
Approximating the Permanent with Belief

Propagation

Bert Huang and Tony Jebara

Computer Science Department
Columbia University
New York, NY 10027

{bert,jebara}@cs.columbia.edu

http://www.cs.columbia.edu/learning

Abstract. This work describes a method of approximating matrix per-
manents efficiently using belief propagation. We formulate a probability
distribution whose partition function is exactly the permanent, then use
Bethe free energy to approximate this partition function. After deriving
some speedups to standard belief propagation, the resulting algorithm
requires (n2) time per iteration. Finally, we demonstrate the advantages
of using this approximation.

1 Introduction

The permanent is a scalar quantity computed from a matrix and has been an
active topic of research for well over a century. It plays a role in cryptography
and statistical physics where it is fundamental to Ising and dimer models. While
the determinant of an n× n matrix can be evaluated exactly in sub-cubic time,
efficient methods for computing the permanent have remained elusive. Since
the permanent is #P-complete, efficient exact evaluations cannot be found in
general. The best exact methods improve over brute force (O(n!)) and include
Ryser’s algorithm [13, 14] which requires as many as Θ(n2n) arithmetic oper-
ations. Recently, promising fully-polynomial randomized approximate schemes
(FPRAS) have emerged which provide arbitrarily close approximations. Many
of these methods build on initial results by Broder [3] who applied Markov chain
Monte Carlo (a popular tool in machine learning and statistics) for sampling
perfect matchings to approximate the permanent. Recently, significant progress
has produced an FPRAS that can handle arbitrary n × n matrices with non-
negative entries [10]. The method uses Markov chain Monte Carlo and only
requires a polynomial order of samples.

However, while these methods have tight theoretical guarantees, they carry
expensive constant factors, not to mention relatively high polynomial running
times that discourage their usage in practical applications. In particular, we have

0 This work was done in late 2007 and early 2008.



2 Bert Huang, Tony Jebara

experienced that the prominent algorithm in [10] is slower than Ryser’s exact
algorithm for any feasible matrix size, and project that it only becomes faster
around n > 30.

It remains to be seen if other approximate inference methods can be brought
to bear on the permanent. For instance, loopy belief propagation has also recently
gained prominence in the machine learning community. The method is exact for
singly-connected networks such as trees. In certain special loopy graph cases,
including graphs with a single loop, bipartite matching graphs [1] and bipartite
multi-matching graphs [9], the convergence of BP has been proven. In more
general loopy graphs, loopy BP still maintains some surprising empirical success.
Theoretical understanding of the convergence of loopy BP has recently been
improved by noting certain general conditions for its fixed points and relating
them to minima of Bethe free energy. This article proposes belief propagation
for computing the permanent and investigates some theoretical and experimental
properties.

In Section 2, we describe a probability distribution parameterized by a matrix
similar to those described in [1, 9] for which the partition function is exactly
the permanent. In Section 3, we discuss Bethe free energy and introduce belief
propagation as a method of finding a suitable set of pseudo-marginals for the
Bethe approximation. In Section 4, we report results from experiments. We then
conclude with a brief discussion.

2 The Permanent as a Partition Function

Given an n× n non-negative matrix W , the matrix permanent is

∑

π∈Sn

n
∏

i=1

Wiπ(i). (1)

Here Sn refers to the symmetric group on the set {1, . . . , n}, and can be thought
of as the set of all permutations of the columns of W . To gain some intuition
toward the upcoming analysis, we can think of the matrix W as defining some
function f(π;W ) over Sn. In particular, the permanent can be rewritten as

per(W ) =
∑

π∈Sn

f(π;W ),

where f(π;W ) =

n
∏

i=1

Wiπ(i).

The output of f is non-negative, so we consider f a density function over the
space of all permutations.

If we think of a permutation as a perfect matching or assignment between
a set of n objects A and another set of n object B, we relax the domain by
considering all possible assignments of imperfect matchings for each item in the
sets.



Approximating the Permanent with Belief Propagation 3

Consider the set of assignment variables X = {x1, . . . , xn}, and the set of
assignment variables Y = {y1, . . . , yn}, such that xi, yj ∈ {1, . . . , n}, ∀i, j. The
value of the variable xi is the assignment for the i’th object in A, in other words
the value of xi is the object in B being selected (and vice versa for the variables
yj).

φ(xi) =
√

Wixi
, φ(yj) =

√

Wyjj ,

ψ(xi, yj) = I(¬(j = xi ⊕ i = yj)).

