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Approximating the Minimum Equivalent Digraph 

Samir Khuller * Balaji Raghavachari t Neal Young $ 

Abstract 1 Introduction 

The MEG (minimum equivalent graph) problem 
is the following: “Given a directed graph, find 

a smallest subset of the edges that maintains 

all reachability relations between nodes.” The 

MEG problem is NP-hard; this paper gives an 

approximation algorithm achieving a performance 

guarantee of about 1.64 in polynomial time. We 

give a modification that improves the performance 
guarantee to about 1.61. The algorithm achieves a 

performance guarantee of 1.75 in the time required 

for transitive closure. 

Connectivity is fundamental to the study of graphs 
and graph algorithms. Recently, many approxima- 

tion algorithms for finding subgraphs that meet 

given connectivity requirements have been devel- 

oped [l, 9, 11, 15, 16, 241. These results provide 

practical approximation algorithms for NP-hard 

network-design problems via an increased under- 

standing of connectivity properties. 

The heart of the MEG problem is the min- 

imum SCSS (strongly connected spanning sub- 
graph) problem - the MEG problem restricted 

to strongly connected digraphs. For the mini- 

mum SCSS problem, the paper gives a practical, 

nearly linear-time implementation achieving a per- 
formance guarantee of 1.75. 

Until now, the techniques developed have been 

applicable only to undirected graphs. We consider 

a basic network-design problem in directed graphs 

[2, 12, 13, 181 h h w ic is as follows: given a digraph, 

find a smallest subset of the edges (forming a 
minimum equivalent graph (MEG)) that maintains 

all reachability relations of the original graph. 

The algorithm and its analysis are based on 

the simple idea of contracting long cycles. The 

analysis applies directly to Z-EXCHANGE, a general 
“local improvement” algorithm, showing that its 

performance guarantee is 1.75. 
Keywords: directed graph, reachability, approx- 
imation algorithm, strong connectivity, local im- 

provement . 

When the MEG problem is restricted to graphs 

which are strongly connected, we call it the mini- 

mum SCSS (strongly connected spanning subgraph) 

problem. When the MEG problem is restricted to 

acyclic graphs we call it the acyclic MEG prob- 

Zem. The MEG problem reduces in linear time [5] 

to a single acyclic problem given by the so-called 

“strong component graph”, together with one min- 

imum SCSS problem for each strong component 
(given by the subgraph induced by that com- 

ponent). Furthermore, approximating the MEG 
problem is linear-time equivalent to approximating 

both restricted versions. 
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Moyles and Thompson [18] observe this de- 

composition and give exponential-time algorithms 
for the restricted problems. Hsu [13] gives a 

polynomial-time algorithm for the acyclic MEG 

problem and corrects some errors in the paper by 

Moyles and Thompson. 
The related problem of finding a transitive re- 

duction of a digraph - a smallest set of edges yield- 
ing the same reachability relations was studied by 
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Aho, Garey and Ullman [a]. Transitive reduction 

differs from the MEG problem in that the edges in 

the transitive reduction are not required to be in 

the original graph. However, the transitive reduc- 

tion problem decomposes just like the MEG prob- 

lem into acyclic and strongly connected instances. 

For any strongly connected instance, a transitive 

reduction is given by any Hamilton cycle through 

the vertices. For an acyclic instance, the transitive 

reduction is unique and, as Aho, Garey and Ullman 

observe, is equivalent to the MEG problem: it con- 

sists of those edges (u,~) for which there is no al- 

ternate path from u to o. In fact, Aho, Garey and 

Ullman show that the transitive reduction prob- 

lem is equivalent to the transitive closure problem. 

Thus, the acyclic MEG problem reduces to transi- 

tive closure. 

The acyclic MEG problem can be solved in 

polynomial time, whereas the minimum SCSS 

problem is NP-hard [8]. Consequently, this pa- 

per focuses on approximation algorithms for the 

minimum SCSS problem. By the observations of 

the preceding paragraphs, the performance guar- 

antees obtained for the minimum SCSS problem 

carry over to the general MEG problem with the 

overhead of solving a single instance of transitive 

closure. 

