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APPROXIMATING TAIL AREAS OF PROBABILITY
DISTRIBUTIONS

By ArLAN J. GRoss AND DAviD W. HOSMER, JR.

Medical University of South Carolina
and University of Massachusetts at Amherst

A general method for approximating tail areas is developed through an
extension of the methodology of Andrews. This extension is applied to both
continuous and discrete distributions. Examples of the approximations are
given for the standard normal, ¢, and chi-square distributions in the continuous
case and for the Poisson and binomial distributions in the discrete case. Errors
of the approximations are considered. The generality of the method shown
indicates that extension is possible to other distributions.

1. Introduction. The problem of approximating the tail areas of statistical
distributions has been considered by a number of authors. Blackwell and Hodges
(1959) consider approximating the tail areas of convolutions of distributions.
Wallace (1959) uses the normal distribution to approximate the tail area for the ¢
and chi-square distribution. Peizer and Pratt (1968) and Pratt (1968) generalize the
results of Wallace in the sense of including more distributions that are interrelated.
They consider the binomial, negative binomial, Poisson, Pascal, gamma, and beta
distributions in addition to the chi-square, ¢, and normal distributions. Gideon and
Gurland (1971) use a weighted sum of exponential functions to approximate tail
areas. Their procedure involves solving equations with complex roots. Johnson and
Kotz (1970) discuss tail area approximations in their two-volume work on continu-
ous distributions. Specifically, they consider approximations to tail areas of the
normal distribution, the chi-square distribution and the ¢ distribution in Chapters
13, 17 and 27 respectively. Johnson and Kotz (1969) consider tail area approxima-
tions to the binomial in their volume on discrete distributions. Gray and Lewis
(1971) describe a fairly general method for obtaining tail areas of continuous
distributions. Other authors who have recently considered problems concerning the
inferences on tail areas of distributions include Beran (1975) and Hill (1975).

The method proposed in this paper generalizes and extends the method proposed
by Andrews (1973). The Andrews approximation considers tails of distributions
which “look” exponential. If X is an exponentially distributed random variable
then for x > 0

(L.1) JE(y) dy = —f(x)/f(x),
where f(x) and f'(x) are the density and its first derivative, respectively. In general,
if f(x) is a density function then there exists a function k(x) such that the tail area
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can be written

(1.2) A) &y = k(x)f*(x)/f (),
where k(x) = f'(x)S(x)/f*(x) and S(x) = [Pf(y) dy. Furthermore, as Andrews
points out, if x is sufficiently large and if S(x) is small k(x) should approach a
finite limiting value. In this paper, it is assumed that lim,_,k(x) = — k where
0 < k < . The investigation of k(x) and its derivatives forms the basis of the
proposed general method of approximating tail areas of continuous distributions.
For the case of discrete distributions, suppose that p, = Pr{X = x}, x =
0,1,--- .Now if X follows the geometric distributions, it is not hard to show

(13) S xPm = P2/ BPo
where Ap, = (p, — P.+1)- Suppose that the sum of the tail probabilities 27;_,p,,
“looks” geometric in the sense that

(1.4) SmexPm = d(x)p7/bp.,

where d(x) = (22_,p,)Ap,/p2. 1t is further assumed that lim,_, d(x) = d, 0 <d
< . If x is large and =2_ p,, is small then d(x) should be near its limiting value.
To obtain the approximations successive differences are used as the discrete analog
to derivatives.

2. Approximation results. The proposed approximations are based on the
following assumptions when X is continuous. For all x > x,, x, sufficiently large
and depending on the density function,

(@) f(x) = exp[—a(x)],
(i) a(x) > 0 and has at least four derivatives, which exist for x > x,, and
(iii) lim k(x) = — k, where 0 < k < 0.

X —>00

Before proceeding, it is interesting to note the relationship between Andrews’
(1973) work and the method proposed in this paper. In terms of Andrews’ notation
(1973, page 371) it is easy to see that

(2.1) g(x) = —a'(x),

(22) g'(x) = —a"(x),

and

(2.3) —k =lim_, — a"(x)/ (¢ (x))*

If A(x) denotes the Andrews approximation, then
(24)  A(x) = (a(x)"'e @[lim, _,{a"(x)/ (@(x) + 1}
(1= 1/2(a"(x)/ ((x))? = lim, ., a"(x)/ (a(x))'} ]

Approximations to S(x) considered in this paper (for S(x) small and x large) are
obtained by assuming k'(x) = 0 and hence k”(x) = 0. Noting that k(x) = —
a'(x) expla(x)]f® exp[—a(y)] dy, the approximations S,(x) (based on k'(x) = 0)
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and S,(x) (based on k"”(x) = 0) are, respectively,

2.5 S,(x) = 7™ a'(x) }

(2.5) (x) [ 2(x) + (a0

and

(2.6) S,(x) = e—a(x)[ 2a”"(x) + {a’(x)}2 },
a”(x) + 3a"(x)d'(x) + {a'(x)}’

where a’(x), a”(x) and a’”’(x) are the first three derivatives of a(x), respectively.

