
Chapter 21

Approximating the Minimum Equivalent Digraph

Samir Khuller * Balaji Raghavachari t Neal Young $

Abstract 1 Introduction

The MEG (minimum equivalent graph) problem
is the following: “Given a directed graph, find

a smallest subset of the edges that maintains

all reachability relations between nodes.” The

MEG problem is NP-hard; this paper gives an

approximation algorithm achieving a performance

guarantee of about 1.64 in polynomial time. We

give a modification that improves the performance
guarantee to about 1.61. The algorithm achieves a

performance guarantee of 1.75 in the time required

for transitive closure.

Connectivity is fundamental to the study of graphs
and graph algorithms. Recently, many approxima-

tion algorithms for finding subgraphs that meet

given connectivity requirements have been devel-

oped [l, 9, 11, 15, 16, 241. These results provide

practical approximation algorithms for NP-hard

network-design problems via an increased under-

standing of connectivity properties.

The heart of the MEG problem is the min-

imum SCSS (strongly connected spanning sub-
graph) problem - the MEG problem restricted

to strongly connected digraphs. For the mini-

mum SCSS problem, the paper gives a practical,

nearly linear-time implementation achieving a per-
formance guarantee of 1.75.

Until now, the techniques developed have been

applicable only to undirected graphs. We consider

a basic network-design problem in directed graphs

[2, 12, 13, 181 h h w ic is as follows: given a digraph,

find a smallest subset of the edges (forming a
minimum equivalent graph (MEG)) that maintains

all reachability relations of the original graph.

The algorithm and its analysis are based on

the simple idea of contracting long cycles. The

analysis applies directly to Z-EXCHANGE, a general
“local improvement” algorithm, showing that its

performance guarantee is 1.75.
Keywords: directed graph, reachability, approx-
imation algorithm, strong connectivity, local im-

provement .

When the MEG problem is restricted to graphs

which are strongly connected, we call it the mini-

mum SCSS (strongly connected spanning subgraph)

problem. When the MEG problem is restricted to

acyclic graphs we call it the acyclic MEG prob-

Zem. The MEG problem reduces in linear time [5]

to a single acyclic problem given by the so-called

“strong component graph”, together with one min-

imum SCSS problem for each strong component
(given by the subgraph induced by that com-

ponent). Furthermore, approximating the MEG
problem is linear-time equivalent to approximating

both restricted versions.
*Computer Science Department and Institute for Advanced

Computer Studies, University of Maryland, College Park,

MD 20742. Research supported by NSF Research Initiation
Award CCR-9307462. Email : samirQcs .umd. edu.

tcomputer Science Department, The University of Texas at

Dallas, Box 830688, Richardson, TX 75083-0688. E-mail :
rbkQutdallas . edu.

*Computer Science Department, Princeton University, Prince-
ton, NJ 08544. E-mail : neyQcs .princeton.edu. This work was

done while at University of Maryland Institute for Advanced Com-
puter Studies, College Park, MD 20742 and was supported by NSF
grants CCR-8906949 and CCR-9111348.

Moyles and Thompson [18] observe this de-

composition and give exponential-time algorithms
for the restricted problems. Hsu [13] gives a

polynomial-time algorithm for the acyclic MEG

problem and corrects some errors in the paper by

Moyles and Thompson.
The related problem of finding a transitive re-

duction of a digraph - a smallest set of edges yield-
ing the same reachability relations was studied by

177

Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 177-186 (1994)

178 KHULLER ET AL.

Aho, Garey and Ullman [a]. Transitive reduction

differs from the MEG problem in that the edges in

the transitive reduction are not required to be in

the original graph. However, the transitive reduc-

tion problem decomposes just like the MEG prob-

lem into acyclic and strongly connected instances.

For any strongly connected instance, a transitive

reduction is given by any Hamilton cycle through

the vertices. For an acyclic instance, the transitive

reduction is unique and, as Aho, Garey and Ullman

observe, is equivalent to the MEG problem: it con-

sists of those edges (u,~) for which there is no al-

ternate path from u to o. In fact, Aho, Garey and

Ullman show that the transitive reduction prob-

lem is equivalent to the transitive closure problem.

Thus, the acyclic MEG problem reduces to transi-

tive closure.

The acyclic MEG problem can be solved in

polynomial time, whereas the minimum SCSS

problem is NP-hard [8]. Consequently, this pa-

per focuses on approximation algorithms for the

minimum SCSS problem. By the observations of

the preceding paragraphs, the performance guar-

antees obtained for the minimum SCSS problem

carry over to the general MEG problem with the

overhead of solving a single instance of transitive

closure.

