can start all over again with the procedure
described above, the role of A now being played by the larger order that
has been found. To give an example, one is certain that the order A is not
maximal if one finds a fractional ideal a that is not invertible. Then one
can compute the order B = (A : a) : (A : a), which by Proposition 2.5 is
strictly larger than A.
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