
Received April 17, 2020, accepted May 19, 2020, date of publication June 10, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001531

Approximating the Gradient of
Cross-Entropy Loss Function

LI LI , (Student Member, IEEE), MILOŠ DOROSLOVAČKI , (Member, IEEE),
AND MURRAY H. LOEW, (Life Fellow, IEEE)
Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA

Corresponding authors: Li Li (lili1986@gwu.edu) and Miloš Doroslovački (doroslov@gwu.edu)

ABSTRACT A loss function has two crucial roles in training a conventional discriminant deep neural

network (DNN): (i) it measures the goodness of classification and (ii) generates the gradients that drive

the training of the network. In this paper, we approximate the gradients of cross-entropy loss which is the

most often used loss function in the classification DNNs. The proposed approximations are noise-free, which

means they depend only on the labels of the training set. They have a fixed length to avoid the vanishing

gradient problem of the cross-entropy loss. By skipping the forward pass, the computational complexities

of the proposed approximations are reduced to O(n) where n is the batch size. Two claims are established

based on the experiments of training DNNs using the proposed approximations: (i) It is possible to train

a discriminant network without explicitly defining a loss function. (ii) The success of training does not

imply the convergence of network parameters to fixed values. The experiments show that the proposed

gradient approximations achieve comparable classification accuracy to the conventional loss functions and

can accelerate the training process on multiple datasets.

INDEX TERMS Deep neural networks, cross-entropy, gradient, loss function.

I. INTRODUCTION

Deep neural networks (DNNs) are hotspots of machine

learning research in recent years as they are proven to be

successful in a wide range of discriminant applications. As a

supervised approach, DNNs need to be trained to obtain a

set of parameters that determine the mapping of input data

to the representation space. After the mapping, a classifier is

employed to predict the label of corresponding input based on

the obtained representations. Conventional training of a DNN

assumes a loss function that measures the ‘‘goodness’’ of the

classification by comparing the prediction to the ground truth.

Specifically, errors between the predicted and true labels are

calculated over the training set. The errors are then combined

into a scalar which is called loss. This phase of calculating

the loss value from representation points is called forward

propagation of the loss function [1]. The training of the net-

work actually occurs in the back propagation phase, in which

the parameters of the network are updated proportionally

to the gradient of the loss with respect to the parameters.

As all the negative gradients are calculated by the chain rule

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingjun Dai .

that starts with the partial derivatives of the loss with respect

to the representations, the derivatives of the loss function

are the starting ‘‘forces’’ that drive the training of the net-

work. This forward-backward pass paradigm for loss function

is used in most of modern DNNs, whether the loss func-

tion is probability-based [2], energy-based [3], or geometry-

based [4], [5].

As the training of a DNN is driven by the gradients of

the loss function that are generated in the backward pass,

a question that naturally arises is whether the forward pass

of loss function is necessary? Although the value of a loss

function provides partial information about training, e.g., it is

helpful for determination of overfitting, the loss value itself is

not essential for getting iteratively better representations. The

gradients provide the direction and strength that nudge the

parameters in every iteration and promote the representations

that are easier to separate. Now the second question appears:

can we approximate the gradient and make calculation of

gradients easier without having a noticeable loss in prediction

performance? Then, the followed question is that if such

approximations exist, can they shorten the training process?

In this paper, we give the answers to these questions by

approximating the gradient of cross-entropy which is one of

111626 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0001-7165-5184
https://orcid.org/0000-0003-4101-3249
https://orcid.org/0000-0003-2602-1937


L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

the most popular loss functions for training DNNs. We give

new explanations of the effectiveness of cross-entropy loss

using geometric interpretations and propose two approxi-

mations of the loss gradients. These approximations result

in very simple functions that could be used for training

DNNs and reduce the computational complexity of the last

(loss function) layer in a DNN to O(n). These approxi-

mations do not require explicit calculation of the loss and

are applied in convolutional neural networks (CNNs) and

in fully-connected networks (FC-nets). Experiments on the

optical coherence tomography (OCT) and MNIST datasets

show the effectiveness and efficiency of our proposed gradi-

ent approximations for training DNNs.

The goal of this paper is to discuss the properties of

the cross-entropy gradients and approximate the gradients

by preserving their important properties. The experiments

focus on training and are used to show the behavior of the

approximations. We show that a network with parameters not

converging to fixed values can fit the training dataset and

achieve similar test accuracy compared to the conventional

training approach; in other words, the success of training does

not imply the convergence of network parameters to fixed

values. Our discussions focus on the classification problems,

as they could be effectively solved by the cross-entropy loss

function. For the other problems, e.g., regression, DNNs usu-

ally use other loss functions. Consideration of these problems

is beyond the scope of this paper.

II. BACKGROUND

The parameters of a DNN are updated by the gradients of a

loss function. The parameters form the mapping from data

to data representations. Therefore, a loss function plays a key

role in trainingDNNs and determines the forms of representa-

tions learned by the DNN. There exist three major categories

of loss functions, and they lead to different interpretations for

DNNs.

The first category contains probability-based loss func-

tions. The most outstanding one in this category is cross-

entropy, which is a generalization of logistic regression to

multi-class scenarios and was first proposed by Bridle [2].

Its popularity in the neural networks community gave birth to

its variants [6]–[11]. Another often used loss function in this

category is earth mover’s distance [12], [13]. All of these loss

functions have clear probabilistic or information theoretic

interpretations. The main idea is to maximize the likelihood

of the correct prediction given the ground truth in the training

set.

