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Abstract

Computing the edit distance between two genomes under certain operations is a basic problem in the study of

genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on

rearrangements over the last few years. The edit distance under the DCJ model can be easily computed for

genomes without duplicate genes. In this paper, we study the edit distance for genomes with duplicate genes

under a model that includes DCJ operations, insertions and deletions. We prove that computing the edit distance

is equivalent to finding the optimal cycle decomposition of the corresponding adjacency graph, and give an

approximation algorithm with an approximation ratio of 1.5 + Î.

Introduction

The combinatorics and algorithmics of genomic rearran-

gements have been the subject of much research since the

problem was formulated in the 1990s [1]. The advent of

whole-genome sequencing has provided us with masses of

data on which to study genomic rearrangements and has

motivated further work. Genomic rearrangements include

inversions, transpositions, block exchanges, circulariza-

tions, and linearizations, all of which act on a single chro-

mosome, and translocations, fusions, and fissions, which

act on two chromosomes. These operations are all imple-

mented in terms of the single double-cut-and-join (DCJ)

operation [2,3], which has formed the basis for much algo-

rithmic research on rearrangements over the last few years

[4-7]. A DCJ operation makes two cuts in the genome,

either in the same chromosome or in two different chro-

mosomes, producing four cut ends, then rejoins the four

cut ends.

A basic problem in genome rearrangements is to com-

pute the edit distance, i.e., the minimum number of

operations needed to transform one genome into

another. For unichromosomal genomes, Hannenhalli and

Pevzner gave the first polynomial-time algorithm to com-

pute the edit distance under signed inversions [8], which

was later improved to linear time [9]. For multichromo-

somal genomes, the edit distance under the Hannenhalli-

Pevzner model (signed inversions and translocations) has

been studied through a series of papers [8,10-12], culmi-

nating in a fairly complex linear-time algorithm [4];

under DCJ operations, the edit distance can be computed

in linear time in a simple and elegant way [2].

All of the above algorithms for computing edit distances

assume equal gene content and no duplicate genes.

El-Mabrouk [13] first extended the results of Hannenhalli

and Pevzner to compute the edit distance for inversions

and deletions. Chen et al. [14] studied the problem of

computing the inversion distance for genomes with equal

gene content in the presence of duplicate genes–a pro-

blem that comes up in determining orthologies, where

greedy heuristics were used. Yancopoulos et al. [7] pro-

posed some rules on how to incorporate insertions and

deletions into the DCJ model, but no specific algorithms

are given. Braga et al. [15] presented a linear-time algo-

rithm to compute the edit distance for DCJ operations,
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insertions and deletions, but still without duplications.

Sébastien Angibaud et al. [16,17] studied several model-

free measures between genomes with duplicate genes; they

first established a one-to-one correspondence between

genes of both genomes, and then computed the measure

between two genomes without duplicate genes.

In this paper, we focus on the problem of computing

the edit distance between two genomes in the presence

of duplications. We define the edit distance at the adja-

cency set level on a unit-cost model including DCJ

operations, insertions and deletions (duplications are a

special case of insertions). We reduce the problem of

computing such an edit distance to finding the maxi-

mum number of certain cycles in the adjacency graph,

Finally we give a (1.5 + Î)-approximation algorithm.

Edit distance

We represent the genomes using the notations introduced

by Bergeron et al. [2]. Denote each gene g with its two

extremities, the head as gh and the tail as gt. Two consecu-

tive genes a and b can be connected by one adjacency,

which is represented by a pair of extremities; thus adjacen-

cies come in four types: atbt, ahbt, atbh, and ahbh (there is

no order for these two extremities, i.e., ahbt = btah). If

gene g lies at one end of a linear chromosome, then this

end can be represented by a single extremity, gt or gh,

called a telomere. The adjacencies and telomeres of a gen-

ome form a multiset, called the adjacency set.

We define three operations on an adjacency set. The

corresponding operations on the structure of the gen-

ome (relative positions and orientations of genes on

chromosomes) are illustrated on Figure 1.

