
Discrete Comput Geom (2012) 48:94–127

DOI 10.1007/s00454-012-9402-z

Approximating the Fréchet Distance for Realistic

Curves in Near Linear Time

Anne Driemel · Sariel Har-Peled · Carola Wenk

Received: 1 April 2010 / Revised: 21 December 2011 / Accepted: 26 January 2012 /

Published online: 18 February 2012

© Springer Science+Business Media, LLC 2012

Abstract We present a simple and practical (1 + ε)-approximation algorithm for

the Fréchet distance between two polygonal curves in R
d . To analyze this algorithm

we introduce a new realistic family of curves, c-packed curves, that is closed under

simplification. We believe the notion of c-packed curves to be of independent interest.

We show that our algorithm has near linear running time for c-packed polygonal

curves, and similar results for other input models, such as low-density polygonal

curves.

Keywords Frechet distance · Approximation algorithms · Realistic input models

1 Introduction

Comparing geometric shapes is a task that arises in a wide arena of applications. The

Fréchet distance and its variants have been used, to this end, to compare curves in ap-

plications such as dynamic time-warping [19], speech recognition [21], signature and

The latest full version of this paper is available online [16].

A. Driemel

Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

e-mail: anne@cs.uu.nl

S. Har-Peled (�)

Department of Computer Science, University of Illinois, 201 N. Goodwin Avenue, Urbana,

IL 61801, USA

e-mail: sariel@uiuc.edu

url: http://www.uiuc.edu/~sariel/

C. Wenk

Department of Computer Science, University of Texas at San Antonio, One UTSA Circle,

San Antonio, TX 78249-0667, USA

e-mail: carola@cs.utsa.edu

mailto:anne@cs.uu.nl
mailto:sariel@uiuc.edu
http://www.uiuc.edu/~sariel/
mailto:carola@cs.utsa.edu

Discrete Comput Geom (2012) 48:94–127 95

handwriting recognition [22, 23], matching of time series in databases [20], as well

as geographic applications, such as map-matching of vehicle tracking data [8, 24],

and moving objects analysis [10, 11].

Informally, the Fréchet distance between two curves is the maximum distance a

point on the first curve has to travel as this curve is being continuously deformed

into the second curve, see Sect. 2.2 for the formal definition. Unlike the Hausdorff

distance, which is solely based on nearest neighbor distances between points on the

curves, the Fréchet distance requires continuous and order-preserving assignments of

points and hence is better suited for comparing curves with respect to their intrinsic

structure.

The Fréchet distance between two curves might be arbitrarily larger than their

Hausdorff distance, as demonstrated by the figure below, and as this example shows,

it seems to be a more natural measure of similarity between curves.

Previous Results For two polygonal curves of total complexity n in the plane, their

Fréchet distance can be computed in O(n2 logn) time [3], and their Hausdorff dis-

tance can be computed in O(n logn) time [2]. It has been an open problem to find

a subquadratic algorithm for computing the Fréchet distance for two curves. For the

problem of deciding whether the Fréchet distance between two curves is smaller or

equal a given value a lower bound of Ω(n logn) was given by [9]. Recently, Alt [2]

conjectured that the decision problem may be 3SUM-hard. The only subquadratic

algorithms known are for quite restricted classes of curves such as for closed convex

curves and for κ-bounded curves [4]. For a curve to be κ-bounded means, roughly,

that for any two points on the curve the portion of the curve in between them can-

not be further away from either point than κ/2 times the distance between the two

points. For closed convex curves the Fréchet distance equals the Hausdorff distance

and for κ-bounded curves the Fréchet distance is at most (1 + κ) times the Hausdorff

distance, and hence the O(n logn) algorithm for the Hausdorff distance applies.

Aronov et al. [6] provided a near linear time (1 + ε)-approximation algorithm for

the discrete Fréchet distance, which only considers distances between vertices of the

curves. Their algorithm works for backbone curves, which are used to model protein

backbones in molecular biology. Backbone curves are required to have, roughly, unit

edge length and a minimal distance between any pair of vertices. They use curve sim-

plification to speed up their algorithm. Agarwal et al. [1] studied fast simplification

that preserves the Fréchet distance.

96 Discrete Comput Geom (2012) 48:94–127

The Input Model We introduce a new class of curves, called c-packed curves, for

which we can approximate the Fréchet distance quickly, given that the constant c is

small. Intuitively, the constant c measures how “unrealistic” the input is. We compare

this new input model to previous models such as fatness and low density, as well as

κ-boundedness. These so-called realistic input models are commonly used for the

analysis of problems where the worst case complexity is dominated by degenerate or

contrived configurations which are highly unlikely to occur in practice, see [15] for

an overview.

A curve π is c-packed if the total length of π inside any ball is bounded by c

times the radius of the ball. A κ-bounded curve might have arbitrary length while

maintaining a finite diameter, and as such may not be c-packed, see Sect. 4.3. But

unlike κ-bounded curves, the Fréchet distance between two c-packed curves might

be arbitrarily larger than their Hausdorff distance. Indeed, c-packed curves are con-

siderably more general and a more natural family of curves. For example, a c-packed

curve might self cross and revisit the same location several times, and the class of

c-packed curves is closed under concatenation, none of which is true for κ-bounded

curves. Intuitively, c-packed curves behave reasonably in any resolution.

See the figure below for a few examples of c-packed curves. The boundary of

convex polygons, algebraic curves of bounded maximum degree, the boundary of

(α,β)-covered shapes [17], and the boundary of γ -fat shapes [14] are all c-packed.

Indeed, the boundaries of (α,β)-covered shapes and γ -fat shapes are assumed to

be formed by a constant number of algebraic curves of bounded maximum degree. If

one removes the requirement that a γ -fat curve be of bounded descriptive complexity,

then also fractal curves, like Koch’s snowflake, which can have infinite length within a

bounded area, can be fat [7]. Naturally, these curves cannot be c-packed. Interestingly,

one can show that (α,β)-covered polygons are c-packed even if they have unbounded

complexity, see Appendix A and also the result of Bose et al. [7].

It is easy to verify that c-packed curves are also low density [15], but a low-density

curve might not be c-packed, for any bounded c, see Sect. 4.2. However, the class of

c-packed curves is closed under simplification, see Lemma 4.3, and this is not true

for low-density curves.

Our Results We present a new algorithm for computing a (1 + ε)-approximation

of the Fréchet distance for polygonal curves in R
d . Underlying the algorithm are

several new insights. First, we use the idea of curve simplification to reduce the com-

plexity of the free space diagram, as this simplification results in a contraction of the

corresponding rows or columns in the free space diagram. We introduce the notion

Discrete Comput Geom (2012) 48:94–127 97

Table 1 Summary of new results for computing a (1 + ε)-approximation to the Fréchet distance between

two curves π and σ with n vertices in R
d

Curves type Running time See

c-packed O(cn/ε + cn logn) Theorem 4.5

κ-straight Same as 2κ-packed Lemma 4.16

κ-bounded O
(
(κ/ε)dn + κdn logn

)
Theorem 4.20

O(1)-low density O

(
n2(d−1)/d

ε2
+ n2(d−1)/d logn

)
Theorem 4.14

c-packed & closed O
(
c2n/ε2 + c2n logn

)
Theorem 5.5

of relative free space complexity in Definition 3.3 to capture the complexity of the

free space diagram of two curves, which are simplified to the appropriate resolution.

Surprisingly, without simplification, almost any two curves from natural families of

curves can have a free space diagram for the value realizing the Fréchet distance

that has quadratic complexity (even in the plane). Secondly, we present an efficient

construction algorithm for this reduced size free space diagram that enables us to

solve the decision problem in linear time in the relative free space complexity of the

curves. Thirdly, we prove that monotonicity events are sufficiently close to vertex–

edge events or an approximate distance between two vertices of the curves. Therefore,

the search for the Fréchet distance can be done efficiently without using parametric

search or random sampling, by using approximate distance selection. Carefully com-

bining these insights yields the new algorithm, which has running time near linear in

the relative free space complexity of the input curves.

In the second part of the paper, we analyze the relative free space complexity for

various families of curves. We prove that c-packed curves have linear relative free

space complexity for fixed c and ε. We next prove a subquadratic bound on the rela-

tive complexity of the free space of low-density curves. This relies on a new packing

lemma showing that, if the simplification of a low-density curve is long inside a rel-

atively small area, then the original curve must contain many vertices in the vicinity

of this region. We also prove that the relative free space complexity of κ-bounded

curves is linear for a fixed κ , which leads to an improvement of the result by Alt et

al. [4].

These bounds imply that the approximation algorithm provides fast approximation

for the Fréchet distance for all these types of curves. We also show how to adapt our

algorithm to handle closed curves. The new results are summarized in Table 1.

Organization In Sect. 2, we provide some background on the Fréchet distance and

the notion of the free space diagram. In Sect. 3, we describe the approximation algo-

rithm that uses simplification. To this end, we show in Sect. 3.1 that it suffices to only

compute the reachable parts of the free space diagram and in Sect. 3.2 we present a

fuzzy decider procedure and show how it can be used to make exact decisions dur-

ing a binary search for the Fréchet distance. In Sect. 3.3, we deal with the different

subroutines used in the search for the Fréchet distance and in Sect. 3.4 we give the

resulting general algorithm and analyze its correctness and running time, which is

near linear in the relative free space complexity. In Sect. 4, we bound the relative free

98 Discrete Comput Geom (2012) 48:94–127

space complexity of various families of curves. In particular, in Sect. 4.1, we intro-

duce the notion of c-packed curves, and study their behavior under simplification. In

Sect. 4.3, we bound the relative free space complexity of κ-bounded curves, and in

Sect. 4.2 we handle low-density curves. In Sect. 5, we extend the algorithm to closed

curves. We conclude with discussion in Sect. 6.

2 Preliminaries

2.1 Notations and Definitions

Let π be a curve in R
d ; that is, a continuous mapping from [0,1] to R

d . In the

following, we will identify π with its range π([0,1]) ⊆ R
d if it is clear from the

context. The curve π is closed if π(0) = π(1). We use ‖·‖ to denote the Euclidean

distance as well as the length of a curve. For a polygonal curve π , let V (π) denote

the set of vertices of π . For two points p and q on a curve π , let π[p,q] denote the

portion of the curve between the two points.

We denote with B(p, r) the ball of radius r centered at p, and S(p, r) denotes the

corresponding sphere. Given a set of numbers U ⊆ R, an atomic interval of U is a

(possibly infinite) maximal interval on the real line that does not contain any point of

U in its interior. Let D(P) be the set of all pairwise distances of points in P.

2.2 Fréchet Distance and the Free Space Diagram

A reparameterization is a bijective and continuous function f : [0,1] → [0,1]. It is

orientation-preserving if f (0) = 0 and f (1) = 1. Given two reparameterizations f

and g for two curves π and σ , respectively, define their width as

widthf,g(π,σ) = max
s∈[0,1]

∥∥π
(
f (s)

)
− σ

(
g(s)

)∥∥.

This can be interpreted as the maximum length of a leash one needs to walk a dog,

where the dog walks monotonically along π according to f , while the handler walks

monotonically along σ according to g. In this analogy, the Fréchet distance is the

shortest possible leash admitting such a walk.

Formally, given two curves π and σ in R
d , the Fréchet distance between them is

dF(π,σ) = inf
f :[0,1]→[0,1]
g:[0,1]→[0,1]

widthf,g(π,σ),

where f and g are orientation-preserving reparameterizations of the curves π and σ ,

respectively. The Fréchet distance complies with the triangle inequality; that is, for

any three curves π,σ and τ we have dF(π, τ) ≤ dF(π,σ) + dF(σ, τ).