The second category is energy-based [14]–[16], which

were mainly contributed by B. Juang and Y. LeCun et al., and

summarized in [3]. For these loss functions, the correspond-

ing models are viewed as an energy function which measures

the ‘‘goodness’’ of each possible configuration of input data

and labels. The loss value can be interpreted as the degree of

compatibility between the values of input and labels [3]. The

relation between the energy-based to the probability-based

approaches can be established by Gibbs distribution [3].

Third, metric-based learning (or similarity learning)

comprises a big family of the geometric-based approaches.

They include the popular mean squared loss, triplet loss [17],

neighborhood-based approaches [18], [19], and principal

component analysis/linear discriminant analysis-based

approaches [4], [5], [20]. These loss functions rely on ametric

of distance or similarity that encodes the correlation and

variation of the variables.

Some other research directions consider acceleration of the

computation of gradient for DNN optimizations by analyzing

numerical aspects of processing. E.g., accelerating gradient

method to non-convex optimization problems, reducing the

precision of weights and gradients to accelerate the computa-

tions in DNNs.

The existing research on the loss functions mainly focuses

on the loss-margin, robustness, and specific applications

(e.g., many loss functions are designed for facial recognition

[6], [9], [11]). And the aforementioned gradient approxima-

tion approaches focus on the simplification of the numerical

computation of gradient. There are only a few published

works that discuss the properties of the loss function gra-

dients, which are the actual drivers of training DNNs. The

next two sections of the paper will provide insights into

the gradients of cross-entropy loss, and then propose two

approximations for the cross-entropy gradients based on the

properties of the gradient.

III. GRADIENTS OF CROSS-ENTROPY

A. REVISITING CROSS-ENTROPY LOSS

Cross-entropy is used ubiquitously in state-of-the-art DNNs.

To discuss the properties of cross-entropy loss, it is necessary

to briefly introduce its mathematical definition.

Suppose a discriminant problem has N classes. A neural

network maps the input space to the representation space by

F : R
dx 7−→ R

N , where dx is the dimension of the input

space, and N is the dimension of the representation space,

which must be the same as the number of classes. Suppose a

data sample x is mapped by the network to its representation

(scores) S = F(x ∈ XL) = [s1, s2, . . . , sN ]
⊺, whereXL is the

set of training samples labeled by L. The softmax nonlinearity

is used to normalize the output S to a probability distribution

O = [o1, o2, . . . , oN ]
⊺, where oi is defined as [2]:

oi = P(cp = i|x ∈ XL) = esi
∑N

l=1 e
sl

, (1)

where cp denotes the predicted label. Cross-entropy loss is

defined by

J = − log(oL) = − log
esL

∑N
l=1 e

sl
. (2)

J is minimized when oL = 1. It happens that the gradient of

the loss with respect to scores has a simple form:

∇SJ (S) = [g1, g2, . . . , gN ]
⊺ = O− TL , (3)

where TL = [t1, t2, . . . , tN ]
⊺ is a vector with entries ti = 0

for i 6= L and tL = 1.

VOLUME 8, 2020 111627



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

The success of the cross-entropy loss has been proven

by a wide range of applications. It is used under various

names, such as negative log-likelihood, softmax loss, mutual

information loss, etc. [3]. However, only a few works try to

explain the reason of its effectiveness. J.S. Bridle mentioned

that the cross-entropy loss uses cross-class information and

results in better performance for class discrimination than

the usual within-class training method [2]. Y. LeCun et al.

explained effectiveness from the viewpoint of energy-based

learning. They interpret the numerator of (2) as an energy

associatedwith the correct configuration and the denominator

as a constructive factor which pushes the energies of the

incorrect answers towards zero, i.e., the corresponding loss

towards infinity [3]. We will further scrutinize the gradients

of cross entropy and try to explain its effectiveness from the

geometric point of view.

B. PROPERTIES OF THE GRADIENTS OF CROSS-ENTROPY

LOSS

As the gradients of cross-entropy loss are vectors in an R
N

space, we define (x1, x2, . . . , xN ) as the Cartesian coordinate

of a point in the space.

Property 1: All gradients of cross-entropy loss are on the

hyperplane
∑N

l=1 xl = 0.

Proof: Since
∑N

l=1 ol = 1 by (1) and
∑N

l=1 tl = 1

by (3), thus
∑N

l=1 xl =
∑N

l=1 ol −
∑N

l=1 tl = 0.

A representation is the ‘‘worst’’ when s1 = s2 = · · · =
sN , because it implies the prediction is most uncertain,

i.e., ∀i, oi = P(cp = i|x ∈ XL) = 1/N . Then we have the

next property:

Property 2: All the gradients of cross-entropy are orthog-

onal to the most uncertain decision line {η1|η ∈ R}, where
1 is an all-one vector with N entries.

Proof: Since 1
⊺ · ∇SJ (S) = 0 by Property 1,

Property 2 holds.

Property 2 just rephrases Property 1.

Property 3: Assume that E[oi] = λ, ∀i 6= L then

VL = E[∇SJ (S)] = λ(1 − NTL), (4)

where E[·] denotes the expectation.
Proof:

E[∇SJ (S)] , E[O] − TL

= [λ, · · · , 1 − (N − 1)λ, · · · λ]⊺

− [0, · · · , 1, · · · 0]⊺

= λ1 − λ[0, · · · ,N , · · · , 0]⊺

= λ(1 − NTL).

The assumption that the expected values of probability

for the classes not corresponding to the true label are the

same is reasonable when the neural network is randomly

initialized and on average balances treatment of classes. The

representations conditioned on class L are symmetrically

distributed around the sL-axis. At the beginning of training,

the prediction of the neural networks is a random guess.

In this case λ = 1/N . At the end of training oL ≫ oi, ∀ i 6= L,

and λ = (1 − E[oL])/(N − 1) ≈ 0.