1. DCJ (double-cut-and-join) [2], which acts on one

or two elements (adjacencies or telomeres) in one of

the following ways: {pq, rs} ® {pr, qs} or {ps, qr}(see

Figure 1(a)); {pq, r} ® {pr, q} or {p, qr}(see Figure 1

(b)); {p, q} ® {pq}or {pq} ® {p, q}(see Figure 1(c)).

2. Insertion, which inserts a single gene (a pair of extre-

mities) ghgt in one of the following ways: {pq} ® {pgt,

ghq} or {pgh, gtq} (see the upper arrow in Figure 1(d));

{p} ® {pgt, gh} or {pgh, gt} (see the upper arrow in Fig-

ure 1(e)); ∅ ® {gtgh} (see the upper arrow in Figure 1

(f)); ∅ ® {gt, gh} (see the upper arrow in Figure 1(g)).

3. Deletion, which deletes a single gene ghgt in one of

the following ways: {pgt, ghq} ® {pq} (see the lower

arrow in Figure 1(d)); {pgt, gh} ® {p} (see the lower

arrow in Figure 1(e)); {gtgh} ® ∅ (see the lower arrow

in Figure 1(f)); {gt, gh} ® ∅ (see the lower arrow in

Figure 1(g)).

The edit distance between two adjacency sets S1 and

S2, denoted as d(S1, S2), is the minimum number of

operations (including DCJ operations, insertions and

deletions) that transform S1 into S2. Here we use a unit-

cost model, in which all operations have the same cost.

Note that the edit distance is defined at the adjacency

set level. For genomes without duplicate genes, an adja-

cency set denotes a unique genomic structure. However,

for genomes with duplicate genes, two genomes with dif-

ferent structures may share the same adjacency set as

illustrated in Figure 2. Thus, d(S1, S2) defined above is a

lower bound for the edit distance between the two geno-

mic structures. Given two adjacency sets S1 and S2 from

two genomes, let Ei be the multiset of extremities col-

lected from all elements in Si, i = 1, 2. We pair extremi-

ties in E1\E2 into ghost adjacencies (named for the similar

ghost genes of [7]) to yield the adjacency set T1; similarly,

we produce T2 from E2\E1. Clearly, to transform S1 into

S2, atleast |T1| deletions and |T2| insertions are needed.

The following theorem shows that these insertions and

deletions are both necessary and sufficient.

Theorem 1. Given two adjacency sets S1 and S2, there

exists an optimal series of operations with exactly |T1|

deletions, exactly |T2| insertions and some DCJ operations

that transforms S1 into S2.

Proof. We prove this theorem by contradiction. Sup-

pose that every optimal series of operations contains

more than |T1| deletions and more than |T2| insertions.

Assume that O1O2 ... Om is an optimal series of opera-

tions that contains a minimum number of insertions

and deletions. Let S0S1S2 ... Sm be the trace of S1 in the

process of transformation, where S0 = S1 and Sm = S2.

Note that for any insertion (or deletion) beyond the |T1|

deletions and |T2| insertions, there must be a matching

deletion (or insertion) to preserve gene content. Thus

every optimal series of operations has at least a pair of

insertion and deletion on the same gene. Without loss

of generality, assume Oi inserts a pair of extremities ghgt
and Oj deletes ghgt (i <j), and operations between Oi and

Oj do not contain insertion or deletion on ghgt. Now we

will build a new series of operations O′
iO

′
i+1 . . . O′

j with-

out the pair of insertion and deletion on ghgt to replace

Oi ... Oj, which produce the trace Si′Si+1′

· · · Sj′ and

satisfy Sj′ = Sj. This process is shown in Figure 3. Denote

the two extremities inserted in Oi as g∗
h and g∗

t to distin-

guish them from other gh and gt. For k = i, ..., j -1, we

will keep the invariant Sk−1′

= (Sk\{pkg∗
h, qkg∗

t }) ∪ {pkqk},

where pk (qk) is the extremity that shares an adjacency

with g∗
h(g∗

t )in Sk. Note that pk or qk might be empty if

g∗
tor g∗

t forms a telomere, or g∗
hg∗

t forms an adjacency in

Sk. Clearly this holds for k = i, since we have both

Si−1′

= Si−1 and Si = (Si−1\{piqi}) ∪ {pig∗
h, qig∗

t }. To make

this invariant hold for k = i + 1, ..., j - 1, our new opera-

tion O′
k−1 will mimic operation Ok as follows: if Ok does

not affect the adjacencies or telomeres containing g∗
h or

g∗
t , then set O′

k−1 = Ok, and the invariant holds; if Ok
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acts on at least one of g∗
h org∗