1.1 Our Results. Given a strongly con-

nected graph, our basic algorithm finds as long a

cycle as it can, contracts the cycle, and recurses.

The contracted graph remains strongly connected.

When the graph finally collapses into a single ver-

tex, the algorithm returns the set of edges con-

tracted during the course of the algorithm as the

desired SCSS.

The algorithm achieves a performance guaran-

tee of any constant greater than 7r2/6 w 1.645 in

polynomial time. We give a nearly linear-time ver-

sion that achieves a performance guarantee of 1.75.

We give examples showing lower bounds on the per-

formance guarantees of the algorithm. For the gen-

eral algorithm, the lower bounds are slightly above

1.5. For the nearly linear-time version, the lower

bound is 1.75, matching the upper bound.

The performance guarantee analysis extends

directly to a simple “local improvement” algorithm

called Z-EXCHANGE. %E,XcHANGE starts with the

given digraph and perfor:ms the following local im-

provement step as long as it is applicable: find two

edges in the current gra,ph that can be replaced

by one edge from the original graph, maintaining

strong connectivity. Similar local-improvement al-

gorithms are natural can&dates for many optimiza-

tion problems but often elude analysis. We prove

that the performance guarantee of Z-EXCHANGE is

1.75.

A natural improvement to the cycle-contrac-

tion algorithm is to modify the algorithm to solve

the problem optimally once the contracted graph

has no cycles longer than a given length c. For

instance, for c = 3, this modification improves the

performance guarantee to a2/6- l/36 M 1.617. We

use SCSS, to denote the minimum SCSS problem

restricted to digraphs with no cycle longer than

c. The minimum SCSS2 problem is trivial. The

minimum SCSSa problem is at least as hard as

bipartite matching; in fact we can show that it has

a polynomial-time algorithm. However, potential

improvement in this direction is limited: we show

that the minimum SCSS:, problem is NP-hard. In

fact, we show that the minimum SCSSrr problem

is SNP-hard. This precludes the possibility of a

polynomial-time approximation scheme, assuming

PfNP [4].

1.2 Other Related Work. The union of

any incoming branching and any outgoing branch-

ing from the same root yields an SCSS with at most

2n - 2 edges (where n is the number of vertices in

the graph). This is a special case of the algorithm

given by Frederickson and JBJQ [6] that uses min-

imum weight branchings to achieve a performance

guarantee of 2 for weighted graphs. Since any SCSS

has at least n edges, this yields a performance guar-

antee of 2 for the SCSS problem.

Any minimal SCSS (one from which no edge

can be deleted) has at most 2n - 2 edges and also

yields a performance guarantee of 2. A linear-

time algorithm finding a minimal SCSS is given

by Simon [21]. A parallel algorithm is given

by Gibbons, Karp, Ramachandran, Soroker and

Tarjan [lo].

A related problem in undirected graphs is to

APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH 179

find a smallest subset of the edges forming a

biconnected (respectively bridge-connected (i.e., 2-

edge-connected)) spanning subgraph of a given

graph. These problems are NP-hard. Khuller

and Vishkin [15] g ive a DFS-based algorithm that

achieves a factor of $ for biconnectivity and 5 for

bridge-connectivity. Garg, Santosh and Singla [9]

subsequently improve the approximation factors,

using a similar approach, to $ and z, respectively.

None of these methods appear to extend to the

minimum SCSS problem.

Undirected graphs having bounded cycle length

have bounded tree width. Arnborg, Lagergren

and Seese [3] have shown that many NP-hard

problems, including the minimum biconnected-

spanning-subgraph problem, have polynomial-time

algorithms when restricted to such graphs.

2 Preliminaries

To contract a pair of vertices U,Z) of a digraph is

to replace u and w (and each occurrence of u or 2,

in any edge) by a single new vertex, and to delete

any subsequent self-loops and multi-edges. Each

edge in the resulting graph is identified with the

corresponding edge in the original graph or, in the

case of multi-edges, the single remaining edge is

identified with any one of the corresponding edges

in the original graph. To contract an edge (u, w)

is to contract the pair of vertices u and 2). To

contract a set S of pairs of vertices in a graph G is

to contract the pairs in 5’ in arbitrary order. The

contracted graph is denoted by G/S. Contracting

an edge is also analogously extended to contracting

a set of edges.

