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Abstract

We introduce a simple evolution scheme for multiobjective optimization problems, called
the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the
simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto
optimal set. The algorithm, in its simplest form, is a (1 + 1) evolution strategy employing
local search but using a reference archive of previously found solutions in order to identify
the approximate dominance ranking of the current and candidate solution vectors. (1+1)-
PAES is intended to be a baseline approach against which more involved methods may
be compared. It may also serve well in some real-world applications when local search
seems superior to or competitive with population-based methods. We introduce (1 + �)
and (� + �) variants of PAES as extensions to the basic algorithm. Six variants of PAES
are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated
Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed
and presented using techniques that reduce the attainment surfaces generated from several
optimization runs into a set of univariate distributions. This allows standard statistical
analysis to be carried out for comparative purposes. Our results provide strong evidence
that PAES performs consistently well on a range of multiobjective optimization tasks.

Keywords
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1 Introduction

Multiobjective optimization using evolutionary algorithms has been investigated by many
authors in recent years (Bentley and Wakefield, 1997; Fonseca and Fleming, 1995a; Horn
et al., 1994; Horn and Nafpliotis, 1994; Parks and Miller, 1998; Schaffer, 1985; Srinivas and
Deb, 1994). However, in some real-world optimization problems, the performance of the
genetic algorithm is overshadowed by local search methods such as simulated annealing and
tabu search, either when a single objective is sought or when multiple objectives have been
combined by the use of a weighted sum (see Mann and Smith (1996)). This suggests that
multiobjective optimizers that employ local search strategies would be promising to inves-
tigate and compare with population-based methods. Good results have been obtained with
such methods (Czyzak and Jaszkiewicz, 1998; Gandibleux et al., 1996; Hansen, 1997, 1998;
Serafini, 1994; Ulungu et al., 1995), and, recently, some theoretical work has been done
which yields convergence proofs for simple variants (Rudolph, 1998a, 1998b). However,

c2000 by the Massachusetts Institute of Technology Evolutionary Computation 8(2): 149-172



J. Knowles and D. Corne

it is currently unclear how well local-search based multiobjective optimizers compare with
evolutionary algorithm based approaches. Here, we introduce a novel evolutionary al-
gorithm called the Pareto Archived Evolution Strategy (PAES) that, in its baseline form,
employs local search for the generation of new candidate solutions but utilizes population
information to aid in the calculation of solution quality. The algorithm, as presented here,
has three forms: (1 + 1)-PAES, (1 + �)-PAES, and (�+ �)-PAES.

Evolution Strategies (ESs) were first reported by Rechenberg (1965) following the
seminal work of Peter Bienert, Ingo Rechenberg, and Hans-Paul Schwefel at the Technical
University of Berlin in 1964. A modern and comprehensive introduction is in Bäck (1996).
We find the (� + �) model of ESs to naturally fit the general structure of PAES and the
variants used in this paper, but we should note that we use neither the adaptive step sizes
for mutation nor the encoding of strategy parameters that are usually associated with ESs.
There is no reason, of course, why these may not be included in further variants of PAES,
perhaps in investigations with real-valued encodings.

Six test functions are used to compare PAES to two well-known and respected
multiobjective genetic algorithms (MOGAs) – the Niched Pareto Genetic Algorithm
(NPGA) (Horn et al., 1994; Horn and Nafpliotis, 1994) and the Nondominated Sort-
ing Genetic Algorithm (NSGA) (Srinivas and Deb, 1994). Four of the test problems have
been previously used by several researchers (Bentley and Wakefield, 1997; Horn et al., 1994;
Horn and Nafpliotis, 1994; Fonseca and Fleming, 1995a; Schaffer, 1985), and the fifth is a
new problem devised by us as a further challenge to find diverse Pareto optima. The aim
of this comparison is to explore and demonstrate the applicability of the PAES approach to
standard multiobjective problems. Our sixth problem, the Adaptive Distributed Database
Management Problem (ADDMP), is strictly a real-world application but is included as a
test problem because we provide resources to allow other researchers to carry out the exact
same optimization task. Analysis of all the results generated has been carried out using
a comparative/assessment technique put forward by Fonseca and Fleming (1995b). This
works by transforming the data collected from several runs of an optimizer into a set of
univariate distributions. Standard statistical techniques can then be used to summarize
the distributions or to compare the distributions produced by two competing optimizers.
We compare pairs of optimizers using the Mann-Whitney rank sum test (for example, see
Mendenhall and Beaver, 1994) as our statistical comparator.

1.1 Overview of the Paper

The remainder of the paper is organized as follows. In Section 2, we introduce PAES and
its components. Pseudocode describing both the basic (1 + 1) algorithm and the archiving
strategy is presented. A crowding procedure used by PAES is also described. Finally,
the time complexity of PAES is estimated and a discussion of the (1 + �) and (� + �)
variants is provided. Section 3 describes our set of test problems. Four of these are well-
known test problems in the multiobjective literature, and two are new. One of the new
ones is a contrived problem that, when encoded with k genes that can each take any ofk integer values, has k Pareto optima. It is a considerable challenge on this problem for
a multiobjective algorithm to find any of these k Pareto optima, let alone find a good
spread. The second new test problem, for which we also provide the fitness function and
other details via a website, is a multiobjective version of the Adaptive Distributed Database
Management Problem. This is a two-objective problem in which the objectives involved
relate to quality-of-service issues in the management of a distributed database. In Section 4
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we describe the algorithms compared in later experiments. These are three algorithms
based on NPGA, four based on NSGA, and six versions of PAES (with differing � and �).
Section 5 is devoted to a discussion of the statistical comparison method we use, based on
Fonseca and Fleming’s seminal ideas on this topic. Section 6 presents the results, and we
conclude in Section 7.

2 The PAES Algorithm

2.1 Motivations

PAES was initially developed as a multiobjective local search method for finding solutions
to the off-line routing problem (Mann and Smith, 1996; Knowles and Corne, 1999), which
is an important problem in the area of telecommunications routing optimization. Previous
work on this problem used single-objective (penalty-function) methods, and it was found
that local search was generally superior to population-based search. PAES was, therefore,
developed to see if this finding carried over into a multiobjective version of the off-line
routing problem. A comparison of early versions of PAES with a more classical MOGA
on the off-line routing problem is provided in Knowles and Corne (1999). The positive
findings of this earlier work prompted the investigation of the performance of PAES on a
broader range of problems presented here.

2.2 (1 + 1)-PAES

The (1 + 1)-PAES algorithm is outlined in Figure 1. It is instructive to view PAES as
comprising three parts: the candidate solution generator, the candidate solution acceptance
function, and the nondominated-solutions (NDS) archive. Viewed in this way, (1+1)-PAES
represents the simplest nontrivial approach to a multiobjective local search procedure. The
candidate solution generator is akin to simple random mutation hillclimbing; it maintains a
single current solution and, at each iteration, produces a single new candidate via random
mutation.

1 generate initial random solution c and add it to the archive
2 mutate c to produce m and evaluate m
3 if (c dominates m) discard m
4 else if (m dominates c)
5 replace c with m, and add m to the archive
6 else if (m is dominated by any member of the archive) discard m
7 else apply test(c,m,archive) to determine which becomes the newcurrent solution and whether to add m to the archive
8 until a termination criterion has been reached, return to line 2

Figure 1: Pseudocode for (1 + 1)-PAES.