The question now arises under what conditions do S,(x) and S,(x) provide
bounds for S(x)? This question is addressed by examining conditions on a(x) and
its first four derivatives. The conditions are obtained by generalizing a method that
appears in Feller (1950, page 131). By rearranging the order of integration and
differentiation it is not hard to show that, for fixed x, S;(x) and S,(x) can be
rewritten as

(2.7) S\(x) = [Pe O gi(»)/ () d]
and '

(2.8) Sy(x) = [Pe™ [ gx(¥)/hy) B ],
where

g(») = h(y) + d(»)a”(y) - 2{a" (¥}
m(y) =[{d(»)+a" ],
g(») = h(y) + 6{a"(»)}’ + a(»)[{¢ ()} + 2a"(»)]

—6a'(y)a’(y)a”(y) - 3{a”(»)}’,
and

h(y) =[a"(») + 38" (»)a(y) + (W]’
y > x. Thus a >sufficient condition for S,(x) to be a lower (upper) bound of S(x) is

if 2{a”(y)}2(<)a(y)a”’(y) (a.e.) for y > x. Similarly for S,(x) to be an upper
(lower) bound of ng) it is sufficient that 6{a”(y)}3

+ad i (){a' (1)) + 2a"(M](<)6d'(y)a"(y)a"(y) + 3{a"(»)}?, (ae) fory >

Two further mild restrictions are that 4(y) # 0 (a.e.), i =1,2,y >

Table 1 is a summary of functions used to obtain S,(x) and S,(x) for the normal,
t, and chi-square distributions. It is easily verified that for the standard normal
distribution and ¢-distribution S,(x) and S,(x) are lower and upper bounds of their
respective S(x) functions for x > 0. For the chi-square distribution S,(x) is a upper
bound if df = 1, otherwise it is a lower bound. S,(x) is an upper bound if df’s > 2
and x > 2df's — 4. If df's = 1, then S,(x) is a lower bound. Table 2 contains the
tail area approximations S,(x) and S,(x) for selected values of x for the standard
normal distribution and selected values of x and df’s for the chi-square and ¢
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TABLE 2
The percent error of the approximations S|(x) and S,(x) for the central chi
square and t distributions and the standard normal distribution (t, df = )
(percent error = 100(Sy(x) — S(x)/S(x)),i =1,2)

t distributions Chi-square distribution
df S(x) Sy(x) Sy(x) Si(x) Sy(x)
0.10 —6.45 * 7.17 —-9.91
0.05 —1.64 * 347 —3.64
1 0.025 —041 * 1.94 —1.63
0.01 -0.07 * 1.03 —0.69
0.005 —0.02 * 0.70 —041
0.10 —-14.79 9.69 —8.09 6.12
0.05 —8.32 4.79 —4.41 2.71
10 0.025 —522 2.74 -2.71 1.41
0.01 -3.16 1.52 —1.60 0.70
0.005 —2.28 1.04 —-1.14 0.44
0.10 —14.86 8.48 —9.98 6.79
0.05 —8.41 4.05 —5.52 3.06
20 0.025 —533 2.26 —-3.42 1.62
0.01 -3.27 1.21 —-2.05 0.81
0.005 —2.40 0.82 —1.48 0.53
0.10 —14.88 7.84 —-11.71 7.19
0.05 —843 3.66 —6.54 3.28
50 0.025 —5.35 2.00 —4.10 1.75
0.01 —3.30 1.05 —2.48 0.89
0.005 —2.43 0.70 —1.81 0.58
0.10 —14.86 7.44
0.05 —8.44 3.42
) 0.025 —5.36 1.84
0.01 —3.30 0.95
0.005 —243 0.62

distributions. In general, one may compute a bound on the percent error of the
approximation as

max(S;(x), Sy(x)) — min(S,(x), S5(x))
min(S,(x), S5(x))

Suppose p, is a discrete distribution whose tail sum is given by (1.4). It is not
hard to show that if p, is a k-modal distribution whose kth mode is M, and if
{Pm+1/Pm) 1is a decreasing sequence with lim,, , (p,+1/Pn) = 0, then
lim,_, , d(x) = 1. (If p, has a finite domain {0, 1, 2, - - - n} (say) the result is still
valid, however, with lim,,_, replacing lim

Analogous to the continuous case approximations to X5 _ . p,, are obtained (for
2 _Pm small and x > M, large) by setting d(x + 1) — d(x) = 0, and subse-
quently, d(x + 2) — 2d(x + 1) + d(x) = 0. The resulting approximations =,; and
T, are, respectively,

X 100.

m—>co')

(2.9) M, = Px ,

1 — Apx p3+l
Ap)c+l pf
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and
(P« + Pxs1)APii2  200p, 4,
2 2
P2 Px+1
(2.10) -
2 Apx+2 2Apx+l Apx
s T2 T
Px+2 Pi+1 Px

It is<not difficult to show that 7, is an upper (lower) bound of 2% _,p,, provided
P ( ;)wyy — 7,41, forall y >x, » =1, 2. For the binomial and Poisson =, and
., are lower and upper bounds, respectively, of 2% _ p,,. Table 3 illustrates the tail
area approximations for selected values of x and the parameters of these two
distributions.

The Andrews (1973) method of approximating tail areas is generalized for
continuous distribution and extended to discrete distributions. The new method
has been applied to the five most commonly tabled distributions, the standard
normal, the central chi-square and ¢, the Poisson and binomial. It is clear that the
principal appeal of this method is its applicability to a wide class of distributions
both continuous and discrete.
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