Let OPI(G) be th e minimum size of any

subset of the edges that strongly connects G. In

general, the term “cycle” refers only to simple

cycles.

3 Lower Bounds on OPI(G)

We begin by showing that if a graph has no

cycles, then the size of any SCSS is large.

long

LEMMA 3.1. (CYCLE LEMMA) For any

rected graph G with n vertices, if a longest

of G has length C, then

di-

cycle

Proof. Starting with a minimum-size subset

that strongly connects the graph, repeatedly con-

tract cycles in the subset until no cycles are left.

Observe that the maximum cycle length does not

increase under contractions. Consequently, for

each cycle contracted, the ratio of the number of

edges deleted to the decrease in the number of ver-

tices is at least A. Since the total decrease in

the number of vertices is n - 1, at least &(n - 1)

edges are deleted. 0

Note that the above lemma gives a lower bound

which is existentially tight. For all values of C,

there exist graphs for which the bound given by

the lemma is equal to OPI(G). Also note that C

has a trivial upper bound of n and, using this, we

get a lower bound of n for UP?+(G), which is the

known trivial lower bound.

LEMMA 3.2. (CONTRACTION LEMMA) For

any directed graph G and set of edges S,

OPI(G) 2 OPI(G/S).

Proof. Any SCSS of G, contracted around S

(treating the edges of S as pairs), is an SCSS of

G/S. 0

4 Cycle-Contraction Algorithm

The algorithm is the following. Fix k to be any

positive integer.

CONTRACT-CYCLES~(G) -

1 for i= k,k- l,k-2 ,..., 2

2 while the graph contains a cycle

with at least i edges

3 Contract the edges on such a cycle.

4 return the contracted edges

In Section 6, we will show that the algorithm

can be implemented to run in O(mo(m,n)) time

for the case k = 3 and in polynomial time for

any fixed value of k. It is clear that the edge

set returned by the algorithm strongly connects

the graph. The following theorem establishes

upper bound on the number of edges returned

the algorithm.

an

bY

THEOREM 4.1. CONTRACT-CYCLES~(G)

returns at most ck . OPl(G) edges, where

180 KHULLER ET AL.

Proof Initially, let the graph have n vertices.

Let n; vertices remain in the contracted graph

after contracting cycles with i or more edges (i =

k, k - 1) . ..) 2).

How many edges are returned? In contracting

cycles with at least k edges, at most &n - nk)

edges are contributed to the solution. For i < k, in

contracting cycles with i edges, &(n;+r -ni) edges

are contributed. The number of edges returned is

thus at most

Clearly WV(G) 1 n. For 2 2 i 5 k, when n;

vertices remain, no cycle has more than i - 1 edges.

By Lemmas 3.1 and 3.2, WV(G) 2 s(n; - 1).

Thus the number of edges returned, divided by

ClPI(G), is at most

I

= & + ‘2 ; = ck.
i=l

Using the identity (from [17, p.751) Cgl 3 =

$, we get

1

=
(k ll)k*

cl

Standard techniques yield more accurate estimates

of ck, e.g., ck = f + &I + 0 ($J) .

Table 1: Bounds on the performance guarantee

Table 1 gives lower and upper bounds on the

performance guarantee of the algorithm for small

values of k and in the limit as k -+ 00. The lower

bounds are shown in the next subsection.

4.1 Lower Bounds on the Performance.

In this section we present lower bounds on the per-

formance ratio of CONTRACT-CYCLESk(G). The

graph in Fig. 1 has & groups of vertices. Each

group consists of a (2k- 2)-cycle “threaded” with

a k-cycle.

In the first iteration, CONTRACT-CYCLESk(G)

can contract the k-cycle within each group, leav-

ing the graph with only 2-cycles. The algo-

rithm subsequently must contract all the remain-

ing edges. Thus, all the (3k - 2)& - 2 edges

are in the returned SCSS. The graph contains a

Hamilton cycle and the optimal solution is thus

n. Hence, for arbitrarily large n, 1 + & - 2/n

is a lower bound on the performance guarantee of

CONTRACT-CYCLESk(G). As k approaches 00, the

lower bound tends to 1.5.

5 2-Exchange Algorithm

In this section, we use the cycle-contraction anal-

ysis to show that 2-EXCHANGE has a performance

guarantee of 1.75. Z-EXCHANGE is a special case of

k-EXCHANGE, which is defined as follows.

k-EXCHANGE@ = (v, E)) -

1 E’tE
2 while the following improvement step is possible

3 Pick a set Ek of k edges in E’ and a set

E&r of up to k - 1 edges in E such that

the set of edges E” = (E’ - Ek) U &-I

forms an SCSS.