Since the aim of multiobjective search is to find a spread of nondominated solutions,
PAES needs to provide an NDS list to explicitly maintain a limited number of these, as and
when they are found by the hillclimber. The design of the acceptance function is obvious in
the case of the mutant dominating the current solution or vice versa but is troublesome in the
nondominated case. Our approach is to learn from Horn et al.’s seminal work (Horn et al.,
1994; Horn and Nafpliotis, 1994) and hence use a comparison set to help decide between
the mutant and the current solution in the latter case. The NDS archive provides a natural
and convenient source from which to obtain comparison sets. Pseudocode indicating the
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1 if the archive is not full
2 add m to the archive
3 if (m is in a less crowded region of the archive than c)
4 accept m as the new current solution
5 else maintain c as the current solution
6 else
7 if (m is in a less crowded region of the archive than x forsome member x on the archive)
8 add m to the archive, and remove a member of the archive fromthe most crowded region
9 if (m is in a less crowded region of the archive than c)

10 accept m as the new current solution
11 else maintain c as the current solution
12 else
13 if (m is in a less crowded region of the archive than c)
14 accept m as the new current solution
15 else maintain c as the current solution

Figure 2: Pseudocode for test(c,m,archive).

procedure for determining whether to accept or reject the mutant solution and for deciding
whether it is archived or not is given in Figure 2.

Arguably, even simpler multiobjective local search procedures are possible. One might
have a simpler acceptance function, which always accepts the mutant unless the current
solution dominates it. Or, it could only accept the mutant if it dominates the current
solution. We tried both of these, however, and found the results to be very poor. Echoing
Horn et al.’s findings, we found that the use of a nontrivially sized comparison set is crucial
to reasonable results.

We note that the idea of maintaining a list of nondominated solutions is not new.
Parks and Miller (1998) recently describe a MOGA that also maintains an ‘archive’ of
nondominated solutions. In their case, the overall algorithm is much more complicated
than PAES, and the archive is not just used as a repository and a source for comparisons but
also plays a key role as a pool of possible parents for selection. They found the use of this
archive gave improved results over a traditional MOGA, tested on a particular application.
They do not provide results (but indicate this as a future direction) on the use of their
MOGA+‘archive’ method on standard or other multiobjective test problems, however.

2.3 Adaptive Grid Algorithm

An integral part of PAES is the use of a new crowding procedure based on recursively
dividing up the d-dimensional objective space. This procedure is designed to have two
advantages over the niching methods used in some multiobjective GAs: Its computational
cost is lower; it is adaptive so that it does not require the critical setting of a niche-size
parameter.

When each solution is generated, its grid location in objective space is determined.
Assuming the range of the space is defined in each objective, the required grid location can
be found by repeatedly bisecting the range in each objective and finding in which half the
solution lies. The location of the solution is recorded as a binary string of length 2l�d,
where l is the number of bisecitons of the space carried out for each objective, and d is
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the number of objectives. Each time the solution is found to be in the larger half of the
prevailing bisection of the space, the corresponding bit in the binary string is set. A map of
the grid is also maintained, indicating for each grid location how many and which solutions
in the archive currently reside there. We choose to call the number of solutions residing
in a grid location its population. The use of the population of each grid location forms an
important part of the selection and archiving procedure outlined in Figure 2. Notice that
with an archive size of 100, for example, and a two-objective problem with l = 5, phenotype
space is divided into 1024 squares. However, the archive is naturally clustered into a small
region of this space, representing the slowly advancing approximation to the Pareto front,
and the entire archive will perhaps occupy some 30 to 50 squares.

The recursive subdivision of the space and assignment of grid locations is carried
out using an adaptive method that eliminates the need for a niche size parameter. This
adaptive method works by calculating the range in objective space of the current solutions
in the archive and adjusting the grid so that it covers this range. Grid locations are then
recalculated. This is done only when the range of the objective space of archived solutions
changes by a threshold amount to avoid recalculating the ranges too frequently. The only
parameter that must then be set is the number of divisions of the space (and hence grid
locations) required.

The time complexity of the adaptive grid algorithm, in terms of the number of com-
parisons which must be made, may be derived from the population size n, the number of
solutions currently in the archive a, the number of subdivision levels being used l, and
the number of objectives of the problem d. Finding the grid location of a single solution
requires l � d comparisons. Thus, finding the grid location of the whole archive requiresa� l � d (1)

comparisons. Updating the quadtree ranges requires, in the worst case, that the whole
population is added to the archive and, thus, that the whole population must be compared
to the current maximum and minimum values in each of the d dimensions. Therefore, this
updating can take up to 2d� n+ n� l� d (2)

comparisons. This gives a worst case time order of O((a+n)d) comparisons1 per iteration.
In practice, the grid locations of the archive only need updating infrequently as few solutions
outside the current range of the archive will be found per generation2. Furthermore, rarely
will more than one or two new points join the archive per generation, and so the average
case number of comparisons to update the quadtree ranges is far fewer than the worst case
given in Equation 2. Niching, by contrast, requires n(n � 1) comparisons per generation
and significant additional overhead if calculating Euclidean distances between each pair of
points. In the case where niching is carried out on the partially filled next generation, as
in Horn and Nafpliotis (1994), niching still requires n2 (n + 1) comparisons, which is alsoO(n2).1Note we have removed l as it will, in general, be small, especially if d is large. For example, in a three-objective
problem, we require only l = 5 to give us (25)3 = 32768 divisions of the search space.2Generation, here, refers to an iteration of the PAES algorithm. For example, in (1+�)-PAES, � new solutions
are generated per generation, whereas in (1 + 1)-PAES, only 1 solution per generation is generated.
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2.4 The Time Complexity of PAES

(1 + 1)-PAES is a simple, fast algorithm when compared against MOGAs of similar per-
formance (see Section 6). Here, we analyze its time complexity in terms of the number of
comparisons that must be carried out per generation of the algorithm. We compare PAES
with NPGA and NSGA on the two core processes of selection and acceptance.

Selection is not required at all in (1+1)-PAES since there is only one current solution.
Therefore, all of the complexity is involved in the acceptance/rejection of the mutant
solution and the updating of the archive. In this process, PAES requires 1 comparison to
compare the candidate solution with the current solution and a further a� d comparisons
(in the worst case) to compare the current solution with the archive, where a is the current
archive size and d is the number of objectives in the problem. It requires l � d to find the
candidate’s grid location. A further 2d comparisons are required to update the quadtree
ranges and another a� l � d comparisons if the archive grid locations require updating.

The best and average case complexity of PAES is significantly different from the worst
case outlined above, however. It requires only d comparisons to ascertain that the candidate
solution is dominated by the current solution, and in this case, no further comparisons
are required in that generation. Similarly, if the candidate is dominated by anything in
the archive, no updating of the quadtree ranges or grid locations is necessary. In PAES
the latter case occurs frequently since the archive represents a diverse sample of the best
solutions ever found. In many cases, for example, the archive is not full, i.e., a < arcmax ,
where arcmax is the maximum size of the archive. So, as soon as one of the members of the
archive is found to dominate the candidate, no further comparisons are required. Thus, in
the average case, the number of comparisons required to reject a candidate is much smaller
than arcmax �d . These considerations show that PAES is a very aggressive search method.
It wastes little time on solutions that turn out to be substandard, instead concentrating its
efforts only on solutions that are comparable to the best ever found.