t , we will build O′
k−1

from Ok by replacing g∗
h(g∗

t )with pk (qk) in Ok. For

example, if Ok is the DCJ operation given by

{pk−1g∗
h, cd} → {pk−1c, g∗

hd}, then O′
k−1 would be {pk-1qk-1,

cd} ® {p k-1c, qk-1d}.

Since Ok does not affect, g∗
t we have q

k = qk-1. Besides, we

have pk = d. Thus we have Sk\{pkg∗
h, qkg∗

t } ∪ {pkqk} = Sk−1′

.

Other types of operations can be expressed similarly.

Recall that Oj is a deletion, i.e., {agh, bgt} ® {ab}. If gh
and gt are the same as g∗

h and, g∗
t then we have Sj−2′

= Sj,

and we can skip O′
j−1 and O′

j in our constructed series. If

gh and gt are different from g∗
h and, g∗

t then we have

{agh,bgt, pj−1g∗
h, qj−1g∗

t } ⊂ Sj−1. We can set O′
j−1 to be {agh,

bgt} ® {ab, ghgt}, and set O′
j to be {pj-1qj-1, ghgt} ® {pj-1gh,

qj-1gt}. We can verify Sj′ = Sj, and our constructed series

contradicts the optimality of O1O2 · · · Om.

Figure 1 The effect of DCJ operations, insertions and deletions on the genomic structure. (a) (b) and (c) represent DCJ operations, (d) (e)

(f) and (g) represent insertion and deletion. In each subfigure, the central part represents operations, and the left part and right part represent

the genomic structures.

Figure 2 Two genomes with different structures share the same adjacency set. Each edge in this figure represents a gene, each node

represents an adjacency.
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Adjacency graph decomposition

Given two adjacency sets S1 and S2 from two genomes,

their corresponding adjacency graph is defined as a

bipartite multigraph, A = {S1 ∪ T2, S2 ∪ T1, E},in which u

Î S1 ∪ T2 and v Î S2 ∪ T1 are linked by one edge if u and

v share one extremity, by two edges if they share two

extremities. Note that S1 ∪ T2 and S2 ∪ T1 have the same

set of extremities; we use n to denote half of the number

of extremities. In the case of genomes with the same

gene content and without duplicate genes, T1 = T2 = ∅,

and each vertex in the adjacency graph has degree 2,

which means that the adjacency graph consists of vertex-

disjoint cycles and paths. We define the length of a cycle

or a path to be the number of edges it contains. Based on

Theorem 1, T1 = T2 = ∅ implies there exists an optimal

solution without insertion and deletion, thus d(S1, S2) is

just the minimum number of DCJ operations needed to

transform S1 into S2. When S1 has been transformed into

S2, the corresponding adjacency graph only consists of

cycles of length 2 and paths of length 1. Since each DCJ

operation can increase the number of cycles at most by 1,

or increase the number of odd-length paths at most by 2,

and we can always find out this kind of operation when

S1 and S2 are different, we have d(S1, S2)= n - c -o/2,

where c is the number of cycles and o is the number of

odd-length paths in the adjacency graph [2].

In the presence of duplicate genes, the adjacency

graph may contain vertices with degree larger than 2, so

that there may be multiple ways of choosing vertex-dis-

joint cycles and paths that cover all vertices as illu-

strated in Figure 4. We say that a cycle (or path) in the

adjacency graph is alternating if no two adjacent edges

in this cycle (or path) share the same extremity. A valid

decomposition of the adjacency graph is a set of vertex-

disjoint alternating cycles and paths that cover all ver-

tices. We say that a cycle of length ℓ is helpful if at

most ℓ/2 - 1 vertices are ghost adjacencies, unhelpful if

at least ℓ/2 vertices are ghost adjacencies. In fact, an

unhelpful cycle has exactly ℓ/2 ghost adjacencies (all in

T1 or all in T2), since adjacencies in T1 and adjacencies

T2 do not have common extremities and thus cannot be

linked in the adjacency graph. Now we show how to

perform DCJ operations, insertions and deletions to

transform S1 into S2 based on a decomposition of the

corresponding adjacency graph.

