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Abstract

We initiate the algorithmic study of an important but NP-hard problem that arises commonly
in network design. The input consists of

(1) An undirected graph with one sink node and multiple source nodes, a specified length for
each edge, and a specified demand, dem,,, for each source node v.

(2) A small set of cable types, where each cable type is specified by its capacity and its cost
per unit length. The cost per unit capacity per unit length of a high-capacity cable may
be significantly less than that of a low-capacity cable, reflecting an economy of scale, i.e.,
the payoff for buying at bulk may be very high.

The goal is to design a minimum-cost network that can (simultaneously) route all the demands
at the sources to the sink, by installing zero or more copies of each cable type on each edge
of the graph. An additional restriction is that the demand of each source must follow a single
path. The problem is to find a route from each source node to the sink and to assign capacity
to each edge of the network such that the total costs of cables installed is minimized. We call
this problem the single-sink link-installation problem.

For the general problem, we introduce a new “moat type” lower bound on the optimal value
and we prove a useful structural property of near-optimal solutions: For every instance of our
problem, there is a near-optimal solution whose graph is acyclic (with cost no more than twice
the optimal cost). We present efficient approximation algorithms for key special cases of the
problem that arise in practice. For points in the FEuclidean plane, we give an approximation
algorithm with performance guarantee O(log(D/u1)), where D is the total demand and wu, is the
smallest cable capacity. When the metric is arbitrary, we consider the case where the network
to be designed is restricted to be two-level, i.e. every source-sink path has at most two edges.
For this problem, we present an algorithm with performance guarantee O(logn), where n is the
number of nodes in the input graph, and also show that this performance guarantee is nearly
best possible.
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1 Introduction

1.1 The problem

An oil company wishes to construct a network of pipelines to carry oil from several remote wells to

a major refinery. For each edge of the network, the company can install either zero or more copies
of a cheap but thin pipe (say, the diameter is 10 inches and the cost is $1,000 per mile) or zero or
more copies of a more expensive but thicker pipe (say, the diameter is 100 inches and the cost is
$2,000 per mile). The demand (actually, oil supply) at each of the oil wells is given. The goal is to
build a minimum-cost network that has sufficient capacity at every edge to transport the oil to the
refinery.

Notice one feature of the problem: The cost per unit length versus capacity (available by
combination of different pipe types) is a staircase function, reflecting an economy of scale. Also,
note that several copies of several pipe types may be used in parallel to accommodate the flow on
one edge of the network.

The above network design problem is NP-hard. There are reductions from both the Steiner tree
problem and the knapsack problem (see Subsection 2.2). These reductions suggest two inherent
sources of hardness of our problem. One is the connectivity requirement — our problem is NP-hard
even when only one cable type is available. The second is the choice of cables — the problem is NP-
hard even on a graph consisting of a single edge. While there are several known approximation al-
gorithms that attack NP-hard minimum-cost connectivity problems [AKR 95, GW 95, WGM+95],
to the best of our knowledge, there is no (previous) approximation algorithm that considers costs
based on the choice of different cable types. Our work gives the first results on this topic.

Our problem of designing a single-sink multi-source network at minimum cost is a fundamen-
tal and economically significant problem that arises in hierarchical design of telecommunication
networks. In the lowest level of network design, switching centers (controllers) collect calls from
customers (base cells) and in the next level traffic goes between pairs of controllers. Once a set
of customers are assigned to a switching center, the single-sink, multi-source problem arises. An
additional constraint on the telecommunication problem is that the flow of traffic for any demand
must follow a single path to the sink in the network [BMW 95] — this arises from limitations on
the capacity of routing tables at nodes, and in avoiding complex switching hardware to support
bifurcating flow. We call such flow routes indivisible'. The availability of a small number of cables,
strong economies of scale, and the large number of customers are characteristic to the problems in
the telecommunication industry.

1.2 Our results

We start by showing NP-hardness of two very simple versions of our problem (Section 2.2). Next we
formalize two known lower bounds and use them to derive a simple constant factor approximation
algorithm for the case with a single cable type using existing ideas.

We continue by proving a structure theorem (Theorem 3.2): For every instance of our problem,
there is a near-optimal solution whose graph is acyclic (the cost is no more than two times the
optimal value).

The case that appears to be most relevant in the goegraphic instances of network design is when
the graph is defined by points in the two-dimensional Euclidean plane. For this case, we present

'also called unsplittable [Kle 96] or non-bifurcated [Bar 96] in the literature.



an approximation algorithm with performance guarantee O(log(D/u1)), where D denotes the total
demand and u; denotes the smallest cable capacity (Theorem 4.1). The analysis of the performance
guarantee hinges on a new “moat type” lower bound on the optimal value that we introduce, which
is valid also for the general metric case.