The NSGA requires no comparisons in the replacement of the current population by
the next generation. Instead, the complexity of this algorithm comes from the assignment
of fitness values required for selection to be carried out. The number of comparisons in the
nondominated sorting phase is given by rn(n � 1), where r is the number of dominance
ranks found in the population. The niche count phase then requires n(n � 1) further
comparisons. Unlike PAES, NSGA requires this number of comparisons every generation
regardless of the quality of the solutions generated; thus, its worst case performance equals
its best case performance.

Similarly, the NPGA employs cn comparisons for selection, where c is the comparison
set size. If niching is then carried out on the partly filled next generation, then each time a
tie occurs between the two or more candidate solutions in the tournament, a further nnextt
comparisons must be made, where nnext is the number of solutions currently in the next
generation and t is the number of solutions that tied. In the worst case, this means thattsize(n + 1)n2 comparisons are made per generation if, each time, the tournament is tied
between all the candidate solutions in the tournament. On average, the niching process will
require significantly fewer comparisons than this, however.

The above analysis is summarized in Table 1. Rows four and five of the table indicate
the number of comparisons required by each algorithm (worst case) and their overall time
order, respectively, to evaluate n solutions. This brings (1+1)-PAES into line with the two
MOGAs that evaluate n solutions per generation. If the archive size arcmax = n, so that
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Table 1: Time complexity involved in selection and replacement phases.

Process Worst case number of comparisons required
(1 + 1)-PAES NSGA NPGA

Selection — rn(n� 1) + n(n� 1) cn+ (n+ 1)n=2
Replacement d(3 + l+ a(l+ 1)) — —
Total per generation d(3 + l+ a(l+ 1)) rn(n� 1) + n(n� 1) cn+ (n+ 1)n=2
Total for n evals nd(3 + l+ a(l+ 1)) rn(n� 1) + n(n� 1) cn+ (n+ 1)n=2
Time order for n evals O(an) O(n2) O(n2)

PAES presents the same number of final solutions as the MOGAs, then all three algorithms
areO(n2) in the number of comparisons required to evaluate n solutions. However, because
of the aggressiveness of PAES, its average case number of comparisons is significantly less
than the two MOGAs that expend the same amount of effort on poor solutions as they do
on good ones. The computational requirements of these algorithms are further illustrated
in Section 6, where we present their computation times for one selected problem.

2.5 (1 + �)-PAES and (�+ �)-PAES

The (1 + 1)-PAES serves as a good, simple baseline algorithm for multiobjective optimiza-
tion. Its performance is strong, especially given its low computational complexity, even on
demanding tasks where one might expect local search methods to be at a disadvantage (see
Section 6). However, in this paper we also investigate the performance of (1+�) and (�+�)
variants of it.

The generation of � mutants of the current solution increases the problem of deciding
which one to accept as the next current solution(s). This is, in fact, carried out by assigning
a fitness to each mutant based upon both a comparison with the archive and its grid location
population.

Each of the � + � population members is compared to the archive as it appeared after
the last iteration and is assigned a dominance score as follows. Its score is initially zero and
is set to 1 if it finds an archive member that it dominates. A score of 0 indicates it is
nondominated by the archive. If it is dominated by any member of the archive, its score is
set to -1, and no more comparisons are necessary. All mutants that could potentially join
the archive are used to recalculate the ranges of the phenotype space. If this has changed by
more than a threshold amount, then the grid locations of the archive and potential archive
members are recalculated. The archive is then updated. Finally, a fitness is assigned to each
population member such that members with a higher dominance score are always given a
higher fitness regardless of their grid location population. Points of the same dominance
score have higher fitness the lower the population of their grid location.

Updating of the archive occurs as in (1 + 1)-PAES, ensuring that it contains only
nondominated solutions and no copies. If it becomes full, then solutions in sparse regions
of the space will be favored. This ensures that the comparison set covers a diverse range of
individuals so that the dominance score assigned to population members reflects their true
quality.

In (� + �)-PAES, the � mutants are generated by mutating one of the � current
solutions, which is selected via binary tournament selection using the fitness values assigned
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in the previous iteration.

3 The Test Problems

We have compared PAES with the NPGA and NSGA on a suite of standard test functions.
Each defines a number of objectives that are to be minimized simultaneously. The first
four of these are the same as used by Bentley and Wakefield (1997): Schaffer’s functionsF1, F2, and F3, and Fonseca’s f1 (Fonseca and Fleming, 1995a), renamed here as F4.
These functions are now commonly used by researchers to test multiobjective optimization
algorithms. For reasons noted next, we also designed an additional test function called F5.� F1 is a single-objective minimization problem with one optimum:f1 = x12 + x22 + x32 (3)� F2 is a two-objective minimization problem with a single range of Pareto optima that

lie in 0 � x � 2: f21 = x2f22 = (x � 2)2 (4)� F3 is two-objective minimization problem with two separate ranges of Pareto optima
that lie in 1 � x � 2 and 4 � x � 5:f31 = �x where x � 1= �2 + x where 1 < x � 3= 4� x where 3 < x � 4= �4 + x where 4 < xf32 = (x� 5)2 (5)� F4 is a two-objective minimization problem on two variables with a single range of
Pareto optima running diagonally from (�1; 1) to (1;�1):f41 = 1� e(�(x1�1)2�(x2+1)2)f42 = 1� e(�(x1+1)2�(x2�1)2) (6)

The above test functions are useful in testing multiobjective optimizers because they
implicitly set two challenges. First, the set of nondominated solutions delivered by the
optimizer should contain all of the function’s Pareto optima. Second, it is generally felt best
if there is no strong bias favoring one Pareto optimum over others. In other words, in a
MOGA, for example, the number of copies of each Pareto optimum in the final population
should be similar. If not, this would seem to reveal a bias that may be undesirable in practical
applications.

We designed F5 (described below) to provide stronger challenges in these respects; it
is easily defined but is a nontrivial problem. Each Pareto optimum is intrinsically difficult
to find, and there are k distinct Pareto optima for chromosomes of length k, each having a
different frequency, i.e., some are far easier to find than others. This makes both challenges
(as described above) stringent tests for any multiobjective optimizer.
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The function F5 uses a k-ary chromosome of k genes. There are two objectives to be
minimized, defined by the following two functions:f51 = k � 1� k�2Xi=0 � 1 if Gi+1 �Gi = 10 otherwise

(7)f52 = k � 1� k�2Xi=0 � 1 if Gi �Gi+1 = 10 otherwise
(8)

where Gi is the allele value of the ith gene. For example, a chromosome of length k = 5
with allele values ‘1 2 3 2 2’ scores 5� 1 � 2 = 2 for the first objective (because there are
two sites where, reading the chromosome from left to right, the allele value increases by
exactly 1) and 5� 1� 1 = 3 for the second objective, using similar reasoning. From this,
we can see that the best score possible for either objective is 0, the worst is k � 1, and the
Pareto front is formed by solutions for which f51 + f52 = k � 1.

3.1 F6: The Adaptive Distributed Database Management Problem

The Adaptive Distributed Database Management Problem (ADDMP) has been described in
several places. Space constraints preclude a full description here, but a detailed description
is in Oates and Corne (1998). C source code for the evaluation function of the ADDMP
and data for the test problem we use here can be found via the first author’s website 3. In this
article, we will limit our description of the ADDMP to providing its basic details, aimed at
conveying an understanding of the context in which a multiobjective tradeoff surface arises.

