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ABSTRACT
The Kullback Leibler (KL) Divergence is a widely used tool in statis-
tics and pattern recognition. The KL divergence between two Gaus-
sian Mixture Models (GMMs) is frequently needed in the fields of
speech and image recognition. Unfortunately the KL divergence be-
tween two GMMs is not analytically tractable, nor does any efficient
computational algorithm exist. Some techniques cope with this prob-
lem by replacing the KL divergence with other functions that can be
computed efficiently. We introduce two new methods, the variational
approximation and the variational upper bound, and compare them
to existing methods. We discuss seven different techniques in total
and weigh the benefits of each one against the others. To conclude
we evaluate the performance of each one through numerical experi-
ments.

Index Terms— Kullback Leibler divergence, variational meth-
ods, gaussian mixture models, unscented transformation.

1. INTRODUCTION

The KL-divergence, [1], also known as therelative entropy, between
two probability density functionsf(x) andg(x),

D(f‖g)
def
=

∫

f(x) log
f(x)

g(x)
dx, (1)

is commonly used in statistics as a measure of similarity between
two density distributions. The divergence satisfies three properties,
hereafter referred to as the divergence properties:

1. Self similarity:D(f‖f) = 0.

2. Self identification:D(f‖g) = 0 only if f = g.

3. Positivity:D(f‖g) ≥ 0 for all f, g.

The KL divergence is used in many aspects of speech and image
recognition, such as determining if two acoustic models are similar,
[2], measuring how confusable two words or HMMs are, [3, 4, 5],
computing the best match using histogram image models [6], clus-
tering of models, and optimization by minimizing or maximizing the
KL divergence between distributions.

For two gaussianŝf and ĝ the KL divergence has a closed
formed expression,

D(f̂‖ĝ) =
1

2

[

log
|Σĝ|

|Σf̂ |
+ Tr[Σ−1

ĝ Σf̂ ] − d (2)

+ (µf̂ − µĝ)
TΣ−1

ĝ (µf̂ − µĝ)
]

whereas for two GMMs no such closed form expression exists.
In the rest of this paper we considerf andg to be GMMs. The

marginal densities ofx ∈ R
d underf andg are

f(x) =
∑

a
πaN (x;µa; Σa)

g(x) =
∑

b
ωbN (x;µb; Σb)

(3)

whereπa is the prior probability of each state, andN (x;µa; Σa) is
a gaussian inx with meanµa and varianceΣa.

We will frequently use the shorthand notationfa(x) =
N (x;µa; Σa) andgb(x) = N (x;µb; Σb). Our estimates ofD(f‖g)
will make use of the KL-divergence between individual components,
which we thus write asD(fa‖gb).

In the next section we review the mechanics of estimating
D(f‖g) using Monte Carlo sampling. Section 3 reviews the related
unscented transformation. In section 4, we show two ways of esti-
matingD(f‖g) by approximatingf andg with a single gaussian.
In section 5 we show how Jensen’s inequality leads to an approx-
imation in terms of products of gaussians. In section 6 we review
the matched bound approximation and in sections 7 and 8, we in-
troduce two approximations based on variational methods [7]. The
final section shows experimental results.

2. MONTE CARLO SAMPLING

The only method that really can estimateD(f‖g) for large values of
d with arbitrary accuracy is Monte Carlo simulation. The idea is to
draw a samplexi from the pdff such thatEf [log f(xi)/g(xi)] =
D(f‖g). Usingn i.i.d. samples{xi}ni=1 we have

DMC(f‖g) =
1

n

n
∑

i=1

log f(xi)/g(xi) → D(f‖g) (4)

asn→∞. The variance of the estimation error is1
n
Varf [log f/g].

To computeDMC(f‖g), we need to generate the i.i.d. sam-
ples{xi}ni=1 from f . To draw a samplexi from a GMM f we first
draw a discrete sampleai according to the probabilitiesπa. Then we
draw a continuous samplexi from the resulting gaussian component
fai

(x).
The Monte Carlo method is the only method we discuss that

yields a convergent method. It satisfies the similarity property, but
the positivity property does not hold (the identification property will
only fail in very artificial circumstances and with probability 0).