In the general case, when the metric is arbitrary, we focus on a restricted version of the problem:
Instead of allowing the optimal solution to induce an arbitrary graph we restrict the graph to be
two-level, i.e. every source-sink path has at most two edges. For this problem, we present an
algorithm with nearly best-possible performance guarantee O(logn), where n is the number of
nodes (Theorem 5.2).

1.3 Previous work

The problem we address arises commonly in practical network design, and has been widely studied
in the Operations Research literature. One of the first papers on routing flows under a staircase
cost function arises from the Telepak problem in network design [GR 71]. Specializations of this
problem include the fixed charge problem [Bal 61, G71] while generalizations include the minimum
concave cost flow problem[Z68, GSS80]. In a survey on network synthesis and design problem,
Minoux [Min 89] discusses several variants of the problem and exact solution methods. This body
of work does not enforce the indivisible flow constraint.

Balakrishnan, Magnanti and Wong [BMW 95] address the problem of expanding an existing
telecommunication network, where they have the indivisible flow restriction. Magnanti, Mirchan-
dani and Vachani [MMV 95] study the polyhedral and computational aspects of the design problem
with two cables. One feature they highlight is the large gap between heuristic solutions and La-
grangian lower bounds. Due to this, even small instances of the problem cannot be solved to
anywhere near optimality by state-of-the-art computational techniques. More recent study of our
network design problem with multiple sinks is undertaken in [BG 96, BCGT 98, Bar 96]. These
papers develop cutting plane methods by exploiting classes of valid inequalities for an appropriate
formulation that only considers one or two cable types.

Mansour and Peleg [MP 94| have results on a variant of our problem. In their model, there are
multiple sinks and multiple sources, there is only one type of cable, and installing an edge has a
fixed cost (similar to our model) as well as a variable cost per unit flow. By applying light-weight
distance-preserving spanners [ADD+92], they obtain an O(logn)-approximation algorithm for their
network design problem with n nodes. It is easy to apply the method of Mansour and Peleg to the
case with only one sink, and only one cable type, and to improve the logarithmic approximation to
a constant-factor approximation (Subsection 2.3).

2 Preliminaries

2.1 Formalizing the problem

We are given an underlying undirected graph G = (V, E), |V| = n. A subset S of nodes is specified
as sources of traffic and a single sink ¢ is specified. Each source node s; € S has an integer-valued
demand dem,;. All the traffic of the source set is to be routed to ¢. The edges of G have lengths
¢: E — IR". Without loss of generality, we assume that for every pair of nodes v, w, we can use
the shortest-path distance dist(v,w) as the length of the edge between v and w, i.e., we take the
metric completion of the given graph. The edges of the network must be installed by purchasing



one or more copies from among a small set of cables, where each cable type i € {1,...,¢q} has
a specified capacity u; and a specified cost ¢; per unit length. The indexing of the cables is
such that u1 < up < ... < ug, ¢ < e < ... < ¢g and e1fur > cofus > ... > cq/uq. Let
o = Z;—Zz, i € {l,...,q—1}, 5 > i. Then, a type 7 cable is 0;; times as expensive as a type
J cable, per unit of capacity per unit of length. We refer to o;; as the “economy of scale” factor
between the ith and the jth cable types.

A solution to our network design problem can be characterized by specifying for each source s;,
a path to t and a combination of cables to be used on each arc of the network induced by the paths.
We will call the traffic of source s; commodity i, + =1,...,k. Let P; be the path for commodity i
and let N = (Vy, A) be the graph induced by the union of P;, i =1,... k.

Let f! denote the amount of flow of commodity i on edge e of A and f, denote the total flow
on edge e. That is,

~ dem;, if e€ P k.
1 79 (3 _ 7
Je= { 0, otherwise. ’ and Je= El Je
Let vf,..., vy be the number of copies of cable types 1 to ¢ to be installed on edge e, where ¢ is

the number of available cable types. (vf = 0 implies that no cable of type i is installed on edge e).

Let P = (Py,..., P;) denote the routing and v* = (v{,...,v{) denote the choice of cables on
edge e that accommodates f, (induced by P). Then, P and v = (v, e € A) characterize a feasible
solution to the problem formulated below.

q
min 3 {dist(e) 3 (¢j-v§)}
Pv o eca j=1
s.t.
q
> dem; — 3 (uj-v§) <0, e€A (1)
i:e€P; j=1
vi€{0,1,2,...}, Jj€E€{l,...,q}, e€A
P;isas; —tpath, i=1,...,k
Equivalently, the constraints (1) can be rewritten as:
q
fe— X (u-vf) <0, eeAd (2)
j=1

Note that the optimal choice of the routing depends on the choice of cables, as they determine
the cost of edges. Yet, the optimal choice of cables on each edge depends on the amount of flow
on each edge, which is determined by the routing decision. Hence, an optimal solution requires the

decision of the routing and the cable choices simultaneously.