The ADDMP is an optimization problem from the viewpoint of a distributed database
provider. For example, providers of video-on-demand services, on-line mailing-list brokers,
and certain types of Internet service providers, all need to regularly address versions of the
ADDMP. The database provider must ensure that good quality service is maintained for
each client, and the usual quality of service measure is the delay experienced between a
database query and the response to that query.

At a snapshot in time, each client will experience a typical delay depending on current
traffic levels in the underlying network and on which database server the client’s queries
are currently routed to. The database provider is able to reconfigure the connections at
intervals. For example, the database provider might re-route client 1’s queries to server 7,
client 2’s queries to server 3, client 3’s queries to server 7, and so on. The ADDMP is the
problem of finding an optimal choice of client/server connections given the current client
access rates, basic server speeds, and general details of the underlying communications
matrix. An optimal configuration of such connections is clearly one that best distributes
the access load across servers, allowing for degradation of response as the load on a server
increases, and other issues.

Test function F6 is an example instance of the ADDMP involving ten nodes (each is
both a client and a server) and in which quality of service is measured by two objectives,
both of which must be minimized. The first objective is the worst response time (measured
in milliseconds) seen by any client. This is clearly something that a database provider needs
to minimize by reconfiguration. However, it is insufficient as a quality of service measure
by itself. For example, if we have just three clients, then a situation in which the response3http://www.reading.ac.uk/�ssr97jdk
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times are respectively 750ms, 680ms, and 640ms will appear better, with this quality of
service measure, than if the response times were 760ms, 410ms, 300ms. To achieve a more
rounded consideration of quality of service, we look at the tradeoff between this objective
and another: the mean response time of the remaining (non-worst) clients. Hence, the two
scenarios in this example would yield the following nondominated points: (750, 660), (760,
355).

4 The Algorithms

In the remainder of this paper, we wish to establish the performance characteristics of
several different forms of the PAES algorithm on a number of test functions. In order to
do this, we use as comparison two of the most well-known and respected MOGAs: NPGA
and NSGA. In order to give each algorithm an equal opportunity of generating a good set
of diverse solutions we add two extensions to the genetic algorithms:

1. An archive of the nondominated solutions found is maintained (as in PAES) for pre-
sentation at the end of a run.

2. Elitism is employed.

The archive is not used to aid in selection, acceptance, or any other part of the GA—it
is merely there to give the GA the same opportunity as PAES to present the best solutions
it has found. Elitism is implemented as follows: In the case of the NSGA, this is straight-
forward as fitness values are assigned, and we can merely place into the new population
the g fittest solutions, where g is the generation gap parameter. Thus, the NSGA has four
different variants: the standard NSGA without elitism or archiving (NSGA), the NSGA
with archiving (NSGA+ARC), the NSGA with elitism (NSGA+ELITE), and the NSGA
with both elitism and archiving (NSGA+A+E). Elitism cannot be carried out easily in the
Niched Pareto GA, however, because explicit fitness values are never assigned. Thus, we
have only three variants of the Niched Pareto GA. These are the standard Niched Pareto
GA (NPGA), the NPGA with archiving (NPGA+ARC), and the NPGA with archiving and
elitism (NPGA+A+E). The latter works by placing all individuals that were archived in the
previous generation into the next generation.

Each of the algorithms require two or more parameter values to be set. Due to space
restrictions a complete discussion regarding these choices cannot be included here. Instead,
they are summarized in Table 2.

Table 2: Summary of algorithm parameters.

NPGA NSGA PAES
variants variants variants

Population size n 100 100 1 or �
Archive size a 100 100 100
Tournament size tdom 4 � tdom � 10 – 2
Crossover pcross 0.9 0.9 –
Mutation pm 1=k 1=k 1=k

The NPGA uses the simple triangular sharing function Sh[d] = 1 � d=�share ford � �share and Sh[d] = 0 for d > �share, where d is the phenotypic Euclidean distance
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between two solutions. We find that the NPGA requires a fairly large comparison set size
in order for its estimate of the dominance ranking of individuals to remain fairly accurate.
Similarly, the tournament size cannot be set too low if accurate selection is to occur. Values
of cssize = 80 and tournament size 10 � tdom � 4 are usually acceptable. The niche size
parameter �share must also be set. Here, some experimentation is required as the NPGA
can be quite sensitive to this parameter. So, for each of the problems attempted, several
test runs were undertaken to find reasonable values for the niche count parameter and the
tournament size.

The nondominated sorting GA requires fewer parameters to be set. To set the niche
size parameter, several test runs were carried out to obtain reasonable performance. In
our elitist variants of the NSGA, we must also set the number of solutions g to be carried
through to the next generation. In all experiments, g = 5 was used.

With the exception of test problem F5, uniform crossover was used in both of the
above MOGAs. Single point crossover is more suited to finding solutions in F5, and this
was used, again, in both MOGAs. Values of crossover probability pcross = 0:9 were used in
both MOGAs, and a bit flip mutation rate pm = 1=k for a chromosome of k genes was used
in all of the algorithms including PAES. In addition, (� + �)-PAES requires a tournament
size for selection. For this, a value of tdom = 2 was found to be acceptable on all problems.

5 Statistical Comparison of Multiobjective Optimizers

Proper comparison of results from two multiobjective optimizers is a complex matter.
Instead of comparing two distributions of scalar values (one from each algorithm), as in
the single objective case, we need to compare two distributions of approximations to the
Pareto front. Often, results from different multiobjective optimizers have been compared
via visual observation of scatter plots of the resulting point. One recent step towards a
more formal and statistical approach was made and used by Zitzler et al. (1999) using a
‘coverage’ metric. In this method, the resulting set of nondominated points from a single
run of algorithm A and another from a single run of algorithm B are processed to yield
two numbers: the percentage of points from algorithm A that are equal to or dominated
by points from B, and vice versa. Statistical tests are performed on the numbers yielded
from several such pairwise comparisons. However, this method is quite sensitive to the way
in which points may or may not be clustered in different regions of the Pareto surface as
illustrated in Figure 3(left). In the figure, one algorithm returns the set of points indicated
by circles, and the other returns the single point indicated by a square. The coverage metric
would score 0% for the first algorithm and 50% for the second. However, the first clearly
returns a better approximation to the Pareto tradeoff surface than the second, albeit further
from the optimal Pareto surface than the second algorithm in one region.

A statistical comparison method proposed by Fonseca and Fleming (1995b) addresses
this and other issues. It works as illustrated in Figure 3(right). The resulting approximations
to the Pareto surface from two algorithms A and B are shown by appropriately labeled
points. The lines joining the points (solid for A, dashed for B) indicate the attainment
surfaces. An attainment surface divides phenotype space into two regions; one containing
points that dominate or are nondominated by points returned from the algorithm, and
another containing all points dominated by the algorithm’s results. Fonseca and Fleming’s
idea was to consider a collection of sampling lines that intersect the attainment surfaces
across the full range of the Pareto frontier. Examples of such lines are indicated by L1-L5
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Figure 3: Problems with the coverage metric (left); sampling the Pareto frontier using lines
of intersection (right).

in the figure. Line L1, for example, intersects A’s attainment surface at I1 and will intersect
with B’s attainment surface somewhere above the figure at a place far more distant from
the origin than I1. Line L2 intersects A’s attainment surface at I2, and B’s at I3; again, A’s
intersection is closer to the origin.