To illustrate the properties of cross-entropy loss gradients,

we use a group of synthetic representations generated by

zero-mean unit-covariance Gaussian distribution to model

the situation at the beginning of training in a three-class

scenario. The negative gradients of cross-entropy loss are

illustrated in Fig. 1. They are all orthogonal to and drive the

representations from the most-uncertain-decision line if the

training is sufficiently long. The orthogonality comes from

Property 2. The increase of distance from line {η1|η ∈ R} can
be explained as follows.

FIGURE 1. The negative gradients of cross-entropy loss, the plane
x + y + z = 0, and the most-uncertain-decision line x = y = z . For the
visualization purpose, the length of the cross-entropy gradients are
enlarged 40 times.

Let us consider the process of one-step parameter updating

for a single input sample using the gradient descent algorithm.

Let S(0) = [s
(0)
1 , s

(0)
2 , . . . , s

(0)
N ]⊺ be the current coordinate

of a representation for an input x, and S
(1) be the updated

representation for using the same training sample x ∈ XL .

After updating the network parameters by using the steepest

descent method, S(1) = S
(0)−γ E[∇S

(0)J (S(0))], where γ > 0

is the learning rate. Let d2 (1,S) be the squared distance of S

from {η1|η ∈ R}. Then we have

d2
(
1,S(1)

)
− d2

(
1,S(0)

)

= ‖S(1) − Proj1S
(1)‖22 − ‖S(0) − Proj1S

(0)‖22
= ‖S(1) − 1

N
1
⊺
S
(1)
1‖22 − ‖S(0) − 1

N
1
⊺
S
(0)
1‖22

= γ 2λ2N (N − 1) − 2γ λ(1 − NTL)
⊺(S(0) − 1

N
1
⊺
S
(0)
1),

where, Proju(v) represents the projection of vector v onto

vector u. Since

(1 − NTL)
⊺

(
S
(0) − 1

N
1
⊺
S
(0)
1

)

= −Ns(0)L +
(

N∑

l=1

s
(0)
l

)
T
⊺

L1

= −Ns(0)L +
N∑

l=1

s
(0)
l ,

111628 VOLUME 8, 2020



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

we obtain

d2
(
1,S(1)

)
− d2

(
1,S(0)

)

= γ 2λ2N (N − 1) − 2γ λ

(
N∑

l=1

s
(0)
l − Ns

(0)
L

)
.

For λ = 0 the distance after updating does not change. For

λ > 0 the distance increase if −2
(∑N

l=1 s
(0)
l − Ns

(0)
L

)
+

γ λN (N−1) > 0. A sufficient condition that the updated rep-

resentation in the next step is farther away from {η1|η ∈ R} is
s
(0)
L > (1/(N − 1))

∑N
l=1, l 6=L s

(0)
l , i.e., s

(0)
L component should

be larger than the arithmetic mean of the other components

in S
(0). After sufficiently long training this condition will

be satisfied since (4) drives sL towards +∞ and all other

components in S towards −∞.

IV. VANISHING GRADIENTS OF CROSS-ENTROPY LOSS

The gradient can be characterized by direction and length

(intensity). In addition to the three discussed properties,

we investigate the length of cross-entropy gradient next.

The problem of vanishing gradients is well-known in train-

ing of deep neural networks, and it is conventionally referred

to as the reduction of length of gradient caused by the sat-

urating activation functions and small singular values of the

Jacobian matrix associated with the transformation from the

features at one level into the features at the next level in

backpropagation [21]. It is the one of the key factors that

prevented training a very deep net in the early development

of artificial neural networks [22].

The history of overcoming the vanishing gradient problem

suggests that it is important to retain the intensity of the

gradient during training. Based on the chain-rule that is used

for obtaining the gradients w.r.t. the network parameters,

many existing proposals focus on mitigating the vanishing

gradient in the backpropagation process but omit the first term

of the chain-rule—the gradient of the loss function, which

drives the training. Practically, the choice of a loss function

determines its gradient and could cause vanishing gradients.

The three properties discussed in last section focus on the

direction of the cross-entropy gradient; its intensity will be

analyzed next.

Property 4: The length of the expected gradient vector of

cross-entropy is λ
√
N (N − 1).

Proof: The length of the expected gradients can be

expressed by

‖E[∇SJ (S)]‖2 = ‖λ(1 − NTL)‖2
=
√
(N − 1)λ2 + λ2(1 − N )2

= λ
√
N (N − 1). (5)

Equation (5) indicates that the L2 norm (length) of the

expected gradients of cross-entropy loss has a linear relation

to λ. As λ is the expected probability for the classes that

are not corresponding to the true label, it has the largest

value 1/N at the beginning of the training assuming an unbi-

ased initialization. In this case ‖E[∇SJ (S)]‖2 =
√
1 − 1/N .

λ approaches zero at the end of the training if the train-

ing is effective (i.e., most of the training samples are cor-

rectly classified). In this case, ‖E[∇SJ (S)]‖2 approaches zero
accordingly.

The analysis above discloses the vanishing gradient caused

by cross-entropy—the intensity of the gradient decays lin-

early as the confidence of the classification grows. In practice,

the norm of the expected gradient of cross-entropy is seen

to diminish very quickly (even faster than exponential) with

the training iterations (see Fig. 2). As the training goes on,

the ‘‘force’’ that drives the training approaches zero and the

training progress stagnates. The very short length of the

cross-entropy gradient after a few iterations can be considered

as another kind of vanishing gradient; changing the acti-

vation functions or the architectures of the network barely

help, because the shortening happens in the first term of the

chain rule of backpropagation and only depends on the loss

function.

