
CCCG 2011, Toronto ON, August 10–12, 2011

Approximating the Obstacle Number for a Graph Drawing Efficiently∗

Deniz Sarıöz†

Abstract

An obstacle representation for a (straight-line) graph
drawing consists of the positions of the graph vertices
together with a set of polygonal obstacles such that ev-
ery line segment between a pair of non-adjacent vertices
intersects some obstacle, while the vertices and edges of
the drawing avoid all the obstacles. The obstacle num-
ber obs(D) for a graph drawing D is the least number
of obstacles in an obstacle representation for it. We
present an efficient algorithm for computing the obstacle
number for a given graph drawing D with approxima-
tion ratio O(log obs(D)). This is achieved by showing
that the V-C dimension is bounded for the family of
hypergraphs of the underlying transversal problem, and
using results from epsilon net theory.

1 Introduction

Let D be a straight-line drawing of a (not necessarily
planar) graph G on n vertices in the Euclidean plane
with no three graph vertices on the same line. We refer
to the open line segment between a pair of non-adjacent
graph vertices as a non-edge of D. We define an obstacle
representation for D as the set of vertices of G identified
with their positions in D together with a collection of
polygons (not necessarily convex) called obstacles, such
that:

1. no edge of D meets any obstacle, and

2. every non-edge of D meets at least one obstacle.

Without loss of generality, the vertices of polygonal
obstacles taken together with the graph vertices are in
general position (no three on a line) and no graph ver-
tices are inside any obstacle. Notice that the positions of
the graph vertices and the obstacles in such an obstacle
representation are sufficient to determine the abstract
structure of the graph, based on whether or not a pair
of graph vertices can “see” each other. Graphs obtained
in this manner are called visibility graphs , and they are
extensively studied and used in computational geom-
etry, robot motion planning, wireless sensor networks,
and mobile ad-hoc networks; see [5, 23, 18, 17, 11, 9].

∗Research supported by NSA grant 47149-0001 and
PSC-CUNY grant 63427-0041.

†Ph. D. Program in Computer Science, The Graduate Center
of The City University of New York (CUNY), sarioz@acm.org

We define the obstacle number for D as the least num-
ber of obstacles over all obstacle representations for D.
We denote this parameter by obs(D).

Our main contribution is a polynomial-time ap-
proximation algorithm that, given a graph drawing
D, computes an obstacle representation for D with
O(obs(D) log obs(D)) obstacles.
Related notions of (an) obstacle representation of a

graph and (the) obstacle number of a graph were first
defined by Alpert, Koch, and Laison [1]. An obstacle
representation of a graph G is equivalent to an obstacle
representation for some (straight-line) drawing D of it.
The obstacle number of a graph G is the minimum value
of obs(D) attained over all drawings D of G.
The obstacle numbers of certain graphs have been de-

termined exactly; upper bounds have been established
for some graph families, and proofs of unboundedness
have been offered for others [1, 21, 16, 20, 10]. How-
ever, the question of devising a computational proce-
dure to determine or approximate the obstacle number
of a graph has to our knowledge not yet been addressed,
even in part. The results presented here can be consid-
ered a first step in that direction.
In Section 2, we will explicate the connection to hy-

pergraphs defined by intersection, and present some
background about hypergraph transversals including
notions of V-C dimension and epsilon net. In Section
3, we prove our main result having to do with bounding
the V-C dimensions of various hypergraphs. In Section
4 we present a concrete algorithm and discuss its effi-
cacy.

2 Preliminaries

2.1 Intersection Hypergraphs and their Transversals

A hypergraph is a pair (X,F) in which X is a set
of ground elements, and F is a collection of subsets
of X. We introduce the following notation and ter-
minology for intersection hypergraphs. Let X and Y

be collections of sets. For each y ∈ Y , let N(y) =
{x ∈ X | x ∩ y 6= ∅}, and say that y generates N(y).
Let F = {N(y) | y ∈ Y }. Then (X,F) is an inter-
section hypergraph, which we shall denote by H(X,Y)
whenever convenient.1 Similarly, for each x ∈ X, let

1In many well-studied geometric hypergraphs H(X,Y), each
set in X is a singleton. The intersection of a member of X with
a member of Y thus corresponds to the inclusion of the former in

23rd Canadian Conference on Computational Geometry, 2011

N(x) = {y ∈ Y | x ∩ y 6= ∅}, and say that x generates
N(x). Let F ′ = {N(x) | x ∈ X}. The hypergraph
(Y,F ′), which we shall denote by H(Y,X) when conve-
nient, is known as the dual of the hypergraph H(X,Y).