3. THE UNSCENTED TRANSFORMATION

The unscented transform, [8], is an approach to estimateEfa
[h(x)]

in such a way that the approximation is exactfor all quadratic func-
tionsh(x). It is possible to pick2d “sigma” points{xa,k}2d

k=1 such
that

∫

fa(x)h(x) dx =
1

2d

2d
∑

k=1

h(xa,k). (5)

One possible choice of the sigma points is

xa,k = µa +
√

dλa,k ea,k (6)

xa,d+k = µa −
√

dλa,k ea,k, (7)



for k = 1, . . . , d whereλa,k andea,k are the eigenvalues and eigen-
vectors of the covarianceΣa of the gaussianfa. The KL divergence
may be written asD(f‖g) =

∑

a
πaEfa

[h] for h = log(f/g), so
the unscented estimate is

Dunscented(f‖g) =
1

2d

∑

a

πa

2d
∑

k=1

log
f(xa,k)

g(xa,k)
. (8)

The unscented estimate satisfies the similarity property, but the iden-
tification or positivity property do not hold in general. The unscented
estimator is similar to a Monte Carlo technique except that the sam-
ples are chosen deterministically.

4. GAUSSIAN APPROXIMATIONS

A commonly used approximation toD(f‖g) is to replacef and
g with gaussians,̂f and ĝ. In one incarnation, one uses gaussians
whose mean and covariance matches that off andg. The mean and
covariance off are given by

µf̂ =
∑

a
πaµa

Σf̂ =
∑

a
πa(Σa + (µa − µf̂ )(µa − µf̂ )

T ).
(9)

The approximationDgaussian(f‖g) is given by the closed-form ex-
pression,Dgaussian(f‖g) = D(f̂‖ĝ), using equation (2).

Another popular method is to use the nearest pair of gaussians
resulting in,

Dmin = min
a,b

D(fa‖gb). (10)

BothDgaussian(f‖g) andDmin(f‖g) satisfy the positivity and sim-
ilarity properties, but the identification property does not hold. Al-
though they are simple to formulate, as we show later, they are both
rather poor approximations.

5. THE PRODUCT OF GAUSSIANS APPROXIMATION

The likelihoodLf (g), defined byLf (g) = Ef(x)[log g(x)] relates
to the KL divergence byD(f‖g) = Lf (f) − Lf (g). Thus any
estimate of the likelihood can be related to the KL divergence. An
upper bound on the likelihood results from using Jensen’s inequality
to move the log outside the expected value

Lf (g) =
∑

a

πaEfa(x) log
∑

b

ωbgb(x)

≤
∑

a

πa log
∑

b

ωbEfa(x)[gb(x)]

=
∑

a

πa log
∑

b

ωb

∫

fa(x)gb(x)dx

=
∑

a

πa log
∑

b

ωbzab, (11)

wherezab
def
=
∫

fa(x)gb(x)dx is the normalizing constant for a
product of Gaussians, which has a well known closed-form solution.
The KL-divergence can now be estimated in a simple closed form:

Dproduct(f‖g) =
∑

a

πa log

∑

a′
πa′zaa′

∑

b
ωbzab

, (12)

wherezaa′
def
=
∫

fa(x)fa′(x)dx. Dproduct(f‖g) satisfies the simi-
larity property, but not the identification or positivity property. Also,
Dproduct(f‖g) tends to greatly underestimateD(f‖g).

6. THE MATCHED BOUND APPROXIMATION

If f andg have the same number of components then by the chain
rule for relative entropy, [9], we have the following upper bound

D(f‖g) ≤ D(π‖ω) +
∑

a

πaD(fa‖ga)

=
∑

a

πa (log πa/ωa +D(fa‖ga)) . (13)

suggested by Do [10]. Based on this equation, Goldberger et. al, [6],
suggest a similar approximate formula to estimateD(f‖g). Define
a matching function,m : {1, . . . , nf} → {1, . . . , ng}, between the
nf components off andng components ofg as follows:

m(a) = arg min
b
D(fa‖gb) − log(ωb). (14)

Goldberger’s approximate formula can then be written

Dgoldberger(f‖g) =
∑

a

πa

(

D(fa‖gm(a)) + log
πa

ωm(a)

)

.

(15)
Unlike equation (13),Dgoldberger(f‖g) is not an upper bound of
D(f‖g). It also satisfies none of the divergence properties. This
can be seen by considering the case wheref andg are equal to a
single gaussian,h butf is formulated as a mixture of identical com-
ponents. It has also been reported that the method performs poorly
with GMMs that have a few low-probability components [5]. How-
ever, compared to some of the preceding methods,Dgoldberger turns
out to work well empirically.