4 E’ t E”.
5 return E’

Note that for fixed k, each step can be per-

formed in polynomial time and it reduces the size

APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH 181

Figure 1: Bad example for CONTRACT-CYCLE&(G).

of E’, so ~-EXCHANGE runs in polynomial time.

The following theorem shows that the approxima-

tion factor achieved by Z&EXCHANGE is 1.75.

THEOREM 5.1. The performance guarantee of

Z-EXCHANGE is 1.75.

Proof. First we show that the performance
guarantee is at most 1.75. Let E’ be the set of

edges returned by %EXCHANGE(G = (V, E)). Run
CONTRACT-CYCLES+ on the graph G’ = (V, E’).
Let H be the set of edges contracted during the

first iteration when cycles of at least three edges are

contracted. The resulting graph G//H is strongly
connected and has only 2-cycles. Such a graph has

a tree-like structure. In particular, an edge (u,v)

is present iff the reverse edge (8, U) is present.

Next consider executing the procedure call

CONTRACT-CYCLEQG). Since G/H is equiv-
alent to G//H, the sequence of cycles chosen

in the first iteration of CONTRACT-CYCLES~(G')

could also be chosen by the first iteration of

CONTRACT-CYCLES~(G). Similarly,the secondit-

erationin CONTRACT-CYCLES~(G') could bemim-

icked by CONTRACT-CYCLES, in which case

CONTRACT-CYCLES would return the same

edge set as CONTRACT-CYCLES. Since E’
is minimal (otherwise an improvement step ap-
plies), the edge set returned is exactly E’. Thus,

the upper bound on the performance guarantee of
CONTRACT-CYCLEQ from Theorem 4.1 is inher-

itedby ‘&EXCHANGE.

The important observation is that G/H is

equivalent to G’/ H. Clearly G’/H is a subgraph
of G/H; to prove the converse, suppose that some

edge (u,v) of G/H was not in G//H. Consider
adding edge (u,v) to G//H. By the structure of

G//H, ‘1~ and v are not adjacent in G’/H and for
each edge on the path from w to u the reverse edge
is also in G//H. If (21,~) is added to G//H, these

(at least two) reverse edges can be deleted from

G’/H without destroying the strong connectivity
of G//H. Consequently, the original edge in G
corresponding to (u, v) can be added to G’ and the

original edges in G’ corresponding to the reverse
edges can be deleted from G’ without destroying

the strong connectivity of G’. This contradicts the
fact that E’ was output by ‘&EXCHANGE(G), since
E’ is eligible for an improvement step.

For the lower bound on the performance guar-

antee, given the graph in Fig. 2, ‘&EXCHANGE can
choose a number of edges arbitrarily close to 1.75

times the minimum. II

6 Implementation Details

For any fixed k, CONTRACT-CYCLESk can be im-

plemented in polynomial time using exhaustive
search to find long cycles. For instance, if a cycle

of size at least k exists, one can be found in poly-
nomial time as follows. For each simple path P of

k - 1 edges, check whether a path from the head of

P to the tail exists after P’s internal vertices are
removed from the graph. If k is even, there are at

most rnki2 such paths; if k is odd, the number is
at most nm(k-1)/2. It takes O(m) time to decide
if there is a path from the head of P to the tail of

182 KHULLER ET AL.

+ Edges returned by 2-Exchange
- ->

Edges not used by 2-Exchange

Figure 2: Worst-case example for Z-EXCHANGE.

P. For the first iteration of the for loop, we may

have O(n) iterations of the while loop. Since the

first iteration is the most time consuming, the al-

gorithm can be implemented in O(nm*+“i2) time
for even Ic and O(n2 n-~(~+ll/~) time for odd k.

6.1 A practical implementation. Next we

give a practical, near linear-time implementation

of CONTRACT-CYCLES~. The performance guar-

antee achieved is cg = 1.75. CONTRACT-CYCLES3

consists of two phases: (1) repeatedly finding and

contracting cycles of three or more edges (called
long cycles), until no such cycles exist, and then

(2) contracting the remaining 2-cycles.
High-level description of the algorithm.