A transversal of an intersection hypergraph H(X,Y)
is a subset T ⊆ X such that every member of Y—that
meets some member of X—meets some member of T .
Let τ denote the minimum cardinality of a transversal
of H(X,Y). The (optimization version of) the hyper-
graph transversal problem is to compute τ exactly, and
this has an equivalent formulation as the set cover prob-
lem. The decision version of the hypergraph transversal
problem is NP-complete; indeed, the restriction to the
case in which every member of Y meets exactly two
members of X corresponds to a canonical NP-complete
problem, “Vertex Cover.”

2.2 Computing the Obstacle Number for a Graph

Drawing as a Transversal Problem

For a given graph drawing D, we refer to a connected
component of the complement of D as a face of the
drawing. To rephrase an observation in [1] in our con-
text, in an obstacle representation for D with cardi-
nality obs(D), there can be at most one obstacle per
face, for otherwise obstacles in the same face could be
merged, contradicting the minimality of obs(D). Hence
for any given graph drawing, each polygonal obstacle to
be included in a minimal obstacle representation can be
considered to be a face of the drawing. If need be, one
can compute for each face a representative simple poly-
gon that lies inside the face and meets every non-edge
that the face meets. (This is not always a simple mat-
ter of perturbing the boundary of a face to lie inside the
face, since a face may have holes and so its boundary
may be a disconnected set.)
Since an n-vertex graph has less than n2 edges (with

Ω(n2) edges attainable), its drawing must have less
than n4 faces (with Ω(n4) faces attainable). Computing
obs(D) is therefore a matter of computing a transversal
for the finite intersection hypergraph H(X,Y) where X
is the face set of D and Y is the non-edge set of D.
Observe that |X| < n4 and Y < n2, with |X| = Ω(n4)
attainable simultaneously with |Y | = Ω(n2). Using a
representation ofD with integer coordinates represented
as signed integers, an incidence matrix representation of
H(X,Y) with fewer than n8 bits (and possibly Ω(n8))
can be computed using standard techniques [5] in time
polynomial in the number of input bits, and in time

the latter. The members of Y are commonly referred to as ranges,
especially in hypergraphs in which Y is a natural feature of the
geometric space that the “points” of X belong to, e.g., the set of
all half-spaces, all balls, or all axis-parallel boxes. We eschew the
use of the term range since this is not the case for problems we
are interested in, and also because our hypergraphs are defined
by intersection not limited to inclusion: A set in X can meet two
disjoint sets in Y and vice versa.

poly(n) in the RAMmodel with unit-cost arithmetic op-
erations. It is important to make this distinction, since
coordinates may need to be represented using exponen-
tially many bits in n, see [12]; or more, as discussed in
Section 5.
It is well-known that the greedy algorithm for the hy-

pergraph transversal problem, which iteratively adds to
an initially empty set T a member x ∈ X that meets
the largest number of sets y ∈ Y that do not already
meet some x′ ∈ T , provides a O(log |Y |)-factor approx-
imation [25]. Thus we have a natural O(log n)-factor
approximation algorithm for our problem of computing
the obstacle number for a given drawing.

2.3 Improving the Approximation Ratio

How about doing better? Not only is the approximation
ratio tight for this greedy algorithm, but the general hy-
pergraph transversal problem is known to be o(log |Y |)-
inapproximable [25]. But it is also well-known [25, 19]
that if every member of X meets at most ∆ members of
Y , then the greedy algorithm attains an approximation
ratio of O(log∆). Unfortunately, this does not make
our task easier, since it is seen that a face could meet
Ω(n2) non-edges by considering any drawing of the null
graph on n vertices. Nonetheless, many families of hy-
pergraphs arising in geometric settings lend themselves
to algorithms with approximation ratios that do not de-
pend on either |X| or |Y | using the following ideas.