FIGURE 2. The length of expected gradient of cross-entropy in the first
4,000 training batches of MNIST dataset. The values on the curves are
L2 norm of average gradient of cross-entropy loss (‖VL‖2 = ‖E[∇S J(S)]‖2)

for L = 0, 1, 2 over one batch. The batch size of the experiments is 128.
The curves in the figure are averages of 20 repetitive experiments.
Subfigure (b) presents the same data as subfigure (a) but in logarithm
scale in the vertical axis. The curves for L = 0 (blue) and L = 1 (orange)
are almost completely overlapped. The other classes of MNIST have the
similar trend of the length of average gradient as the three classes shown
in the figures.

V. THE FUNCTIONS THAT APPROXIMATE GRADIENTS OF

CROSS-ENTROPY LOSS

The properties of the cross-entropy gradient motivate us to

propose two functions that eliminate the forward pass of

the loss function and generate the vectors that replace the

gradients of cross-entropy loss. The purpose of the approxi-

mations is to avoid the vanishing gradient of the cross-entropy

loss and to circumvent the calculation of the exponential and

logarithm in (1) and (2), thereby, simplifying the procedure

of generating the (gradient) vectors that are used to train the

networks.

VOLUME 8, 2020 111629



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

Approximation 1:

Ĝ1 = VL

‖VL‖
. (6)

This approximation simply uses the unit vector in the direc-

tion of the expectation of cross-entropy loss gradient. The

length of the gradient of cross-entropy loss decays quickly

with the increase of the prediction confidences for the net-

work (Fig. 2). In contrast, the length of Ĝ1 does not change,

and it keeps pushing the representations toward infinity,

far from {η1|η ∈ R}. This strategy may cause overfitting

however.

Approximation 2:

Ĝ2 = −TL . (7)

This is a coarser approximation of the gradient of cross-

entropy loss. The form of the vector Ĝ2 is rather simple—we

change the sign of the entry that has value of one in TL , and

inject the vector to the backward pass of training neural net-

works. It reduces the computational complexity drastically,

and might be the simplest way of generating the vectors that

could drive the training of DNNs.

Ĝ1 and Ĝ2 have three notable properties: (i) They are

‘‘noise-free,’’ because they only depend on the labels of a

training set but not on an individual data or its representation

explicitly. (ii) The length (intensity) of the vectors they gen-

erate for training the networks is unit. (iii) They simply push

the representations in proper directions corresponding to the

labels. The usefulness of these properties will be shown by

the experiments in the next section.

VI. EXPERIMENTS

A. ACCELERATION OF TRAINING USING Ĝ1 AND Ĝ2

Since Ĝ1 and Ĝ2 are noise-free if the training labels are

reliable, the networks could be trained without smoothing the

gradient. To verify this possibility we conduct the following

experiments on the CIFAR10 dataset.

Fig. 3 illustrates the training and test errors of CIFAR10

dataset by a Wide-ResNet(28-10)1 [23] using Ĝ1, Ĝ2, and

cross-entropy with different optimizers and learning strate-

gies. For the purpose of investigating the noise-free effects,

we choose stochastic gradient descent (SGD) as the optimizer

in the experiments producing Figs. 3(a), (b), (c), and (d)

and turn off the smoothing of Ĝ1 and Ĝ2 (set the momen-

tum coefficient of the optimizer to zero). For compari-

son, cross-entropy is employed with the parameters sug-

gested in [23], i.e., the momentum coefficient is set as 0.9.

By observing Fig. 2, one can conclude that the range of

lengths of the gradients for cross-entropy is quite different

from Ĝ1 and Ĝ2 (they have constant length of 1). These

contrasting ranges imply that they should have very different

learning rates. We set the initial learning rate for Ĝ1 and Ĝ2 to

be the largest number in the set
{
1 × 10−q | q = 1, 2, . . . , 10

}

1We downloaded the source code written by the authors of [23] from
https://github.com/szagoruyko/wide-residual-networks.

that keeps the training stable, i.e.,1× 10−7. The learning rate

for cross-entropy is chosen as 0.1, which is also suggested

by [23].

To further eliminate the setting difference of algorithms

to be compared, we use Adam [24] as the optimizer in

the second group of experiments, because Adam could help

to stabilize the training and, more importantly, it provides the

parameter updating magnitude that is invariant to rescaling

of the gradient [24]. Thus, it is possible to fairly compare the

training processes using Ĝ1, Ĝ2, and cross-entropy choosing

the same initial learning rate. The initial learning rates for

Ĝ1, Ĝ2, and cross-entropy are all 0.001 in this group of

experiments. The comparison results are shown in the second

row of Figs. 3 ((e), (f), (g), and (h)).

We also compare the performances of Ĝ1, Ĝ2, and

the cross-entropy gradient using different learning rate

decay strategies: (i) The learning rates are kept constant

(Figs. 3(a) and (e)). (ii) To make the cross-entropy based

algorithms converge faster and deeper, the learning rates are

decayed by γ0/m, where m is the training epoch number

(Figs. 3(b) and (f)). (iii) The learning rates are decayed to

(0.2)q × γ0, where q = 1, 2, 3 at epochs 60, 120, and

160 respectively (Figs. 3(c) and (g)). This strategy is referred

in [23]. (iv) The total number of training epochs for Ĝ1 and Ĝ2

is reduced by half (100 epochs), and learning rates are

decayed to (0.2)q × γ0, where q = 1, 2, 3 at epochs 30, 60,

and 80 respectively (Figs. 3(d) and (h)).