1.1 Our Results. Given a strongly con- 

nected graph, our basic algorithm finds as long a 

cycle as it can, contracts the cycle, and recurses. 

The contracted graph remains strongly connected. 

When the graph finally collapses into a single ver- 

tex, the algorithm returns the set of edges con- 

tracted during the course of the algorithm as the 

desired SCSS. 

The algorithm achieves a performance guaran- 

tee of any constant greater than 7r2/6 w 1.645 in 

polynomial time. We give a nearly linear-time ver- 

sion that achieves a performance guarantee of 1.75. 

We give examples showing lower bounds on the per- 

formance guarantees of the algorithm. For the gen- 

eral algorithm, the lower bounds are slightly above 

1.5. For the nearly linear-time version, the lower 

bound is 1.75, matching the upper bound. 

The performance guarantee analysis extends 

directly to a simple “local improvement” algorithm 

called Z-EXCHANGE. %E,XcHANGE starts with the 

given digraph and perfor:ms the following local im- 

provement step as long as it is applicable: find two 

edges in the current gra,ph that can be replaced 

by one edge from the original graph, maintaining 

strong connectivity. Similar local-improvement al- 

gorithms are natural can&dates for many optimiza- 

tion problems but often elude analysis. We prove 

that the performance guarantee of Z-EXCHANGE is 

1.75. 

A natural improvement to the cycle-contrac- 

tion algorithm is to modify the algorithm to solve 

the problem optimally once the contracted graph 

has no cycles longer than a given length c. For 

instance, for c = 3, this modification improves the 

performance guarantee to a2/6- l/36 M 1.617. We 

use SCSS, to denote the minimum SCSS problem 

restricted to digraphs with no cycle longer than 

c. The minimum SCSS2 problem is trivial. The 

minimum SCSSa problem is at least as hard as 

bipartite matching; in fact we can show that it has 

a polynomial-time algorithm. However, potential 

improvement in this direction is limited: we show 

that the minimum SCSS:, problem is NP-hard. In 

fact, we show that the minimum SCSSrr problem 

is SNP-hard. This precludes the possibility of a 

polynomial-time approximation scheme, assuming 

PfNP [4]. 

1.2 Other Related Work. The union of 

any incoming branching and any outgoing branch- 

ing from the same root yields an SCSS with at most 

2n - 2 edges (where n is the number of vertices in 

the graph). This is a special case of the algorithm 

given by Frederickson and JBJQ [6] that uses min- 

imum weight branchings to achieve a performance 

guarantee of 2 for weighted graphs. Since any SCSS 

has at least n edges, this yields a performance guar- 

antee of 2 for the SCSS problem. 

Any minimal SCSS ( one from which no edge 

can be deleted) has at most 2n - 2 edges and also 

yields a performance guarantee of 2. A linear- 

time algorithm finding a minimal SCSS is given 

by Simon [21]. A parallel algorithm is given 

by Gibbons, Karp, Ramachandran, Soroker and 

Tarjan [lo]. 

A related problem in undirected graphs is to 
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find a smallest subset of the edges forming a 

biconnected (respectively bridge-connected (i.e., 2- 

edge-connected)) spanning subgraph of a given 

graph. These problems are NP-hard. Khuller 

and Vishkin [15] g ive a DFS-based algorithm that 

achieves a factor of $ for biconnectivity and 5 for 

bridge-connectivity. Garg, Santosh and Singla [9] 

subsequently improve the approximation factors, 

using a similar approach, to $ and z, respectively. 

None of these methods appear to extend to the 

minimum SCSS problem. 

Undirected graphs having bounded cycle length 

have bounded tree width. Arnborg, Lagergren 

and Seese [3] have shown that many NP-hard 

problems, including the minimum biconnected- 

spanning-subgraph problem, have polynomial-time 

algorithms when restricted to such graphs. 