Given a collection of k attainment surfaces, some from algorithm A and some from
algorithm B, a single sampling line yields k points of intersection, one for each surface.
These intersections form a univariate distribution, and we can, therefore, perform a sta-
tistical test to determine whether or not the intersections for one of the algorithms occurs
closer to the origin with some statistical significance. Such a test is performed for each of
several lines covering the Pareto tradeoff area (as defined by the extreme points returned
by the algorithms being compared). Insofar as the lines provide a uniform sampling of the
Pareto surface, the result of this analysis yields two numbers—the percentage of the surface
in which algorithmA outperforms algorithms B, and the percentage of the surface in which
algorithm B outperforms algorithm A—both calculated with respect to the chosen level of
statistical significance. For example, if repeated runs of the two algorithms of Figure 3(left)
produced identical or similar results to the two runs indicated, the result of this test would
be around [60,40], indicating that the first algorithm outperforms the second on about 60%
of the Pareto surface, while the second outperforms the first on around 40% of the surface.
A more common result in practice is that the two numbers sum to rather less than 100,
indicating that no significant conclusion can be made with respect to many of the sampling
lines.

1 initialize: a = b = nlines = 0
2 for each sampling line L
3 for each attainment surface s in SASSB
4 find the intersection of L with s
5 statistically analyzes the distribution of intersections
6 if (A outperforms B on L with required significance)then a++
7 if (B outperforms A on L with required significance)then b++
8 nlines++
9 return the result: [100*a/nlines, 100*b/nlines]

Figure 4: Pseudocode for the comparison procedure.
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Figure 4 indicates the comparison method in pseudocode for a collection of attainment
surfaces SA and SB from two algorithms A and B. The idea is first described in Fonseca
and Fleming (1995b), but we next include extra details that may benefit others intending
to implement it. In particular, our code for this comparison method is available from the
website given earlier and capable of performing the comparisons as described for any number
of objectives. Space limitations preclude a full description of the method here, for example,
precisely how we define the lines and how we find the intersections of multidimensional
lines with multidimensional attainment surfaces. However, interested readers are referred
to the available C code and contact with the authors to see how this is done.

As indicated, we find that a good way to present the results of a comparison is in
the form of a pair [a,b], where a gives the percentage of the space (i.e., the percentage of
lines) on which algorithm A was found statistically superior to B, and b gives the similar
percentage for algorithm B. Typically, if both A and B are ‘good’, a + b < 100. The
result 100� (a+ b) then, of course, gives the percentage of the space on which results were
statistically inconclusive. We present all of our results in this form.

For the number of lines, we find that 100 is adequate, although, obviously, the more
lines the better. We will use as an example our experiments on three different versions of
the off-line routing problem which illustrate this (see note at beginning of Section 2, Mann
and Smith (1996), and Knowles and Corne (1999)). This particular choice of problem is
of interest here since it involves three objectives. The NPGA and (1+1)-PAES algorithms
tailored for this problem (see Knowles and Corne (1999)) were compared on each of three
versions of it. Table 3 gives the results using variable numbers of lines.

Table 3: PAES vs NPGA comparisons with differing numbers of lines.

Number of lines
Problem 108 507 1083 5043 10092

routing1 [84.3, 1.0] [84.6, 3.0] [82.7, 2.3] [81.9, 1.5] [82.7, 1.3]
routing2 [16.7, 63.9] [21.9, 60.6] [22.1, 60.3] [23.2, 59.4] [23.6, 59.0]
routing3 [51.9, 25.0] [56.0, 25.0] [57.0, 25.4] [58.0, 24.6] [58.2, 24.6]

In Table 3, we can see that the general trend as we use more lines is that a greater
percentage of the space is found to give statistically significant results. (Note, in these
cases and all others in the paper, we use statistical significance at the 95% confidence).
This trend is not perfect, however. For example, on the routing1 problem, the 1083-line
sample indicates that PAES was superior to the NPGA on 82.7% of the space, but the
situation is reversed on a further 2.3% of the space, with a further 15.0% of the space giving
inconclusive results. When we sample the space in approximately five times as many places
(5043 lines), 16.7% of the space returns inconclusive results. Such variation as we change
the number of lines can be explained by the kind of situation we see in Figure 3(right),
where B’s attainment surface ‘bulges’ through A’s between lines L2 and L3. If such a bulge
was very small in relation to the distance between lines, then it may affect the results (if
sampled) but perhaps with more prominence than it deserves. A greater number of lines,
hence sampling more in the region around the bulge, would reveal that it really was quite
small, suitably leading to a reduction in its effect on the results.

The statistical comparison technique we use is the Mann-Whitney rank-sum test.
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This is the most appropriate among the set of standard statistical tests, since the data are
essentially unpaired, and it avoids assuming that the distributions are Gaussian. However,
it does assume that the distributions of intersections for the two algorithms are of the same
shape. We have not tested this assumption in the cases reported here. Intuitively, we would
expect the assumption to be sufficiently true for variants of the same algorithm (such as
(�+ �)-PAES for different � and �), but less so for, say, a comparison between (1+1)-PAES
and NPGA. We are addressing this detail in further work on extending the comparison
technique.

Finally, we also do comparisons on multiple (more than two) sets of points from
multiple algorithms. Results for such comparisons are presented in Table 4.

Table 4: Three MOGAs compared on Schaffer’s function F3.

NPGA+ARC NSGA+ARC (10+50)-PAES

unbeaten 79.1 49.2 90.6
beats all 0.5 5.4 1.8

In such a comparison of k algorithms, the comparison code performs pairwise statistical
comparisons, as before, for each of the k(k � 1)=2 distinct pairs of algorithms. The results
then show, for each algorithm, on what percentage of the space we can be statistically
confident that it was unbeaten by any of the other k� 1 algorithms and on what percentage
of the space it beat all k � 1 algorithms. For example, in Table 4, we can see that the
archived version of NPGA was unbeaten on 79.1% of the space covered by the three
algorithms compared. That is, on 79.1% of the space, no algorithm was found superior at
the 95% confidence level.

6 Results and Discussion

6.1 The Test Problems

Each algorithm tested was allowed the same number of function evaluations, max evals ,
on each of the test problems. Following a number of trial runs to obtain good parameter
settings, twenty uniquely seeded runs were carried out, and the resulting solution sets
recorded. For each test function, the number of function evaluations allowed and the
length of the chromosome k are given in Table 5.

Table 5: The allowed number of function evaluations and chromosome length for each of
the six test functions. F1 F2 F3 F4 F5 F6max evals 1000 5000 5000 20000 20000 5000k 16 14 14 16 16 10

The single objective test problem F1 presents no difficulty to any of the optimizers
considered in this section. The PAES algorithms all converge to the optimal solution and
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Table 6: Comparison of three variants of the Niched Pareto GA.