2.2 Hardness of the Problem

It is easy to see that the single-sink edge-installation problem is NP-hard. There are reductions
from both the Steiner tree problem and the knapsack problem.

A special case of our problem when there is only one cable type with capacity large enough to
hold all of the demand is equivalent to a Steiner tree problem with the sources and the sink as the
terminal nodes. Hence, our problem is NP-hard [GJ 79] even when only one cable type is available
with unlimited capacity. In this case, the problem is that of finding a minimum cost routing under
fixed costs on the edges.

Another simple special case of our problem with one source node and a single edge is also
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NP-hard. In this case, the problem reduces to finding the minimum cost choice of cables on the
edge such that the total capacity of the cables covers the demand of the source. This problem is
an integer min-knapsack problem with the additional economies of scale restrictions on data. The
integer min-knapsack problem was shown to be NP-hard by Lueker [Lue 75] by a transformation
from the subset sum problem. This transformation is still valid under the economies of scale
restrictions.

2.3 Single Cable Type Case

In Subsection 1.3 we mentioned that a constant factor approximation can be obtained by applying
the method of Mansour and Peleg [MP 94] to the case of single sink, and single cable type. In
this subsection we give a proof of this claim. The idea is to route through a Light Approximate
Shortest-Path Tree (LAST) [KRY 93].

Definition 2.1 ( [KRY 93]) Let G be a graph with non-negative edge lengths. A tree T rooted at
vertex t is called an («, B)-LAST if the following conditions are satisfied (o, 3 > 1):

1. The distance of every vertex v from t in T is at most a times the distance between v and t

mn G.

2. The length of T is at most B times the length of an MST of G.

Lemma 2.1 Let C* be the optimal cost for the network design problem with o single cable type.
Let G' be a complete graph on node set S'U{t} where length of an edge is the shortest path length
in G between the end points of the edge. Let T be an («, 8)-LAST of G' rooted at the sink node t
and Cr be the cost of routing dem; through the s; —t path in T for all i and using as many copies
of the cable as necessary. Then, Cp < (a + 26)C*.

Proof: Let distr(s;,t) denote the length of the s; — ¢ path P; in T'.
Ei:eEP- deml

Cr= % all] distr(e) < 5 e (Z2Si— + 1) - distr(e)
ecT ecT
=c1 Y Y distr(e) % + ¢y Y distr(e)
$;ES e€P; 1 ecT

o distr(si, t)dem; +c1 Y distr(e)
'ses €T
Since distr(si,t) < a- dist(s;,t) for all s; € S and Y cpdistr(e) < f w(MST(G')), where
w(MST(G")) is the weight (sum of edge lengths) of an MST of G’, we get

Cr < a—t Z dem; - dist(s;,t) + Berw(MST(G')).
u1 ;€S

The term 37, cg{dem; - dist(s;,t)} is a lower bound on C* since dem; must be routed a
distance of at least dist(s;,t) and be charged at least at the rate c;/u; per unit length. This lower
bound is called the routing lower bound. In the general case when there are g cable types, c;/u; is
replaced by the cheapest rate c,/uq in the bound. In addition, 3¢ w(MST(G')) is another lower
bound on C*, which is called the MST lower bound. The reasoning is as follows. We must connect
the nodes in S to ¢ and install at least one copy of the (cheapest) cable on each connecting edge.
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Then, the cost of a Steiner tree with terminal set S U {¢t} and cost dist(e) - ¢; on each edge e is a
lower bound and the length of an MST on S U {t} times ¢, is within a factor 2 of this lower bound.
These two lower bounds are essentially due to Mansour & Peleg [MP 94], though they study a
different model. Thus, using the two lower bounds we get Cr < (o + 23)C*. Note that to obtain
a solution in the original graph G, edges of T are replaced with the corresponding shortest paths
in G. Clearly, the new solution also has cost Cr. O

Constructing an (o, 1 + =25)-LAST as in [KRY 93] for o = 3 gives the following corollary.

Corollary 2.2 There is a T-approzimation algorithm for the single-sink edge installation problem
with a single cable type.

Note that when all the nodes in G except the sink node are source nodes, routing through an
(o, B)-LAST of G gives an (a + 3)-approximation. Then, a (2v/2 + 2)-approximation is obtained
using an (e, 1 + —2-)-LAST of [KRY 93] for o = v2 + 1.

«

For the general case of multiple cable types, routing through an («, 3)-LAST and buying as
many copies of the cheapest (i.e. the thinnest) cable type as necessary provides an approximate
solution with a worst case bound of (aoi, + 2/) times the optimal cost (recall that oy, is the
economies of scale factor between the thinnest and the thickest cables). However, in practice there
are strong economies of scale between cable types. Hence, we focus on the case when oy, is large,
possibly larger than poly-logarithmic in the number of nodes, i.e., o14 > (log n)Q(l).