We square-root the matrix entries because the factor formula multiplies both
potentials for the x and y variables. We use I() to refer to an indicator function
such that I(true) = 1 and I(false) = 0. Then the ψ function outputs zero when-
ever any pair (xi, yj) have settings that cannot come from a true permutation
(a perfect matching). Specifically, if the i’th object in A is assigned to the j’th
object in B, the j’th object in B must be assigned to the i’th object in A (and
vice versa) or else the density function goes to zero. Given these definitions, we
can define the equivalent density function that subsumes f(π) as follows:

f̂(X,Y ) =
∏

i,j

ψ(xi, yj)
∏

k

φ(xk)φ(yk).

This permits us to write the following equivalent formulation of the permanent:
per(W ) =

∑

X,Y f(X,Y ). Finally, if we convert density function f̂ into a valid
probability, simply add a normalization constant to it, producing:

p(X,Y ) =
1

Z(W )

∏

i,j

ψ(xi, yj)
∏

k

φ(xk)φ(yk). (2)

The normalizer or partition function Z(W ) is the sum of f(X,Y ) for all possible
inputs X,Y . Therefore, the partition function of this distribution is the matrix
permanent of W .

3 Bethe Free Energy

To approximate the partition function, we use the Bethe free energy approxima-
tion. The Bethe free energy of our distribution given a belief state b is

FBethe = −
∑

ij

∑

xi,yj

b(xi, yj) lnψ(xi, yj)φ(xi)φ(yj)

+
∑

ij

∑

xi,yj

b(xi, yj) ln b(xi, yj)

−(n− 1)
∑

i

∑

xi

b(xi) ln b(xi)

−(n− 1)
∑

j

∑

yj

b(yj) ln b(yj) (3)



4 Bert Huang, Tony Jebara

The belief state b is a set of pseudo-marginals that are only locally consistent
with each other, but need not necessarily achieve global consistency and do
not have to be true marginals of a single global distribution. Thus, unlike the
distributions evaluated by the exact Gibbs free energy, the Bethe free energy
involves pseudo-marginals that do not necessarily agree with a true joint distri-
bution over the whole state-space. The only constraints pseudo-marginals of our
bipartite distribution obey (in addition to non-negativity) are the linear local
constraints:

∑

yj

b(xi, yj) = b(xi),
∑

xi

b(xi, yj) = b(yj), ∀i, j,

∑

xi,yj

b(xi, yj) = 1.

The class of true marginals is a subset of the class of pseudo-marginals. In
particular, true marginals also obey the constraint

∑

X\x p(X) = p(x), which
pseudo-marginals are free to violate.

We will use the approximation

per(W ) ≈ exp

(

−min
b
FBethe(b)

)

(4)

3.1 Belief Propagation

The canonical algorithm for (locally) minimizing the Bethe free energy is Belief

Propagation. We use the dampened belief propagation described in [6], which the
author derives as a (not necessarily convex) minimization of Bethe free energy.
Belief Propagation is a message passing algorithm that iteratively updates mes-
sages between variables that define the local beliefs. Let mxi

(yj) be the message
from xi to yj. Then the beliefs are defined by the messages as follows:

b(xi, yj) ∝ ψ(xi, yj)φ(xi)φ(yj)
∏

k 6=j

myk
(xi)

∏

ℓ 6=i

mxℓ
(yj)

b(xi) ∝ φ(xi)
∏

k

myk
(xi), b(yj) ∝ φ(yj)

∏

k

mxk
(yj) (5)

In each iteration, the messages are updated according to the following update
formula:

mnew
xi

(yj) =
∑

xi



φ(xi)ψ(xi, yj)
∏

k 6=j

myk
(xi)



 (6)

Finally, we dampen the messages to encourage a smoother optimization in log-
space.

lnmxi
(yj)← lnmxi

(yj) + ǫ
[

lnmnew
xi

(yj)− lnmxi
(yj)

]

(7)



Approximating the Permanent with Belief Propagation 5

We use ǫ as a dampening rate as in [6] and dampen in log space because the
messages of BP are exponentiated Lagrange multipliers of Bethe optimization
[6, 18, 19]. We next derive faster updates of the messages (6) and the Bethe free
energy (3) with some careful algebraic tricks.