To perform Phase (l), the algorithm does a depth-
first search (DFS) of the graph from an arbitrary
root. During the search, the algorithm identifies

edges for contraction by adding them to a set 5’. At

any point in the search, G’ denotes the subgraph

of edges and vertices traversed so far. The rule for
adding edges to 5’ is as follows: when a new edge

is traversed, if the new edge creates a long cycle
in G//S, the algorithm adds the edges of the cycle

to S. The algorithm thus maintains that G’/S has
no long cycles. When the DFS finishes, G’/S has
only 2-cycles. The edges on these 2-cycles, together

with S, are the desired SCSS.
Because G’/S has no long cycles and the fact

that the original graph is strongly connected, G’/S
maintains a simple structure:

LEMMA 6.1. The algorithm maintains the fol-

lowing invariant. (i) The graph G’IS consists

of a branching with edges directed outwards from

the super-vertex containing the root, together with

some reverse edges that are of the form (W, U) such

that (U, W) is in the branching. (ii) If such a re-

verse edge (W, U) is not present in G’IS, then the

edge (U, W) is on the path in the branching from

the super-vertex containing the root to the super-

vertex containing the vertex currently being visited

by the DFS. This path is called the “active” path.

Proof. Clearly the invariant is initially true.

We show that each given step of the algorithm
maintains the invariant. In each case, if u and w

denote vertices in the graph, then let U and W

denote the vertices in G’/S containing u and w,

respectively.
When the DFS traverses an edge (u, w) to visit

a new vertex w:Vertex w and edge (u, w) are added

to G’. Vertex w becomes the current vertex. In
G’/S, the outward branching is extended to the

new vertex W by the addition of edge (U, W).

No other edge is added, and no cycle is created.

Thus, part (i) of the invariant is maintained. The

super-vertex containing the current vertex is now

W, and the new “active path” contains the old
“active path”. Thus, part (ii) of the invariant is

also maintained.
When the DFS traverses an edge (u, w) and w

is already visited:If U = W or the edge (U, W)

already exists in G’, then no cycle is created, G’ is
unchanged, and the invariant is clearly maintained.

Otherwise, the edge (U, W) is added to G’ and
a cycle with the simple structure illustrated in

Fig. 3 is created in G’/S. Dark nodes represent
nodes that are still active. The cycle consists

of the edge (U, W), followed by the (possibly

APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH 183

tures, the algorithm discovers it and, if it is long,
contracts it in a number of union-find operations
proportional to the length of the cycle. This yields

an O(ma(m, n))-time algorithm.

The vertices of G’/S are represented in union-

find sets as follows:
MAKE-SET(V): Adds the set {v} corresponding to

the new vertex of G’IS.

FIND(D): Returns the set in G’/S that contains
vertex 0.

UNION(~,V): Joins into a single set the two sets

Figure 3: Contracted graph G//S.
corresponding to the vertices in G’IS contain-

ing G”s vertices u and v.

empty) path of reverse edges from W to the lowest-

common-ancestor (lca) of U and W, followed by
the (possibly empty) path of branching edges from

the lca(U, W) to W. Addition of (U, W) to G’/S

and contraction of this cycle (in case it is a long

cycle) maintains part (i) of the invariant. If the

“active path” is changed, it is only because part
of it is contracted, so part (ii) of the invariant is

The data structures representing the branch-
ing, reverse edges, and the active paths, respec-

tively are:

from-root [WI: For each branching edge (U, W) in

G//S, from-root[W] = (u,w) for some (u, w) E

(U x W) r-l E.

to-root [UI: For each reverse edge (U, W) in G//S,

to-root[U] = (u, w) for some (u, w) E (U X

Vvlr-lE.
maintained.

I

@‘hen the DFS finishes visiting a vertex W:NO to-active[U]: For each vertex U on the “active

edge is added and no cycle is contracted, so part path” in G//S, to-active[U] = (u, w) where

(i) is clearly maintained. Let u be the new current (u, w) E (U x W) I-I E and W is the child

vertex, i.e., w’s parent in the DFS tree. If U = W, of U for which the recursive DFS call is

then part (ii) is clearly maintained. Otherwise, currently executing, unless no recursive DFS

consider the set D of descendants of w in the DFS is executing, in which case to-active[U] =

tree. Since the original graph is strongly connected, current.

some edge (x, y) in the original graph goes from the

set D to its complement V - D. All vertices in D
For all other vertices, to-active[U] = nil.

have been visited, so (5, y) is in G’. By part (i) of
Pseudo-code for the algorithm is given below.