2.4 Multiple cable type case — An example where naive heuristics produce poor
solutions

Here is an example to show that heuristics based on routing through an MST, a shortest paths
tree or a LAST produce poor solutions. Suppose we have n source nodes $1, ..., S, each with unit
demand, at unit distance to each other and at distance \/n to the sink node ¢ (see Figure 1a). There
are only two types of cables T1 and T2, where a T1 cable has capacity u; = 1 and costs ¢; = 1
per unit length, whereas a T2 cable has capacity us = n and costs co = y/n per unit length. (Note
that 012 = /n). An optimal solution with cost 2n — 1 is obtained by installing a T2 cable for the
edge (t, s1), and using T1 cables to build a “star” centered at s; that has nodes so,..., s, as leafs,
i.e., by installing T1 cables on the edges (si,s2),...,(s1,s,) (Figure 1b). A shortest paths tree
(with root t) is a poor solution, since it has n edges of length \/n, implying a cost of n+/n, which
is roughly /n/2 times the optimal cost (Figure 1c). An (arbitrary) minimum spanning tree is a
poor solution: for example, the path ¢,s1,S9,...,5, is a minimum spanning tree, and it requires
at least m — y/n unit-length edges of capacity > /n for a total cost > ny/n, which is roughly
v/n/2 times the optimal cost (Figure 1d). (Though our optimal solution routes on a minimum
spanning tree, this can be avoided by perturbing the distances.) Another heuristic is to use a
spanner, or rather a light approximate shortest-paths tree (LAST). However, a LAST based on the
previous minimum spanning tree, i.e. the path ¢, sy, s9,..., sy, turns out to be even costlier than the
minimum spanning tree. One such LAST has edges (1, s; ) and paths s; &, 8; mi1,- - S (i1) /A1

fori € {1,2,...,y/n}.

3 Structure of Solutions

It is possible to have a unique optimal solution such that the graph induced by edges with positive
flow contains cycles (see Figure 2). However, we show in this section that there is a solution which
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a) Thegraph and distances b) An optimal solution ) A shortest paths solution d) An arbitrary MST solution

Figure 1: An example where naive heuristics produce poor solutions

induces a tree with cost at most twice the cost of an optimal solution. The key idea of the proof is
to associate with every edge e chosen by an optimal solution an “adversary price” C., where C, is
the length of e times the cheapest cost per unit capacity (per unit length) among all cable types
installed on e by the optimal solution, and to route the traffic through the cheapest s; — ¢ paths
with respect to the adversary prices.

a) Distances ar e given on the edges b) Optimal solution c) Best acyclic solution
Cable T1 hasunit cost and capacity Cyclic Total Cost = 17
Cable T2 has cost 5 and capacity 10 Total Cost = 16

Figure 2: An example where the unique optimal solution is cyclic

Let (P*,v*) be an optimal routing and choice of cables. Let N* = (V* A*) be the graph
induced by P* and C* be the cost of an optimal solution.

Lemma 3.1 Let k. be the index of the thickest cable installed on edge e in v*. That is, ke =
max{j : vi* > 0}. Associate a cost Ce for each edge e in A*, where C. := dist(e) - % Then, LBy
defined below is o lower bound on the optimal cost, i.e.

k
C* > LB, := Z{demi Z Ce}
i=1 eeP;

Proof: The lemma, follows since LBy corresponds to the cost of a solution where every commodity
flows along an optimal path using “cheapest per capacity” cables of an optimal solution fractionally.



More rigorously,

LB, = Z{demz Z (dist(e Z {dist(e) Z AR cﬁe} = Z {dist(e) u—e}

BGP* K/e ecA* ec A* Ke

Let k(1) to k(I) be the indices of cables used in edge e in v*, where k(l) = k.. Without loss of
generality we can allocate the flow induced by P* on e, f., such that all but the thickest cable are
saturated. Then, f, = uk( Wi(1) + Ug@)Vk2) + - + uk(l)(uk(l) — 1) + rem,, where we use Vk(i) as a
shorthand notation for Vk( ) and rem, for the remaining flow in the unsaturated cable. Then,

Cre  Uk(1) Up(1)
e = S C(Vk(1) T “C(Vk(2) + -+ —F ey (e — 1
f PR CLCO Rl COLEC u) k() (k@) — 1) )

rem

. ck)(l)'

. Uk (5 Cr(i . Cr(i .
By economies of scale, & < Z@ 5 — 1 ] — 1. Hence, replacing uk“) by =@ for ¢ =

Y oug) T Ck@)’ k(D) Cr(1)
1,...,1 — 1 in the above equation gives
Cre rem
fe == < epyV) + Ch@yVie) + -+ oy Wre) — 1) + —— - cr)-
U, Uk(1)
: rem Cr l S e
Since i <1, we have fe- e < igl Ch(i)Vik(i) = ng cjvs. Thus,
. Cre d *
LB, = Z dist(e) - fe - s < Z {dist(e) Z (cj-vi)}=C"
eEA* e e€A* j=1

|

Now we are ready to prove the following theorem.