NPGA+ARC NPGA+A+E (1 + 1)-PAESF2 - Schaffer’s function F2
NPGA [0, 97.0] [0, 98.4] [0, 96.2]
NPGA+ARC — [7.1, 9.6] [11.0, 7.6]
NPGA+A+E — — [10.9, 4.1]F3 - Schaffer’s function F2
NPGA [0, 99.5] [0, 99.4] [0, 99.0]
NPGA+ARC — [4.9, 1.0] [0.9, 13.0]
NPGA+A+E — — [0.2, 19.3]F4 - Fonseca’s function f1
NPGA [0, 100] [0, 100] [0, 100]
NPGA+ARC — [12.8, 1.3] [12.8, 1.6]
NPGA+A+E — — [2.9, 8.6]F5 - k-optima problem
NPGA [0, 100] [0, 100] [0, 100]
NPGA+ARC — [93.6,0] [34.7, 48.2]
NPGA+A+E — — [0, 100]F6 - the ADDMP
NPGA [0, 99.8] [0, 98.0] [0, 95.7]
NPGA+ARC — [0.4, 0] [6.6, 90.0]
NPGA+A+E — — [2.2, 89.5]

return, in their archive, the single nondominated solution only. The three GA versions
employing archiving exhibit the same behavior, as expected. When no archive is used, the
population of both the NPGA and the NSGA converge to this solution, subject to random
mutations in the last generation. Because F1 presents no difficulty to any of the optimizers
here and is not itself a multiobjective problem, no further discussion or results relating to
this problem are presented.

For each of the remaining five problems, tests were carried out in the following way:
First, all of the NPGAs were compared, in pairs, one against the other (and also against
(1 + 1)-PAES as a baseline), each time taking the combined space of the pair as the range
over which to test, and using the statistical techniques outlined in Section 5. Next, in the
same way, the NSGAs and the PAES algorithms were internally compared. From these
three sets of internal tests, we chose the best NPGA, NSGA, and PAES algorithm and
compared these in the same fashion. Sometimes it was not clear from the original tests
which algorithm in the initial groups should be carried forward to the ‘final’. Where this
happens, further internal tests were performed and/or two inseparable algorithms were both
carried forward for inclusion in the final. Finally, the combined space of all the algorithms
was used and n(n � 1) comparisons were performed on the n = 13 algorithms. Again,
results were collected in terms of the percentages of the space on which each algorithm was
unbeaten and beat all. Readers are reminded that all comparisons use a Mann-Whitney
rank-sum test at the 95% confidence level.
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Table 7: Comparison of six variants of the Pareto Archived Evolution Strategy.

(1+10)-PAES 1+50 10+1 10+10 10+50F2 - Schaffer’s function F2
(1 + 1)-PAES [5.8, 2.1] [17.1, 1.4] [12.7, 1.4] [3.9, 5.4] [5.3, 3.7]
1+10 — [16.8, 1.8] [9.3, 2.8] [1.1, 6.8] [4.2, 5.7]
1+50 — — [4.3, 10.4] [0.8, 24.5] [1.6, 19.9]
10+1 — — — [1.1, 16.5] [1.7, 10.9]
10+10 — — — — [6.1,4.7]F3 - Schaffer’s function F3
(1 + 1)-PAES [9.5, 0.9] [10.0, 0] [11.6, 0.7] [3.3, 1.4] [5.2, 0.8]
1+10 — [3.1, 1.8] [2.5, 1.2] [0.6, 6.5] [1.3, 55.3]
1+50 — — [2.0, 3.3] [0.1, 8.2] [0.2, 45.3]
10+1 — — — [0.7, 6.9] [0.9, 55.5]
10+10 — — — — [2.5, 2.1]F4 - Fonseca’s function f1
(1 + 1)-PAES [6.5, 5.2] [4.4, 3.9] [19.0, 1.6] [8.1, 2.9] [12.4, 1.8]
1+10 — [3.1, 7.6] [18.0, 1.5] [6.1, 2.0] [9.5, 1.3]
1+50 — — [19.6, 0.9] [6.8, 2.2] [7.1, 0.7]
10+1 — — — [2.4, 15.3] [4.3, 8.4]
10+10 — — — — [6.9, 1.8]F5 - k-optima problem
(1 + 1)-PAES [74.7, 0] [100, 0] [100, 0] [89.3, 0] [92.3, 0]
1+10 — [38.6, 0] [100, 0] [53.5, 0] [70.0, 0]
1+50 — — [100, 0] [19.6, 0] [2.2, 0]
10+1 — — — [0, 82.1] [0, 100]
10+10 — — — — [0, 1.9]F6 - the ADDMP
(1 + 1)-PAES [79.0, 0] [22.0, 0] [48.7, 0] [15.4, 0] [15.4, 0.5]
1+10 — [0, 0.2] [0, 0] [0, 0] [8.0, 75.3]
1+50 — — [4.3, 0] [0, 0] [0, 37.6]
10+1 — — — [0, 0] [0, 12.3]
10+10 — — — — [0, 3.0]

For reasons of clarity, we do not present the complete set of results described above.
Nonetheless, only the tests carried out to decide on the best algorithm to carry forward to
the ‘finals’ and the finals themselves are absent. All of the results for the internal tests for
the Niched Pareto GA are presented in Table 6. Similar sets of results for the NSGA and
the PAES algorithms can be found in Tables 8 and 7, respectively. The results of testing all
algorithms against each other on their combined phenotype space are given in Table 9.

On F5, the k-optima problem, the results presented warrant further analysis and
discussion. To this end, plots of the best, worst, and median distributions over the phenotype
range are included. These plots help to clarify the statistical data and also illustrate different
methods of visualizing the performance of multiobjective optimizers.

We find that the test described above in which all algorithms are tested against all others,
in general, accurately reflects the results from the comparisons on pairs of algorithms on
their own combined space. The percentage of the space on which an algorithm is unbeaten
seems particularly reliable. For this reason, most of the following discussion is limited to
the results presented in Table 9 only. A summary of these results is provided in Table 10.
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6.2 (1 + 1)-PAES

Our original baseline approach, (1 + 1)-PAES, is the simplest and fastest of the methods
compared in this paper. Despite this, its performance on the test functions used here
provides considerable evidence that it is a capable multiobjective optimizer on a range of
problem types. In fact, among the thirteen algorithms tested here, it is perhaps the most
reliable performer. When all algorithms are pair-wise compared against the combined
nondominated front, (1 + 1)-PAES is unbeaten on, in the worst case, 68% of the front
(problem F2). On problem F5, (1+1)-PAES covers the largest part of the Pareto front and
manages to find the most demanding solutions not generated by any of the other algorithms
tested. (Problem F5 is discussed further towards the end of the results section.) It seems
that (1+ 1)-PAES works well for the same reasons that it is computationally simple: it is an
aggressive algorithm, testing each solution generated in a stringent manner, and investing
few resources in solutions which do not pass the test. In this sense, it is the analogue of
a single-objective hillclimber. This has drawbacks, too. (1 + 1)-PAES (or 1+�) would be
stumped by any search space containing local optima that could not be traversed by its small
change (mutation) operator, as it has no facility for moving from the current solution to an
inferior one (in the Pareto sense). This is possibly less of a flaw in multiobjective spaces
than in single objective ones because with more objectives the occurrence of functions with
true local optima may be reduced. However, test function F3 is an example of a function
where a hillclimbing approach could get stuck. If an optimizer were to start in the right
hand range of optima, i.e., with 5 � x > 4, it would not be able to move to the left optima
by small changes to the variable x. PAES does not suffer from this problem because x is
encoded as an n-bit binary string, and PAES is allowed to move by changing one or more
of the n bits. Therefore, it is able to jump across the divide.

Timings for six of the algorithms presented in this section are also included in Table 11.
In this case, the test function (F5) takes only a small proportion of the total computation
time, so the differing computation times of each algorithm are clear. (1 + 1)-PAES is 37%
faster than its nearest rival, the NPGA, on this test problem.