the invariant, the vertex in G’/S containing x must CONTRACT-CYCLE.Q(G = (V, E)) -

be W, while the vertex in G’/S containing y must 1 S + {}

be U. Otherwise the edge corresponding to (x,y) 2 Choose r E V.
in G’/S would create a long cycle. 0 3 DFS(T)

4 Add 2-cycles remaining in G’fS to S.
The algorithm maintains the contracted graph 5 return s

G’/S using a union-find data structure [22] to rep-

resent the vertices in the standard way and using DFS(u) -

three data structures to maintain the branching, 1 to-active[FIND(u)] t current

the reverse edges discovered so far, and the “active 2 for each vertex w adjacent to u
path”. When a cycle arises in G’fS, it must be - traverse edge (u, w) -

of the form described in the proof of Lemma 6.1 3 if (w is not yet visited)
and illustrated in Fig. 3. Using these data strut- 4 MAKE-SET(W)

184 KHULLER ET AL.

5

6
7

8
9

10

solve the remaining problem optimally.

For instance, for c = 3, by following the proof of

Theorem 4.1, one can show that this improves the
performance guarantee of CONTRACT-CYCLESI, to

ck - l/36 (for Ic 2 4), matching the lower bound

in Table 1. (The lower bound given holds for the

modified algorithm.)

11

12

13
14

15
16

to-active[FIND(u)] t (u, w)
from-root[FIND(w)] t (u, 20)

DFS(w)
to-active[FIND(u)] t current

else - edge creates cycle in G’/S -

if (FIND(U) # FIND(W))
- cycle length at least 2 -

(2, y) c from-root[FIND(u)]
if (FIND(X) = FIND(W))

- length 2, through parent -

to-root[FIND(u)] + (u, w)

else

This leads us to consider the minimum SCSS,
problem - the minimum SCSS problem restricted

to graphs with cycle length bounded by c.

17

18

(2, y) c from-root[FIND(w)]
if (FIND(Z) # FIND(U))

- not L-cycle through child -

CONTRACT-CYCLE(W)

s + s u w-4 41

7.1 Polynomially solvable cases. SCSSZ

problem is trivial. It is easy to show that the

graph will not be strongly connected if any of

its edges are deleted. SCSS3 problem is much

harder and has a rich structure. It is not hard
to show that the SCSS3 problem is as hard as

bipartite matching. In fact we show that the SCSS3

problem is reducible to matching and hence has a

polynomial time algorithm. Due to lack of space,
we omit the details.

19 to-active[FIND(u)] t nil

CONTRACT-CYCLE(W) -
1 while (to-active[FIND(w)] # current) do

2 if (to-active[FIND(w)] # nil) then

- Go down from lca along active path. -

3 (z, y) +- to-active[FIND(w)]

4 Contract edge (FIND(S), FIND(Y))
of G//S, updating all data structures.

5 else

THEOREM 7.1. There is a polynomial-time al-

gorithm for the SC.!?& problem.

COROLLARY 7.1. The performance guarantee

of the modified CONTRACT-CYCLES~ algorithm is

ck - l/36 (for k 2 4), where ck is the performance

- Go up towards lca along reverse edges. - guarantee Of CONTRACT-CYCLESk.

6
7

(z, y) t to-root[FIND(w)]
Contract edge (FIND(Z), FIND(Y)) of 7.2 NP-hardness. We make no conjecture

G//S, updating all data structures. concerning the SCCS4 problem. However, we next

By the preceding discussion, the above al-
show that the SCCSs problem is NP-hard, and that

gorithm implements CONTRACT-CYCLESQ. It
for some c > 0, the SCSS, problem is SNP-hard.

is straightforward to show that it runs in THEOREM 7.2. The minimum SCSS5 problem

O(mcr(m, n)) time. Hence, we have the following is NP-hard*

theorem. Proof The proof is by a reduction from SAT.

THEoREM 6-l. There is an O(ma(m, n))-time We omit the proof here. The complete proof is
approximation algorithm for the minimum SCSS
problem achieving a performance guarantee of 1.75

given in the full version of the paper [14]. Cl

on an m-edge, n-vertex graph. 7.3 SNP-hardness. Next we consider the
Here o(m, n) is the inverse-Ackermann function SNp-hardness of the problem

associated with the union-find data structure [22].
THEOREM 7.3. The minimum SCSSl7 problem

7 Graphs of bounded cycle length is SNP-hard.

A UatUd modification to CONTRACT-CYCLESg Proof. The proof is by a reduction from the

would be to stop when the contracted graph has vertex cover problem. Finding a minimum vertex

no cycles of length more than some c and somehow cover is MAX SNP-hard in graphs whose maximum

APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH 185

degree is bounded by seven [19]. The reduction
is similar to the reduction from vertex cover to
Hamiltonian circuits [8].