Theorem 3.2 There exists a routing P which induces a tree T with cable choices v such that the
cost of this solution denoted by Cr satisfies C7 < 2C*.

Proof: Let T be a shortest path tree of N* rooted at ¢t with respect to costs C, on e € A*. Route
each commodity ¢ through the unique path P; from s; to t in T'. For each edge e € P use as many

copies of cable k. as necessary, i.e. v, = | u{f | copies of cable k.. Then, the cost of this feasible
solution is

Cr = Z dist(e) - x, * Vg, -
ecT

Since v, < uf:e +1,

Cr <3 dist(e) - cp, - L= + 3 dist(e) - cy,

U,

ecT € ecT
k

=Y dem; Y dist(e)y= + X dist(e) - cg, .
=1 e€P; fre eeT

As P;’s are shortest paths in N* with costs C, = dist(e )C*C'2 e € A*, it follows that

Cr < Z dem; Z Ce + Z dist(e) - ¢, -

ecP; ecT



Therefore, the first summand above is at most LB; of Lemma 3.1. The second summand is
also a lower bound on C* since C* includes the cost of at least one copy of the thickest cable on
every edge in A*, and T' C N*. Therefore, Cpr < 2C™*. a

Theorem 3.2 motivates the problem of finding a minimum cost tree routing as an approximate
solution to the general network design problem. However, note that the Steiner tree problem is a
special case of the min cost tree routing problem. Thus, the minimum cost tree network design
problem is also NP-hard.

4 FEuclidean case - an approximation algorithm

In this section, we present an algorithm for our network design problem in the case when the nodes
are represented as points in the plane and the length function is the (Euclidean) distance. We have
the following theorem.

Theorem 4.1 The Euclidean single-sink edge-installation problem can be approximated within a
factor O(min{log u—Dl, log %}), where D is the total demand, uy is the capacity of the lowest-
capacity cable, lp,q. s the longest distance between a pair of nodes, and £y, is the shortest distance
between a pair of nodes.

The approximation algorithm for the Euclidean case proceeds by by successively gridding the
plane and constructing the network hierarchically. The performance ratio is proven by collecting
several layers of “moat type” lower bounds and paying for the links laid in each layer of gridding
using the lower bounds collected from that layer.

4.1 The algorithm

Let £par (Umin) be the longest (shortest) distance between any pair of nodes. The topmost layer of
gridding is a single square with minimum side length, centered at the sink node enclosing all the
nodes, and hence has side length at most 24,,,,. We refine a square by partitioning it into four equal
subsquares. We continue our refinement until every square in the lowest level of gridding either has
side length at most £y, /(D /u1) (recall that D is the total demand) or contains at most one source.
Thus, the number of layers of gridding used overall is O(min{log (D/u1), log (¢maz/lmin)})-

Based on this gridding, the construction of the network is done recursively by routing all the
flow through the centers of the squares at any layer. That is, flow within a square is aggregated at
its center. In a generic recursive step, suppose that we have a square of side length 2/ that contains
points with total demand Dem. This demand can be partitioned into Dem; for j = 1,2,3,4 in
each of the four subsquares of side length £ into which this square is divided. Assume that each
of these demands has been already routed to the center of the subsquare where it arises. We now
sketch how to route these demands to the center of the bigger square one level up in the gridding.

If Dem; = 0, then we do not build any edges between the center of square j and the center of
the bigger square. Suppose u; < Dem; < u;41, for some ¢ € {0,---,¢}. There are two cases. In
the first case, u; < Dem; < p;u;. We then install [D%:nl] copies of cable type 7 from the center
of square j to the center of the big square. These cables have length %. In the second case,
piv; < Dem; < v and we simply use a single copy of cable type (i + 1) to route the demand.



We have to be more careful in performing the recursive routing for demands that are near the
sink. In particular, consider a demand that is very close to the sink in the northeastern quadrant
of the first level of gridding. If this were the only demand, it is too expensive to route it to the
center of the northeast square and then reroute it back to the sink (See Figure 3 (a)). We route
the demand of any square with a corner at the sink directly to the sink. (See Figure 3 (b)). Thus,
under this scheme, if a node v is at a distance d from the sink, its demand can be routed to the
center of a square of side length at most O(d).

| VAN N
7 e
" N PR

F

Figure 3: Part (a) illustrates that care is required in routing from the squares closest to the sink.
Part (b) illustrates the recursive routing strategy. If a square at level 7 does not contain the sink at
one of its corners, then we route its demand to the center of the square at level i — 1 enclosing it.
The demand of a square that contains the sink at one of its corners is routed directly to the sink.