One can see that the training errors for Ĝ1 and Ĝ2 decay

much faster than those for the cross-entropy gradient in most

of the scenarios, e.g., in Fig. 3(f) Ĝ1 and Ĝ2 achieve the

training error of 2% at about 36th epoch2 but the cross-entropy

gradient achieves the same training error at the 60th epoch.

Ĝ1 and Ĝ2 save about 24 epochs (i.e., one hour two

minutes training time on the GPU of our workstation3).

In Figs. 3(d) and (h), the numbers of training epochs of Ĝ1

and Ĝ2 are halved compared to the cross-entropy loss case,

though they may lose only 1% of the test accuracy4.

These experiments show the usefulness of the properties

(i) and (ii) of Ĝ1 and Ĝ2 at the end of Section V. The training

errors approach zero without need for smoothing the gradient

and decrease rapidly when using Ĝ1 and Ĝ2.

B. VISUALIZATIONS OF THE REPRESENTATIONS AND

NETWORK PARAMETERS FOR A FULLY-CONNECTED

NETWORK (FC-NET)

Fig. 4 displays the trajectories of class mean for ‘‘0’’, ‘‘1’’,

‘‘2’’ for the MNIST dataset in the 3-D representation space.

Fig. 4(a) shows the ideal trajectories obtained by iterating

S
(q+1) = S

(q) + γ∇
S
(q)J (S(q)) without training a network,

where q is the iteration number. Fig. 4(b) shows the class

2
Ĝ1 achieves 2% training error at the 34th epoch, and Ĝ2 at 38th.

3The work station has an Intel Core i7-8700K CPU, 16 GB memory, and
a GeForce 1080Ti GPU.

4The test accuracies for Ĝ1 and Ĝ2 are 94.18% and 94.15% respectively
in Fig. 3(h). The best test accuracies for Ĝ1, Ĝ2, and cross-entropy gradient
are 94.87%, 94.72%, and 95.17% which was obtained in Fig. 3(d).

111630 VOLUME 8, 2020



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

FIGURE 3. The classification errors obtained by Ĝ1, Ĝ2, and cross-entropy gradient with different learning rate decay strategies and optimizers, where

(a), (b), (c), and (d) use SGD, and (e), (f), (g), and (h) use Adam. The momentum (momn.) for Ĝ1 and Ĝ2 using SGD is zero; the momentum for
cross-entropy gradient using SGD is 0.9. (a) and (e) have no learning rate decay. (b) and (f) decay learning rates as γ0/m, where m is the number of
epoch. The learning rates in (c) and (g) reduce to (0.2)q × γ0, where q = 1, 2, 3 at epochs 60, 120, and 160. In (d) and (h) the learning rates reduce to

(0.2)q × γ0, where q = 1, 2, 3 at epochs 30, 60, and 80 when using Ĝ1 and Ĝ2. Note that the training error curves (dash lines) may overlap each other
which make them difficult to distinguish, e.g., the three dash lines in (b) are almost completely overlapped, and in most of the figures the blue and
red dash lines overlap. Note that the epoch scales differ.

mean trajectories in the representation space when training

an FC-net. One can see that the trajectories for cross-entropy

loss are shortest (bold green lines). It indicates that λ decays

quickly with the prediction confidence increase. The repre-

sentations, therefore, move little when close to the end of

training. By contrast, the class means keep moving farther

from {η1|η ∈ R} by using Ĝ1 and Ĝ2 forming different trajec-

tories because Ĝ1 and Ĝ2 both have unit length but different

directions.

Up to this point, we have shown the successful training of

DNNs by using Ĝ1 and Ĝ2; additionally, we are interested

in evolution of the parameters in the network, since the driv-

ing force of training have a constant intensity in this case.

To demonstrate the parameter updating behavior using Ĝ1

and Ĝ2, we randomly chose 100 parameters from the last

layer of the same FC-net trained by Ĝ1, Ĝ2, and cross-entropy

gradient for the MNIST dataset, and Fig. 5 illustrates the

evolution of these 100 parameters. One can see that these

parameters trained by Ĝ1 and Ĝ2 do not converge to fixed val-

ues. About half of the parameters drift toward infinity, and the

others drift toward minus infinity. By contrast, the parameters

trained by cross-entropy gradient converge to fixed values.

The test accuracy of the networks trained by Ĝ1 and Ĝ2

achieves 98.72% and 98.65% in 100 epochs compared to the

98.47% for the cross-entropy case. Therefore, the success in

training a network does not imply the convergence of network

parameters to fixed values. These experiments justified the

property (iii) at the end of Section V.

The reason for the success of training a DNN by these

unit vectors is that the decision regions for the max-out

VOLUME 8, 2020 111631



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

TABLE 1. The classification accuracy for different approximations/loss functions on OCT dataset (mean ± std %).

FIGURE 4. These figures show the class mean trajectories of ‘‘0’’, ‘‘1’’, and
‘‘2’’ in MNIST dataset in the 3-D representation space. (a) displays the
ideal trajectories, and (b) displays the trajectories in a training process.

classification strategy (i.e., the prediction of the network for

the label corresponding to an input is based on its represen-

tation S, and the final prediction is L̂ = argmaxi si, where si
(i = 1, 2, . . .N ) is an element in the representation vector S)

are open-regions that include infinity. Fig. 6 illustrates the

decision boundaries and the proposed driving vectors in a

three-class problem. A representation that falls into a region

provides a prediction label associated with the region. E.g.,

a representation at (0, 0, 1) will be predicted as class 2,

as well as the representation at (0, 0, z), where z > 0 and

possibly very large. Accordingly, the parameters that map

the input to the representation can be large, too. The similar

conclusion can be generalized to high dimensional scenarios.

The decision regions for the max-out decision strategy in a

high dimensional space are hyperplane bouned and contain

exactly one positive coordinate semiaxis and N − 1 negative

coordinate semiaxes.