2 Preliminaries 

To contract a pair of vertices U,Z) of a digraph is 

to replace u and w (and each occurrence of u or 2, 

in any edge) by a single new vertex, and to delete 

any subsequent self-loops and multi-edges. Each 

edge in the resulting graph is identified with the 

corresponding edge in the original graph or, in the 

case of multi-edges, the single remaining edge is 

identified with any one of the corresponding edges 

in the original graph. To contract an edge (u, w) 

is to contract the pair of vertices u and 2). To 

contract a set S of pairs of vertices in a graph G is 

to contract the pairs in 5’ in arbitrary order. The 

contracted graph is denoted by G/S. Contracting 

an edge is also analogously extended to contracting 

a set of edges. 

Let OPI(G) be th e minimum size of any 

subset of the edges that strongly connects G. In 

general, the term “cycle” refers only to simple 

cycles. 

3 Lower Bounds on OPI(G) 

We begin by showing that if a graph has no 

cycles, then the size of any SCSS is large. 

long 

LEMMA 3.1. (CYCLE LEMMA) For any 

rected graph G with n vertices, if a longest 

of G has length C, then 

di- 

cycle 

Proof. Starting with a minimum-size subset 

that strongly connects the graph, repeatedly con- 

tract cycles in the subset until no cycles are left. 

Observe that the maximum cycle length does not 

increase under contractions. Consequently, for 

each cycle contracted, the ratio of the number of 

edges deleted to the decrease in the number of ver- 

tices is at least A. Since the total decrease in 

the number of vertices is n - 1, at least &(n - 1) 

edges are deleted. 0 

Note that the above lemma gives a lower bound 

which is existentially tight. For all values of C, 

there exist graphs for which the bound given by 

the lemma is equal to OPI(G). Also note that C 

has a trivial upper bound of n and, using this, we 

get a lower bound of n for UP?+(G), which is the 

known trivial lower bound. 

LEMMA 3.2. (CONTRACTION LEMMA) For 

any directed graph G and set of edges S, 

OPI(G) 2 OPI(G/S). 

Proof. Any SCSS of G, contracted around S 

(treating the edges of S as pairs), is an SCSS of 

G/S. 0 

4 Cycle-Contraction Algorithm 

The algorithm is the following. Fix k to be any 

positive integer. 

CONTRACT-CYCLES~(G) - 

1 for i= k,k- l,k-2 ,..., 2 

2 while the graph contains a cycle 

with at least i edges 

3 Contract the edges on such a cycle. 

4 return the contracted edges 

In Section 6, we will show that the algorithm 

can be implemented to run in O(mo(m,n)) time 

for the case k = 3 and in polynomial time for 

any fixed value of k. It is clear that the edge 

set returned by the algorithm strongly connects 

the graph. The following theorem establishes 

upper bound on the number of edges returned 

the algorithm. 

an 

bY 

THEOREM 4.1. CONTRACT-CYCLES~(G) 

returns at most ck . OPl(G) edges, where 



180 KHULLER ET AL. 

Proof Initially, let the graph have n vertices. 

Let n; vertices remain in the contracted graph 

after contracting cycles with i or more edges (i = 

k, k - 1) . ..) 2). 

How many edges are returned? In contracting 

cycles with at least k edges, at most &n - nk) 

edges are contributed to the solution. For i < k, in 

contracting cycles with i edges, &(n;+r -ni) edges 

are contributed. The number of edges returned is 

thus at most 

Clearly WV(G) 1 n. For 2 2 i 5 k, when n; 

vertices remain, no cycle has more than i - 1 edges. 

By Lemmas 3.1 and 3.2, WV(G) 2 s(n; - 1). 

Thus the number of edges returned, divided by 

ClPI(G), is at most 

I 

= & + ‘2 ; = ck. 
i=l 

Using the identity (from [17, p.751) Cgl 3 = 

$, we get 

1 

= 
(k ll)k* 

cl 

Standard techniques yield more accurate estimates 

of ck, e.g., ck = f + &I + 0 ($J) . 