Lemma 1. Given two adjacency sets S1 and S2, and a

decomposition D of the adjacency graph A = {S1 ∪ T2, S2
∪ T1, E} with c helpful cycles and o odd-length paths, we

can perform n - c - o/2 operations to transform S1 into S2,

among which there are |T1| deletions, |T2| insertions and

n - c - o/2 - |T1|-|T2| DCJ operations.

Proof. We prove this lemma in a constructive way. We

will perform operations under the guidance of the graph

decomposition. The goal is to transform the adjacency

graph into a collection of cycles of length 2 and paths of

length 1 without ghost adjacencies, indicating that S1 has

been transformed into S2. In the following, we will prove

that an unhelpful cycle of length ℓ costs ℓ/2 operations, a

path of even length ℓ costs ℓ/2 operations, a helpful cycle

of length ℓ costs ℓ/2 -1 operations, and a path of odd

length ℓ costs (ℓ - 1)/2 operations. In other words, a help-

ful cycle requires one less operation than an unhelpful

cycle or an even-length path of the same length.

For a helpful cycle of length ℓ with d adjacencies in T1

and i adjacencies in T2, we first perform d deletions guided

by this cycle to reduce the size of the cycle to ℓ - 2d. Then

for each adjacency in T2, we choose one of its non-ghost

neighbors in S1 and perform an insertion to create one

more helpful cycle of length 2. After all adjacencies in T2

are handled, we transform the cycle of length ℓ into one of

length ℓ - 2d - 2i without ghost adjacencies, on which

finally we can perform ℓ/2 - d - i - 1 DCJ operations to

create ℓ/2 - d - i cycles of length 2. An example is shown

in Figure 5(a).

Figure 3 Building a new series of operations to replace OiOi+1 · · · Oj. Oi will be skipped and O′
k will mimic Ok + 1for k = i, i +1, ..., j -2.

Finally, O′
j−1 and Oj will be constructed according to Oj.
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For a unhelpful cycle of length ℓ with ℓ/2 adjacencies

in T1, we can perform ℓ/2 deletions to remove the adja-

cencies in S1. For a unhelpful cycle of length ℓ with ℓ/2

adjacencies in T2, we can first insert a gene as initial

operand, then perform ℓ/2 - 1 insertions to create ℓ/2

cycles of length 2–see Figure 5(b)(d).

For a path with odd length ℓ, we need (ℓ - 1)/2 opera-

tions, and for a path with even length ℓ, we need ℓ/2

operations–see Figure 5(c)(e).

In sum, there are |T1| deletions, |T2| insertions and n

- c - o/2 - |T1| - |T2| DCJ operations.

Lemma 1 states that any decomposition of the adja-

cency graph gives an upper bound on the edit distance.

The following lemma shows that an optimal decomposi-

tion also provides a lower bound.

Lemma 2. d(S1, S2) ≥ n − maxD∈D(cD + oD/2), where

D is the space of all decompositions of A = {S1 ∪ T2, S2
∪ T1, E}, cD and oD is the number of helpful cycles and

odd-length paths in D, respectively.

Proof. Let �P = maxD∈D′′(cD + oD/2) − maxD∈D′(cD + oD/2),

where D′ and D′′ are the space of the decomposition

before and after performing operation P, and P Î {DCJ,

INS, DEL}. By Theorem 1, there exists an optimal series of

operations with exactly |T1| deletions and |T2| insertions.