6.3 (1 + �)-PAES

The (1+10) and (1+50) variants of PAES do not do nearly as well as the baseline (1 + 1)
approach. Only on one problem, F4, does (1+50)-PAES generate better distributions over
the 20 runs than (1 + 1)-PAES, and (1+10)-PAES never does. The lack of competitiveness
of (1+�)-PAES might be explained with relation to its strategy for replacing the current
solution. As in (1 + 1)-PAES, the current solution is first compared to each mutant. In
the case where exactly one member dominates the current solution, this will be accepted
as the current solution of the next iteration. However, in all other cases, the acceptance is
based upon the result of comparing each mutant with the archive of the previous iteration.
Mutants are not compared one against the other. Any ties that occur are broken first
with reference to the population in the mutants’ grid locations, and if this is inconclusive,
randomly. This approach can lead to acceptance of a mutant that is dominated by one of
the other mutants of its generation. In this case, some of the characteristic aggressiveness of
(1 + 1)-PAES may be lost. The archive of the previous generation was used to balance the
need for a static test of the current generation with computational parsimony. Comparing
mutants against a constantly updated archive may be preferable but requires a complicated
process to ensure that the resultant ranking is correct. Rather than add extra complexity,
the option of using the archive of the previous generation was taken. It is unclear at the
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Table 8: Comparison of four variants of the Nondominated Sorting GA.

NSGA+ARC NSGA+ELITE NSGA+A+E (1 + 1)-PAESF2 - Schaffer’s function F2
NSGA [0, 97.8] [9.4, 6.0] [0, 99.9] [0, 97.6]
NSGA+ARC — [100, 0] [7.6, 5.4] [10.4, 2.7]
NSGA+ELITE — — [0, 98.2] [0, 98.2]
NSGA+A+E — — — [11.3, 2.3]F3 - Schaffer’s function F3
NSGA [0, 99.7] [41.6, 43.6] [0, 99.0] [0, 98.7]
NSGA+ARC — [100, 0] [3.8, 1.7] [3.8, 2.8]
NSGA+ELITE — — [0, 100] [0, 100]
NSGA+A+E — — — [2.6, 3.3]F4 - Fonseca’s function f1
NSGA [0, 97.7] [1.8, 3.7] [0, 98.8] [0, 99.0]
NSGA+ARC — [98.8, 0] [4.0, 3.2] [9.7, .32]
NSGA+ELITE — — [0, 99.1] [0, 99.3]
NSGA+A+E — — — [8.5, 5.1]F5 - k-optima problem
NSGA [0, 38.1] [6.1, 0] [0, 28.9] [0, 100]
NSGA+ARC [70.0, 0] [1.4, 0] [0, 77.4]
NSGA+ELITE — [0, 70.7] [0, 100]
NSGA+A+E — — [0, 79.0]F6 - the ADDMP
NSGA [0, 84.4] [1.0, 19.3] [0, 92.9] [0, 84.8]
NSGA+ARC — [53.9, 0] [0, 69.4] [1.7, 16.6]
NSGA+ELITE — — [0, 76.2] [0, 38.6]
NSGA+A+E — — — [4.0, 0]

time of writing if this issue is, in fact, the only factor (or most important factor) affecting
the performance of (1+�)-PAES, but this is under investigation.

6.4 (�+ �)-PAES

The population-based variants, (10+1), (10+10), and (10+50) perform comparably with (1+1)-PAES on problemsF2, F3, and F4. On F2, (10+10)-PAES is superior to (1+1). However,
the population based methods do not fare well on F5 or F6 and lack the consistently high
performance of (1 + 1)-PAES. The use of a population does not, in general, improve the
performance of the basic PAES algorithm and adds considerable computational overhead
(see Table 11). However, similar comments as those regarding the acceptance strategy used
in (1+�)-PAES apply equally here to (�+ �)-PAES.

6.5 The NPGAs

Turning now to the evolutionary algorithms, the first thing we notice is that, without ex-
ception, the archived versions consistently outperform the nonarchived ones. Also, elitism
is, generally, beneficial. The elitist technique employed in the NPGA is not so success-
ful, however, only enhancing the results in one of the test problems and degrading them
considerably in the others.
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Table 9: Pair-wise comparisons of all algorithms on the combined phenotype space for all
problems.

Test Problem
Algorithm Distribution F2 F3 F4 F5 F6

NPGA unbeaten 0.2 0 0 0 31.5
beats all 0 0 0 0 0

NPGA+ARC unbeaten 75.1 66.6 88.4 51.9 37.7
beats all 1.1 0.1 0.2 31.1 0

NPGA+A+E unbeaten 77.8 17.7 67.3 0 37.4
beats all 0.1 0 0 0 0

NSGA unbeaten 0 0 0 0 32.6
beats all 0 0 0.1 0 0

NSGA+ARC unbeaten 80.9 51.9 87.0 27.9 42.7
beats all 0.1 0.3 0.2 0 0

NSGA+ELITE unbeaten 0 0 0.3 0 82.1
beats all 0 0 0 0 0

NSGA+A+E unbeaten 78.8 90.4 83.6 26.9 99.5
beats all 0 1.0 0 0 0

(1 + 1)-PAES unbeaten 68.0 89.8 71.7 68.9 94.9
beats all 0 0 0 16.1 0

(1 + 10)-PAES unbeaten 65.7 35.0 65.6 31.0 32.4
beats all 0 1.0 0 0 0

(1 + 50)-PAES unbeaten 45.1 30.4 72.4 0 32.5
beats all 0 0 0 0 0

(10 + 1)-PAES unbeaten 51.8 30.8 47.1 0 32.3
beats all 0 0 0 0 0

(10 + 10)-PAES unbeaten 74.8 87.7 67.8 13.3 37.8
beats all 0 0 0 0 0

(10 + 50)-PAES unbeaten 69.0 82.5 55.0 10.7 53.7
beats all 0 0 0 0 0

Overall, the NPGA with archiving does quite well in comparison to both (1+1)-PAES
and the NSGA. It is superior to both of them on problem F4. On F6 (the ADDMP), its
performance is weak, and it does not perform as consistently well as either the NSGA with
archiving and elitism or our baseline approach (1 + 1)-PAES. It is also the most difficult
of the algorithms to use, requiring more parameters to be set, some of which can severely
degrade performance if set incorrectly. Its computational complexity is low compared to
either the population based PAES algorithms or the NSGAs because it does not have to
explicitly assign fitness values to the population. However, (1+1)-PAES seems both a more
consistent performer (see Table 10) and a faster algorithm on the results presented here.

6.6 The NSGAs

The NSGAs recursively sort the current population into two sets, the nondominated and
the dominated. This approach gives a fairly accurate estimate of the dominance rank of each
individual, encouraging selection to focus on the best members of the population. This is
perhaps why the NSGAs, when coupled with the archiving of all nondominated solutions
and elitism perform slightly better than the NPGAs. It also employs a more accurate form
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Table 10: Summary statistics for best 3 optimizers.

NPGA+A NSGA+A+E (1 + 1)-PAESF2 rank 4 2 7
unbeaten 75.1 78.8 68.0F3 rank 5 1 2
unbeaten 66.6 90.4 89.8F4 rank 1 3 4
unbeaten 88.4 83.6 71.7F5 rank 2 5 1
unbeaten 51.9 26.9 68.9F6 rank 7 1 2
unbeaten 37.7 99.5 94.9

worst rank 7 5 7
overall sum of ranks 19 12 16
stats worst coverage 37.7 26.9 68.0

(unbeaten)

Table 11: Algorithm run times on test problem F5.