Let π , σ be curves and δ > 0 a parameter, the free space of π and σ of radius δ is

defined as

D≤δ(π,σ) =
{
(s, t) ∈ [0,1]2

∣∣ ∥∥π(s) − σ(t)
∥∥ ≤ δ

}
.

We are interested only in polygonal curves. Then the square [0,1]2 can be broken

into a (not necessarily uniform) grid called the free space diagram, where a vertical

Discrete Comput Geom (2012) 48:94–127 99

line corresponds to a vertex of π and a horizontal line corresponds to a vertex of σ .

Every two segments of π and σ define a free space cell in this grid. In particular, let

Ci,j = Ci,j (π,σ) denote the free space cell that corresponds to the ith edge of π and

the j th edge of σ . The cell Ci,j is located in the ith column and j th row of this grid.

It is known that the free space, for a fixed δ, inside such a cell Ci,j (i.e.,

D≤δ(π,σ) ∩ Ci,j) is the clipping of an affine transformation of a disk to the cell [3],

see the figure below; as such, it is convex and of constant complexity. Let Ih
i,j denote

the horizontal free space interval at the top boundary of Ci,j , and I v
i,j denote the ver-

tical free space interval at the right boundary.

The Fréchet distance between π and σ is at most δ if and only if there is an

(x, y)-monotone path in the free space diagram between (0,0) and (1,1) that is fully

contained in D≤δ(π,σ). Let the reachability intervals Rh
i,j ⊆ Ih

i,j and Rv
i,j ⊆ I v

i,j

consist of the points (x, y) on the boundary that are reachable by a monotone path

from (0,0) to (x, y).

Such a path to (1,1) can be computed, if it exists, in O(n2) time by dynamic

programming, where n is the total complexity of the two polygonal curves π and σ ,

see [3].

2.2.1 Free Space Events

To compute the Fréchet distance consider increasing δ from 0 to ∞. As δ increases,

structural changes to the free space happen. We are interested in the radii (i.e., the

value of δ) of these events.

Consider a segment u of π and a vertex p of σ , a vertex–edge event corresponds

to the minimum value δ such that u is tangent to B(p, δ). In the free space diagram,

this corresponds to the event that a free space interval that consists of only one point

was just created. The line supporting this boundary edge corresponds to the vertex,

and the other dimension corresponds to the edge. Naturally, the event could happen

at a vertex of u.

100 Discrete Comput Geom (2012) 48:94–127

Fig. 1 Two curves π and σ and their free space diagram D≤δ(π,σ), where p = π(s), q = π(s′) and

r = σ(t). Here, δ is the minimal free space parameter, such that a monotone path exists, i.e., in this

example dF(π,σ) coincides with a monotonicity event

The second type of event, a monotonicity event, corresponds to a value δ for which

a monotone subpath inside D≤δ becomes feasible, see Fig. 1. Geometrically, this

corresponds to two vertices p and q on one curve and a directed segment u on the

other curve such that: (1) u passes through the intersection S(p, δ) ∩ S(q, δ), and

(2) u intersects B(q, δ) first and B(p, δ) second, where p comes before q in the order

along the curve π .

Other values of δ that would be relevant to our algorithm are the distances be-

tween any pair of points of V (π) ∪ V (σ). Technically, apart from the two single

events that the endpoints of the curves are being matched to each other, these vertex–

vertex events are vertex–edge events when they are relevant, but they will be handled

naturally by our algorithm.

2.3 Curve Simplification

We suggest a straightforward greedy algorithm for curve simplification, which is suf-

ficient for our purposes. We comment that Agarwal et al. [1] suggested a more ag-

gressive (but slightly slower and more complicated) simplification algorithm that can

be used instead.

Algorithm 2.1 Given a polygonal curve π = p1p2p3 . . . pk and a parameter μ > 0,

consider the following simplification algorithm: First mark the initial vertex p1 and

set it as the current vertex. Now scan the polygonal curve from the current vertex

until it reaches the first vertex pi that is in distance at least μ from the current ver-

tex. Mark pi and set it as the current vertex. Repeat this until reaching the final

vertex of the curve, and also mark this final vertex. Consider the curve that con-

nects only the marked vertices, in their order along π . We refer to the resulting curve

π ′ = simpl(π,μ) as the μ-simplification of π . Note that this simplification can be

computed in linear time.

Remark 2.2 The simplified curve has the useful property that all its segments are

of length at least μ, except for the last edge that might be shorter. For the sake of

simplicity of exposition, we assume that the last segment in the simplified curve also

has length at least μ. Our arguments can be easily modified to handle this more

general case.

Discrete Comput Geom (2012) 48:94–127 101

Lemma 2.3 For any polygonal curve π in R
d , and μ ≥ 0, it holds dF(π,

simpl(π,μ)) ≤ μ.

Proof Consider a segment u of simpl(π,μ) and the portion π̂ of π that corresponds

to it. Clearly, all the vertices of π̂ are contained inside a ball of radius μ centered

at the first endpoint of u visited by π , except the last vertex of π̂ . As such, one can

parameterize u and π̂ , such that initially the point stays on the vertex of u while

visiting all vertices of π̂ (except the last one), and then simultaneously move in sync

on u and the last segment of π̂ , in such a way that the distance is always at most μ.

�

3 The Approximation Algorithm

3.1 Computing the Reachable Free Space

For two curves π and σ , their reachable free space, denoted by R≤δ(π,σ), is the set

of all the points of D≤δ(π,σ) that are reachable from (0,0) by an (x, y)-monotone

path.

The set R≤δ has finite descriptive complexity inside each grid cell, and we need to

describe it only for the grid cells that have non-empty intersection with R≤δ . Clearly,

generating only those grid cells is sufficient to decide if there is a monotone path

between (0,0) and (1,1), which is equivalent to deciding if the Fréchet distance

between π and σ is smaller or equal to δ. In particular, to fully describe R≤δ , we

will specify the reachability intervals Rh
i,j ⊆ Ih

i,j and Rv
i,j ⊆ I v

i,j for each cell Ci,j ,

which describe the intersection of R≤δ with the top and right boundary of Ci,j . These

intervals contain all the needed information, since R≤δ ∩ Ci,j is convex.

The complexity of the reachable free space, for distance δ, denoted by N≤δ(π,σ),

is the total number of grid cells which have non-empty intersection with R≤δ . One

can compute this set of cells and extract an existing monotone path in O(N≤δ(π,σ))

time, by performing a BFS of the grid cells that visits only the reachable cells. This

yields the following relatively easy result. We include the details both for the sake of

completeness and because the algorithm we suggest is engagingly simple.

Lemma 3.1 Given two polygonal curves π and σ in R
d , and a parameter δ ≥ 0, one

can compute a representation of R≤δ(π,σ) in O(N≤δ(π,σ)) time. Furthermore, one

can decide if dF(π,σ) ≤ δ, and if this is the case also extract reparameterizations in

O(N≤δ(π,σ)) time.

Proof We create a directed graph G that has a node v(i, j) for every reachable free

space cell Ci,j . With each node v(i, j) we store the free space intervals Ih
i,j and I v

i,j

as well as the reachability intervals Rh
i,j ⊆ Ih

i,j and Rv
i,j ⊆ I v

i,j .

102 Discrete Comput Geom (2012) 48:94–127

Each node v(i, j) can have an outgoing edge to its right and top neighbor; an edge

between these vertices exists if and only if the corresponding reachability interval

between them is nonempty. In particular, a monotone path from (0,0) to a point

(x, y) ∈ Ci,j in R≤δ corresponds to a monotone path in the graph G from v(1,1) to

v(i, j). Furthermore, any such monotone path has exactly k = i + j − 2 edges on it.

We compute the graph G on the fly by performing a BFS on it, starting from

v(1,1), and keeping the invariant that when the BFS visits a node v(i, j) it enqueues

the vertices v(i, j + 1) and v(i + 1, j), in this order, to the BFS queue (if they are

connected to v(i, j), naturally).

This implies that at any point in time, and for any k, the BFS queue contains the

nodes on the kth diagonal (i.e., all nodes v(i, j) such that i+j = k−1) of the diagram

sorted from left to right. However, the same node might appear twice (consecutively)

in this queue.

In every iteration, the BFS dequeues the one or two copies of the same node v(i, j)

and merges the two copies of the same vertex into one if necessary. Now, the one or

two vertices (i.e., v(i − 1, j) and v(i, j − 1)) that have incoming edges to v(i, j) are

known, as are their reachability intervals. Therefore one can compute the reachability

intervals for v(i, j) in constant time. Now, v(i, j +1) is enqueued if and only if the top

side of the cell Ci,j is reachable by a monotone path (i.e., Rh
i,j �= ∅), and v(i + 1, j)

is enqueued if and only if the right side of the cell Ci,j is reachable by a monotone

path (i.e., Rv
i,j �= ∅). Since R≤δ(π,σ) ∩ Ci,j is convex and of constant complexity,

this can be done in constant time.

Clearly, the BFS takes time linear in the size of G and it computes the reachability

information for all reachable free space cells of R≤δ(π,σ). Now, one can check if

(1,1) is reachable by inspecting the reachability intervals for Cnπ−1,nσ −1, and check-

ing if the top right corner of this cell is monotonically reachable from the origin,

where nπ is the number of vertices of the curve π . The monotone path realizing

this can be extracted in linear time, by introducing backward edges in the graph and

tracing a path back to the origin. �

Observation 3.2 One can compute all relevant vertex–edge events with radius ≤ δ

in O(N≤δ(π,σ)) time as follows. We compute the graph representation of R≤δ(π,σ)

using Lemma 3.1. Next, for each reachable cell consider the vertex–edge events at its

top and right boundaries and compute their event radii. Recall that a cell boundary

corresponds to an edge from the one curve and a vertex from the other curve. Clearly,

any cell boundary can be used by the reparameterization of width ≤ δ, if and only if

the corresponding event radius is smaller or equal δ.

Discrete Comput Geom (2012) 48:94–127 103

Fig. 2 The idea of the fuzzy

decision procedure using

simplification

3.2 The Approximate Decision Procedure

In the following, we are interested in the maximum complexity of the reachable free

space when considering any radius δ and simplifying the curves with radius εδ. The

reasons will become apparent only shortly after, in Lemma 3.5 and Lemma 3.6, where

we show that the simplification radius chosen this way enables us to either (i) compute

a (1 + ε)-approximation of the Fréchet distance, or (ii) solve the decision problem

exactly using the simplified curves (see Sect. 3.3.5).

The idea underlying this approximate decision procedure is depicted in Fig. 2. We

simplify the two input curves to a resolution that is (roughly) an ε-fraction of the

radius we care about (i.e., δ), and we then use the exact decision procedure on these

two simplified curves. Since the Fréchet distance complies with the triangle inequal-

ity and by Lemma 2.3, we can infer the original distance from this information. In

order for this approach to work, the complexity of the reachable free space for the

two simplified curves has to be small. This notion of complexity is captured by the

following definition.

Definition 3.3 For two curves π and σ , let

N(ε,π,σ) = max
δ≥0

N≤δ

(
simpl(π, εδ), simpl(σ, εδ)

)

be the maximum complexity of the reachable free space for the simplified curves. We

refer to N(ε,π,σ) as the ε-relative free space complexity of π and σ . In order to give

a more informative analysis, we will express the asymptotic time complexity of our

algorithms not in terms of the size of the input, but instead use the size of the input

and the free space complexity of the input as parameters.