Table 1: Bounds on the performance guarantee 

Table 1 gives lower and upper bounds on the 

performance guarantee of the algorithm for small 

values of k and in the limit as k -+ 00. The lower 

bounds are shown in the next subsection. 

4.1 Lower Bounds on the Performance. 

In this section we present lower bounds on the per- 

formance ratio of CONTRACT-CYCLESk(G). The 

graph in Fig. 1 has & groups of vertices. Each 

group consists of a (2k- 2)-cycle “threaded” with 

a k-cycle. 

In the first iteration, CONTRACT-CYCLESk(G) 

can contract the k-cycle within each group, leav- 

ing the graph with only 2-cycles. The algo- 

rithm subsequently must contract all the remain- 

ing edges. Thus, all the (3k - 2)& - 2 edges 

are in the returned SCSS. The graph contains a 

Hamilton cycle and the optimal solution is thus 

n. Hence, for arbitrarily large n, 1 + & - 2/n 

is a lower bound on the performance guarantee of 

CONTRACT-CYCLESk(G). As k approaches 00, the 

lower bound tends to 1.5. 

5 2-Exchange Algorithm 

In this section, we use the cycle-contraction anal- 

ysis to show that 2-EXCHANGE has a performance 

guarantee of 1.75. Z-EXCHANGE is a special case of 

k-EXCHANGE, which is defined as follows. 

k-EXCHANGE@ = (v, E)) - 

1 E’tE 
2 while the following improvement step is possible 

3 Pick a set Ek of k edges in E’ and a set 

E&r of up to k - 1 edges in E such that 

the set of edges E” = (E’ - Ek) U &-I 

forms an SCSS. 

4 E’ t E”. 
5 return E’ 

Note that for fixed k, each step can be per- 

formed in polynomial time and it reduces the size 
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Figure 1: Bad example for CONTRACT-CYCLE&(G). 

of E’, so ~-EXCHANGE runs in polynomial time. 

The following theorem shows that the approxima- 

tion factor achieved by Z&EXCHANGE is 1.75. 

THEOREM 5.1. The performance guarantee of 

Z-EXCHANGE is 1.75. 

Proof. First we show that the performance 
guarantee is at most 1.75. Let E’ be the set of 

edges returned by %EXCHANGE(G = (V, E)). Run 
CONTRACT-CYCLES+ on the graph G’ = (V, E’). 
Let H be the set of edges contracted during the 

first iteration when cycles of at least three edges are 

contracted. The resulting graph G//H is strongly 
connected and has only 2-cycles. Such a graph has 

a tree-like structure. In particular, an edge (u,v) 

is present iff the reverse edge (8, U) is present. 

Next consider executing the procedure call 

CONTRACT-CYCLEQG). Since G/H is equiv- 
alent to G//H, the sequence of cycles chosen 

in the first iteration of CONTRACT-CYCLES~(G') 

could also be chosen by the first iteration of 

CONTRACT-CYCLES~(G). Similarly,the secondit- 

erationin CONTRACT-CYCLES~(G') could bemim- 

icked by CONTRACT-CYCLES, in which case 

CONTRACT-CYCLES would return the same 

edge set as CONTRACT-CYCLES. Since E’ 
is minimal (otherwise an improvement step ap- 
plies), the edge set returned is exactly E’. Thus, 

the upper bound on the performance guarantee of 
CONTRACT-CYCLEQ from Theorem 4.1 is inher- 

itedby ‘&EXCHANGE. 

The important observation is that G/H is 

equivalent to G’/ H. Clearly G’/H is a subgraph 
of G/H; to prove the converse, suppose that some 

edge (u,v) of G/H was not in G//H. Consider 
adding edge (u,v) to G//H. By the structure of 

G//H, ‘1~ and v are not adjacent in G’/H and for 
each edge on the path from w to u the reverse edge 
is also in G//H. If (21,~) is added to G//H, these 

(at least two) reverse edges can be deleted from 

G’/H without destroying the strong connectivity 
of G//H. Consequently, the original edge in G 
corresponding to (u, v) can be added to G’ and the 

original edges in G’ corresponding to the reverse 
edges can be deleted from G’ without destroying 

the strong connectivity of G’. This contradicts the 
fact that E’ was output by ‘&EXCHANGE(G), since 
E’ is eligible for an improvement step. 