C. APPLICATION WITH CNNs—OPTICAL COHERENCE

TOMOGRAPHY (OCT) DATASET CASE

We use an optical coherence tomography dataset and an

eighteen layer ResNet (ResNet-18) [27] to demonstrate the

effectiveness of the proposed approximations and compare

themwith other conventional loss functions. TheOCT dataset

contains 84,485 retinal images, in which 1,000 samples are

used as a test set. There are four classes, namely, Choroidal

Neovascularization (CNV), DiabeticMacular Edema (DME),

Drusen, and Normal [28]. OCT is a current standard tool

for the diagnosis of some of the leading causes of blindness

worldwide [28].

Table 1 compares the classification accuracy of the pro-

posed approximations and of other frequently used loss func-

tions. The training for every approximation and loss function

is repeated five times. The accuracies are illustrated by

mean ± standard deviation format.

As one can see in Table 1, the two approximations

(Ĝ1, Ĝ2) achieved comparable classification accuracies to

the frequently used loss functions including cross-entropy

loss, hinge loss [25], and hinge-square loss [26]. Moreover,

the classification accuracies of our proposed approximations

are better than the result (96.6% test accuracy) reported

in [28], which published the dataset.

D. COMPUTATIONAL COMPLEXITY OF THE

APPROXIMATIONS

We anticipate that the computational complexity using the

proposed approximations is lower than for the frequently

used cross-entropy loss function because we avoid the

forward calculation. Ĝ1 and Ĝ2 both have the computa-

tional complexity of O(n) (n is the batch size) and cir-

cumvent the computation of exponential functions. A group

of timing experiments were conducted to test the hypoth-

esis. For a fair comparison, the two approximations and

forward-backward pass of cross-entropy loss were imple-

mented by the NumPy module [29] without the precompiling

headers of the cross-entropy loss functions. The input of the

approximations/loss function based training was a randomly

generated mini batch, which had 100 classes and size of 256.

The experiments are repeated 1,000 times for each approxi-

mation/loss function, and they were done using a workstation

that has an Intel Core i7-8700KCPU and 16GBmemory. The

timing results are presented in Table 2. It can be seen that the

computational time of Ĝ1 and Ĝ2 are about one-tenth that of

cross-entropy. Although the calculation of the loss function

111632 VOLUME 8, 2020



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

FIGURE 5. The evolution of 100 parameters which are randomly chosen in the last layer of FC nets trained by (a) Ĝ1, (b) Ĝ2, and (c) cross-entropy

gradient for MNIST dataset (best viewed with color images). One can see that the parameters trained by Ĝ1 and Ĝ2 do not converge to fixed
values, however, the network can be successfully trained.

FIGURE 6. The decision boundaries in the representation space for a
three-class problem using the max-out decision strategy; they are defined
by x = z , y = z , and x = y in the 3-D space. The corresponding decision
regions of class 0, 1, and 2 are D0, D1, and D2, respectively. The

figure also show the proposed approximation vectors Ĝ1 and Ĝ2.

TABLE 2. The comparison of computational time (ms) for the gradient
approximations and cross-entropy case. The results are the averages over
1,000 experiments.

is a small proportion in the computation of forward and

backward propagation, and the computational complexity

of the network is mainly determined by the architecture of

the network, Ĝ1 and Ĝ2 overcome the vanishing gradient of

cross-entropy loss and increase the training speed.

VII. MORE GENERAL APPROXIMATIONS AND RELATION

TO LABEL-SMOOTHING REGULARIZATION (LSR)

A. GENERALIZATION

Based on the analysis and experiments above, we are propos-

ing vectors that generalizes the family of potential approxi-

mations of the cross-entropy gradient. By defining

T0 = −αTL + β1, where α, β > 0, β < α, (8)

the proposed approximation is

Ĝ0 = T0

‖T0‖
. (9)

The constraints in (8) guarantee that the negative gradient

is largest in the TL direction. By comparing Ĝ1, Ĝ2, and Ĝ0,

one can conclude that Ĝ1 and Ĝ2 are the special cases of Ĝ0,

where α = λN , β = λ for Ĝ1, and α = 1, β = 0 for Ĝ2.

B. THE RELATION TO LSR

R. Szegedy et al. proposed a label-smoothing technique in [7]

for regularization of the networks. In simple words, the tech-

nique replaces TL = [t1, t2, . . . , tN ]
⊺ (ti = 0 for i 6= L

and tL = 1) with T
′
L = [t ′1, t

′
2, . . . , t

′
N ]

⊺ (t ′i = ǫ/N for

i 6= L and t ′L = 1 − ǫ(N − 1)/N ). The authors interpreted

this technique as reducing the confidence of the prediction,

or adding one more term in the loss function which penalizes

the deviation of predicted label distribution from a uniform

distribution with parameter N [7].

Since we can write T ′
L = (1− ǫ)TL + (ǫ/N )1, the expec-

tation of the gradient for LSR can be written as

E[∇SJ (S)]LSR

= E[O] − T
′

L

= [λ, · · · , 1 − (N − 1)λ, · · · λ]⊺ − (1 − ǫ)TL − ǫ

N
1

= λ1 + [0, · · · , 1 − λN , · · · , 0]⊺ − (1 − ǫ)TL − ǫ

N
1

= −(λN − ǫ)TL +
(
λ − ǫ

N

)
1

=
(
λ − ǫ

N

)
(1 − NTL). (10)

One can conclude that (10) is a special case of Ĝ0, where

α = λN − ǫ and β = λ − ǫ/N . By comparing (4) and (10),

one can further recognize that the expectation of the gradient

generated by LSR has the same direction as VL and Ĝ1 but is

modulated by (λ−ǫ/N ). This implies that one has to carefully

choose the value of ǫ, because if ǫ < λN , the gradient

will be zero when λ decreases by training to ǫ/N (gradient

vanishes), and if ǫ > λN , the gradient will become zero

VOLUME 8, 2020 111633



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

when λ increases by training to value ǫ/N . This increase of

confidence for incorrect labels is generally undesirable but

can be useful to recover from training overfitting. Moreover,

LSR still calculates (1)–(3), but our proposed approaches do

not need these calculations.