We assume that for any 0 < ε < 1 the following properties hold for N(·, ·, ·).
(P1) For any constant c′ ≥ 1, it holds N(ε/c′,π,σ) = O(N(ε,π,σ)).

(P2) N(ε,π,σ) ≤ N(ε/2,π,σ)/2.

The above properties will hold for all the families of curves we consider. In

Sect. 4.1 we show that N(ε,π,σ) is a linear function in the number of vertices of

the two curves for a fixed ε > 0 if the curves are sufficiently well-behaved (see for

example Lemma 4.4). Combining this analysis with the time complexity analysis of

the algorithms will yield near linear upper bounds on the running times of these al-

gorithms for the classes of curves considered.

104 Discrete Comput Geom (2012) 48:94–127

Remark 3.4 In the following, when we state the time complexity of our algorithms,

we always assume that N(ε,π,σ) = Ω(n), where n is the total number of vertices of

π and σ .

Lemma 3.5 Let π and σ be polygonal curves in R
d , and let ε > 0 and δ > 0 be two

parameters. Then, the algorithm described below output, in O(N(ε,π,σ)) time, one

of the following:

(A) “dF(π,σ) ≤ (1+ε)δ”, and reparameterizations of π and σ of width ≤ (1+ε)δ,

and this happens if dF(π,σ) ≤ δ.

(B) “dF(π,σ) > δ” if dF(π,σ) > (1 + ε)δ.

(C) If dF(π,σ) ∈ (δ, (1 + ε)δ] then the algorithm outputs either of the above out-

comes.

In either case, the statement returned is correct.

Proof Set μ = (ε/4)δ. Compute in linear time the curves π ′ = simpl(π,μ) and

σ ′ = simpl(σ,μ) using Algorithm 2.1. Let δ′ = δ + 2μ and observe that μ/δ′ =
ε/(4 + 2ε). Using Lemma 3.1 we can decide whether dF(π ′, σ ′) ≤ δ′ in

O
(
N≤δ′(π ′, σ ′)

)
= O

(
N
(
μ/δ′,π,σ

))
= O

(
N
(
ε/(4 + 2ε),π,σ

))
= O

(
N(ε,π,σ)

)

time, by assumption (P1). If so, we output the reparameterizations as a proof that

dF(π,σ) ≤ dF(π,π ′) + dF(π ′, σ ′) + dF(σ ′, σ)

≤ δ′ + 2μ = δ + 4(ε/4)δ = (1 + ε)δ.

On the other hand, if dF(π ′, σ ′) > δ′, then this implies, by the triangle inequality,

that

dF(π,σ) ≥ dF(π ′, σ ′) − dF(π,π ′) − dF(σ ′, σ) > δ′ − 2μ = δ.

Therefore, the algorithm outputs “dF(π,σ) > δ” in this case. �

3.2.1 How to Use the Approximate Decider in a Binary Search

In order to use Lemma 3.5 to perform a binary search for the Fréchet distance, we

can turn the “fuzzy” decision procedure into a precise one as follows.

Lemma 3.6 Let π and σ be two polygonal curves in R
d , and let 1 ≥ ε > 0 and

δ > 0 be two parameters. Then, there is an algorithm decider(π,σ, δ, ε) that, in

O(N(ε,π,σ)) time, returns one of the following outputs: (i) a (1 + ε)-approximation

to dF(π,σ), (ii) dF(π,σ) < δ, or (iii) dF(π,σ) > δ. The answer returned is correct.

Proof Let δ′ = δ/(1 + ε′), for ε′ = cε, c = 1/3. We run the algorithm of Lemma 3.5

with parameters δ and ε′. If the call returns “dF(π,σ) > δ”, then we return this result.

Otherwise, we call Lemma 3.5 with parameters δ′ and ε′. If it returns that

“dF(π,σ) ≤ (1 + ε′)δ′” then dF(π,σ) ≤ (1 + ε′)δ′ = δ, and we return this result.

Discrete Comput Geom (2012) 48:94–127 105

The only remaining possibility is that the two calls returned “dF(π,σ) ≤
(1 + ε′)δ” and “dF(π,σ) > δ′”. But then we have found the required approximation.

Therefore, the resulting approximation factor of the reparameterizations returned by

the call with δ is ≤ (1+ε′)δ
δ′ = (1 + cε)2 < (1 + ε) as can be easily verified, since

0 < ε ≤ 1. �

3.3 Searching for the Fréchet Distance

3.3.1 Searching in a Fixed Interval

It is now straightforward to perform a binary search on an interval [α,β] to approxi-

mate the value of the Fréchet distance, if it falls inside this interval. Indeed, partition

this interval into subintervals of length εα and perform a binary search to find the in-

terval that contains the Fréchet distance. There are O(β/εα) intervals, and this would

require O(log(β/εα)) calls to decider. By using exponential subintervals, one can

do slightly better, as testified by the following lemma.

Lemma 3.7 Given two curves π and σ in R
d , a parameter 1 ≥ ε > 0, and an interval

[α,β], one can perform a binary search in [α,β] and obtain a (1+ ε)-approximation

to dF(π,σ) if dF(π,σ) ∈ [α,β], or report that dF(π,σ) /∈ [α,β]. The algorithm,

denoted by search Interval(π,σ, [α,β], ε), takes O(log
log(β/α)

ε
) calls to de-

cider.

Proof Let αi = α(1+ε)i for i = 0, . . . ,M = ⌊log1+ε(β/α)⌋ and αM+1 = β . Perform

a binary search, using decider(π,σ, δ, ε) to find the two values αi and αi+1 such

that αi ≤ δ = dF(π,σ) ≤ αi+1. Since αi+1 = (1 + ε)αi , we conclude that we found

the required approximation.

It might be that during this procedure one of the calls to decider(π,σ, δ, ε)

found the required approximation, and in this case we abort the binary search and

just return this approximation.

This process requires O(logM) = O(log log1+ε(β/α)) calls to decider. Ob-

serve that

M = log1+ε

β

α
= ln(β/α)

ln(1 + ε)
= O

(
1

ε
log

β

α

)
.

Indeed, ex/2 ≤ 1 + x ≤ ex for x ∈ [0,1], and this implies that x/2 ≤ ln(1 + x) ≤ x,

which is the inequality used above. �

3.3.2 Searching over Events

Clearly, the procedure searchInterval(π,σ, [α,β], ε) alone does not suffice to

solve our main problem, since the interval of distances we are searching over might

have arbitrarily large “spread” (i.e., logβ/α might be arbitrarily large). However,

the Fréchet distance must be sufficiently close to a free space event in one of the

“approximate” diagrams, i.e., a free space diagram of the two simplified curves. Thus,

we can identify two kinds of critical value to search over, which are candidate values

106 Discrete Comput Geom (2012) 48:94–127

for the approximate Fréchet distance. These are the events where (i) the simplification

of an input curve changes, or (ii) the reachability within the approximate free space

diagram changes (i.e., a free space event; see Sect. 2.2.1).

The traditional solution to overcome this problem is to use parametric search.

However, in our case, since we are only interested in approximation, we can use a

simpler, “approximate”, search. It is sufficient to search over a set of values which

approximate the event values by a constant factor, since we will use Lemma 3.7 to

refine the resulting search interval in the main algorithm. Note, for instance, that

we can easily use this lemma to turn a constant factor approximation of the Fréchet

distance into a (1 + ε)-approximation.

Algorithm 3.8 Let searchEvents(π,σ,Z) denote the algorithm that performs a

binary search over the values of Z, to compute the atomic interval of Z that contains

the Fréchet distance between π and σ . This procedure uses decider (Lemma 3.6)

to perform the decisions during the search.

3.3.3 Searching over Simplifications

Consider the events when the simplified curves change, see Algorithm 2.1. Consider

the set of all pairwise distances between vertices of π and σ . Observe that it breaks

the real line into
(
n
2

)
+ 1 atomic intervals, such that in each such interval the simpli-

fication does not change. Thus simpl(π,μ) (resp. simpl(σ,μ)) might result in O(n2)

different curves depending on the value of μ, where n is the total number of ver-

tices of π and σ . As a first step we would therefore like to use Algorithm 3.8 to

perform a binary search over those distances to find the atomic interval that contains

the required Fréchet distance. Naively, this would require us to perform distance se-

lection. However, it is believed that exact distance selection requires Ω(n4/3) time

in the worst case [18]. To overcome this we will perform an approximate distance

selection, as suggested by Aronov et al. [6].

Lemma 3.9 Given a set P of n points in R
d . Then, one can compute in O(n logn)

time a set Z of O(n) numbers, such that for any y ∈ D(P), there exist numbers x,

x′ ∈ Z such that x ≤ y ≤ x′ ≤ 2x. Let approxDistances(P) denote this algo-

rithm.

Proof Compute an 8-well-separated pairs decomposition of P. Using the algorithm

of Callahan and Kosaraju [12] this can be done in O(n logn) time, and results in

a set of pairs of subsets {(X1, Y1), . . . , (Xm, Ym)}, where m = O(n), such that for

any two points p,q ∈ P there exists a pair (Xi, Yi) in the above decomposition,

such that: (i) p ∈ Xi and q ∈ Yi (or vice versa), and (ii) max(diam(Xi),diam(Yi)) ≤
minpi∈Xi ,qi∈Yi

‖pi − qi‖/8.

This implies that the distance of any pair of points in Xi and Yi , respectively, are

the same up to a small constant. As such, for every pair (Xi, Yi), for i = 1, . . . ,m,

we pick representative points pi ∈ Xi and qi ∈ Yi , and set ℓi = (3/4)‖pi − qi‖. Let

Z = {ℓ1, . . . , ℓm,2ℓ1, . . . ,2ℓm} be the computed set of values.

Consider any pair of points p,q ∈ P. For the specific pair (Xi, Yi) that contains

the pair of points p and q that we are interested in, we have ℓi = (3/4)‖pi − qi‖ ≤

Discrete Comput Geom (2012) 48:94–127 107

‖pi − qi‖− diam(Xi)− diam(Yi) ≤ ‖p − q‖ ≤ ‖pi − qi‖+ diam(Xi)+ diam(Yi) ≤
(5/4)‖pi − qi‖ ≤ 2ℓi , thus establishing the claim. �

3.3.4 Monotonicity Events

The following lemma testifies that the radius of a monotonicity event must be “close”

to either a vertex–edge event or to the distance between two vertices. Since we will

approximate the vertex–vertex distances and perform a binary search over them, this

implies that we further only need to consider vertex–edge events. Furthermore, by

Observation 3.2, the number of those vertex–edge events which remain in the result-

ing search range can be bounded by the complexity of the reachable free space.

Lemma 3.10 Let x be the radius of a monotonicity event involving vertices p,q and

a segment u. Then there exists a number y such that y/2 ≤ x ≤ 3y, and y is either in

W = D(V (π) ∪ V (σ)) or y is the radius of a vertex–edge event.

Proof Let s be the intersection point of S(p,x) ∩ S(q, x) which lies on u. Let p′

(resp. q ′) be the closest point on u to p (resp. q).

Clearly ‖p′ − q ′‖ ≤ ‖p − q‖ (since the projection onto the nearest neighbor of a

convex set is a contraction), and since p′ ∈ B(p,x) and q ′ ∈ B(q, x), the point s lies

on the segment p′q ′.
This implies that x = ‖p − s‖ ≤ ‖p − p′‖ + ‖p′ − s‖ ≤ ‖p − p′‖ + ‖p′ − q ′‖ ≤

‖p − p′‖ + ‖p − q‖, by the triangle inequality.