In the context of an intersection hypergraphH(X,Y),
a set S ⊆ X is said to be shattered if for every A ⊆ S

there is some y ∈ Y such that S ∩N(y) = A. The size
of a largest shattered set is called the V-C dimension of
H(X,Y), after Vapnik and Chervonenkis who first de-
fined it in [24]. For some hypergraphs in which X and
Y are both infinite, the V-C dimension is undefined and
said to be infinite. Furthermore, for a family of hyper-
graphs of the form H(X,Y), even if each hypergraph
has finite V-C dimension, there may exist no absolute
constant upper bound for the V-C dimension. If there
an integer d such that every hypergraph in that family
has V-C dimension at most d, we say that the family
has bounded V-C dimension.
Let w : 2X → [0, 1] be an additive weight function

with w(X) = 1. For a given ǫ > 0, an ǫ-net (with respect
to w) is a set S ⊆ X that is a transversal of H(X,Yǫ),
where Yǫ ⊆ Y consists exactly of those members of Y
each of which generates a subset of X with weight at
least ǫ. Haussler and Welzl have shown [13] that if the
V-C dimension of H(X,Y) is some integer d, then for
every ǫ > 0 there is an ǫ-net of size at most cdǫ−1 ln ǫ−1,
where c is a small constant. This is remarkable because
the size of an ǫ-net bears no relation to the sizes of X
or Y . See also [19, 15].
Based on this observation, various—deterministic as

well as randomized—efficient algorithms have been pre-

CCCG 2011, Toronto ON, August 10–12, 2011

sented [3, 7, 8, 6] to compute a transversal of size within
a tiny constant factor of dτ ln τ . In Section 4, we state
and analyze a specific algorithm for computing the ob-
stacle number for a graph drawing. For now, we suf-
fice it to say that bounding the V-C dimension for the
corresponding hypergraph implies an efficient algorithm
with approximation ratio independent of |X| or |Y | (and
hence n).
Before we proceed, we state an important fact that we

make immediate use of. It is well-known [15] that if the
V-C dimension ofH(Y,X) is d, then the V-C dimension
of H(X,Y) is at most 2d+1. The V-C dimension of a
family of hypergraphs is therefore bounded if and only
if the V-C dimension of the family of dual hypergraphs
is bounded.
In the next section, we show that the V-C dimension

is bounded for the family of hypergraphs of the form
H(Y,X) where Y is the set of non-edges of a graph
drawing and X is the set of faces of that drawing. This
implies that the V-C dimension of H(X,Y) (the hy-
pergraph for the transversal problem at hand) is also
bounded.

3 Main Results

Theorem 1 The V-C dimension is bounded for the
family of hypergraphs of the form H(Y,X) in which Y

is the set of non-edges in a straight-line drawing D of a
graph, and X is the set of faces of D.

We can replace each face x ∈ X by a simple path x′

inside x that meets every non-edge that x meets and
does not meet any non-edges that x does not. This
substitution will not alter the hypergraph structure, and
the resulting paths x′ will be disjoint from one another.
Hence Theorem 1 is implied by the following result.

Theorem 2 The V-C dimension is bounded for the
family of hypergraphs of the form H(Y,X) in which Y

is a set of line segments (with every pair meeting at a
single point or not at all) and X is a set of simple paths
disjoint from one another.

Proof. Assume for contradiction that for every m,
there is a hypergraph H(Y,X) such that Y is a set of
m line segments (with every pair meeting at a single
point or not at all), X is a set of paths disjoint from
one another, and Y is shattered.
Given m, and a pair (Y,X) such that |Y | = m and

X shatters Y , let X3 ⊆ X be a minimal set of paths
that generate all the

(

m
3

)

triples in Y . That is, every
path in X3 meets exactly three segments in Y , and for
every three segments i, j, k ∈ Y exactly one path πijk ∈
X3 meets all three. To keep the following argument
simple, without loss of generality, no π ∈ X3 meets any
intersection points among the segments, of which there

are at most
(

m
2

)

= O(m2). If there were such paths in
X3, we could remove them from X3 and still be left with
at least

(

m
3

)

−
(

m
2

)

= Ω(m3) paths. We will now charge

Figure 1: Example of an original path πijk meeting seg-
ments i, j, and k.

Figure 2: The interim path (after erasing from tail).

Figure 3: The final path (after erasing from head too),
which will be charged to segment j.

each path π ∈ X3 to a line segment in Y , intuitively,
“the middle segment” that it meets. Nothing prevents
such a path from going back and forth between three
segments, so we need to define this more carefully. For
a given path π = πijk that meets segments i, j, k ∈ Y