For the lower bound on the performance guar- 

antee, given the graph in Fig. 2, ‘&EXCHANGE can 
choose a number of edges arbitrarily close to 1.75 

times the minimum. II 

6 Implementation Details 

For any fixed k, CONTRACT-CYCLESk can be im- 

plemented in polynomial time using exhaustive 
search to find long cycles. For instance, if a cycle 

of size at least k exists, one can be found in poly- 
nomial time as follows. For each simple path P of 

k - 1 edges, check whether a path from the head of 

P to the tail exists after P’s internal vertices are 
removed from the graph. If k is even, there are at 

most rnki2 such paths; if k is odd, the number is 
at most nm(k-1)/2. It takes O(m) time to decide 
if there is a path from the head of P to the tail of 
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+ Edges returned by 2-Exchange 
- -> 

Edges not used by 2-Exchange 

Figure 2: Worst-case example for Z-EXCHANGE. 

P. For the first iteration of the for loop, we may 

have O(n) iterations of the while loop. Since the 

first iteration is the most time consuming, the al- 

gorithm can be implemented in O(nm*+“i2) time 
for even Ic and O(n2 n-~(~+ll/~) time for odd k. 

6.1 A practical implementation. Next we 

give a practical, near linear-time implementation 

of CONTRACT-CYCLES~. The performance guar- 

antee achieved is cg = 1.75. CONTRACT-CYCLES3 

consists of two phases: (1) repeatedly finding and 

contracting cycles of three or more edges (called 
long cycles), until no such cycles exist, and then 

(2) contracting the remaining 2-cycles. 
High-level description of the algorithm. 

To perform Phase (l), the algorithm does a depth- 
first search (DFS) of the graph from an arbitrary 
root. During the search, the algorithm identifies 

edges for contraction by adding them to a set 5’. At 

any point in the search, G’ denotes the subgraph 

of edges and vertices traversed so far. The rule for 
adding edges to 5’ is as follows: when a new edge 

is traversed, if the new edge creates a long cycle 
in G//S, the algorithm adds the edges of the cycle 

to S. The algorithm thus maintains that G’/S has 
no long cycles. When the DFS finishes, G’/S has 
only 2-cycles. The edges on these 2-cycles, together 

with S, are the desired SCSS. 
Because G’/S has no long cycles and the fact 

that the original graph is strongly connected, G’/S 
maintains a simple structure: 

LEMMA 6.1. The algorithm maintains the fol- 

lowing invariant. (i) The graph G’IS consists 

of a branching with edges directed outwards from 

the super-vertex containing the root, together with 

some reverse edges that are of the form (W, U) such 

that (U, W) is in the branching. (ii) If such a re- 

verse edge (W, U) is not present in G’IS, then the 

edge (U, W) is on the path in the branching from 

the super-vertex containing the root to the super- 

vertex containing the vertex currently being visited 

by the DFS. This path is called the “active” path. 

Proof. Clearly the invariant is initially true. 

We show that each given step of the algorithm 
maintains the invariant. In each case, if u and w 

denote vertices in the graph, then let U and W 

denote the vertices in G’/S containing u and w, 

respectively. 
When the DFS traverses an edge (u, w) to visit 

a new vertex w:Vertex w and edge (u, w) are added 

to G’. Vertex w becomes the current vertex. In 
G’/S, the outward branching is extended to the 

new vertex W by the addition of edge (U, W). 

No other edge is added, and no cycle is created. 

Thus, part (i) of the invariant is maintained. The 

super-vertex containing the current vertex is now 

W, and the new “active path” contains the old 
“active path”. Thus, part (ii) of the invariant is 

also maintained. 
When the DFS traverses an edge (u, w) and w 

is already visited:If U = W or the edge (U, W) 

already exists in G’, then no cycle is created, G’ is 
unchanged, and the invariant is clearly maintained. 