A similar argument implies that

x = ‖p − s‖ ≥ ‖p − p′‖ − ‖p′ − s‖ ≥ ‖p − p′‖ − ‖p′ − q ′‖
≥ ‖p − p′‖ − ‖p − q‖.

If ‖p − p′‖ ≥ 2‖p − q‖ then the above implies that x ∈ [1/2,3/2]‖p − p′‖. If p′

is an endpoint of u then ‖p − p′‖ is in W . Otherwise, ‖p − p′‖ is the radius of the

vertex–edge event between p and u. In either case, this implies the claim.

If ‖p − p′‖ ≤ 2‖p − q‖ then x = ‖p − s‖ ≤ ‖p − p′‖ + ‖p − q‖ ≤ 2‖p − q‖ +
‖p − q‖ = 3‖p − q‖, and of course ‖p − q‖ ∈ W . Now, the two balls of radius x

centered at p and q , respectively, cover the segment pq , and we have ‖p − q‖/2 ≤ x,

which implies the claim. �

3.3.5 Searching with a Fixed Simplification

Assume that we have found simplifications τ and η, such that the Fréchet distance

of those curves yields the desired (1 + ε)-approximation. Clearly, an approximation

108 Discrete Comput Geom (2012) 48:94–127

of dF(τ, η) suffices for our result. To this end, let searchIntervalNoSimp(π,σ,

[α,β], ε) be the variant of searchInterval from Lemma 3.7 that uses Lemma 3.1

directly instead of calling decider. This version searches for the Fréchet distance

in the given interval, but does not perform simplification before calling the decision

procedure. It returns a (1 + ε)-approximation of the Fréchet distance, given that it is

contained in this interval. Note that correctness and running time of Lemma 3.7 are

not affected by this modification.

Lemma 3.11 Let τ and η be two given curves in R
d , with total complexity n, and let

[h−, h+] be an interval, such that (i) dF(τ, η) ∈ [h−, h+], and (ii) there is no value

of W = D(V (τ) ∪ V (η)) in the interval [h−, h+]. Then, for ε > 0, one can (1 +
ε)-approximate dF(τ, η) and compute reparameterizations in O((n + N) log(N/ε))

time, where N = N≤h+(τ, η).

Let aprxFréchetNoSimp(τ, η, [h−, h+], ε) denote this algorithm.

Proof For two real numbers x, y > 0, we define [x/y] = max(x, y)/min(x, y).

Compute R≤h+(τ, η), using Lemma 3.1. Next, using Observation 3.2, compute

from R≤h+(τ, η) the set Z of all the radii of the vertex–edge events of τ and

η with radius at most h+. Next, we sort Z, and perform a binary search over

Z, using Lemma 3.1, for the atomic interval I = [α,β] of Z that contains the

Fréchet distance dF(τ, η). Next, call searchIntervalNoSimp(τ, η, [α,4α], ε)
and searchIntervalNoSimp(τ, η, [β/4, β], ε). We claim that one of these two

searches performed on the respective intervals will discover two consecutive values

x and (1 + ε)x, such that the two corresponding calls to the algorithm of Lemma 3.7

imply that dF(τ, η) ∈ [x, (1 + ε)x].
Indeed, the interior of [α,β] does not contain any value in W or a radius of a

vertex–edge event of τ and η. Therefore, the interval [α,β] might contain only mono-

tonicity events of τ and η. By Lemma 3.10, for a monotonicity event with radius r

there exists a y ∈ Z ∪ W , such that [r/y] ≤ 3. But since there is no value of Z ∪ W in

the interior of [α,β], and therefore, for any r
′′ ∈ [4α,β/4] and y′′ ∈ Z ∪ W , we have

[r′′/y′′] ≥ 4.

We conclude that no monotonicity event, vertex–edge event, or value of W lies in

the interval [4α,β/4]. Since the Fréchet distance must be equal to one such value,

it follows that dF(τ, η) /∈ (4α,β/4), but this implies that either dF(τ, η) ∈ [α,4α]
or dF(τ, η) ∈ [β/4, β]. In either case, the above algorithm would have found the

approximate distance.

Computing and sorting the set of vertex–edge events takes O(N logN) time by

Observation 3.2. The binary search requires O(log|Z|) calls to the algorithm of

Lemma 3.1. The two calls to searchIntervalNoSimp require O(log(1/ε)) calls

to Lemma 3.1. Now, observe that all these calls to the algorithm of Lemma 3.1 are

done with values of δ ≤ h+. Thus the complexity of the reachable free space is

bounded (up to a constant factor) by the number of vertex–edge events of values

≤ h+, and this number is bounded by |Z|. Therefore, a call to Lemma 3.1 takes

O(|Z|) time. Thus, the overall running time is O((n + |Z|) log(|Z|/ε)), and by defi-

nition |Z| = O(N≤h+(τ, η)). �

Discrete Comput Geom (2012) 48:94–127 109

aprxFréchetI(π , σ , ε)

(A) P = V (π) ∪ V (σ)

(B) Z ← approxDistances(P) (Lemma 3.9).

(C) [α,β] ← searchEvents(π,σ,Z, ε) (Algorithm 3.8).

(D) Call searchInterval(π,σ, [α,4α′], ε), where α′ = (30/ε)α

(Lemma 3.7).

(E) Call searchInterval(π,σ, [β ′/4, β], ε), where β ′ = β/3.

(F) Let π ′ = simpl(π,μ) and σ ′ = simpl(σ,μ), for μ = 3α (Algorithm 2.1)

(G) δ ← aprxFréchetNoSimp(π ′, σ ′, [α′, β ′], ε/4) (Lemma 3.11).

(H) Compute and return the resulting reparameterizations of π and σ and their

width as the approximation.

Fig. 3 The basic approximation algorithm

3.4 The Approximation Algorithm

The resulting approximation algorithm is depicted in Fig. 3. It will be used by the

final approximation algorithm as a subroutine. We first analyze this basic algorithm.

We will then show how to use it, in Lemma 3.15 below, to get a faster approximation

algorithm. The algorithm depicted in Fig. 3 performs numerous calls to decider,

with approximation parameter ε > 0. If any of these calls discover the approximate

distance, then the algorithm immediately stops and returns the approximation. There-

fore, at any point in the execution of the algorithm, the assumption is that all previous

calls to decider returned a direction where the optimal distance must lie. In par-

ticular, a call to searchInterval(π,σ, I, ε), would either find the approximate

distance in the interval I and return immediately, or the desired value is outside this

interval.

3.4.1 Correctness

Lemma 3.12 Given two polygonal curves π and σ , and a parameter 1 > ε > 0, the

algorithm aprxFréchetI(π,σ, ε) computes a (1+ε)-approximation to dF(π,σ).

Proof If the algorithm found the approximation before step (F), then clearly it is

the desired approximation, and we are done. (In particular, this must be the case if

4α′ > β ′/4.)

Otherwise, because of (C), we know that dF(π,σ) ∈ [α,β]. By steps (D) and (E)

it must be that dF(π,σ) ∈ [4α′, β ′/4]. Since μ = 3α = (ε/10)α′ ≤ β ′/4, it follows,

by the triangle inequality, that

dF(π ′, σ ′) ≤ dF(π ′,π) + dF(π,σ) + dF(σ,σ ′) ≤ 2μ + β ′/4 < β ′.

A similar argument shows that dF(π ′, σ ′) > α′. Hence, the algorithm of Lemma 3.11

can be applied to π ′ and σ ′ for the range [α′, β ′], as dF(π ′, σ ′) ∈ [α′, β ′].

110 Discrete Comput Geom (2012) 48:94–127

Now, by Lemma 3.11, we find that the value δ resulting from step (G), is con-

tained in the interval [dF(π ′, σ ′), (1+ ε/4)dF(π ′, σ ′)]. By the triangle inequality we

conclude that the returned Fréchet distance is

Δ ≤ dF(π,π ′) + δ + dF(σ,σ ′) ≤ dF(π,π ′) + (1 + ε/4)dF(π ′, σ ′) + dF(σ ′, σ)

≤ (1 + ε/4)
(
2μ + dF(π,σ) + 2μ

)
≤ 5μ + (1 + ε/4)dF(π,σ)

≤ (1 + ε)dF(π,σ),

since 5μ = 15α = (ε/2)(30/ε)α = (ε/2)α′ ≤ (ε/2)dF(π,σ).

Note that Δ ≥ dF(π,σ) since it is the width of a specific reparameterization be-

tween the two curves. �

3.4.2 Running Time

Lemma 3.13 For any x, y ∈ (2α,β/2), we have simpl(π, x) = simpl(π, y) and

simpl(σ, x) = simpl(σ, y).

Proof Indeed, the interval (α,β) does not contain any value of Z. As such, by

Lemma 3.9, (2α,β/2) does not contain any value of the pairwise distances between

vertices of the vertex set of π and σ which implies that the simplification is the same

for any value inside this interval. �

Lemma 3.14 Given two polygonal curves π and σ with a total of n vertices

in R
d , and a parameter 1 > ε > 0, the running time of aprxFréchetI(π,σ, ε)

is O(N(ε,π,σ) logn).

Proof Computing Z (and sorting it) takes O(n logn) time by Lemma 3.9. Steps

(C), (D) and (E) perform O(logn + log(1/ε)) = O(logn) calls to decider, by

Lemma 3.7. (Here, we assume that ε = Ω(1/n). If ε < 1/n then we can just use the

algorithm of Alt and Godau [3] since its running time is faster than our approximation

algorithm in this case.) Each call to decider takes O(N(ε,π,σ)) time, so overall

this takes O(N(ε,π,σ) logn) time. Computing the simplifications in step (F) with

Algorithm 2.1 takes O(n) time.

By Lemma 3.11, a call to aprxFréchetNoSimp(π ′, σ ′, [α′, β ′], ε/4) takes

T = O((n + N) log(N/ε)) time, with N = N≤β ′(π ′, σ ′). Now, 3α and β ′ are

both inside the interval (2α,β/2), and as such, by Lemma 3.13, we have π ′ =
simpl(π,3α) = simpl(π,β ′) and σ ′ = simpl(σ,3α) = simpl(σ,β ′). Therefore, we

have

N = N≤β ′(π ′, σ ′) = N≤β ′
(
simpl

(
π,β ′), simpl

(
σ,β ′)) ≤ N(1,π,σ).

Thus, step (G) takes T = O(N(1,π,σ) log(N(1,π,σ)n/ε)) = O(N(1,π,σ) logn),

time since N(1,π,σ) ≤ n2 and ε = Ω(1/n). Observe that N(1,π,σ) ≤ N(ε,π,σ)

for ε ≤ 1.

Discrete Comput Geom (2012) 48:94–127 111

Finally, in order to compute the resulting reparameterizations in step (H), we com-

pute the reparameterizations of π and π ′ (resp. σ and σ ′) as described in the proof

of Lemma 2.3 and chain them with the reparameterizations of the simplified curves,

which we obtained from step (G). Clearly, this and computing the resulting width

takes O(n) time. Note that by the assumption in Remark 3.4 the term N(ε,π,σ)

dominates over O(n). �

The running time of Lemma 3.14 can be slightly improved.

Lemma 3.15 The algorithm aprxFréchetI depicted in Fig. 3 can be modified to

run in time O(N(ε,π,σ) + N(1,π,σ) logn) (see Definition 3.3).