23rd Canadian Conference on Computational Geometry, 2011

(see Fig. 1), arbitrarily label one end of the path as the
tail and the other as the head. Starting from the tail,
erase π as long as it still meets all three segments, and
stop erasing when erasing any longer would cause the
remaining path to intersect fewer segments. The tail
is now on one of the three segments, without loss of
generality, i (see Fig. 2). Note that the path does not
intersect i anywhere else but the tail. Now start erasing
π from the head in a similar fashion, and stop erasing
when erasing any more would cause the remaining path
to intersect fewer than three segments. Again, the head
must be on some segment when we stop, but it could not
be on i by the above observation (see Fig. 3). Without
loss of generality, the head is on the segment k. Now
notice that the path does not meet k anywhere else but
the head. Without changing the shatter property, let
us replace πijk with this shorter version of its former
self: starting at i, meeting j but no other segment one
or more times, before it ends at k. We charge πijk to j.
Let ŝ be a segment that accumulated the greatest

charge at the end of this process. Since at least Ω(m3)
paths were charged to at most m segments, ŝ was
charged by at least Ω(m2) paths. Let X ′ denote the
set of paths in X3 that were charged to ŝ.

Figure 4: Example of a cell of A and the segments from
the original X ′ that are inside the cell.

Let A denote the arrangement of the line segments in
Y \ {ŝ}. A segment endpoint or an intersection point of
two segments is called a vertex of the arrangement. An
open interval on a segment of the arrangement between
two vertices of the arrangement that contains no vertex
of the arrangement is called an edge of the arrangement.
A connected component in the complement of the union
of the segments is called a cell of the arrangement.
Note that every path in X ′ starts at an edge of the

arrangement A, ends at another edge of A, and its in-
terior is fully contained in a cell of A (see Fig. 4). Let
G(X ′) be the graph with the endpoints of the paths as

the vertex set, and the interiors of the paths as edges.
Since the paths are disjoint, clearly, G(X ′) is planar.
Now for each edge of the arrangement, merge the path
endpoints on that edge at the midpoint of the edge while
making sure that the paths remain interior-disjoint (see
Fig. 5). Recall that by Euler’s formula a planar graph
on n vertices has at most 3n − 6 edges. It is not clear
that we have a contradiction yet, since A may have up
to m2 edges (attained when every pair among the m

segments cross). Hence it seems that G(X ′) may have
Θ(m2) vertices, so it is plausible that G(X ′) has Θ(m2)
edges.

Figure 5: The same cell after merging path endpoints.

However, each edge of G(X ′) must be contained in a
single cell that meets ŝ. Might this mean that G(X ′)
has o(m2) vertices? We know that every vertex ofG(X ′)
corresponds to a distinct edge of A in a cell of A that
meets ŝ. Hence, the complexity of the zone2 of ŝ is an
upper bound on |V (G(X ′))|. We present two lemmas
regarding the complexity of the zone of a line segment
in an arrangement of line segments, each of which is
sufficient by itself.

Lemma 3 Let A be an arrangement of n line segments,
and let s be another line segment. The zone of s has
complexity O(n4/3).

Proof. Even if s meets all n segments of A, its zone
will consist of at most n cells including the unbounded
cell. The bound then follows from the main result in
[2]: That the maximum number of edges bounding m

cells in an arrangement of n line segments in the plane
is O(m2/3n2/3 + nα(n) + n logm). �

2The complexity of a cell of an arrangement is the number of
edges of the arrangement that are incident to it. The zone of a
segment is the set of cells that it meets, and the complexity of the
zone of a segment is the number of edges incident to all the cells
that it meets.

CCCG 2011, Toronto ON, August 10–12, 2011

Lemma 4 (B. Aronov, personal communication)
Let A be an arrangement of n line segments, and let s
be another line segment. The zone of s has complexity
O(nα(n)) where α denotes the very slow growing
inverse of Ackerman’s function.

Proof. Let the shape s′ be obtained by enlarging s (e.g.
taking the Minkowski sum of s with a small enough disk)
such that s′ meets no vertex of A that s does not. Ob-
tain a new arrangement A′ of line segments by erasing
s′ from A. Doing this will possibly disconnect some
original line segments that define A into two, ending up
with an arrangement A′ of at most 2n line segments.
Every point of s′ is in the same cell of this new arrange-
ment. Every cell in an arrangement of m line segments
has complexity O(mα(m)) [22]. Hence, every cell of A′

has complexity at most O(2nα(2n)), i.e., O(nα(n)), in-
cluding the cell that s is in. Since every edge bordering
a cell of A that s meets corresponds to one or two edges
bordering the cell of A′ that s is in, the complexity of
the zone of s in A is at most O(nα(n)). �

Either lemma implies that the zone of ŝ has com-
plexity o(m2), hence the number of vertices of the pla-
nar graph G(X ′) is o(m2). But since G(X ′) has Ω(m2)
edges, we have a contradiction due to Euler’s Formula.
Therefore, the V-C dimension is bounded for the fam-
ily of hypergraphs H(Y,X) in which Y is a set of line
segments and X is a set of paths disjoint from one an-
other. �

4 Algorithm

We continue using the terminology of having been given
a drawing D of an n-vertex graph, with X as the set of
faces in D and Y as the set of non-edges in D. For
the rest of this section, we assume that D has been
processed into the incidence matrix of the hypergraph
H(X,Y) with O(n8) entries in memory, as discussed in
Section 2.
First, we present a randomized algorithm modeled

around an algorithm presented by Efrat and Har-Peled
[6] and relies on the analysis in [4], for a totally unrelated
family of hypergraphs, in which an upper bound on the
V-C dimension was in fact known. Here we use dove-
tailing to not only vary k (essentially a guess for τ) but
also vary d (essentially a guess for the V-C dimension).
According to the analysis therein, for a given graph

drawing D that admits an obstacle representation with
τ obstacles, our algorithm will return a traversal of size
at most O(τ log τ), and it is clear that its running time
is polynomial in n even in the worst case.

In the following C-style pseudocode, a = b means a

takes on the value of b, the macro sampleSize(d, k) ex-
pands to ⌈2dk lg k⌉, and the macro numRounds(k, |X|)
expands to ⌈8k lg |X|⌉.

ComputeObstacleRepresentation(set of faces X,
set of nonedges Y) {

bestSoln = X; bestSize = |X|;
for(deekay = 2; 2 deekay < bestSize;

deekay = 2 deekay) {
for(k = 2; k ≤ deekay; k = 2k) {

d = deekay / k;
if (sampleSize(d, k) ≥ bestSize) break;
Assign weight 1 to each face in X;
for (i = 1; i ≤ numRounds(k, |X|); i = i+ 1) {

• Pick randomly a set S of sampleSize(d, k) obsta-
cles, choosing each obstacle randomly and inde-
pendently from the face set X according to their
weights.

• Check if the obstacles in S together meet all of
the non-edges in Y ; if so, set bestSoln = S, set
bestSize = |S|, and break the innermost loop.

• Else, find a non-edge y that does not meet any ob-
stacle in S, and let N(y) be the set of faces in X

that the non-edge y meets.

• Compute ω, the sum of weights of faces in N(y). If
2kω ≤ the sum of weights of all faces in X, double
the weight of every face in N(y).

} // end for i
} // end for k

} // end for deekay
return bestSoln;

} // end ComputeObstacleRepresentation

5 Remarks

The problem of computing the obstacle number for a
graph drawing D exactly is in NP, since it can be trans-
formed into a hypergraph transversal problem in poly-
nomial time. Hence, a naive deterministic algorithm
can compute obs(D) in time 2O(n), or if we allow our-
selves to be output-sensitive, in time merely nO(obs(D)),
by trying every k-face combination for every value of k
from 0 up to obs(D). Since the submission of the ac-
cepted version of this paper, an NP-completeness proof
has been scheduled to appear on arXiv [14].
What about the original problem of determining the

obstacle number of a given abstract graph on n vertices?
If all drawings of a graph could be enumerated up to the
incidence matrix of faces versus non-edges, then by us-
ing our approximation algorithm in the “inner loop,” we
could obtain a O(logOPT)-approximation to the orig-
inal problem. While this may be viable for small in-
stances (perhaps in conjunction with a distributed ap-
proach), we conjecture that this problem lies outside
of NP and believe it to be intractable in a centralized
model of computation. Our rationale follows.

23rd Canadian Conference on Computational Geometry, 2011

For some simple order types of n-point configurations
on the plane, a coordinate representation on an integer
lattice needs exponentially many bits in n in order to al-
low the order type to be inferred [12]. Further, we know
that a particular labeled graph has two drawings with
different obstacle numbers but vertex sets of the same
simple labeled order type. (The dual labeled order type
of the

(

n
2

)

connecting lines of n vertices in a drawing ap-
pears to be sufficient to determine the obstacle number
for the drawing.) Hence, coordinate representations of
some drawings for the present purpose seem to require
at least exponential storage in n. Some drawing-based
certificates will in turn have sizes super-polynomial in
the number of bits that represent the abstract graph.
It may be tempting to think that a certificate could in-
stead be based on the poly(n) sized incidence matrix of
faces versus non-edges, but it seems unlikely that one
can decide in polynomial time whether or not the given
graph has some drawing corresponding to a given inci-
dence matrix.