3.2 Algorithmic Speedups

Computing sum-product belief propagation quickly for our distribution is chal-
lenging since any one variable sends a message vector of length n to each of its
n neighbors, so there are 2n3 values to update each iteration. One way to ease
the computational load is to avoid redundant computation. In Equation (6), the
only factor affected by the value of yj is the ψ function. Therefore, we can ex-
plicitly define the update rules based on the ψ function, which will allow us to
take advantage of the fact that the computation for each setting of yj is similar.
When yj 6= i, we have

mnot
xiyj

=





∑

xi 6=j

φ(xi)
∏

k 6=j

myk
(xi)





=





∑

xi 6=j

φ(xi)m
match
yxi

xi

∏

k 6=j,k 6=xi

mnot
ykxi



 . (8)

When yj = i,

mmatch
xiyj

=



φ(xi = j)
∏

k 6=j

myk
(xi = j)





=



φ(xi = j)
∏

k 6=j

mnot
ykxi



 . (9)

We have reduced the full message vectors to only two possible values: mnot is the
message for when the variables are not matched and mmatch is for when they are
matched. We further simplify the messages by dividing both values by mnot

xiyj
.

This gives us

mnot
xiyj

= 1

mmatch
xiyj

=
φ(xi = j)

∏

k 6=j m
not
ykxi

∑

xi 6=j φ(xi)mmatch
yxi

xi

∏

k 6=j,k 6=xi
mnot

ykxi

=
φ(xi = j)

∑

k 6=j φ(xi = k)mmatch
ykxi

(10)

We can now define a fast message update rule that only needs to update one
value between each variable.

mxiyj
←

1

Z
φ(xi = j)/

∑

k 6=j

φ(xi = k)mykxi
(11)



6 Bert Huang, Tony Jebara

We can rewrite the belief update formulas using these new messages.

b(xi = j, yj = i) =
1

Zij

φ(xi)φ(yj)

b(xi 6= j, yj 6= i) =
1

Zij

φ(xi)φ(yj)myxi
xi
mxyj

yj

b(xi) =
1

Z
φ(xi)myxi

xi
,

b(yj) =
1

Z
φ(yj)mxyj

yj
(12)

With the simplified message updates, each iteration takes O(n) operations per
node, resulting in an algorithm that takes O(n2) operations per iteration. We
demonstrate experimentally that the algorithm converges to within a certain
tolerance in a constant number of iterations with respect to n, so in practice
the O(n3) operations it takes to compute Bethe free energy is the asymptotic
bottleneck of our algorithm.

3.3 Convergence

One important open question about this work is whether or not we can guaran-
tee convergence. Empirically, by initializing belief propagation to various random
points in the feasible space, we found BP still converged to the same solution.
The max-product algorithm is guaranteed to converge to the correct maximum
matching [1, 9] via arguments on the unwrapped computation tree of belief prop-
agation. The matching graphical model does not not meet the sufficient condi-
tions provided in [7] nor does our distribution fit the criteria for non-convex
convergence provided in [16] and [8].

In our analysis, we have found that the Bethe free energy is certainly non-
convex near the vertices of the distribution. That is, if we evaluate the Bethe free
energy on pseudomarginals corresponding to exactly one matching, and take a
tiny step in the direction of a non-adjacent matching vertex, Bethe free energy
increases. On the other hand, when we initialize belief propagation such that
the beliefs are at a vertex, BP moves away from the apparent local minimum
and converges to the same solution as other initializations. This behavior implies
that, while the Bethe free energy within the matching constraints is non-convex,
it may still have a unique zero-gradient point despite not fitting the criteria in
[8], which exploit the strength of potentials.

Since all our empirical evidence implies that BP always converges, we suspect
that we have not yet correctly analyzed the true space traversed during optimiza-
tion. In particular, the distribution described by Equation 2 is defined over the
set of all nn possible X,Y states, while it is only nonzero in n! states. Any beliefs
derived from belief propagation obey similar constraints, so it is reasonable to
suspect that careful analysis of the optimization with special attention to the
oddities of the distribution could yield more promising theoretical guarantees.

However, without being rigorous, we can note that the matching constraints
created by the ψ functions enforce that the singleton beliefs are exactly the



Approximating the Permanent with Belief Propagation 7

matched pairwise beliefs. This means we can think of these as entries in a doubly-
stochastic matrix B.

b(xi = j, yj = i) = b(xi = j) = b(yj = i) ≡ Bij (13)

Therefore it becomes clear that there is a strong connection to the Sinkhorn
operation [11], which iteratively scales rows and columns of a matrix until it
converges to a doubly-stochastic matrix. It has been shown that the Sinkhorn
operation effectively minimizes the pseudo-KL divergence between some matrix
and the doubly-stochastic matrix[12].

min
B

∑

ij

Bij log
Bij

Aij

s.t.
∑

i

Bij = 1, ∀j,
∑

j

Bij = 1, ∀i

Here the pseudo-KL divergence can be interpreted as the KL for each row and
each column, each of which is an assignment distribution like in our matching
setting. The Sinkhorn procedure is guaranteed to converge for indecomposable
input matrices [11], so the fact that the the procedure is reminiscent of ours is
encouraging. However the two procedures differ enough that the guarantee does
not directly translate.