Summing over all ∆P for these operations in this optimal

solution yields
∑d(S1,S2)

i=1
�P i

= (n − |T1|)−maxD∈D(cD + oD/2) ,

where (n - |T1|) is the sum of the number of helpful cycles

and half of the number of odd-length paths in the optimal

decomposition of the adjacency graph when S1 has been

transformed into S2. Define δDCJ = 1, δINS = 1 and δDEL =

0. In the following, we will prove ∆P ≤ δP, P Î {DCJ, INS,

DEL}, which implies that
∑d(S1,S2)

i=1
�P i

≤ d(S1, S2) − |T1|.

The combination of these two formulas proves this

lemma.

We prove ∆P ≤ δP by contradiction. Let A’ and A” be the

adjacency graphs before and after performing the opera-

tion P. Let s(A’) and s(A”) be the optimal decomposition

of A’ and A”, respectively. Suppose ∆P >δP, namely, (cs
(A”)+ os(A”)/2) - (cs(A′;)+ os(A’)) >δP. Note that P is reversi-

ble; we denote the reversed operation as P̂, and P̂ simulta-

neously transforms s(A”) into a decomposition of A’,

denoted g(A’). Since s(A’) is optimal, we have cs(A’)+ os
(A’)/2 ≥ cg(A’)+ og(A’)/2. Thus, to get the contradiction, we

only need to prove (cs(A”)+ os(A”)/2) - (cg(A’)+ og(A’)/2) ≤

δP. Recall that g(A’) is obtained from s(A”) by performing

operation P̂, and both s(A”) and g(A’) are decompositions,

which includes only vertex-disjoint cycles and paths.

If P is a DCJ operation, then P̂ is still a DCJ operation.

A DCJ operation may merge two cycles into one cycle,

split one cycle into two cycles, merge two paths into

one path, split one path into two paths, merge one path

and one cycle into one path, split one path into one

cycle and one path, rearrange two odd(even)-length

paths into two even(odd) paths or make no change in

the number of cycles and odd-length paths. Among

those possible operations, the following four cases can

reduce the number of helpful cycles or odd-length

paths: (i) merge two helpful cycles into one helpful

cycle; (ii) merge two odd-length paths into one even-

length path; (iii) rearrange two odd-length paths into

two even-length paths; (iv) merge one helpful cycle and

one odd-length path into one odd-length path. For any

of these four cases, we have (cs(A”)+ os(A”)/2) - (cg(A’)+

og(A’)/2) = 1. For other possible DCJ operations, we have

(cs(A”)+ os(A”)/2) - (cg(A’)+ og(A’)/2) ≤ 0.

If P is an insertion, then P̂ is a deletion. Similarly,

among all possible deletions, the following five cases can

reduce the number of helpful cycles or odd-length paths:

(i) merge two helpful cycles into one helpful cycle; (ii)

merge two odd-length paths into one even-length path;

(iii) rearrange two odd-length paths into two even-length

paths; (iv) merge one helpful cycle and one odd-length

path into one odd-length path; (v) change a helpful cycle

into an unhelpful one. For any of these five cases, we

have (cs(A”)+ os(A”)/2) - (cg(A’)+ og(A’)/2) = 1. For other

Figure 4 An example of adjacency graph with duplicate genes. (a) Structures of the two genomes. (b) Adjacency graph. (c) A

decomposition with 2 cycles. (d) A decomposition with only 1 cycle. Diamonds and rectangles represent ghost adjacencies, and circles represent

normal adjacencies.
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possible deletions, we have (cs(A”)+ os(A”)/2) - (cg(A’)+ og
(A’)/2) ≤ 0.

If P is a deletion, then P̂ is an insertion. A insertion

may split one cycle into two cycles, split one path into

two paths, or split one path into one cycle and one

path. All these possible insertions will not reduce the

number of helpful cycles or odd-length paths. Thus, any

deletion will not increase the number of helpful cycles

or the number of odd-length paths, and we have cs(A”)+

os(A”)/2 ≤ cg(A’)+ og(A’)/2. □

Combining Lemma 1 and Lemma 2, we have the fol-

lowing theorem.

Theorem 2. d(S1, S2) = n − maxD∈D(cD + oD/2), where

D is the space of all decompositions of A = {S1 ∪ T2, S2

Figure 5 Examples of performing operations under the guidance of decomposition. In each subfigure, the above part shows the

transformation of the adjacency graph; the below part shows the corresponding change in the genomic structure.
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∪ T1, E}, cD and oD are the numbers of helpful cycles

and odd-length paths in D, respectively.