Otherwise, the edge (U, W) is added to G’ and 
a cycle with the simple structure illustrated in 

Fig. 3 is created in G’/S. Dark nodes represent 
nodes that are still active. The cycle consists 

of the edge (U, W), followed by the (possibly 
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tures, the algorithm discovers it and, if it is long, 
contracts it in a number of union-find operations 
proportional to the length of the cycle. This yields 

an O(ma(m, n))-time algorithm. 

The vertices of G’/S are represented in union- 

find sets as follows: 
MAKE-SET(V): Adds the set {v} corresponding to 

the new vertex of G’IS. 

FIND(D): Returns the set in G’/S that contains 
vertex 0. 

UNION(~,V): Joins into a single set the two sets 

Figure 3: Contracted graph G//S. 
corresponding to the vertices in G’IS contain- 

ing G”s vertices u and v. 

empty) path of reverse edges from W to the lowest- 

common-ancestor (lca) of U and W, followed by 
the (possibly empty) path of branching edges from 

the lca(U, W) to W. Addition of (U, W) to G’/S 

and contraction of this cycle (in case it is a long 

cycle) maintains part (i) of the invariant. If the 

“active path” is changed, it is only because part 
of it is contracted, so part (ii) of the invariant is 

The data structures representing the branch- 
ing, reverse edges, and the active paths, respec- 

tively are: 

from-root [WI: For each branching edge (U, W) in 

G//S, from-root[W] = (u,w) for some (u, w) E 

(U x W) r-l E. 

to-root [UI: For each reverse edge (U, W) in G//S, 

to-root[U] = ( u, w) for some (u, w) E (U X 

Vvlr-lE. 
maintained. 

I 

@‘hen the DFS finishes visiting a vertex W:NO to-active[U]: For each vertex U on the “active 

edge is added and no cycle is contracted, so part path” in G//S, to-active[U] = (u, w) where 

(i) is clearly maintained. Let u be the new current (u, w) E (U x W) I-I E and W is the child 

vertex, i.e., w’s parent in the DFS tree. If U = W, of U for which the recursive DFS call is 

then part (ii) is clearly maintained. Otherwise, currently executing, unless no recursive DFS 

consider the set D of descendants of w in the DFS is executing, in which case to-active[U] = 

tree. Since the original graph is strongly connected, current. 

some edge (x, y) in the original graph goes from the 

set D to its complement V - D. All vertices in D 
For all other vertices, to-active[U] = nil. 

have been visited, so (5, y) is in G’. By part (i) of 
Pseudo-code for the algorithm is given below. 

the invariant, the vertex in G’/S containing x must CONTRACT-CYCLE.Q(G = (V, E)) - 

be W, while the vertex in G’/S containing y must 1 S + {} 

be U. Otherwise the edge corresponding to (x,y) 2 Choose r E V. 
in G’/S would create a long cycle. 0 3 DFS(T) 

4 Add 2-cycles remaining in G’fS to S. 
The algorithm maintains the contracted graph 5 return s 

G’/S using a union-find data structure [22] to rep- 

resent the vertices in the standard way and using DFS(u) - 

three data structures to maintain the branching, 1 to-active[FIND(u)] t current 

the reverse edges discovered so far, and the “active 2 for each vertex w adjacent to u 
path”. When a cycle arises in G’fS, it must be - traverse edge (u, w) - 

of the form described in the proof of Lemma 6.1 3 if (w is not yet visited) 
and illustrated in Fig. 3. Using these data strut- 4 MAKE-SET(W) 
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5 

6 
7 

8 
9 

10 

solve the remaining problem optimally. 

For instance, for c = 3, by following the proof of 

Theorem 4.1, one can show that this improves the 
performance guarantee of CONTRACT-CYCLESI, to 

ck - l/36 (for Ic 2 4), matching the lower bound 

in Table 1. (The lower bound given holds for the 

modified algorithm.) 