Let G be an undirected graph G whose maxi-
mum degree is bounded by seven. Let G have m

edges and n vertices. We construct a 2m+ 1 vertex

digraph D with root vertex T and no cycle longer

than 17. Any vertex cover of G of size .s will yield

an SCSS of D of size 2m + s, and vice versa. Since

the degree of G is bounded, m = G(n) = O(s) and
it is easily verified that this yields an L-reduction

from degree-bounded vertex cover to the minimum

SCSSrr problem.

U+ U+ . x

m

. .

V-

U-

V+
V+

. . .

Figure 4: A cover-testing component.

Applying Vizing’s theorem [23], color the edges

of G in polynomial time with at most eight colors
so that no two edges incident to a vertex share the

same color. Label the edges { 1,2, S} correspond-
ing to the coloring.

As the construction proceeds, each vertex in
G will have a “current vertex,” initially the root
vertex, in D. For each edge (u, v), in order of
increasing label, add a “cover-testing gadget” to

D, as illustrated in Fig. 4. Specifically, add two

new vertices z and y. Add two edges into 5: the

first, labeled u+, from the current vertex of u; the
second, labeled u-, from y. Similarly, add two
edges into y: the first, labeled v+, from the current

vertex of v; the second, labeled v-, from z. Make
y the new current vertex of u; make x the new

current vertex of v. Finally, after all edges of G
have been considered, for each vertex 2, in G, add
an edge labeled vu+ from its final current vertex to

the root. The gadgets are implicitly layered, with

each gadget being assigned to a layer corresponding

to the label of the associated edge in G. Except for
the 2-cycle edges and edges incident to the root
in D, the edges go forward in this layering. It is

easily verified that due to this layering D has no
cycle with more than 17 edges.

Given a vertex cover of size s of G, construct

an SCSS of D of size 2m + s as follows. For each
vertex u in G, let d be the degree of u in G. If u

is in the vertex cover, add the d + 1 edges labeled
u+ in D to the SCSS. Otherwise, add the d edges

labeled u- in D to the SCSS. It is easy to verify
that the resulting SCSS is in fact an SCSS and has

2m + s edges.
Conversely, given an SCSS in D of size 2m + s,

construct a vertex cover of size s as follows. First,
as long as some non-root vertex y has both of its
incoming edges in the SCSS, modify the SCSS as

follows. Let (2, y) be the edge labeled v- for some

v. Remove the edge (x,y) and add the other edge

out of Z, if it is not already present. Alternatively,
if some non-root vertex x has both of its outgoing

edges in the SCSS, remove the edge (x,y) and add
the other edge into y. Repeat either modification

as long as applicable.

By the layering of D, each modification main-

tains the strong connectivity of the SCSS. Clearly

none of the modifications increases the size. Each
step reduces the number of edges labeled U- for

some u in the SCSS, so after at most 2m steps,
neither modification applies, and in the resulting

SCSS every non-root vertex has exactly one incom-

ing edge and one outgoing edge in the SCSS.

An easy induction on the layering shows that
for any vertex v in G, either all of the edges labeled

v+ in D are in the SCSS or none are, in which case
all of the edges labeled v- are in the SCSS. Let C

be the set of vertices in G of the former kind. It is

easy to show that the size of the SCSS is 2m+ JC],
so that ICI 5 s. For every edge (u, v) in G, the form

of the gadget ensures that at least one of the two
endpoints is in C. Hence, C is the desired cover. Cl

8 Open Problems

An obvious problem is to further characterize the
various complexities of the minimum SCSSI, prob-

lems.

The most interesting open problem is to ob-

tain a performance guarantee that is less than 2
for the weighted strong connectivity problem (as

mentioned earlier, the performance factor of 2 is

186

due to Frederickson and JSJB [S]). Such an algo-

rithm may have implications for the weighted 2-

connectivity problem [15] in undirected graphs as

well.

The performance guarantee of K-EXCHANGE

probably improves as Ic increases. Proving this

would be interesting - similar “local improve-

ment” algorithms are applicable to a wide variety

of problems.