4 Experiments

In this section we evaluate the performance of this algorithm in terms of running
time and accuracy, and finally we exemplify a possible usage of the approximate
permanent as a kernel function.

4.1 Running Time

We ran belief propagation to approximate the permanents of random matrices of
sizes n = [5, 50], recording the total running time and the number of iterations
to convergence. Surprisingly, the number of iterations to convergence initially
decreased as n grew, but appears to remain constant beyond n > 10 or so.
Running time still increased because the cost of updating each iteration well
subsumes the decrease in iterations to convergence.

In our implementation, we checked for convergence by computing the abso-
lute change in all the messages from the previous iteration, and considered the
algorithm converged if the sum of all the changes of all n3 messages was less
than 1e− 10. In all cases, the resulting beliefs were consistent with each other
within comparable precision to our convergence threshold. These experiments
were run on a a 2.4 Ghz Intel Core 2 Duo Apple Macintosh running Mac OS X
10.5. The code is in C and compiled using gcc version 4.0.1.



8 Bert Huang, Tony Jebara

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

n

se
co

nd
s

(a) Running time

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

n

ite
ra

tio
ns

(b) Iterations

Fig. 1. (a) Average running time until convergence of BP for 5 ≤ n ≤ 50. (b) Number
of iterations.

4.2 Accuracy of Approximation

We evaluate the accuracy of our algorithm by creating 1000 random matrices of
sizes 5, 8 and 200 matrices of size 10. The entries of each of these matrices were
randomly drawn from a uniform distribution in the interval [0, 50]. We computed
the true permanents of these matrices, then computed approximate permanents
using our Bethe approximation. We also computed an approximate using a naive
sampling method, where we sample by choosing random permutations and stor-
ing a cumulative sum of each permutation’s corresponding product. We sampled
for the same amount of actual time our belief propagation algorithm took to
converge. Finally we also computed two weak approximations: the determinant
and the scaled product of the diagonal entries.

In order to be able to compare to the true permanent, we had to limit this
analysis to small matrices. However, since MCMC sampling methods such as in
[10] take O(n10) time to reach less than some ǫ error, as matrix size increases,
the precision achievable in comparable time to our algorithm would decrease.
We scale the cumulative sum by n!

s
, where s is the number of samples. This is

the ratio of the total possible permutations and the number of samples.
In our experiments, determinants and the products of diagonals are neither

accurate nor consistent approximations of the permanent. Sampling, however, is



Approximating the Permanent with Belief Propagation 9

Table 1. Normalized Kendall distances between the rankings of random matrices based
on their true permanents and the rankings based on approximate permanents. See
Figure 2 for plots of the approximations.

n Bethe Sampling Det. Diag.

10 0.00023 0.0248 0.3340 0.0724

8 0.0028 0.1285 0.4995 0.4057

5 0.0115 0.0914 0.4941 0.3834

accurate with respect to absolute distance to the permanent, so for applications
where that is most important, it may be best to apply some sort of sampling
method. Our Bethe approximation seems the most consistent. While the approx-
imations of the permanent are off by a large amount, they seem to be consistently
off by some monotonic function of the true permanent. In many cases, this virtue
is more important than the absolute accuracy, since most applications requiring
a matrix permanent likely compare the permanents of various matrices. These
results are visualized for n = 8 in Figure 2.

To measure the monotonicity and consistency of these approximations, we
consider the Kendall distance [5] between the ranking of the random matrices
according to the true permanent and their rankings according to the approxi-
mations. Kendall distance is a popular way of measuring the distance between
two permutations. The Kendall distance between two permutations π1 and π2 is

DKendall(π1, π2) =

n
∑

i=1

n
∑

j=i+1

I ((π1(i) < π1(j)) ∧ (π2(i) > π2(j))) .

In other words, it is the total number of pairs where π1 and π2 disagree on the

ordering. We normalize the Kendall distance by dividing by n(n−1)
2 , the max-

imum possible distance between permutations, so the distance will always be
in the range [0, 1]. Table 1 lists the Kendall distances between the true perma-
nent ranking and the four approximations. The Kendall distance of the Bethe
approximation is consistently less than that of our sampler.