11 

12 

13 
14 

15 
16 

to-active[FIND(u)] t (u, w) 
from-root[FIND(w)] t (u, 20) 

DFS(w) 
to-active[FIND(u)] t current 

else - edge creates cycle in G’/S - 

if (FIND(U) # FIND(W)) 
- cycle length at least 2 - 

(2, y) c from-root[FIND(u)] 
if (FIND(X) = FIND(W)) 

- length 2, through parent - 

to-root[FIND(u)] + (u, w) 

else 

This leads us to consider the minimum SCSS, 
problem - the minimum SCSS problem restricted 

to graphs with cycle length bounded by c. 

17 

18 

(2, y) c from-root[FIND(w)] 
if (FIND(Z) # FIND(U)) 

- not L-cycle through child - 

CONTRACT-CYCLE(W) 

s + s u w-4 41 

7.1 Polynomially solvable cases. SCSSZ 

problem is trivial. It is easy to show that the 

graph will not be strongly connected if any of 

its edges are deleted. SCSS3 problem is much 

harder and has a rich structure. It is not hard 
to show that the SCSS3 problem is as hard as 

bipartite matching. In fact we show that the SCSS3 

problem is reducible to matching and hence has a 

polynomial time algorithm. Due to lack of space, 
we omit the details. 

19 to-active[FIND(u)] t nil 

CONTRACT-CYCLE(W) - 
1 while (to-active[FIND(w)] # current) do 

2 if (to-active[FIND(w)] # nil) then 

- Go down from lca along active path. - 

3 (z, y) +- to-active[FIND(w)] 

4 Contract edge (FIND(S), FIND(Y)) 
of G//S, updating all data structures. 

5 else 

THEOREM 7.1. There is a polynomial-time al- 

gorithm for the SC.!?& problem. 

COROLLARY 7.1. The performance guarantee 

of the modified CONTRACT-CYCLES~ algorithm is 

ck - l/36 (for k 2 4), where ck is the performance 

- Go up towards lca along reverse edges. - guarantee Of CONTRACT-CYCLESk. 

6 
7 

(z, y) t to-root[FIND(w)] 
Contract edge (FIND(Z), FIND(Y)) of 7.2 NP-hardness. We make no conjecture 

G//S, updating all data structures. concerning the SCCS4 problem. However, we next 

By the preceding discussion, the above al- 
show that the SCCSs problem is NP-hard, and that 

gorithm implements CONTRACT-CYCLESQ. It 
for some c > 0, the SCSS, problem is SNP-hard. 

is straightforward to show that it runs in THEOREM 7.2. The minimum SCSS5 problem 

O(mcr(m, n)) time. Hence, we have the following is NP-hard* 

theorem. Proof The proof is by a reduction from SAT. 

THEoREM 6-l. There is an O(ma(m, n))-time We omit the proof here. The complete proof is 
approximation algorithm for the minimum SCSS 
problem achieving a performance guarantee of 1.75 

given in the full version of the paper [14]. Cl 

on an m-edge, n-vertex graph. 7.3 SNP-hardness. Next we consider the 
Here o(m, n) is the inverse-Ackermann function SNp-hardness of the problem 

associated with the union-find data structure [22]. 
THEOREM 7.3. The minimum SCSSl7 problem 

7 Graphs of bounded cycle length is SNP-hard. 

A UatUd modification to CONTRACT-CYCLESg Proof. The proof is by a reduction from the 

would be to stop when the contracted graph has vertex cover problem. Finding a minimum vertex 

no cycles of length more than some c and somehow cover is MAX SNP-hard in graphs whose maximum 
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degree is bounded by seven [19]. The reduction 
is similar to the reduction from vertex cover to 
Hamiltonian circuits [8]. 

Let G be an undirected graph G whose maxi- 
mum degree is bounded by seven. Let G have m 

edges and n vertices. We construct a 2m+ 1 vertex 

digraph D with root vertex T and no cycle longer 

than 17. Any vertex cover of G of size .s will yield 

an SCSS of D of size 2m + s, and vice versa. Since 

the degree of G is bounded, m = G(n) = O(s) and 
it is easily verified that this yields an L-reduction 

from degree-bounded vertex cover to the minimum 

SCSSrr problem. 