It is clear that the algorithm runs in polynomial time.

4.2 A moat lower bound

First we define a moat lower bound in its full generality and then apply it in the analysis of the
above algorithm.

Consider a subset X of the node set V' that excludes the sink node t. Let Dem be the total
demand of the source nodes in X and let w be the minimum distance of any node in X to ¢, i.e.
w = mingex dist(x,t). A total of at least Dem flow has to travel a distance of at least w to reach
the sink in any network. For any subset of nodes X C V —{t¢}, the ball around X of radius w defines
a “moat” of width w separating demand Dem from the sink. The moat lower bound captures the
cost of sending all the flow of value Dem together a distance of w even after utilizing the economies
of buying at bulk.

Suppose that u; < Dem < u;4q, for some i € {0,...,q}, where we define up = 0 and vy = 00
for convenience. Define the threshold multiplicity between the i*" and the (i41)*! cable as p; = Cic—tl,
for i = 1,...,¢-1. In addition, let pg = 1 and p; = oo. If u; < Dem < pju;, for i € {1,...,q},

Dem

c;. The reason is
3

then a lower bound on the unitlength cable cost crossign this moat is LBg =

6:11 , we must buy an integral number of cables and buying a copy

that to pay at the cheaper rate

u
of cable type i+1 is costlier than paying Dﬂ%ci. On the other hand, if p;u; < Dem < ujy;, for
i €{0,...,q— 1}, then the lower bound is LBg = ¢;41. As Duﬂcz- > ¢i+1, buying any combination

of cables 1 to i (by paying at least Dﬂ%ci) will be more costly than a single cable of type i+1. We
summarize the moat lower bound in the next proposition.

Proposition 4.2 For any node set X excluding t, of total demand Dem, at minimum distance w
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to t, LB - w is a lower bound on the optimal cost, where

LB — Dﬂ%ci, if u; < Dem < pju;, for somei € {1,...,q}
K= Cit1, if piu; < Dem < ujyq, for somei € {0,...,q—1}.

We can also collect lower bounds from several disjoint moats.

Proposition 4.3 For any set of disjoint moats, the sum of the lower bounds generated by such
moats is also a lower bound on the optimal value.

Let us examine closely the definition of a moat in the Euclidean case. Let X be a set of nodes.
A moat around X is defined by a closed line in R? which contains X in the inside and leaves the
sink node outside. If the moat has width w, then the region of the plane occupied by the moat is
the annular region including all points that are outside this line within Euclidean distance w from
the line (Figure 4a). A collection of moats is disjoint, if the regions occupied by any two moats in
the collection do not intersect (Figure 4b).

@ (b)

Figure 4: A moat around node set X of width w is shown in part (a). A disjoint moat collection
is shown in part (b).

4.3 The performance ratio

We now bound the worst-case performance of our algorithm. For each layer of gridding, we use
a disjoint collection of moats and bound the cost of cables installed at that layer using the lower
bounds accumulated from these moats.

For a given layer ¢ where each square has side length ¢, we consider the moat of width ¢ around
every square in this layer except the four squares closest to the sink. Of course, a square generates
a nonzero lower bound only if it contains nonzero demand. We can split the moats of this layer
into 9 classes of disjoint moat collections. One such class is shown in Figure 5. Other classes can
be obtained by translating all the squares enclosed by the moats in this class by one square in one
of the 8 neighboring directions (see Figure 5). Let LB; be the maximum lower bound generated by
any of these 9 classes of moats of layer i. By averaging, LB; is at least 1/9 of the sum of the lower
bounds generated by all squares in this layer.

The cost of the cables constructed in one layer of gridding is at most /2 times the lower
bound generated by all squares in this layer. If a square has demand Dem; and side length /,
the lower bound it generates (LB) is £ times LBg. There are two corresponding cases in the
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Figure 5: One class of disjoint moats in a given layer of gridding is shown. The arrows represent
the 8 translation directions used to define the other 8 classes of this layer.

computation of LBf and the choice of the cables in the algorithm. In the first case Dem; > u;.
Thus, [DZ—:n]] < 2(DZ—TZ”) so that unit length cost of cables used is within a factor 2 of the lower

bound LB defined in Proposition 4.2. Since the cables have length £//2, the cost is at most
V20LBg = 2LB. In the second case, we incur unit length cost of ¢;;1, which is equal to LBx.
Thus, the cost of cables used is (¢/v/2) LBy which is less than LB. As a result, the cables installed
at layer 7 have cost at most 9v/2LB;.