4.3 Approximate Permanent Kernel

To illustrate a possible usage of an efficient permanent approximation, we use
a recent result [2] proving that the permanent of a valid kernel matrix between
two sets of points is also a valid kernel between point sets. Since the permanent
is invariant to permutation, we decided to try a few classification tasks using
an approximate permanent kernel. The permanent kernel is computed by first
computing a valid subkernel between a pairs of elements in two sets, then the
permanent of those subkernel evaluations is taken as the kernel value between the
data. Surprisingly, in experiments the kernel matrix produced by our algorithm
was a valid positive definite matrix. This discovery opens up some intriguing
questions to be explored later.



10 Bert Huang, Tony Jebara

0 2 4 6

x 10
16

−1

−0.5

0

0.5

1

1.5

2
x 10

13

True Permanent

D
et

er
m

in
an

t

0 2 4 6

x 10
16

0

0.5

1

1.5

2

2.5
x 10

17

True Permanent

D
ia

go
na

l P
ro

du
ct

0 2 4 6

x 10
16

0

1

2

3

4

5

6
x 10

16

True Permanent

S
am

pl
in

g 
A

pp
ro

xi
m

at
io

n

0 2 4 6

x 10
16

0

5

10

15
x 10

15

True Permanent

B
et

he
 A

pp
ro

xi
m

at
io

n

Fig. 2. Plots of the approximated permanent versus the true permanent using four
different methods. It is important to note that the scale of the y-axis varies from plot
to plot. The diagonal is extremely erratic and the determinant underestimates so much
that it is barely visible on the log scale. Sampling approximates values much closer
in absolute distance to the true permanent but does not provide monotonicity in its
approximations. Typically, this is more important than absolute accuracy. Here we
illustrate the results from the n = 8 case. We report results for n = 5 and 10 in Table
1.

We ran a similar experiment to [15] where we took a the first 200 examples
of each of the Cleveland Heart Disease, Pima Diabetes, and Ionosphere datasets
from the UCI repository [4], and randomly permuted the features of each exam-
ple, then compare the result of training an SVM on this shuffled data. We also
provide the performance of the kernels on the unshuffled data for comparison.
After normalizing the features of the data to the [0, 1]D box, we chose three
reasonable settings of σ for the RBF kernels and cross validated over various
settings of the regularization parameter C. We used RBF kernels between pairs
of data as the permanent subkernel. Finally, we report the average error over
50 random splits of 150 training points and 50 testing points. Not surprisingly,
the permanent kernel is robust to the shuffling and outperforms the standard
kernels.



Approximating the Permanent with Belief Propagation 11

Table 2. Left: Error rates of running SVM using various kernels on the original three
UCI datasets and data where the features are shuffled randomly for each datum. Right:
UCI resampled pendigits data with order of points removed. Error rates of 1-versus-all
multi-class SVM using various kernels.

Kernel Heart Pima Ion.

Original Linear 0.1600 0.2600 0.1640

Orig. RBF σ = 0.3 0.2908 0.3160 0.1240

Orig. RBF σ = 0.5 0.2158 0.3220 0.0760

Orig. RBF σ = 0.7 0.1912 0.2760 0.0960

Shuffled Linear 0.2456 0.3080 0.2640

Shuff. RBF σ = 0.3 0.4742 0.3620 0.4840

Shuff. RBF σ = 0.5 0.3294 0.3140 0.3580

Shuff. RBF σ = 0.7 0.2964 0.3280 0.2700

Bethe σ = 0.3 0.2192 0.2900 0.1000

Bethe σ = 0.5 0.2140 0.2900 0.1380

Bethe σ = 0.7 0.2164 0.2920 0.1380

Kernel PenDigits

Sorted Linear 0.3960

Sorted RBF σ = 0.2 0.4223

Sorted RBF σ = 0.3 0.3407

Sorted RBF σ = 0.5 0.3277

Shuffled Linear 0.7987

Shuff. RBF σ = 0.2 0.9183

Shuff. RBF σ = 0.3 0.9120

Shuff. RBF σ = 0.5 0.8657

Bethe σ = 0.2 0.1463

Bethe σ = 0.3 0.1190

Bethe σ = 0.5 0.1707

We also tested the Bethe kernel on the pendigits dataset, also from the UCI
repository. The original pendigits data consists of stylus coordinates of test sub-
jects writing digits. We used the preprocessed version that has been resampled
spatially and temporally. However, we omit the order information and treat the
input as a cloud of unordered points. Since there is a natural spatial interpre-
tation of this data, so we compare to sorting by distance from origin, a simple
method of handling unordered data. We chose slightly different σ values for the
RBF kernels. For this dataset, there are 10 classes, one for each digit, so we used
a one-versus-all strategy for multi-class classification. Here we averaged over only
10 random splits of 300 training points and 300 testing points (see Table 2).