Proof Use Lemma 3.14, with ε0 = 1/2, to get a 2-approximation ζ for the Fréchet

distance between π and σ . This takes O(N(1,π,σ) logn) time. Let I0 = [ζ,2ζ]
be the corresponding interval that contains the distance. We could call search-

Interval(π,σ, I0, ε) and get a (1 + ε)-approximation in O(N(ε,π,σ) log 1
ε

+
N(1,π,σ) logn) time.

One can do better by starting with a “large” ε and decreasing it during the binary

search for the right value performed by searchInterval. This is a standard idea

and it was also used by Aronov and Har-Peled [5].

Indeed, assume that in the beginning of the ith step, we know that the required

Fréchet distance lies in an interval Ii−1 = [αi−1, βi−1] and βi−1 − αi−1 = ‖I0‖εi−1,

where εi−1 = 1/2i−1.

Let Δi−1 = ‖Ii−1‖ = βi−1 − αi−1, and let xi,j = αi−1 + jΔi−1/4, for j =
0,1,2,3,4. Call the procedure decider on three values xi,1, xi,2, and xi,3, with

the approximation parameter being c1εi , for c1 > 0 being a sufficiently small con-

stant. Based on the outcome of these three calls, we can determine in constant time

which of the three intervals Ji,1 = [xi,0, xi,2], Ji,2 = [xi,1, xi,3], or Ji,3 = [xi,2, xi,4]
must contain the Fréchet distance. We set this interval to be Ii .

We repeat this process for M steps, where M = ⌈lg 1/ε⌉. It is easy to verify that

the final interval now provides the required approximation. The running time of this

algorithm is O(N(1,π,σ) logn + ∑M
i=1 N(εi,π,σ)). Now, by assumption (P2) (see

Definition 3.3), we have

O

(
M∑

i=1

N(εi,π,σ)

)
= O

(
M∑

i=1

1

2M−i
N

(
εi

2M−i
,π,σ

))
= O

(
N(ε,π,σ)

M∑

i=1

1

2M−i

)

= O
(
N(ε,π,σ)

)
,

and this implies the claim. �

The Result Putting the above together, we get the following result.

Theorem 3.16 Given two polygonal curves π and σ with a total of n vertices in R
d ,

and a parameter 1 > ε > 0, one can (1 + ε)-approximate the Fréchet distance be-

tween π and σ in O(N(ε,π,σ) + N(1,π,σ) logn) time (see Definition 3.3).

112 Discrete Comput Geom (2012) 48:94–127

Interestingly, simplification is critical for the efficiency of the above algorithm.

Indeed, consider the two nicely behaved curves depicted below. The reachable portion

of the free space diagram of these two curves, for the distance realizing the Fréchet

distance, covers a quadratic number of cells.

The use of simplification by itself is not sufficient to guarantee that the presented

algorithm is efficient. Indeed, in might not be possible to simplify the input curves

at all without losing too much information. In such contrived worst case examples,

the free space diagram still has quadratic complexity due to the inherent structure of

the curves. See the figure below for one such example. In the next section we will

analyze the relative free space complexity using realistic input models and prove the

efficiency of the above algorithm, given that the input is “realistic”.

4 The Relative Free Space Complexity of Families of Curves

In this section we are going to bound the relative free space complexity for different

realistic input models of curves. We will introduce the new class of c-packed curves,

and we compare this new input model to the previous models of κ-boundedness and

low density.

4.1 On c-Packed Curves

We introduce a new family of curves, c-packed curves, and prove that their relative

free space complexity N(ε,π,σ) is linear, for any two curves π and σ in this family.

This implies that Theorem 3.16 works in near linear time for c-packed curves, which

is one of our main results.

4.1.1 Definition and Basic Properties

Definition 4.1 A curve π in R
d is c-packed if for any point p in R

d and any radius

r > 0, the total length of π inside the ball B(p, r) is at most cr .

Discrete Comput Geom (2012) 48:94–127 113

Lemma 4.2 Let π be a curve in R
d , μ > 0 be a parameter, and let π ′ = simpl(π,μ)

be the simplified curve. Then ‖π ∩ B(p, r + μ)‖ ≥ ‖π ′ ∩ B(p, r)‖ for any ball

B(p, r).

Proof Let u be a segment of π ′ that intersects B(p, r) and let v = u ∩ B(p, r) be

this intersection. Let πu be the portion of π that got simplified into u. Observe that

πu is a polygonal curve that lies inside a hippodrome of radius μ around u; that is,

πu ⊆ Hu = u ⊕ B(0,μ), where ⊕ denotes the Minkowski sum of the two sets, see

the figure below.

In particular, erect two hyperplanes passing through the endpoints of v that are

orthogonal to v, and observe that πu must intersect both hyperplanes. Hence, we

conclude that the portions of πu in the hippodrome Hv = v ⊕B(0,μ) are of length at

least ‖v‖. Clearly, v ⊆ B(p, r) implies that Hv ⊆ B(p, r + μ), which in turn implies

that πu ∩ Hv ⊆ B(p, r + μ) and thus ‖πu ∩ B(p, r + μ)‖ ≥ ‖v‖.

Summing over all segments v in π ′ ∩ B(p, r) implies the claim. �

Lemma 4.3 Let π be a c-packed curve in R
d , μ > 0 be a parameter, and let π ′ =

simpl(π,μ) be the simplified curve. Then, π ′ is a 6c-packed curve.

Proof Assume, for the sake of contradiction, that ‖π ′ ∩ B(p, r)‖ > 6cr for some

B(p, r) in R
d . If r ≥ μ, then set r

′ = 2r and Lemma 4.2 implies that ‖π ∩ B(p, r
′)‖ ≥

‖π ∩ B(p, r + μ)‖ ≥ ‖π ′ ∩ B(p, r)‖ > 6cr = 3cr
′, which contradicts that π is

c-packed.

If r < μ then let U denote the segments of π ′ intersecting B(p, r) and let

k = |U |. Observe that k > 6cr/2r = 3c, as any segment can contribute at most

2r to the length of π ′ inside B(p, r). Therefore we have ‖π ′ ∩ B(p,2μ)‖ ≥
‖π ′ ∩ B(p, r + μ)‖ ≥ ‖U ∩ B(p, r + μ)‖ ≥ kμ, since every segment of the sim-

plified curve π ′ has a minimal length of μ. By Lemma 4.2, this implies that

‖π ∩ B(p,3μ)‖ ≥ ‖π ′ ∩ B(p,2μ)‖ ≥ kμ > 3cμ, which is a contradiction to the

c-packedness of π . �

4.1.2 Bounding the Relative Free Space Complexity

Lemma 4.4 For any two c-packed curves π and σ in R
d , and 0 < ε < 1, we have

N(ε,π,σ) = O(cn/ε).

Proof Let δ ≥ 0 be an arbitrary number, μ = εδ, π ′ = simpl(π,μ) and σ ′ =
simpl(σ,μ)

We need to show that the complexity of D≤δ(π
′, σ ′) is O(cn/ε). A free space

cell of D≤δ(π
′, σ ′) corresponds to two segments u ∈ π ′ and v ∈ σ ′. The free space

in this cell is non-empty if and only if there are two points p ∈ u and q ∈ v such that

114 Discrete Comput Geom (2012) 48:94–127

‖p − q‖ ≤ δ. We charge this pair of points to the shorter of the two segments. We

claim that a segment cannot be charged too many times.

Indeed, consider a segment u ∈ π ′, and consider the ball B of radius r =
(3/2)‖u‖ + δ centered at the midpoint of u, see the figure above. Every segment

v ∈ σ ′ that participates in a close pair as above and charges u for it, is of length at

least ‖u‖, and the length of v∩B is at least ‖u‖. Since σ ′ is 6c-packed, by Lemma 4.3,

we see that the number of such charges is at most

c′ = ‖σ ′ ∩ B‖
‖u‖ ≤ 6cr

‖u‖ = 6c((3/2)‖u‖ + δ)

‖u‖ ≤ 9c + 6cδ

μ
= O

(
c

ε

)
,

since ‖u‖ ≥ μ.

We conclude that there are at most c′n free space cells that contain a point of

D≤δ . The complexity of the free space inside a cell is a constant, thus implying the

claim. �

By plugging the above into Theorem 3.16, we get the following result.

Theorem 4.5 Given two polygonal c-packed curves π and σ with a total of n vertices

in R
d , and a parameter 1 > ε > 0, one can (1 + ε)-approximate the Fréchet distance

between π and σ in O(cn/ε + cn logn) time.

4.2 Relative Free Space Complexity of Low-Density Curves

Definition 4.6 A polygonal curve π in R
d is φ-low density if any ball B(p, r) inter-

sects at most φ segments of π that are longer than r .

First, observe that this input model is less restrictive than the input model which

describes c-packed curves. It can be easily seen by a simple packing argument that

a polygonal c-packed curve is φ-low density, for φ = 2c. For any ball B = B(p, r),

consider the ball with the same center that has radius r ′ = 2r . Any edge intersecting

B that is longer than r must contribute at least r to the length of the intersection of the

curve with the larger ball, which is bounded by cr ′. There can be at most cr ′/r = 2c

edges of this type.

A curve that is low density, however, is not necessarily c-packed for a small value

of c. Indeed, a low-density curve π might have an arbitrarily long intersection with

a ball by having sufficiently small segments, see the figure below. However, in this

Discrete Comput Geom (2012) 48:94–127 115

case π must have many vertices in the areas where its length cannot be bounded, as

we will show in the following section.

Claim 4.7 Let π be a φ-low density polygonal curve, and let C be a hypercube in

R
d with side length ℓ. Then, the number of edges of length ≥ ℓ of π that intersect C

is bounded by cdφ, where cd = ⌈
√

d/2⌉d .

Proof Partition the cube C into a D × D × · · · × D grid, for D = ⌈
√

d/2⌉. Clearly,

any edge that intersects C that has length ≥ ℓ must intersect one of the hypercubes in

this grid. A hypercube of this grid has diameter

√
dℓ

D
≤

√
dℓ√
d/2

≤ 2ℓ,

and is included in a ball of radius ℓ. Thus, a hypercube in this grid intersects at

most φ such long edges. We conclude that there can be at most φDd long edges

intersecting C. �

4.2.1 Low-Density Curves Can Be Long Only if They Pay for It

Lemma 4.8 below testifies that the parts of a low-density curve, where its length

cannot be bounded by a constant, can be covered with hypercubes, such that each

cube intersects at most a constant number of edges and at most a constant number

of other cubes. We use this construction in Lemma 4.9 to relate the length of a low-

density curve to the diameter of the covered area to the number of vertices. One can

verify Lemma 4.8 using an easy modification of a lemma from [13]. We provide a

proof, for the sake of completeness, in Appendix B.

Lemma 4.8 Let π be a φ-low density curve, of which n edges are intersecting a given

hypercube C of R
d . The hypercube C can be covered by a set of hypercubes K, such

that (i)
⋃

K = C, (ii) |K| ≤ 22d+1n, (iii) any point p ∈ C is covered by at most 2d

hypercubes, and (iv) each hypercube of K intersects at most cdφ edges of π , where

cd is a constant that depends only on the dimension d .

Lemma 4.9 Let π be a φ-low density curve in R
d , and let C be a cube in R

d with

side length r . Let α = ‖π ∩ C‖. There must be at least Ω((α/r)1+1/(d−1)) vertices

of π contained in 3C, where 3C is the scaling of C by a factor of 3 around its center.