7. THE VARIATIONAL APPROXIMATION

In this section we introduce a variational lower bound to the likeli-
hood. In section 5 we pulled thelog outside the integral for an upper
bound. Here we will take it inside the sum to obtain a lower bound.
We define variational parametersφb|a > 0 such that

∑

b
φb|a = 1.

By Jensen’s inequality we have

Lf (g)
def
= Ef(x) log g(x)

= Ef(x) log
∑

b

ωbgb(x)

= Ef(x) log
∑

b

φb|a
ωbgb(x)

φb|a

≥ Ef(x)
∑

b

φb|a log
ωbgb(x)

φb|a

def
= Lf (g, φ). (16)

Since this is a lower bound onLf (g), we get the best bound by max-
imizingLf (g, φ) with respect toφ. The maximum value is obtained
with:

φ̂b|a =
ωbe

−D(fa‖gb)

∑

b′
ωb′e

−D(fa‖g
b′

)
. (17)

Likewise, we define

Lf (f, ψ)
def
= Ef(x)

∑

a′

ψa′|a log
πa′fa′(x)

ψa′|a
(18)



and find the optimalψa′|a:

ψ̂a′|a =
πa′e

−D(fa‖f
a′ )

∑

â
πâe−D(fa‖fâ)

. (19)

If we defineDvariational(f‖g) = Lf (f, ψ̂) − Lf (g, φ̂) and substi-
tuteφ̂b|a andψ̂a′|a, the result simplifies to

Dvariational(f‖g) =
∑

a

πa log

∑

a′
πa′e

−D(fa‖f
a′ )

∑

b
ωbe−D(fa‖gb)

. (20)

Dvariational(f‖g) satisfies the similarity property, but it does not in
general satisfy the positivity property. LikeDgaussian andDproduct,
Dvariational is a simple closed-form expression. In optimization
problems, gradients with respect to the parameters off andg can
be readily computed. In its formulation withφ andψ, alternating
between optimization of the variational parameters and the parame-
ters ofg leads to an EM algorithm. The method can also be extended
to the KL-divergence between hidden Markov models.

The methods of Do and Goldberger in the preceding section can
be seen as approximations to this formula, where theφ andψ are
a generalization of the matching function. For equal numbers of
components, if we restrictφb|a andψa′|a to have only one non-zero
element for a givena, the formula reduces exactly to the chain rule
upper bound given in equation (13). For unequal numbers of compo-
nents, we get a formula similar toDgoldberger except that it satisfies
the similarity property.

8. THE VARIATIONAL UPPER BOUND

Here we propose a direct upper bound on the divergence again us-
ing a variational approach. We introduce the variational parameters
φb|a ≥ 0 andψa|b ≥ 0 satisfying the constraints

∑

b
φb|a = πa and

∑

a
ψa|b = ωb. Using the variational parameters we may write

f =
∑

a
πafa =

∑

ab
φb|afa

g =
∑

b
ωbgb =

∑

ab
ψa|bgb.

(21)

With this notation we use Jensen’s inequality to obtain an upper
bound of the KL divergence as follows

D(f‖g) =

∫

f log(f/g)

= −

∫

f log

(

∑

ab

ψa|bgb

φb|afa

φb|afa

f

)

dx

≤ −
∑

ab

φb|a

∫

fa log

(

ψa|bgb

φb|afa

)

dx

= D(φ‖ψ) +
∑

ab

φb|aD(fa‖gb)

def
= Dφ,ψ(f‖g). (22)

The best possible upper bound can be attained by finding the varia-
tional parameterŝφ andψ̂ that minimizeDφ,ψ(f‖g). The problem
is convex inφ as well as inψ so we can fix one and optimize for the
other. Fixingφ the optimal value forψ is seen to be

ψa|b =
ωbφb|a
∑

a′
φb|a′

. (23)

Similarly, fixingψ the optimal value forφ is

φb|a =
πaψa|be

−D(fa‖gb)

∑

b′
ψa|b′e

−D(fa‖g
b′

)
. (24)

At each iteration step the upper boundDφ,ψ(f‖g) is lowered, and
we refer to the convergent asDupper(f‖g). Since any zeros inφ
and ψ are fixed under the iteration we recommend starting with
φb|a = ψa|b = πaωb. This iteration scheme is of the same type
as the Blahut-Arimoto algorithm for computing the channel capac-
ity [11, 12], and has similar convergence properties.