VIII. DISCUSSION AND CONCLUSION

In this paper, we explored the geometric properties of the

gradient generated by the cross-entropy loss function, and

show their implications to the process of classification.

The length of the cross-entropy gradient decays rapidly

as the training iteration proceed. Based on the properties

of the cross-entropy gradient, two approximations of the

gradient of cross-entropy loss were proposed. Obtaining the

approximations does not need the calculation of the loss

function. The vectors driving the representation training of

DNNs are directly generated by knowing only the correct

labels. They preserve the properties related to the direction

of cross-entropy gradient.

We have shown three properties from the theoretical anal-

ysis of the approximations. First, they are ‘‘noise-free’’ and

depend on the labels of the training samples only. Second,

the length (intensity) of the approximations have unit value;

thereby, they avoid the vanishing gradient problem. Third,

our proposed approaches obtain the representations similar

to those obtained when using cross-entropy.

One assumption underlying the training using Ĝ1 and Ĝ2

and the noise-free claim is that the training labels are reliable.

Note that Ĝ1 and Ĝ2 depend on the label of the training set

only. If the labels of the training set are incorrect, they may

cause greater negative impacts to the training comparing to

the ordinary training based on the cross-entropy loss, because

the directions of the gradients for the incorrect labels are

wrong. Moreover, as (6) and (7) do not rely on J , the cal-

culation of neither O nor J is necessary.

The experimental results justified the usefulness of the

proposed method. The training by the proposed approxima-

tions achieved comparable classification accuracy to other

conventional loss functions and accelerated the training on

some datasets. By observing the behavior of the training

using the approximation functions, we argue that it is possible

to use the pre-defined vectors to drive the training without

defining a loss function explicitly. Furthermore, the success

of training does not necessarily imply the convergence of

network parameters to fixed values. The timing experiments

justify that the proposed approximations save computational

time. Ĝ2 might be the simplest way to generate the vectors

that could train the DNNs. A general approximation is

proposed at the end of the paper. It unifies the two proposed

approximations and label-smoothing regularization.

One weakness of the proposed approximations might be

the capacity of generalization. We focused on training accu-

racy in this paper, but the success of training does not in gen-

eral imply a good generalization, since the generalization of

DNNs is still a complicated problem [30]. The other potential

problem is the adaptation of the values of network parameters

to the large intensity of Ĝ1 and Ĝ2, especially in the last layer.

There are two strategies to solve this problem: either using a

smaller learning rate or larger standard deviation of the initial

values in the last layer. In the experiments onMNIST dataset,

we used the standard Xavier initialization and the learning

rate of 1.0 × 10−3. In the experiments on CIFAR10 dataset,

the initial learning rate was 1.0 × 10−7, and the standard

deviation of the initial values for the last FC-layer was 10.

For the OCT dataset, the initial learning rate was 1.0× 10−5,

and Xavier initialization was used.

The other potential problem caused by the large length

of the approximation vectors is the adaptation of values of

network initialization and the large intensity of Ĝ1 and Ĝ2,

especially the values in the last layer.

As the representations obtained by the proposed approxi-

mations are similar to but different from ones obtained using

cross-entropy loss, they can potentially improve the robust-

ness of the trained DNNs against adversarial test samples,

i.e., against test samples that can mislead the DNNs although

they are very close to the samples that the DNNs correctly

predict.More properties of the proposed approximations need

to be explored in the future. Our novel interpretation and

analysis can provide further insights to energy- or metric-

based loss functions and be helpful to understand the behavior

of the DNNs.

REFERENCES

[1] A. Karpathy. (2019). Convolutional Neural Networks for Visual Recog-

nition. Accessed: Mar. 16, 2020. [Online]. Available: http://cs231n.

github.io/optimization-1/

[2] J. S. Bridle, ‘‘Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern recognition,’’ in

Neurocomputing. Berlin, Germany: Springer, 1990, pp. 227–236.

[3] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, ‘‘A tutorial on

energy-based learning,’’ Predicting Structured Data, vol. 1, pp. 815–819,

Aug. 2006.

[4] L. Li, M. Doroslovacki, and M. H. Loew, ‘‘Loss functions forcing

cluster separations for multi-class classification using deep neural net-

works,’’ in Proc. 53rd Asilomar Conf. Signals, Syst., Comput., Nov. 2019,

pp. 2106–2110.

[5] L. Li, M. Doroslovacki, andM. H. Loew, ‘‘Discriminant analysis deep neu-

ral networks,’’ in Proc. 53rd Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2019,

pp. 1–6.

[6] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and

W. Liu, ‘‘CosFace: Large margin cosine loss for deep face recognition,’’

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 5265–5274.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

[8] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for dense

object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,

pp. 2980–2988.

[9] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, ‘‘SphereFace: Deep

hypersphere embedding for face recognition,’’ in Proc. IEEE Conf. Com-

put. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 212–220.

[10] W. Liu, Y. Wen, Z. Yu, and M. Yang, ‘‘Large-margin softmax loss for

convolutional neural networks,’’ in Proc. ICML, vol. 2, p. 7, Jun. 2016.