References

PI

PI

[31

WI

[51

k51

[71

ISI

PI

WI

IllI

A. Agrawal, P. Klein and R. Ravi, When trees col-
lide: An approximation algorithm for the general-
ized Steiner problem on networks, Proc. 23rd ACM

Symposium on Theory of Computing, pp. 134-144,
(1991).
A. V. Aho, M. R. Garey and J. D. Ullman, The
transitive reduction of a directed graph, SIAM

Journal on Computing, 1 (2), pp. 131-137, (1972).
S. Arnborg, J. Lagergren and D. Seese, Easy
problems for tree-decomposable graphs, Journal of
Algorithms, 12 (2), pp. 308-340, (1991).
S. Arora, C. Lund, R. Motwani, M. Sudan and
M. Szegedy, Proof verification and hardness of ap-
proximation problems, Proc. 33rd Foundations of

Computer Science Conference, pp. 14-23, (1992).
T. H. Cormen, C. E. Leiserson, and R. L.
Rivest, Introduction to Algorithms, The MIT

Press, (1989)
G. N. Frederickson and J. JQJB, Approxima-
tion algorithms for several graph augmentation
problems, SIAM Journal on Computing, 10 (2),
pp. 270-283, (1981).
H. N. Gabow, Z. Galil, T. Spencer and R. E. Tar-
jan, Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs,
Combinatorics, 6 (a), pp. 109-122, (1986).
M. R. Garey and D. S. Johnson, Computers and
intractability: A guide to the theory of NP-
completeness, Freeman, San Francisco, (1979).

N. Garg, V. Santosh and A. Singla, Improved ap-
proximation algorithms for biconnected subgraphs
via better lower bounding techniques, Proc. 4th

Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pp. 103-111, (1993).
P. Gibbons, R. M. Karp, V. Ramachandran,
D. Soroker and R. E. Tarjan, Transitive com-
paction in parallel via branchings, Journal of Al-

gorithms, 12 (l), pp. 110-125, (1991).
M. Goemans and D. Williamson, A general ap-
proximation technique for constrained forest prob-
lems, Proc. 3rd Annual ACM-SIAM Symp. on Dis-

WI

[I31

P4

[I51

WI

[171

k31

WI

PO1

WI

PI

[231

[241

KHULLER ET AL.

Crete Algorithms, pp. 307-316, (1992).
F. Harary, R. Z. Norman and D. Cartwright,
Structural models: An introduction to the theory
of directed graphs, Wiley, New York, (1965).
H. T. Hsu, An algorithm for finding a minimal
equivalent graph of a digraph, Journal of the

ACM, 22 (l), pp. 11-16, (1975).
S. Khuller, B. Raghavachari and N. Young, Main-
taining directed reachability with few edges, Tech.
Rep. UTDCS-10-93, University of Texas at Dallas,
October 1993.
S. Khuller and U. Vishkin, Biconnectivity approx-
imations and graph carvings, Proc. 24th ACM

Symposium on Theory of Computing, pp. 759-770,
(1992). Also, to appear in Journal of the ACM.

P. N. Klein and R. Ravi, When cycles collapse: A
general approximation technique for constrained
two-connectivity problems, Proc. 3rd Integer Pro-

gramming and Combinatorial Optimization Con-

ference, pp. 39-56, (1993).
D. E. Knuth, Fundamental Algorithms, Addison-

Wesley, Menlo Park, CA, (1973).
D. M. Moyles and G. L. Thompson, An algorithm
for finding the minimum equivalent graph of a
digraph, Journal of the ACM, 16 (3), pp. 455-460,
(1969).
C. H. Papadimitriou and M. Yannakakis, Opti-
mization, approximation, and complexity classes,
Journal of Computer and Systems Sciences, 43 (3),

pp. 425-440, (1991).
S. Sahni, Computationally related problems,
SIAM Journal on Computing, 3, pp. 262-279,
(1974).
K. Simon, Finding a minimal transitive reduction
in a strongly connected digraph within linear time,
Proc. 15th International Workshop WG’89, LNCS
411, Springer Verlag, pp. 245-259, (1989).
R. E. Tarjan, Data structures and network algo-
rithms, Society for Industrial and Applied Mathe-

matics, (1983).
V. G. Vizing, On an estimate of the chromatic
class of a P-graph (Russian), Diskret. Anal., 3,

pp. 25-30, (1964).
D. P. Williamson, M. X. Goemans, M. Mihail and
V. V. Vazirani, A primal-dual approximation al-
gorithm for generalized Steiner network problems,
Proc. 25th ACM Symposium on Theory of Com-

puting, pp. 708-717, (1993).