Other approximations emerge as special cases fromDφ,ψ(f‖g)
for various choices ofφ, ψ. Firstly, the valueφb|a = ψa|b = πaωb
yields the convexity bound onD(f‖g), [9]:

D(f‖g) ≤
∑

a,b

πaωbD(fa‖gb). (25)

Secondly, ifnf = ng the matched pair bound of equation (13) can be
obtained usingφb|a = πa for b = a and0 otherwise, andψa|b = ωb
for b = a and0 otherwise.

Because it is an upper bound, the positivity property
Dψ,φ(f‖g) > 0 for f 6= g holds for all φ, ψ. Furthermore,
Dψ̂,φ̂(f‖f) = 0 since the special case of the matching pair bound
yields a zero for this case. Assuming convergence to the minimum,
which requires initialization in the interior of the constraint surface,
Dupper(f‖g) will satisfy the three divergence constraints.

9. EXPERIMENTS

In our experiments we used GMMs from an acoustic model used for
speech recognition [2]. The featuresx ∈ R

d are 39 dimensional,
d = 39, and the GMMs all have diagonal covariance. Furthermore
the acoustic model consists of a total of 9,998 gaussians belonging
to 826 separate GMMs. The number of gaussians per GMM varies
from 1 to 76, of which 5 mixtures attained the lower bound of 1.
The median number of gaussians per GMM was 9. We used all
combinations of these 826 GMMs to test the various approximations
to the KL divergence. Each of the methods was compared to the
reference approximation, which is the Monte Carlo method with one
million samples, denotedDMC(1M).
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Fig. 1. Distribution of Monte Carlo (MC) approximations, for differ-
ent numbers of samples, relative to the reference estimateDMC(1M),
computed from all pairs of GMMs.

Figure 1 shows how the accuracy of the Monte Carlo (MC) esti-
mate improves with increasing number of samples. For all the plots,



the horizontal axis represents deviations fromDMC(1M) for each
method. The vertical axis represents the probability derived from
a histogram of the deviations taken across all pairs of GMMs. Note
that even at 100K samples there is still significant deviation from the
reference estimateDMC(1M).
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Fig. 2. Distribution of leading approximations to KL divergence
relative to the reference estimateDMC(1M).

Figure 2 shows the corresponding histgrams forDunscented,
Dvariational,Dgoldberger,Dupper, andDMC(2dn), which is MC with
2dn samples, whered is the number of dimensions, andn is the
number of gaussians inf . First, note thatDunscented is not as
good asDMC(2dn), despite using the same number of samples, so
the MC method seems preferable. Second, notice thatDvariational

andDgoldberger are similar, but thatDvariational is noticeably better.
Third, note the small peak at zero, forDvariational,Dgoldberger, and
Dupper. This stems from certain cases where the approximations
become exact, such as with the single-component gaussian mixture
models. Fourth note thatDupper is an upper bound, and hence has a
larger bias; nevertheless it has a small variance.
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Fig. 3. Distribution of the simple/closed-form approximations to KL
divergence relative to the reference estimateDMC(1M). A trivial
lower bound of zero is also included for reference.

Figure 3 plots the distributions of the simple / closed-form ap-
proximations, showing thatDproduct, Dmin, andDgaussian are sig-
nificantly worse thanDvariational. The trivial lower-bound of zero is
included to illustrate a worst-case scenario. It also indirectly shows
the overall distribution of the data.

The simple methods were relatively quick to compute. In our
experiments,Dmin, Dgoldberger, Dvariational, andDupper, all took
less than0.1 ms per pair of GMMs. TheDgaussian, Dunscented,

andDMC(2dn) took around1 ms per pair. The computation time
of Monte Carlo approximations scaled linearly with the sample size,
relative toDMC(2dn), makingDMC(1M) thousands of times more
costly than the faster methods.

If accuracy is the primary concern, then MC is clearly best.
However, when computation time is an issue, or when gradients
need to be evaluated, the proposed methods may be useful. Of
the simple, closed-form expressions, the variational approximation,
Dvariational, is the most accurate. The variational upper bound,
Dupper, is preferable when an upper bound is desired. When bias
is not an issue, as when KL-divergences are to be compared with
each other, the two variational approximations are equally accurate.
Finally, some of the more popular methods,Dgaussian, Dmin, and
Dunscented, should be avoided, since better alternatives exist.
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