Approximation algorithm

We design an approximation algorithm by using techni-

ques employed on the problem of BREAKPOINT GRAPH

DECOMPOSITION[5,6,18-20]. The basic idea is to find

the maximum number of vertex-disjoint helpful cycles of

length 4 in the adjacency graph. This problem can be

reduced to the problem of K-SET PACKING problem

with k = 4, for which the best-to-date algorithm has an

approximation ratio of 2 + Î [21,22].

To make use of such algorithm, we must remove telo-

meres and keep only cycles in the adjacency graph. This

can be done by introducing null extremities τ and null

adjacencies ττ, which are different from other extremities

and adjacencies (the same definition is introduced in [7]).

Given two adjacency sets S1 and S2 with 2k1 and 2k2 telo-

meres respectively, we replace each telomere x by the

adjacency xτ. If we additionally have k1 <k2, we must add

(k2 - k1) null adjacencies ττ to S1 in order to balance the

degrees. The corresponding adjacency graph is con-

structed in the same way as the case without null extre-

mities: two adjacencies are linked by one edge if they

share one extremity, by two edges if they share two extre-

mities. Now we prove that this “telomere-removal”

operation does not change d(S1, S2).

Theorem 3. Let S1 and S2 be two adjacency sets and

denote by S′
1 and S′

2 the adjacency sets obtained from S1
and S2 by removing telomeres. Then we can write

d(S1, S2) = d(S′
1, S′

2).

Proof. We first prove d(S1, S2) ≥ d(S′
1, S′

2). Let A = {S1 ∪

T2, S2 ∪ T1, E} be the adjacency graph with respect to S1
and S2 and s(A) be the optimal decomposition of A. Let

A′ = {S′
1 ∪ T2, S′

2 ∪ T1, E} be the adjacency graph with

respect to S′
1 and S′

2 and s(A’) be the optimal decomposi-

tion of A’. Suppose s(A) contains c helpful cycles, o odd-

length paths and e even-length paths, and among these e

even-length paths, e1 of them contain two telomeres in S1
and e2 of them contain two telomeres in S2. Suppose S1
and S2 contains 2k1 and 2k2 telomeres respectively (w.l.o.g.,

assume k1 ≤ k2). Since an odd-length path contains one tel-

omere in each adjacency set while an even-length path

contains two telomeres in one adjacency set, we have o +

2e1 = 2k1 and o + 2e2 = 2k2. We can perform the following

modifications on s(A) to transform it into a decomposition

of A’ (see Figure 6). Nothing needs to be done for cycles.

For odd-length paths, link their two telomeres to form a

helpful cycle; for each even-length path with both telo-

meres in S1, arbitrarily choose one even-length path with

both telomeres in S2 and link these two paths to form a

helpful cycle; for the remaining e2 - e1 even-length paths,

use e2 - e1 = k2 - k1 null adjacencies ττ to transform each

such path into a helpful cycle. Thus, there are c + e2 helpful

Figure 6 One example of the “telomere-removal” and “telomere-recovery” process. Thick circles represent adjacencies containing null

extremities, and thick lines represent edges connecting null extremities.
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cycles in this decomposition of A’, so that the upper bound

on d
(

S′
1, S′

2

)

is (n + k2) - c- e2 = n - c - o/2 = d(S1, S2).

Now we prove d(S1, S2) ≤ d(S′
1, S′

2). Note that s(A’) only
consists of vertex-disjoint cycles, and unhelpful cycles can-

not contain any null extremity. We claim that, for each

helpful cycle in s(A’), there must be no more than two null

extremities τ on each side. Otherwise, we can always

choose two nonadjacent edges that are linked through τ,

exchange four ends of them, and divide this cycle into two

cycles (see Figure 7), contradicting the optimality of s(A’).
Now we transform s(A’) into a decomposition of A by