Based on our experiments, the permanent kernel typically does not outper-
form standard kernels when permutation invariance is not inherently necessary
in the data, but when we induce the necessity of such invariance, its utility
becomes clear.

5 Discussion and Future Directions

We have described an algorithm based on BP over a specific distribution that
allows an efficient approximation of the #P matrix permanent operation. We
write a probability distribution over matchings and use Bethe free energy to
approximate the partition function of this distribution. The algorithm is signifi-
cantly faster than sampling methods, but attempts to minimize a function that
approximates the permanent. Therefore it is limited by the quality of the Bethe
approximation so it cannot be run longer to obtain a better approximation like
sampling methods can. However, we have shown that even on small matrices
where sampling methods can achieve extremely high accuracy of approximation,



12 Bert Huang, Tony Jebara

our method is more well behaved than sampling, which can approach the exact
value from above or below.

In the future, we can try other methods of approximating the partition func-
tion such as generalized belief propagation [18], which takes advantage of higher
order Kikuchi approximations of free energy. Unfortunately the structure of our
graphical model causes higher order interactions to become expensive quickly,
since each variable has exactly N neighbors. Similarly, the bounds on the parti-
tion function in [17] are based on spanning subtrees in the graph, and again the
fully connected bipartite structure makes it difficult to capture the true behavior
of the distribution with trees.

Finally, the positive definiteness of the kernels we computed is surprising, and
requires further analysis. The exact permanent of a valid kernel forms a valid
Mercer kernel [2] because it is a sum of positive products, but since our algorithm
outputs the results of an iterative approximation of the permanent, it is not
obvious why the resulting output would obey the positive definite constraints.

Acknowledgments

References

1. M. Bayati, D. Shah, and M. Sharma. Maximum weight matching via max-product
belief propagation. In Proc. of the IEEE International Symposium on Information
Theory, 2005.

2. M. Cuturi. Permanents, transportation polytopes and positive definite kernels on
histograms. In International Joint Conference on Artificial Intelligence, IJCAI,
2007.

3. P. Dagum and M. Luby. Approximating the permanent of graphs with large factors.
Theoretical Computer Science, 102(2):283–305, 1992.

4. C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine
learning databases, 1998.

5. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists, 2003.

6. T. Heskes. Stable fixed points of loopy belief propagation are local minima of the
bethe free energy. In S. Thrun S. Becker and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15, pages 343–350. MIT Press, Cambridge,
MA, 2003.

7. T. Heskes. Convexity arguments for efficient minimization of the bethe and kikuchi
free energies. Journal of Artificial Intelligence Research, 26, 2006.

8. Tom Heskes. On the uniqueness of loopy belief propagation fixed points. Neural
Comput., 16(11):2379–2413, 2004.

9. B. Huang and T. Jebara. Loopy belief propagation for bipartite maximum weight
b-matching. In Artificial Intelligence and Statistics (AISTATS), 2007.

10. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algo-
rithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–
697, 2004.

11. Knopp and Sinkhorn. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 1967.



Approximating the Permanent with Belief Propagation 13

12. Anand Rangarajan, Alan Yuille, and Eric Mjolsness. Convergence properties of
the softassign quadratic assignment algorithm. Neural Comput., 11(6):1455–1474,
1999.

13. H. J. Ryser. Combinatorial mathematics. The Carus Mathematical Monographs,
(14), 1963.

14. R. A. Servedio and A. Wan. Computing sparse permanents faster. Inf. Process.
Lett., 96(3):89–92, 2005.

15. P. Shivaswamy and T. Jebara. Permutation invariant svms. In International
Conference on Machine Learning, ICML, 2006.

16. S. Tatikonda and M. Jordan. Loopy belief propagation and Gibbs measures. In
Proc. Uncertainty in Artificial Intell., vol. 18, 2002.

17. M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the
log partition function, 2002.

18. J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approxi-
mations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7), 2005.

19. A. L. Yuille. Cccp algorithms to minimize the bethe and kikuchi free energies:
Convergent alternatives to belief propagation. Neural Computation, 14(7):1691–
1722, 2002.