Acknowledgments

The author is indebted to Boris Aronov, Alon Efrat,
Nabil Mustafa, and János Pach for fruitful discussions
and feedback, and the anonymous CCCG reviewers for
keen comments. Alon Efrat’s encouragement in the
early stages of this work and pointers to recent pub-
lications were especially helpful. The author assumes
full responsibility for all errors and omissions.

References

[1] H. Alpert, C. Koch, and J. Laison. Obstacle numbers
of graphs. Discrete Comput. Geom., 44:223–244, 2010.

[2] B. Aronov, H. Edelsbrunner, L. J. Guibas, and
M. Sharir. The number of edges of many faces in a
line segment arrangement. Combinatorica, 12:261–274,
1992.

[3] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. Discrete Comput.
Geom., 14(4):463–479, 1995.

[4] K. L. Clarkson. Algorithms for polytope cover-
ing and approximation. In Proc. Algorithms and
Data Structures, 3rd Workshop, WADS ’93, Montréal,
Canada, August 11–13, 1993, LNCS 709, pages 246–
252. Springer, 1993.

[5] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry. Algorithms
and Applications (2nd ed.). Springer-Verlag, 2000.

[6] A. Efrat and S. Har-Peled. Guarding galleries and ter-
rains. Info. Proc. Letters, 100:238–245, December 2006.

[7] A. Efrat, F. Hoffmann, C. Knauer, K. Kriegel, G. Rote,
and C. Wenk. Covering with ellipses. Algorithmica,
38:145–160, 2003.

[8] G. Even, D. Rawitz, and S. Shahar. Hitting sets
when the VC-dimension is small. Info. Proc. Letters,
95(2):358–362, 2005.

[9] A. Frieze, J. Kleinberg, R. Ravi, and W. Debany. Line-
of-sight networks. Combinatorics, Probability and Com-
puting, 18:145–163, 2009.

[10] R. Fulek, N. Saeedi, and D. Sarıöz. Convex obstacle
numbers of outerplanar graphs and bipartite permuta-
tion graphs, 2011. arXiv:1104.4656v2 [cs.DM].

[11] S. K. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, Cambridge, 2007.

[12] J. E. Goodman, R. Pollack, and B. Sturmfels. Coor-
dinate representation of order types requires exponen-
tial storage. In Proc. 21st annual ACM Symposium on
Theory of Computing, STOC ’89, pages 405–410, New
York, NY, USA, 1989. ACM.

[13] D. Haussler and E. Welzl. ǫ-nets and simplex range
queries. Discrete Comput. Geom., 2:127–151, 1987.

[14] M. P. Johnson and D. Sarıöz. Computing the obstacle
number of a plane graph, July 2011. http://arXiv.org.

[15] J. Matoušek. Lectures on Discrete Geometry. Graduate
Texts in Mathematics. Springer, 2002.

[16] P. Mukkamala, J. Pach, and D. Sarıöz. Graphs with
large obstacle numbers. In Graph Theoretic Con-
cepts in Computer Science, LNCS 6410, pages 292–303.
Springer, 2010.

[17] J. O’Rourke. Visibility. In Handbook of Discrete
and Computational Geometry, CRC Press Ser. Discrete
Math. Appl., pages 467–479. CRC, 1997.

[18] J. O’Rourke. Open problems in the combinatorics of
visibility and illumination. In Advances in Discrete
and Computational Geometry, volume 223 of Contemp.
Math., pages 237–243. AMS, Providence, RI, 1999.

[19] J. Pach and P. K. Agarwal. Combinatorial Geometry.
Wiley-Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons Inc., 1995.

[20] J. Pach and D. Sarıöz. Small (2, s)-colorable
graphs without 1-obstacle representations, 2010.
arXiv:1012.5907v2 [cs.DM].

[21] J. Pach and D. Sarıöz. On the structure of graphs
with low obstacle number. Graphs and Combinatorics,
27:465–473, 2011.

[22] R. Pollack, M. Sharir, and S. Sifrony. Separating two
simple polygons by a sequence of translations. Discrete
Comput. Geom., 3:123–136, January 1988.

[23] J. Urrutia. Art gallery and illumination problems. In
Handbook of Computational Geometry, pages 973–1027.
North-Holland, Amsterdam, 2000.

[24] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies to their probabili-
ties. Theory Probab. Appl., 16(2):264–280, 1971.

[25] V. V. Vazirani. Approximation Algorithms. Springer,
2004.