U+ U+ . x 

m 

. . 

V- 

U- 

V+ 
V+ 

. . . 

Figure 4: A cover-testing component. 

Applying Vizing’s theorem [23], color the edges 

of G in polynomial time with at most eight colors 
so that no two edges incident to a vertex share the 

same color. Label the edges { 1,2, . . . . S} correspond- 
ing to the coloring. 

As the construction proceeds, each vertex in 
G will have a “current vertex,” initially the root 
vertex, in D. For each edge (u, v), in order of 
increasing label, add a “cover-testing gadget” to 

D, as illustrated in Fig. 4. Specifically, add two 

new vertices z and y. Add two edges into 5: the 

first, labeled u+, from the current vertex of u; the 
second, labeled u-, from y. Similarly, add two 
edges into y: the first, labeled v+, from the current 

vertex of v; the second, labeled v-, from z. Make 
y the new current vertex of u; make x the new 

current vertex of v. Finally, after all edges of G 
have been considered, for each vertex 2, in G, add 
an edge labeled vu+ from its final current vertex to 

the root. The gadgets are implicitly layered, with 

each gadget being assigned to a layer corresponding 

to the label of the associated edge in G. Except for 
the 2-cycle edges and edges incident to the root 
in D, the edges go forward in this layering. It is 

easily verified that due to this layering D has no 
cycle with more than 17 edges. 

Given a vertex cover of size s of G, construct 

an SCSS of D of size 2m + s as follows. For each 
vertex u in G, let d be the degree of u in G. If u 

is in the vertex cover, add the d + 1 edges labeled 
u+ in D to the SCSS. Otherwise, add the d edges 

labeled u- in D to the SCSS. It is easy to verify 
that the resulting SCSS is in fact an SCSS and has 

2m + s edges. 
Conversely, given an SCSS in D of size 2m + s, 

construct a vertex cover of size s as follows. First, 
as long as some non-root vertex y has both of its 
incoming edges in the SCSS, modify the SCSS as 

follows. Let (2, y) be the edge labeled v- for some 

v. Remove the edge (x,y) and add the other edge 

out of Z, if it is not already present. Alternatively, 
if some non-root vertex x has both of its outgoing 

edges in the SCSS, remove the edge (x,y) and add 
the other edge into y. Repeat either modification 

as long as applicable. 

By the layering of D, each modification main- 

tains the strong connectivity of the SCSS. Clearly 

none of the modifications increases the size. Each 
step reduces the number of edges labeled U- for 

some u in the SCSS, so after at most 2m steps, 
neither modification applies, and in the resulting 

SCSS every non-root vertex has exactly one incom- 

ing edge and one outgoing edge in the SCSS. 

An easy induction on the layering shows that 
for any vertex v in G, either all of the edges labeled 

v+ in D are in the SCSS or none are, in which case 
all of the edges labeled v- are in the SCSS. Let C 

be the set of vertices in G of the former kind. It is 

easy to show that the size of the SCSS is 2m+ JC], 
so that ICI 5 s. For every edge (u, v) in G, the form 

of the gadget ensures that at least one of the two 
endpoints is in C. Hence, C is the desired cover. Cl 

8 Open Problems 

An obvious problem is to further characterize the 
various complexities of the minimum SCSSI, prob- 

lems. 

The most interesting open problem is to ob- 

tain a performance guarantee that is less than 2 
for the weighted strong connectivity problem (as 

mentioned earlier, the performance factor of 2 is 
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due to Frederickson and JSJB [S]). Such an algo- 

rithm may have implications for the weighted 2- 

connectivity problem [15] in undirected graphs as 

well. 

The performance guarantee of K-EXCHANGE 

probably improves as Ic increases. Proving this 

would be interesting - similar “local improve- 

ment” algorithms are applicable to a wide variety 

of problems. 
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