Run times on SPARC Ultra 10 300MHz
Algorithm Mean (seconds) SD (seconds)

(1 + 1)-PAES 1:85 0:0446
(10+50)-PAES 4:48 0:0283
NSGA 8:16 0:0988
NSGA+A+E 8:45 0:0127
NPGA 2:96 0:0853
NPGA+A+E 3:03 0:0729

of niching than the NPGA which approximates the niching process using equivalence class
sharing.

The NSGA with archiving and elitism is ranked first on three of the five multiobjective
test problems, when all algorithms are compared pair-wise on the overall combined space.
Its lowest rank is on problem F5, where its performance is quite poor in comparison to
both the NPGA with archiving alone and those of some of the PAES algorithms. In fact, it
is nondominated on only 26.9% of the combined space. These results are summarized in
Table 10.

The NSGA is computationally expensive compared to either the NPGA or the local
search versions of PAES. Its average time complexity is greater than either (see Section 2.4),
requiring many comparisons to be made to rank the current population and to calculate
the niche count so that fitness values can be assigned. When the NSGA was timed on test
problem F5 it was found to be the slowest algorithm here (see Table 11). Nonetheless, this
overhead is unimportant in many applications where the evaluation of solutions is by far
the most time-consuming process in the search for solutions, and reducing the number of
evaluations is more important.
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Figure 5: Best, median, and worst attainment surfaces found on F5.

6.7 Test Problem F5
From Table 9 it appears that the algorithm which is unbeaten on the largest percentage of
the space does not always also beat all with the highest percentage. On F5 (the k-optima
problem), for instance, (1+1)-PAES is unbeaten on 68.9% of the combined phenotype space
but only beats all on 16.1%. The NPGA with archiving, on the other hand, is unbeaten on
less of the space but beats all on 31.1%. It would be interesting to see how these figures
vary with the use of different confidence levels. In the case of problem F5, (1 + 1)-PAES
beats all on 16% of the space because it has generated solutions at the edges of the range of
optima where other algorithms have failed to do so. The NPGA, by contrast, has a better
distribution in the center of the Pareto front.

For the time being, we indicate the difference in the distributions of points generated
by the NPGA with archiving and (1 + 1)-PAES by plotting graphs of the best, worst, and
median attainment surfaces of these algorithms on problem F5. The best of the NSGAs
is also included in the graphs shown in Figure 54. The NSGA is also interesting because
although it appears to do relatively poorly from the statistical results, its best distribution is
rather better than that of the NPGA. The best attainment surfaces show that (1+ 1)-PAES
finds optima that extend the furthest towards the ends of the Pareto front. The NSGA
is nearly as good, and the NPGA is least impressive on this measure. This is why it is
beaten on approximately 49% of the space. The median, similarly, is not favorable for the
NPGA for the most part, although it beats the other two algorithms in a small portion of
the space near the center. Finally, the plots of the worst attainment surface reveal why the4Note that all surfaces are orthogonal, although in the case of the median surfaces, this is only apparent at high
resolution.
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NPGA beats all the other algorithms on such a large percentage of the space. Its worst
attainment surface, again in the center of the space, is significantly better than the other two
algorithms. Returning to the comparison of pairs of algorithms on problem F5, it can be
seen that (1 + 1)-PAES had a better distribution than the NPGA with archiving on 48.2%
of the space compared to 34.7% vice versa. This result seems to be borne out by the plots
in Figure 5 and gives, in this case, a truer picture of the algorithm with the best coverage of
the space than the ‘beats all’ statistic discussed above.

7 Conclusion and Future Work

We have described PAES, which in its (1 + 1)-ES form can be viewed as a simple baseline
technique for multiobjective optimization. Some analysis of its time complexity has been
provided, arguing that it requires fewer comparisons to perform selection and acceptance
in the best case than two well-known and respected MOGAs. Timings of the algorithm on
two problems provide empirical evidence to support this claim. It is a conceptually simple
algorithm too, being the multiobjective analogue of a hillclimber.

Two extensions to the basic algorithm were also described, (1+�)-PAES and a
population-based algorithm, (� + �)-PAES. All three algorithms exploit the same novel
means of evaluating solutions. An archive of nondominated solutions is kept, updated, and
used as the benchmark by which newly generated solutions are judged. The archive also
serves the purpose of recording nondominated solutions found for presentation at the end
of the run. Parks and Miller (1998) employ an archive in a MOGA as a repository from
which selection and breeding can occur. This use has not yet been investigated by the
authors but is an interesting avenue for further work.

The main objective of the paper was to thoroughly test PAES on a range of test
problems and to compare its performance with two well-known algorithms, the Niched
Pareto Genetic Algorithm and a GA employing nondominated sorting. To achieve this,
six test functions were used. Four of them have been used elsewhere as benchmarks for
multiobjective optimizers, and two we introduced for the first time in this context. Six
variants of PAES were tested against the NPGA and NSGA. Both genetic algorithms were
modified to include versions that archived their solutions to allow them to store and present
the nondominated solutions they had found. Elitist versions were also included. In all,
thirteen algorithms were compared on the six test functions.

Statistical techniques introduced by Fonseca and Fleming (1995a) for the compari-
son and assessment of multiobjective optimizers were employed in all our tests. These
techniques allow univariate statistical analysis to be carried out on the attainment surfaces
generated from several runs of a multiobjective optimizer. We thus found that PAES, par-
ticularly in its baseline (1 + 1) form, is a capable multiobjective optimizer across a range
of problems. Its worst performance in terms of the percentage of the space on which it is
unbeaten is superior to any of the other algorithms tested here. Where algorithms were
ranked according to the percentage of the space on which they were unbeaten (see Table
10), (1 + 1)-PAES achieves the second lowest sum of ranks of the algorithms tested. On
this statistic, it is bettered only by the nondominated sorting GA employing both archiving
and elitism. The two variants of PAES introduced in this paper did not fare as well on the
test functions as the simpler baseline algorithm. A possible explanation for this is that the
archive in these algorithms is not kept as strictly updated as in (1 + 1)-PAES so that some
accuracy in determining the best solution(s) for acceptance is lost.

170 Evolutionary Computation Volume 8, Number 2



The Pareto Archived Evolution Strategy

There are various avenues for future work. An extension to PAES in which the archive
is additionally used as a repository from which solutions can be selected might be a profitable
line of research. Further investigation of the performance of (1 + 1)-PAES may also be
fruitful. As yet we are unsure how it moves about in the solution space and are intrigued
to find out more about its performance, particularly on test problem F5 where it seems
to do particularly well. It may be important to measure the probability of obtaining an
entire attainment surface with PAES because it is unclear from the statistics whether it
can find solutions at both extremes of the optimal range on a single run. To do this may
simply involve tracking it through a run, however, a more generally useful idea would be
to extend the statistical technique of Fonseca and Fleming to allow such measures to be
made. One way of doing this would be to acquire the worst, best, median, and interquartile
range attainment surfaces in the normal way to use as benchmark surfaces in the solution
space. Measurements from further runs could then be taken to ascertain the likelihood of
an algorithm obtaining an entire surface which covers each of these benchmark surfaces.
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