Consider the last layer of gridding, with side-length at most £,,4,u1/D. Note that the total cost
incurred in routing all the demands to the centers of the squares in this layer is at most O(¢,,45¢1).
This is because the demand of each source s;, dem;, in each square of the last gridding has to be
sent a distance of at most O(1) times the side-length at unit length cost of at most [dem;/u;]|c;.
Since the MST lower bound is at least 1/2¢,,45¢1, it is clear that the costs incurred in the last layer
of gridding can be charged to the MST lower bound (to prevent further gridding).

The number of layers of gridding is O(min{log u%, log ﬁ”ﬂ—‘z}), and the cost of the cables at

each layer is at most 9v/2 times the optimal cost. Therefore, the cost of the solution constructed is
within O(min{log u—Dl, log %}) times the optimal cost.

5 Two-level networks

In this section we consider a simpler version of our problem when the network in which the demand
is to be routed is two-level, i.e. every source-sink path has at most two edges, and the distances
arise from a general metric. This problem can be considered to limit the number of aggregation of
flows. By requiring the network to be two-level, every source node is restricted to aggregate its flow
at most once. This special case of the network design problem has also been addressed in [Min 89].

We first show that this problem is as hard as the set cover problem and then give a O(logn)-
approximation algorithm.

Proposition 5.1 The minimum cost two-level network design problem is NP-hard. Furthermore,
there is no polynomial time approzimation algorithm for the two-level problem whose performance
ratio is better than (1 —o(1))Inn unless P = NP.

Proof: The proof is by reduction from the set cover problem. Consider an instance of a set cover
problem with a collection C of subsets of a finite set S, a weight w(S;) € ZT for each set S; in C,
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and a positive integer K. The set cover problem is to determine if C' contains a subset C’ such
that total weight of the sets in C’ is at most K and every element of S belongs to at least one set
in C'. We consider the following instance of the two-level network design problem. Construct the
two-level input graph G = (V, E) for the network design problem as follows. Let there be a node s;
corresponding to each element in S with unit demand and a node v; for each set S; in C' with zero
demand. In addition, V' contains the sink node ¢. For each set S;, E' contains an edge of zero length
between v; and all the source nodes corresponding to the elements contained in S;, as well as an
edge of length w(S;) between v; and ¢. Suppose one type of cable with unit cost per unit length
and oo capacity is available. Then, there exists a minimum cost two-level network solution with
cost at most K if and only if there is a set cover C' with weight at most K. Consider a two-level
network solution with cost K or less. Since in this solution each demand must follow a single path
of at most two edges, each source node is connected to one set containing it. Thus the collection of
sets which send a positive amount of flow to the sink is a cover with total weight at most K. Now,
let C’ be a set cover with weight at most K. We can find a route for each source by connecting the
source to one of the sets containing it, in C’. Clearly, the total cost of the cables installed will be
at most K.

Note that the above reduction is also approximation-preserving, so the current hardness re-
sults [F96, RS 97, AS 97] shows that there is no polynomial time approximation algorithm for the
two-level problem whose performance ratio is better than (1 —o(1))Inn unless P = NP. O

We present the following result that is nearly best possible.

Theorem 5.2 The two-level link-installation problem can be approximated within a factor O(logn)
where n is the number of nodes in the input graph.

The key idea of the proof of the above theorem is to define an appropriate (very large size)
set cover problem. It is well known that the greedy algorithm yields logarithmically bounded
approximate solutions for the set cover problem [Ch 79], but the crucial step in the algorithm is to
find a greedy set. In our case, the problem of finding a single greedy choice is computationally hard
but we devise a constant factor approximation for this problem thereby proving the above theorem;
for more details on how a constant factor approximation for a greedy step yields a logarithmic
approximation for the set cover problem, see e.g. [YC 95, Theorem 10].

5.1 The corresponding set cover problem

The two level problem can be modeled as a set covering problem as follows: The elements to be
covered are the sources, each with a demand. The “sets” used to cover them are called stars. A
star consists of a center (any node in the graph except the sink) and leaves that include the sink
node and a subset of the sources. A star has cost equal to the total cost of the cheapest choice of
cables to route all the demand of the sources it contains via its center to the sink. Note that a
star represents a level of aggregation of flows since all the demand within a star that is aggregated
at the center node is sent through more economical thick cables to the sink. A solution to the
two-level problem naturally decomposes into a set of stars (one level routes define starts with only
one leaf, namely the sink). Hence an optimal solution to the two level problem is the same as an
optimal solution to the set covering problem defined above.
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5.2 Finding a greedy star