Proof We will first give a lower bound on the number n of edges intersecting C (i.e.,

the edges that contribute to α). Then we will account for the edges that have endpoints

116 Discrete Comput Geom (2012) 48:94–127

outside 3C. So, take the n edges of π that intersect C and construct the cover of C

resulting from Lemma 4.8 with respect to these edges.

Let C1, . . . ,CN denote the cubes in this cover, where r1 ≤ r2 ≤ · · · ≤ rN are the

side lengths of the cubes used by the cover, respectively. Lemma 4.8 implies that

N ≤ 2d+1dn, and, therefore, a lower bound on N would provide a lower bound on n.

So, the sum of the diameters of those N cubes bounds the length of the intersec-

tion α ≤ ∑N
i=1 cdφ

√
dri , since every cube in this cover can intersect at most cdφ

edges of π . Setting p = d and q = d/(d − 1), we observe that 1/p + 1/q = 1/d +
(d − 1)/d = 1, and by Hölder’s inequality,1 we have

N∑

i=1

ri =
N∑

i=1

ri · 1 ≤
(

N∑

i=1

rd
i

)1/d(
N∑

i=1

1q

)1/q

=
(

N∑

i=1

rd
i

)1/d

N (d−1)/d .

Lemma 4.8 also implies that the sum of the volumes of the cubes is at most

2dvol(C), since every point in C is covered at most 2d times by this cover. Therefore

we have
∑N

i=1 rd
i = ∑N

i=1 vol(Ci) ≤ 2dvol(C) = 2drd . Hence

α ≤
N∑

i=1

cdφ
√

dri ≤ cdφ
√

d

(
N∑

i=1

rd
i

)1/d

N (d−1)/d ≤ cdφ
√

d
(
2drd

)1/d
N (d−1)/d .

This implies that c2(α/r)d/(d−1) ≤ N , where c2 = (2cdφ
√

d)
−d/(d−1)

. Since N ≤
22d+1n, we have c3(α/r)d/(d−1) ≤ n, where c3 = 1

22d+1 (2cdφ
√

d)
−d/(d−1)

.

Now, some of these n edges intersecting C can have both endpoints outside 3C.

Such edges are longer than the side length of C and by Claim 4.7 their number is

bounded by cdφ.

Hence, the number of vertices of π inside 3C is at least n− cdφ ≥ c3(α/r)d/(d−1)−
cdφ. �

Remark 4.10 One can also prove Lemma 4.9 directly, by building a quadtree and

arguing that for a low-density curve to be sufficiently long, many edges in it have to

be (sufficiently) short, thus implying the same bound. However, the current proof is

more intuitive and cleaner.

Observation 4.11 The bound in Lemma 4.9 is tight. For any m > 0 and any d > 0,

consider the integer grid in R
d with coordinates in the range 1, . . . ,m, and compute

a path that visits all these grid points using only the grid edges of unit length, which

is clearly possible.

Now, the resulting curve is 2d -low density and has length α = md − 1 and its

diameter is r =
√

dm. Lemma 4.9 implies that it has Ω((α/r)d/(d−1)) = Ω(md)

vertices. Since this grid has md vertices, this is tight.

1Hölder’s inequality states that
∑n

i=1|aibi | ≤ (
∑n

i=1|ai |q)
1/q

(
∑n

i=1|bi |p)
1/p

if 1/p + 1/q = 1.

Discrete Comput Geom (2012) 48:94–127 117

4.2.2 Accounting for Many Reachable Free Space Cells

If many columns of the free space diagram of the two simplified low-density curves

contain a linear number of reachable cells, then the curve must be “long” in the

vicinity of the edges corresponding to those columns, since the simplification en-

sures a minimal edge length. A similar argument holds for the rows. Therefore, using

Lemma 4.9, we can charge the additional reachable cells to vertices of the original

curves. This yields the following result.

Lemma 4.12 For any two low-density curves π and σ in R
d , and 0 < ε < 1, we have

N(ε,π,σ) = O(n2(d−1)/d

ε2).

Proof Let δ ≥ 0 be an arbitrary radius, and let π ′ = simpl(π,μ) and σ ′ = simpl(σ,μ)

be their simplifications, where μ = εδ. Then, we need to prove that N≤δ(π
′, σ ′) =

O(n2(d−1)/d

ε2).

To this end, it suffices to bound the number of vertex–edge pairs (p,u), where p is

a vertex of π ′, u is an edge of σ ′, and the distance between p and u is at most δ (natu-

rally, we need to apply the same argument to pairs with vertices in σ ′ and edges in π ′).
The total number of such pairs bounds the total complexity of R≤δ = R≤δ(π

′, σ ′).
Set M = O(n1−2/d/ε2), and associate every vertex–edge pair (p,u) that appears

in the free space diagram R≤δ with the vertex p.

Consider the grid G of side length δ. For a grid cell R, consider the vertex of π ′

in R that is associated with the largest number of such vertex–edge pairs, and say it

is being associated with dR such vertex–edge pairs, and let vR denote this “popular”

vertex of π ′. The total number of vertex–edge pairs associated with vertices of π ′

inside R is bounded by UR = |π ′ ⊓ R|dR, where |π ′ ⊓ R| denotes the number of

vertices of π ′ that lie inside R.

If dR ≤ M then UR ≤ |π ′ ⊓ R|M , and we charge M units to each vertex of π

inside R.

If dR > M then the length of σ ′ inside C/3 is at least dRμ, where C is a cube

centered at R with side length O(δ). Indeed, all the charges dR rise from different

segments of σ ′ that are in distance at most δ from vR, and each such segment has

length at least μ.

118 Discrete Comput Geom (2012) 48:94–127

By Lemma 4.9, we find that σ must have at least Ω((dRμ/δ)d/(d−1)) =
Ω((dRε)d/(d−1)) vertices inside C. There is some constant c such that

c(ε dR)d/(d−1) ≤ |σ ⊓ C|

=⇒ dR ≤ 1

ε

(|σ ⊓ C|
c

)(d−1)/d

=⇒ d
2
R ≤ 1

ε2

(|σ ⊓ C|
c

)2−2/d

=⇒ d
2
R ≤ |σ ⊓ C| 1

cε2

(|σ ⊓ C|
c

)1−2/d

≤ 1

cε2

(
n

c

)1−2/d

|σ ⊓ C| ≤ M|σ ⊓ C|,

by picking M to be sufficiently large. In particular, if |π ′ ⊓ R| ≤ dR, then UR =
|π ′ ⊓ R|dR ≤ d

2
R

≤ M|σ ⊓ C|. Hence, we charge M units to each vertex of σ inside

the cube C.

Otherwise, |π ′ ⊓ R| > dR > M . But then, the length of π ′ inside C is at least

|π ′ ⊓R|μ, and by Lemma 4.9, we see that π must have at least Ω((|π ′ ⊓ R|ε)d/(d−1))

vertices inside C. Arguing as above, this implies that |π ′ ⊓ R|2 ≤ M|π ⊓C|. As such,

we have UR = |π ′ ⊓R|dR ≤ |π ′ ⊓R|2 ≤ M|π ⊓C|. Again, we charge M units to each

vertex of π inside the cube C.

Since C intersects a constant number of cells of the grid, no vertex would get

charged more than a constant number of times by the above scheme. Thus, every

vertex, of either curve, gets charged O(M) units overall, and the total number of

vertex–edge pairs present in R≤δ is O(nM), as claimed. �

Observation 4.13 One can extend the construction of Observation 4.11 to show

that Lemma 4.12 is close to being tight. Indeed, consider the grid curve of Obser-

vation 4.11 in d − 1 dimensions, for an integer m. We now lift it to d dimensions

by considering the [1,m]d cube and placing two copies of the above curve on two

opposite faces of the cube, denoted by f and f ′. Let π1 and π2 denote these two

copies.

Next, delete the even edges from π1 and the odd edges from π2. Connect every

vertex v1 of π1 to its corresponding (copied) vertex v2 in π2 by a path made out of

the m − 1 unit edges along the grid line connecting the two vertices. This results in

a curve π that is similar to the curve constructed in Observation 4.11, but has the

advantage that when simplified for the distance μ = m it results in a curve with md−1

segments of length ≥ m that connects points that lie on f and on f ′, respectively.

Let σ be a copy of π . For a fixed ε > 0, we can add a single segment to π such

that the Fréchet distance between the resulting curves is exactly δ = m/ε. Now, these

two curves have n = 2md + 2 vertices overall, and furthermore, when we simplify

them for the distance μ = εδ = m, we end up with two curves such that every long

edge of π ′ is going to be in distance ≤ δ = m/ε from a constant fraction of the

edges of σ ′ (this would be all the edges if 1/ε >
√

d). Therefore the complexity

of the reachable free space is Ω(nπ ′nσ ′) = Ω((md−1)
2
) = Ω(n2(d−1)/d), where nπ ′

denotes the number of vertices of π ′. The upper bound of Lemma 4.12 is (only) larger

by a factor of O(1/ε2).

Discrete Comput Geom (2012) 48:94–127 119

By plugging the above into Theorem 3.16, we get the following result.

Theorem 4.14 Given two low-density curves π and σ with a total of n vertices in R
d ,

and a parameter ε > 0, there exists an algorithm which (1 + ε)-approximates the

Fréchet distance between π and σ in O(n2(d−1)/d

ε2 + n2(d−1)/d logn) time.

4.3 Relative Free Space Complexity of κ-Bounded Curves

We revisit the definitions of Alt et al. [4] of κ-bounded and κ-straight curves. Note

that these definitions describe an extremely restricted class of curves while c-packed

curves form a fairly general and natural class of curves. However, it is not true that

any κ-bounded curve is O(κ)-packed. We therefore give a separate proof to bound

the relative free space complexity of κ-bounded curves in order to improve upon the

result in [4].

Definition 4.15 Let κ ≥ 1 be a given parameter. A curve π is κ-straight if for any

two points p and q on the curve, we have ‖π[p,q]‖ ≤ κ‖p − q‖.

A curve π is a κ-bounded if for all p,q ∈ π we find that the curve π[p,q] is

contained inside B(p, r) ∪ B(q, r), where r = (κ/2)‖p − q‖, see the figure below.

Lemma 4.16 A κ-straight curve is 2κ-packed.

Proof Let π be a κ-straight curve in R
d , and consider any ball B(p, r) that in-

tersects it. Let q and s be the first and last points, respectively, along π that

are in B(p, r). Clearly, ‖q − s‖ ≤ 2r , and by the κ-straightness ‖π ∩ B(p, r)‖ ≤
‖π[q, s]‖ ≤ κ‖q − s‖ ≤ 2κr . �

Remark 4.17 It is easy to verify that a κ-straight curve is also κ-bounded. However,

κ-bounded curves, counterintuitively, can have infinite length even when contained

inside a finite domain. An example of this is Koch’s snowflake, which is a fractal

curve depicted in Fig. 4.

To see, intuitively, why Koch’s snowflake is κ-bounded, let πi be the ith polygonal

curve generated by this process. There is a natural mapping between any point of πi

and πi+1, for all i. In particular, consider two points p and q on the final curve π∗,

and consider the two sequences of points pi, qi ∈ πi , where pi+1 ∈ πi+1 (resp. qi+1 ∈
πi+1) is the natural image of pi (resp. qi), limi→∞ pi = p, and limi→∞ qi = q .