recovering all removed telomeres (see Figure 6). Each cycle

falls into one of three cases: (a) it contains one xτ adjacency

on each side, then the recovery will yield one odd-length

path; (b) it contains one ττ adjacency on one side, then

the recovery will yield one even-length path; (c) it contains

two xτ-like adjacencies on each side, then the recovery

will yield two even-length paths. In all three cases the value

n - c - o/2 remains unchanged, and after the recovery

we obtain a decomposition of A. Thus we have

d(S1, S2) ≤ d(S′
1, S′

2). □

In summary, based on Theorems 2 and 3, we have sta-

ted the equivalence of the problem of computing the

edit distance and that of finding a valid decomposition

with a maximum number of helpful cycles in an adja-

cency graph without telomeres. The latter problem is

NP-hard by a reduction from the NP-hard problem–

BREAKPOINT GRAPH DECOMPOSITION[23], since

any instance of the BREAKPOINT GRAPH DECOM-

POSITION is indeed an adjacency graph without ghost

adjacencies. Thus, the problem of computing the edit

distance is also NP-hard.

Now we give the approximation algorithm and prove

that its approximation ratio is 1.5 + Î.
Approximation Algorithm

Input: Two adjacency sets S1 and S2 from two genomes

Output: A series of operations to transform S1 into S2.

Step 1 Add null adjacencies to S1 and S2 to obtain S′
1

and S′
2 without telomeres. Build the adjacency graph

A′ = {S′
1 ∪ T2, S′

2 ∪ T1, E}.

Step 2 Collect all helpful cycles of length 4 in A’ as C.

Find a subset S of C in which no two cycles share one

adjacency using the (2 + ε)-approximation algorithm for

the K-SET PACKING problem with k = 4.

Step 3 Remove the adjacencies covered by cycles in S.

Arbitrarily decompose the remaining part of A’ into

cycles, denoting this set as S ′.

Step 4 Remove the null adjacencies of cycles in S ∪ S
′

to obtain a decomposition of A. Transform S1 into S2
according to Lemma 1 guided by these cycles and paths.

The running time of the above algorithm is dominated

by the time complexity of the (2 + ε)-approximation

algorithm for the K-SET PACKING problem with k = 4,

which is O(|C|log41/ε) and |C| = O(n4)[21,22].

Theorem 4. The approximation ratio of the above

algorithm is 1.5 + ε.

Proof. Suppose the optimal decomposition of A’ con-

tain p helpful cycles of length 4 and q longer helpful

cycles. Clearly, we have n ≥ 2p +3q. Based on Theorem

2 and Theorem 3, we know that d(S1, S2) = n - p - q. In

the algorithm, we find at least |S| helpful cycles, which

implies that the number of operations that our algo-

rithm outputs is at most n − |S|. Since S is a (2 + Î)-
approximation solution, we have (2 + ε)|S| ≥ OPT ≥ p,

where OPT is the maximum number of independent

helpful cycles of length 4 in C. The approximation ratio

is thus

r ≤
n − |S|

n − p − q
≤

n −
p

2+ε

n − p − q
≤ 1 +

p + q −
p

2+ε

n − p − q
≤ 1 +

p + q −
p

2+ε

2p − 3q − p − q
≤ 1.5 + ε.

Conclusion

We studied the edit distance problem for two genomes

under a unit-cost model including DCJ operations,

insertions (including duplications) and deletions. We

proved that this problem is equivalent to finding maxi-

mum number of helpful cycles in the adjacency graph

and gave a (1.5 + Î)-approximation algorithm. We made

two main assumptions in this work: single-gene inser-

tions and deletions; and unit cost for DCJ operations,

Figure 7 Two cases of the adjacency graph with more than 2 edges that are linked through τ. Dashed lines might represent more than

one edge.
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insertions and deletions. Both are clearly unrealistic. For

example, large segmental duplications are common in

many mammalian genomes [24], paracentric rearrange-

ments are more common than pericentric ones, at least

in two Drosophila species [25], and short inversions are

more common than long ones, in some prokaryotes and

in the aforementioned Drosophila [26]. These constraints

should be incorporated into our distance computation.

Any additional constraint naturally creates complications,

but we expect that at least a few natural constraints can

be handled within the framework described here.
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