[11] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, ‘‘A discriminative feature learning

approach for deep face recognition,’’ in Proc. Eur. Conf. Comput. Vis.

Cham, Switzerland: Springer, 2016, pp. 499–515. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-319-46478-7_31#citeas

[12] Y. Rubner, C. Tomasi, and L. J. Guibas, ‘‘The earth mover’s distance as a

metric for image retrieval,’’ Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121,

Nov. 2000.

111634 VOLUME 8, 2020



L. Li et al.: Approximating the Gradient of Cross-Entropy Loss Function

[13] L. Hou, C.-P. Yu, and D. Samaras, ‘‘Squared earth mover’s distance-based

loss for training deep neural networks,’’ 2016, arXiv:1611.05916. [Online].

Available: http://arxiv.org/abs/1611.05916

[14] X. Driancourt, L. Bottou, and P. Gallinari, ‘‘Learning vector quantization,

multi layer perceptron and dynamic programming: Comparison and coop-

eration,’’ in Proc. Seattle Int. Joint Conf. Neural Netw. (IJCNN), vol. 2,

1991, pp. 815–819.

[15] Y. LeCun and F. J. Huang, ‘‘Loss functions for discriminative training of

energy-based models,’’ in Proc. AIStats, vol. 6, 2005, p. 34.

[16] B.-H. Juang, W. Hou, and C.-H. Lee, ‘‘Minimum classification error rate

methods for speech recognition,’’ IEEE Trans. Speech Audio Process.,

vol. 5, no. 3, pp. 257–265, May 1997.

[17] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, ‘‘Large scale online

learning of image similarity through ranking,’’ J. Mach. Learn. Res.,

vol. 11, pp. 1109–1135, Mar. 2010.

[18] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov,

‘‘Neighbourhood components analysis,’’ in Proc. Adv. Neural Inf. Process.

Syst., 2005, pp. 513–520.

[19] R. Salakhutdinov and G. Hinton, ‘‘Learning a nonlinear embedding by

preserving class neighbourhood structure,’’ in Artificial Intelligence and

Statistics. San Juan, PR, USA: PMLR, 2007, pp. 412–419.

[20] M. Dorfer, R. Kelz, and G. Widmer, ‘‘Deep linear discriminant

analysis,’’ 2015, arXiv:1511.04707. [Online]. Available: http://arxiv.

org/abs/1511.04707

[21] J. F. Kolen and S. C. Kremer, ‘‘Gradient flow in recurrent nets: The

difficulty of learning longterm dependencies,’’ in A Field Guide to

Dynamical Recurrent Networks. Piscataway, NJ, USA: IEEE Press, 2001,

pp. 237–243.

[22] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:

A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[23] S. Zagoruyko and N. Komodakis, ‘‘Wide residual networks,’’ 2016,

arXiv:1605.07146. [Online]. Available: http://arxiv.org/abs/1605.07146

[24] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic

optimization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://

arxiv.org/abs/1412.6980

[25] Y. Tang, ‘‘Deep learning using linear support vector machines,’’ 2013,

arXiv:1306.0239. [Online]. Available: http://arxiv.org/abs/1306.0239

[26] K. Janocha and W. M. Czarnecki, ‘‘On loss functions for deep neural

networks in classification,’’ 2017, arXiv:1702.05659. [Online]. Available:

http://arxiv.org/abs/1702.05659

[27] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 770–778.

[28] D. S. Kermany et al., ‘‘Identifyingmedical diagnoses and treatable diseases

by image-based deep learning,’’Cell, vol. 172, no. 5, pp. 1122–1131, 2018.

[29] T. E. Oliphant, A guide to NumPy, vol. 1. New York, NY, USA: Trelgol,

2006.

[30] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,

‘‘Understanding deep learning requires rethinking generalization,’’ 2016,

arXiv:1611.03530. [Online]. Available: http://arxiv.org/abs/1611.03530

LI LI (Student Member, IEEE) received the B.Sc.

degree in control engineering from Jilin Univer-

sity, Changchun, China, in 2008, and the M.Sc.

degree in electrical engineering from The George

Washington University, Washington, DC, USA,

in 2014, where he is currently pursuing the Ph.D.

degreewith theDepartment of Electrical and Com-

puter Engineering. His research interests include

image processing, artificial neural networks, and

machine learning.

MILOŠ DOROSLOVAČKI (Member, IEEE)

received the B.S. and M.S. degrees in electrical

engineering from the University of Belgrade,

in 1979 and 1984, respectively, and the Ph.D.

degree in electrical engineering from the Univer-

sity of Cincinnati, in 1994.

Since 1995, he has been with the Department of

Electrical and Computer Engineering, The George

Washington University, where he is currently an

Associate Professor. His research interests are in

the fields of adaptive signal processing, communication signals and systems,

and discrete-time signal and system theory.

MURRAY H. LOEW (Life Fellow, IEEE) received

the B.S. degree in electrical engineering from the

Drexel Institute of Technology, in 1965, and the

M.S. and Ph.D. degrees from Purdue University,

in 1967 and 1972, respectively.

He has been with the Department of Electrical

and Computer Engineering, The George Washing-

ton University, and the Department of Biomedical

Engineering, The George Washington University,

where he is currently a Professor and the Chair of

the Department of Biomedical Engineering. His research interests include

medical imaging, multi- and hyper-spectral analysis, machine learning, and

infrared imaging for early cancer detection. He is a Fellow of SPIE and

the American Institute for Medical and Biological Engineering. He was the

inaugural recipient of the Fulbright DistinguishedChair inAdvanced Science

and Technology in Australia, from 2013 to 2014.

VOLUME 8, 2020 111635