Now, assume that r = ‖p − q‖. Observe that, for all i, the polygonal curve πi is

made out of segments that are all of the same length. In particular, consider the first

index k, such that this segment length of πk is of length ≤ r/20. It is easy to argue

120 Discrete Comput Geom (2012) 48:94–127

Fig. 4 Koch’s snowflake is an example of a κ-bounded curve that has infinite length but a finite diameter

that ‖pk − p‖ ≤ r/5 and ‖qk − q‖ ≤ r/5. In fact, one can argue that no point of πk

moves more than a distance larger than r/5 to its final location on π∗.

Now, a tedious argument shows that there are O(1) segments of πk separating pk

from qk . Therefore this portion of the curve πk is covered by a disk of radius O(r),

and the corresponding portion of the final curve between p and q is also covered by

a disk of radius O(r). This implies that Koch’s snowflake is κ-bounded.

A formal proof of this fact is considerably more tedious and is omitted.

Lemma 4.18 Let π be a κ-bounded polygonal curve in R
d , and let μ ≤ δ be param-

eters. Let π ′ = simpl(π,μ). Then the number of segments of π ′ intersecting B(s, δ)

is bounded by O(κd(1 + δ/μ)d), for any s ∈ R
d .

Proof For π = u1u2 . . .uk , let YO = {u1,u3, . . .} and YE = {u2,u4, . . .} be the sets of

odd and even segments of π ′, respectively.

Let XO ⊆ YO be the set of odd segments of π ′ intersecting B(s, δ). For all i, pick

an arbitrary point pi on the ith segment of XO that lies inside B(p, δ). Next, pick

an original point qi of π in distance at most μ from pi , for i = 1, . . . ,M = |XO |.
Observe that for all i we have ‖s − qi‖ ≤ δ + μ. Furthermore, between any two

distinct points pi and pj on the simplified curve π ′ there must lie an even segment

of YE in between them along the curve, and the length of this segment is at least μ

(because the simplification algorithm generates segments of length at least μ). Also,

the endpoints of this even segment lie on the original curve π .

We claim that no two points of Q = {q1, . . . , qM} can be too close to each other;

that is, there are no two points q ′, q ′′ ∈ Q, such that r = ‖q ′ − q ′′‖ ≤ μ/(4κ). Indeed,

assume for the sake of contradiction, that there are two such points. Then, by the

above, the portion of π connecting them contains two points t ′, t ′′ that are at least

μ apart. Observe that π[t ′, t ′′] ⊆ X = B(q ′, (κ/2)r) ∪ B(q ′′, (κ/2)r). However, the

maximum distance between two points that are included inside X is bounded by its

diameter. We have

μ ≤
∥∥t − t ′

∥∥ ≤ diam(X) = 2(κ/2)r +
∥∥q ′ − q ′′∥∥ ≤ μ

4
+ μ

4κ
≤ μ

2
,

since κ > 1. A contradiction.

However, all the points of Q lie inside a ball of radius δ + μ centered at s. Now,

placing a ball of radius μ′ = μ/(8κ) around each point of Q, results in a set of inte-

rior disjoint balls. This implies, by a standard packing argument, that the number of

points of Q is bounded by vol(B(s, δ + μ))/vol(B(·,μ′)) = O((δ + μ)d/(μ/κ)d) =
((1 + δ/μ)dκd).

Discrete Comput Geom (2012) 48:94–127 121

This bounds the number of odd segments of π ′ intersecting the ball B(s, δ), and a

similar argument holds for the even segments intersecting this ball. �

Lemma 4.19 For any two κ-bounded polygonal curves in R
d π and σ , 0 < ε < 1,

we have N(ε,π,σ) = O((κ/ε)dn).

Proof Let δ ≥ 0 be an arbitrary radius, and set μ = εδ. Let π ′ = simpl(π,μ) and

σ ′ = simpl(σ,μ). We need to show that the complexity of the reachable free space

R≤δ(π
′, σ ′) is O(κd(1 + δ/μ)dn) = O((κ/ε)dn).

The boundary of a reachable cell in the free space diagram has a non-empty inter-

section with D≤δ(π
′, σ ′). Otherwise its interior could not be reached by a monotone

path from (0,0). Therefore, using an argument similar to the proof of Lemma 4.4,

Lemma 4.18 implies the desired bound. �

By plugging the above into Theorem 3.16, we get the following result.

Theorem 4.20 Given two κ-bounded polygonal curves π and σ with a total of n

vertices in R
d , and a parameter 1 > ε > 0, there exists an algorithm which (1 + ε)-

approximates the Fréchet distance between π and σ in O((κ/ε)dn + κdn logn) time.

5 Extension to Closed c-Packed Curves

The Fréchet distance for closed curves is defined as in Sect. 2 with the altered con-

dition that the reparameterizations f and g are orientation-preserving homeomor-

phisms on the one-dimensional sphere. Computing the Fréchet distance for closed

curves is more difficult, as the constraint that the endpoints of the curves have to be

matched to each other is dropped in this case and therefore the set of reparameteriza-

tions one has to consider is larger.

Observation 5.1 The decision problem for closed curves can be reduced to the pre-

viously considered case of open curves. Given two closed c-packed curves π and σ

and a parameter δ. Pick a vertex p of the curve π , and assume that we know a point q

on σ that is being matched to p by a pair of reparameterizations of π and σ of width

at most δ. Clearly, if we break π open at p, and σ at q , we retrieve two open curves

π̂ and σ̂ , and we can use the previous method to decide if dF(π̂, σ̂) ≤ δ. Hence we

only need to generate a suitable set of candidates for q to determine if the Fréchet

distance between π and σ is at most δ within a certain approximation error.

Lemma 5.2 Let π be a closed c-packed polygonal curve in R
d , and let μ ≤ δ be pa-

rameters. Let π ′ = simpl(π,μ). Then the number of edges of π ′ intersecting B(p, δ)

is bounded by O(cδ/μ), for any p ∈ R
d .

Proof Consider the ball B = B(p, r) of radius r = μ + δ. Any edge u of π ′ that in-

tersects B(p, δ) has to contribute at least μ to the length of the intersection with B , as

122 Discrete Comput Geom (2012) 48:94–127

the simplification guarantees that every edge of π ′ is of length at least μ. Since π ′ is

6c-packed, by Lemma 4.3, we have ‖B ∩ π ′‖ ≤ 6cr , and the number of intersections

of π ′ with B(p, δ) is N ≤ ‖B ∩ π ′‖/μ ≤ 6cr/μ = 6c(μ + δ)/μ = O(c + cδ/μ),

which implies the claim. �

Lemma 5.3 Given two closed c-packed polygonal curves π and σ with a total

number of n vertices and parameters δ and 1 > ε > 0. Let π ′ = simpl(π,μ) and

σ ′ = simpl(σ,μ) denote the curves simplified with μ ≤ εδ and let p be a vertex

of π ′. We can compute a set of points K ⊆ σ ′ of size O(c/ε), in O(n + c/ε) time,

such that if dF(π ′, σ ′) ≤ δ then there exists a pair of reparameterizations of width at

most (1 + ε)δ that matches p to an element of K.

Proof We walk along the curve σ ′ starting from an arbitrary point. If the starting

point is in distance δ from p, then we add it to the candidate set K. As we follow

along the curve we create a candidate if we

(a) (re-)enter the ball B(p, δ), or

(b) have traveled a distance εδ along σ ′ since the last creation of a candidate, unless

we have exited the ball B(p, δ) in the meantime.

Clearly this takes O(n + |K|) time.

The number of events of type (a) is bounded (up to a factor of 2) by the number

of intersections of σ ′ with the sphere S(p, δ), and by Lemma 5.2, this number is

bounded by O(cδ/μ) = O(c/ε). By Lemma 4.3 the simplified curve σ ′ is 6c-packed

and therefore the length of its intersection with B(p, δ) is at most 6cδ. This implies

that we can have at most O(6cδ/μ) = O(6c/ε) candidates that were created at events

of type (b).

Consider reparameterizations of π ′ and σ ′ of width at most δ. Next, consider a

point q ∈ σ ′ that is matched to p ∈ π ′ by these reparameterizations. Observe that

q ∈ B(p, δ) and there exists, by construction, a point q ′ ∈ K such that ‖q − q ′‖ ≤
εδ. Let p′ be a point on π ′ that is matched to q ′ by the given reparameteriza-

tions.

We match the curve segment σ̂ between q and q ′ to p and the curve segment π̂

between p and p′ to q , see the figure above. Clearly this preserves the monotonicity

of the matching. By the triangle inequality, any point on σ̂ has distance at most (1 +
ε)δ to p. Similarly, for any point on π̂ there is a point on σ̂ that is in distance δ,

therefore q ′ is in distance (1 + ε)δ of π̂ .

Discrete Comput Geom (2012) 48:94–127 123

We conclude that the Fréchet distance between π ′ and σ ′ is at most (1 + ε)δ when

restricted to reparameterizations matching p to q ′. �

One can adapt Lemma 3.5 to the closed curves case, by considering the O(cn/ε)

open curves that result from breaking σ ′ at any point of K. The details of the adaption

are straightforward, and we only state the result.

Lemma 5.4 Given two closed polygonal c-packed curves π and σ with a total of

n vertices in R
d , and parameters δ and 1 > ε > 0. Then, there exists an algorithm

which, in O((c/ε)2n) time, correctly outputs one of the following:

(A) If dF(π,σ) ≤ δ then the algorithm outputs “≤ (1 + ε)δ”.

(B) If dF(π,σ) > (1 + ε)δ then the algorithm outputs “dF(π,σ) > δ”.

(C) If dF(π,σ) ∈ [δ, (1 + ε)δ] then the algorithm outputs either of the above out-

comes.

Plugging Lemma 5.4 into the algorithm of Theorem 3.16, we get the following

result.

Theorem 5.5 Given two closed polygonal c-packed curves π and σ with a total of n

vertices in R
d , and a parameter 1 > ε > 0, one can (1 + ε)-approximate the Fréchet

distance between π and σ in O(c2n(ε−2 + logn)) time.

6 Conclusions

We presented a new approximation algorithm for the Fréchet distance for polygonal

curves in any fixed dimension. The new algorithm is surprisingly simple and should

be practical. Furthermore it works for any kind of polygonal curves. Since the algo-

rithm simplifies the curves to the “right” resolution during the execution, we expect

the algorithm to be fast in practice. The algorithm’s analysis relies on the concept of

the relative free space complexity of curves, which tries to capture the complexity of

the free space diagram when simplification is being used.

Next, we introduced the c-packed family of curves. While not all curves are

c-packed, it seems that most real life curves are c-packed. The family of c-packed

curves is closed under simplification, and the property of a curve being c-packed is

independent of the ambient dimension of the space containing the curve. We expect

this concept to be used to analyze other algorithms in the future.

In particular, the relative free space complexity of c-packed curves is linear. We

gave bounds for the relative free space complexity for several other types of curves,

from low-density curves to κ-bounded curves. Finally, we also showed that the algo-

rithm can be modified to handle closed curves efficiently.

Lower Bound Our solution to the decision problem “beats” the lower bound of

Ω(n logn) [9], by a factor of logn (see Lemma 3.5). Since our decision procedure is

approximated this is not too surprising. However, it is enlightening to consider where

this proof breaks for our settings. Indeed, Buchin et al. [9] generate two curves such

124 Discrete Comput Geom (2012) 48:94–127

that the Fréchet distance might be realized by one vertex of one curve matching the

whole other curve. On the other hand, in our case, the input model coupled with sim-

plification guarantees that the number of segments matching a single vertex is only a

constant.

Acknowledgements The authors thank Mark de Berg and Marc van Kreveld for insightful discussions

on the problems studied in this paper and related problems. The authors would also like to thank the

anonymous referees for their insightful comments.