To implement an iteration of the greedy algorithm, we need to find a greedy star — a star of
minimum ratio cost, of the ratio of total cable cost of the star divided by the total demand routed
by the star. As there are exponentially many stars, we proceed by approximating the ratio cost
within a constant factor. At any given step k of the greedy algorithm, let the total remaining
demand to be routed be D¥. We first guess the total demand routed by the minimum ratio star
at this stage within a factor of two, and for every such range, we find a cheapest star of roughly

this much demand. Formally, consider the demand ranges [1,2),[2,4),...,[2!°8 DTk,Qlog b k], and for
every range, suppose we can compute the minimum total cost star whose demand falls within this
range. Now suppose that the minimum ratio cost star routes a total of D, demand at total cost
C,, where D, € [2i, 2111, Let C; be the minimum cost of any star that routes demand in the range
[2,2¢+1) to the sink. Then, the ratio cost of this star is near-optimal. In particular, if this star
routes demand D;, then % < % since C; < C, and D, < 2D;.

One last problem remains — the problem of finding a star of minimum cost that routes demand
in a given range, say [2%,2"1), to the sink. However, this requires solving integer min-knapsack
problems by the following reduction — We first guess the center of the star; there are at most n
guesses. Then, for each center node, we want to find a set of sources (to connect to the center)
that have a total demand of at least 2, with total minimum cost of routing the demand of that
set to the center. In this sense, we want to fill a knapsack of demand at least 2° corresponding to
this choice of center. The items used to fill the knapsack are the remaining sources s; each with
demand dem;. The cost of an item s; is the cost of routing dem; from s; to the center. If the edge
connecting s; to the center, say e, has length dist(e), this cost is dist(e) times the value of another
integer min-knapsack problem corresponding to the choice of cables for this edge (recall that given
flow on an edge, finding minimum cost cables to cover this flow is a min-knapsack problem).

The integer min-knapsack problem is NP-hard, but can be solved in O(gDem) time by dynamic
programming ([GG65]). Alternatively, we can transform this integer knapsack problem to a 0-
1 knapsack problem with 7 = ?:1 log[di—’;”] = O(qlog D) binary variables in O(n) time (see
[MT 90]). Then, applying any of the fully polynomial time approximation schemes for the 0-1
min-knapsack problem we obtain approximate solutions to our problem that obey the worst-case
bounds for such schemes. For instance, a (1 + ¢)-approximate solution can be obtained in O(7?/¢)
time by the PTAS of Gens and Levner [GL 79]. Alternatively, a 2-approximation solution can be

obtained in O(flogn) time by the greedy algorithm of Gens and Levner [GL 79].

To summarize, we estimate the costs of the different sources for a given choice of center using
the knapsack approximation. Using these costs, we solve yet another knapsack problem that gives
an approximately minimum cost of routing a total of at least 2* demand to this center. The total
cost of the star however, must include the cost of routing the demand aggregated at the center to
the sink. This is also a problem of choice of cables from the center to the sink for a given value of
total demand, and can be approximated using the knapsack framework.

We repeat this procedure for every demand range ¢ and every choice of the center node. By
choosing the star that has minimum ratio of total cost to demand among all iterations, we get a
constant factor approximation to the minimum ratio cost star.

Note that the approximation factor for finding a minimum ratio cost star only multiplies the
performance ratio of the greedy algorithm [YC 95]. Since we use a constant factor approximation
for finding a minimum ratio star, we get the performance ratio claimed in Theorem 5.2.
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6 Open problems

Theorem 3.2 motivates the problem of finding a minimum cost tree routing as an approximate solu-
tion to the general network design problem. Although the problem is still NP-hard, approximating
it may be easier than the general case.

In the more general minimum cost capacitated network design problem arising in the telecommu-
nications industry, special pieces of hardware called concentrators [BMW 95, Min 89] are required
to aggregate the traffic from several thin cables in a single thick cable. We are given a list of
concentrators of various types (inputs being a combination of cable types of total bandwidth equal
to the output cable bandwidth), each with an associated fixed cost. Whenever traffic is aggregated,
appropriate concentrators have to be used by paying the corresponding fixed cost. Moreover, traffic
requirements may be specified between multiple sources and multiple sinks. As before, the flow
must be indivisible and routed by purchasing integral copies of cables, whose cost versus capacity
is a step function representing an economy of scale. The goal is to find the minimum total cost
network.

Approximating this more general problem with concentrators remains open. Note however that
the fixed costs of concentrators can be incorporated to the approximation algorithm for the 2-level
network problem. For a given range of demand to be aggregated, the cost of the concentrator to be
installed can be approximated. In the greedy step of the algorithm, after the bicriteria algorithm
outputs a star of certain cost and demand, the approximate cost of the concentrator can be added
to the total cost of the star.

Subsequent to the appearence of a preliminary version of this paper in [SCR+97], Awerbuch and
Azar [AA97] gave a randomized O(log? n)-approximation algorithm for the general edge installation
problem with many cable types and many sources and sinks.
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