This research was initiated during a workshop supported by the Netherlands Organization for Scientific

Research (NWO) under BRICKS/FOCUS grant number 642.065.503.

The work of A. Driemel has been supported by the Netherlands Organisation for Scientific Research

(NWO) under RIMGA (Realistic Input Models for Geographic Applications). The work of S. Har-Peled

was partially supported by a NSF AF award CCF-0915984. The work of C. Wenk has been supported by

NSF CAREER award CCF-0643597.

Appendix A: Fatness Implies c-Packedness

We show that the boundary of an (α,β)-covered shape is c-packed even if the shape

does not have a finite descriptive complexity. A somewhat similar result (which how-

ever is too weak to prove this result) is the packing lemma of de Berg [14] that shows

that the boundary of the union of γ -fat shapes has low density. This implies that a

connected component of this boundary has low density.

As mentioned in the introduction, since Koch’s snowflake is γ -fat, if the finiteness

requirement is removed, it follows that the boundary of γ -fat shapes with unbounded

descriptive complexity are not c-packed, for any finite c.

Definition A.1 A bounded simply connected region P in the plane is (α,β)-covered

if for each point p ∈ ∂P , there exists a triangle Tp , called a good triangle of p, such

that: (i) p is a vertex of Tp , (ii) Tp ⊆ P , (iii) all the angles of Tp are at least α, and

(iv) the length of all the edges of Tp is at least βdiam(P).

Note that our definition is different from the standard definition of (α,β)-covered

shapes, since we do not require that the region P has a finite descriptive complexity.

Lemma A.2 Let S be a set of segments contained inside a disk with radius r , such

that for any point p lying on a segment of S, there is an infinite cone V of angle at

least α ≤ π with an apex at p, such that the intersection of the interior of V with S is

empty. Then, ‖S‖ ≤ 10πr/(α sin(α/4)).

Proof Let F be a family of ⌈2π/(α/2)⌉ cones, centered at the origin, such that they

cover all directions, and each cone has angle α/2. Clearly, for any point p lying on a

segment of S, there must be a cone V ∈ F , such that the interior of p + V does not

intersect S. We will say that p is exposed by V .

So, fix such a cone V ∈ F and consider the direction �v that splits the angle of V into

two. Rotate the plane such that �v is the direction of the negative y axis, and observe

that any point of S that is exposed by (the rotated) V lies on the lower envelope of the

Discrete Comput Geom (2012) 48:94–127 125

segments of S. Furthermore, the segment u ∈ S that contains this point must have an

angle in the range (−π/2 +α/4,π/2 −α/4) with the positive direction of the x-axis

(we assume u is oriented from left to right).

Now, since the projection of S on the x-axis has length at most 2r , it follows that

the total length of the segments exposed by V is at most 2r/ sin(α/4).

Hence, the total length of segments of S is bounded by

|F |
(

2r

sin(α/4)

)
=

(
4π

α
+ 1

)(
2r

sin(α/4)

)
≤ 10πr

α sin(α/4)
.

�

Lemma A.3 If P is an (α,β)-covered polygon in the plane then it is c-packed, for

c = O

(
1

αβ sin(α/4) tan(α)

)
.

Proof Let S = ∂P , and consider any disk D of radius r in the plane. Observe that

the height of a good triangle is at least ρ = (s/2) tan(α), for s = βdiam(P), and

this also bounds the distance of any vertex of a good triangle to its facing edge. If

r ≤ ρ/2, then any good triangle for a point of S behaves like a cone as far as S ∩ D

is concerned, and Lemma A.2 implies that ‖S ∩ D‖ ≤ 10πr/(α sin(α/4)) as desired.

If r ≤ diam(P), then cover D by m = (2
√

2r/ρ +1)2 disks of radius ρ/2. Clearly,

for each such disk, the total length of segments of S inside it, by Lemma A.2, is at

most 5πρ/(α sin(α/4)). Therefore the total length of S inside D is

5πρ

(α sin(α/4))

(
2
√

2r

ρ
+ 1

)2

≤ 160π

α sin(α/4)
· r

ρ
· r ≤ 320π

αβ sin(α/4) tan(α)
r.

Observe that the total length of ∂P is bounded by the above bound, by taking D

to be a disk of radius r = diam(P) centered at some point of P . Therefore the claim

trivially holds in the case r ≥ diam(P). �

126 Discrete Comput Geom (2012) 48:94–127

Appendix B: A Proof of Lemma 4.8

Lemma B.1 Let P be a set of n points in R
d , contained inside a hypercube C. Then

one can cover C by a set of cubes K, such that the following properties hold.

(A)
⋃

K = C.

(B) |K| ≤ 2d+1dn.

(C) Each p ∈ C is covered by at most 2d cubes.

(D) Each cube contains at most one point from P.

Proof We can use the following algorithm to construct a d-dimensional reduced

quadtree, of which the set of cubes corresponding to the leaf nodes satisfies the re-

quirements for K.

Take C as the root node. Split the current node recursively into 2d subcubes, until

there is only one point left in the current node, while abiding to the following rule.

In each step, either (A) do a proper quadtree split if at least two of the immediately

resulting subcubes contain a point of P, or (B) perform a reduced split otherwise,

such that all points are contained in exactly one minimal subcube. A reduced split is

formed by allowing the cubes the cube to overlap, by shrinking one of the 2d subcubes

containing the points, and enlarging all the others. Such a reduced split is depicted

in the figure below. However, we can ensure that only those subcubes will overlap

that do not contain any point of P and will therefore not be split further. Clearly each

point in the covered area is covered by at most 2d leaf nodes.

A split of type (A) separates the set of points into at least two non-empty subsets.

A split of type (B) results in a point on the splitting plane. Both events can happen at

most dn times and produce each at most 2d extra nodes. Therefore the size of K is

bounded by 2d+1dn. �

Proof of Lemma 4.8 This follows directly from Lemma B.1. Indeed, for every edge

of π add the corners of the axis parallel cube containing it to a set of points P. Next,

consider the respective quadtree construction of Lemma B.1 for P ⊆ C. The cover

uses at most 2d+1m boxes, where m ≤ 2dn = |P|.
Consider a cube C′ in the resulting decomposition of C, and an edge u of π that

intersects it. If the length of u is shorter than the side length of C′, then one of the

corners of the bounding cube of u must be in C′, and C′ cannot be a leaf of the

quadtree. This implies that C′ can be intersected only by edges that are at least as

long as its side length.

Discrete Comput Geom (2012) 48:94–127 127

By the low-density property of π and by Claim 4.7, C′ can intersect at most cdφ

edges of π , which implies the lemma. �

References

1. Agarwal, P.K., Har-Peled, S., Mustafa, N., Wang, Y.: Near-linear time approximation algorithms for

curve simplification in two and three dimensions. Algorithmica 42, 203–219 (2005)

2. Alt, H.: The computational geometry of comparing shapes. In: Efficient Algorithms: Essays Dedicated

to Kurt Mehlhorn on the Occasion of His 60th Birthday, pp. 235–248. Springer, Berlin (2009)

3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput.

Geom. Appl. 5, 75–91 (1995)

4. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica

38(1), 45–58 (2004)

5. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3),

899–921 (2008)

6. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for curves, revisited. In:

Proc. 14th Annu. European Symp. Algorithms, pp. 52–63 (2006)

7. Bose, P., Cheong, O., Dujmović, V.: A note on the perimeter of fat objects. Comput. Geom. Theory

Appl. 44(1), 1–8 (2011)

8. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc.

31st VLDB Conference, pp. 853–864 (2005)

9. Buchin, K., Buchin, M., Knauer, C., Rote, G., Wenk, C.: How difficult is it to walk the dog. In: Proc.

23rd Euro. Workshop on Comput. Geom., pp. 170–173 (2007)

10. Buchin, K., Buchin, M., Gudmundsson, J.: Detecting single file movement. In: Proc. 16th ACM

SIGSPATIAL Int. Conf. Adv. GIS, pp. 288–297 (2008)

11. Buchin, K., Buchin, M., Gudmundsson, J., Maarten, L., Luo, J.: Detecting commuting patterns by

clustering subtrajectories. In: Proc. 19th Annu. Internat. Symp. Algorithms Comput., pp. 644–655

(2008)

12. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42, 67–90 (1995)

13. de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28, 353–366

(2000)

14. de Berg, M.: Improved bounds on the union complexity of fat objects. Discrete Comput. Geom. 40(1),

127–140 (2008)

15. de Berg, M., Katz, M.J., van der Stappen, A.F., Vleugels, J.: Realistic input models for geometric

algorithms. Algorithmica 34, 81–97 (2002)

16. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near

linear time. In: Proc. 26th Annu. ACM Symp. Comput. Geom., pp. 365–374 (2010). arXiv:1003.0460

17. Efrat, A.: The complexity of the union of (α,β)-covered objects. SIAM J. Comput. 34(4), 775–787

(2005)

18. Erickson, J.: On the relative complexities of some geometric problems. In: Proc. 7th Canad. Conf.

Comput. Geom., pp. 85–90 (1995)

19. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping to massive dataset. In: Proc. of the Third

Euro. Conf. Princip. Data Mining and Know. Disc., pp. 1–11 (1999)

20. Kim, M.S., Kim, S.W., Shin, M.: Optimization of subsequence matching under time warping in time-

series databases. In: Proc. ACM Symp. Appl. Comput., pp. 581–586 (2005)

21. Kwong, S., He, Q.H., Man, K.F., Tang, K.S., Chau, C.W.: Parallel genetic-based hybrid pattern match-

ing algorithm for isolated word recognition. Int. J. Pattern Recognit. Artif. Intell. 12(5), 573–594

(1998)

22. Munich, M.E., Perona, P.: Continuous dynamic time warping for translation-invariant curve alignment

with applications to signature verification. In: Proc. 7th Int. Conf. Comp. Vision, pp. 108–115 (1999)

23. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching

online handwritten documents. In: Proc. 9th Int. Conf. Doc. Anal. Recogn., pp. 461–465 (2007)

24. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: localizing global curve-

matching algorithms. In: Proc. 18th Int. Conf. Sci. Statist. Database Managm., pp. 879–888 (2006)

http://arxiv.org/abs/arXiv:1003.0460

	Approximating the Fréchet Distance for Realistic Curves in Near Linear Time
	Abstract
	Introduction
	Previous Results
	The Input Model
	Our Results
	Organization

	Preliminaries
	Notations and Definitions
	Fréchet Distance and the Free Space Diagram
	Free Space Events

	Curve Simplification

	The Approximation Algorithm
	Computing the Reachable Free Space
	The Approximate Decision Procedure
	How to Use the Approximate Decider in a Binary Search

	Searching for the Fréchet Distance
	Searching in a Fixed Interval
	Searching over Events
	Searching over Simplifications
	Monotonicity Events
	Searching with a Fixed Simplification

	The Approximation Algorithm
	Correctness
	Running Time
	The Result

	The Relative Free Space Complexity of Families of Curves
	On c-Packed Curves
	Definition and Basic Properties
	Bounding the Relative Free Space Complexity

	Relative Free Space Complexity of Low-Density Curves
	Low-Density Curves Can Be Long Only if They Pay for It
	Accounting for Many Reachable Free Space Cells

	Relative Free Space Complexity of k-Bounded Curves

	Extension to Closed c-Packed Curves
	Conclusions
	Lower Bound

	Acknowledgements
	Appendix A: Fatness Implies c-Packedness
	Appendix B: A Proof of Lemma 4.8
	References

