
Approximating the Stochastic Knapsack Problem:

The Benefit of Adaptivity

Brian C. Dean∗ Michel X. Goemans† Jan Vondrák‡

June 6, 2008

Abstract

We consider a stochastic variant of the NP-hard 0/1 knapsack problem in which item values are
deterministic and item sizes are independent random variables with known, arbitrary distributions. Items
are placed in the knapsack sequentially, and the act of placing an item in the knapsack instantiates its
size. Our goal is to compute a solution “policy” that maximizes the expected value of items successfully
placed in the knapsack, where the final overflowing item contributes no value. We consider both non-
adaptive policies (that designate a priori a fixed sequence of items to insert) and adaptive policies (that
can make dynamic choices based on the instantiated sizes of items placed in the knapsack thus far).
An important facet of our work lies in characterizing the benefit of adaptivity. For this purpose we
advocate the use of a measure called the adaptivity gap: the ratio of the expected value obtained by an
optimal adaptive policy to that obtained by an optimal non-adaptive policy. We bound the adaptivity
gap of the Stochastic Knapsack problem by demonstrating a polynomial-time algorithm that computes
a non-adaptive policy whose expected value approximates that of an optimal adaptive policy to within
a factor of 4. We also devise a polynomial-time adaptive policy that approximates the optimal adaptive
policy to within a factor of 3 + ε for any constant ε > 0.

1 Introduction

The classical NP-hard knapsack problem takes as input a set of n items with values v1 . . . vn and sizes
s1 . . . sn, and asks us to compute a maximum-value subset of these items whose total size is at most 1.
Among the many applications of this problem, we find the following common scheduling problem: given
a set of n jobs, each with a known value and duration, compute a maximum-value subset of jobs one can
schedule by a fixed deadline on a single machine. In practice, it is often the case that the duration of a job is
not known precisely until after the job is completed; beforehand, it is known only in terms of a probability
distribution. This motivates us to consider a stochastic variant of the knapsack problem in which item values
are deterministic and sizes are independent random variables with known, completely arbitrary distributions.
The actual size of an item is unknown until we instantiate it by attempting to place it in the knapsack. With
a goal of maximizing the expected value of items successfully placed in the knapsack, we seek to design a
solution “policy” for sequentially inserting items until the capacity is eventually exceeded. At the moment
when the capacity overflows, the policy terminates.

Formally, if [n] := {1, 2, . . . , n} indexes a set of n items, then an solution policy is a mapping 2[n]×[0, 1] → [n]
specifying the next item to insert into the knapsack given the set of remaining (uninstantiated) available
items as well as the remaining capacity in the knapsack. We typically represent a solution policy in terms of
an algorithm that implements this mapping, and we can visualize such an algorithm in terms of a decision
tree as shown in Figure 1. As illustrated by the instances shown in the figure, an optimal policy may need

∗McAdams Hall, Box 340974, Clemson University, Clemson, SC, 29634
†MIT, Department of Mathematics, Cambridge, MA, 02139
‡Department of Mathematics, Fine Hall, Washington Rd, Princeton, NJ, 08644

1

0 (prob) 1+ (prob 1−)

s = 0.82

s = 0.9
3

3s = 0.4

Prob = 1/2
Value = 2

Item

1
2
3

0.2 (prob 1/2) 0.6 (prob 1/2)
0.8 (prob 1)
0.4 (prob 1/2) 0.9 (prob 1/2)

Size Distribution (capacity = 1)

Size Distribution (capacity = 1)Item

1
2
3

Value

1

0 (prob 1/2) 1 (prob 1/2)ε
ε 1 (prob 1)

εε ε

(b)

Insert 1

Insert 2

Insert 3

Value = 2

Value = 1
Prob = 1/4

Prob = 1/4

s
=

0.
2

s = 0.6

1

1

(a)

(c)

Figure 1: Instances of the stochastic knapsack problem. For (a), an optimal non-
adaptive policy inserts items in the order 1, 2, 3, and achieves expected value 1.5.
An optimal adaptive policy, shown as a decision tree in (b), achieves an expected
value of 1.75, for an adaptivity gap of 7/6. The instance in (c) has adaptivity
gap arbitrarily close to 5/4: an optimal non-adaptive policy inserts items in the
order 1, 3, 2 for an expected value of 2ε + 1

2
ε2, and an optimal adaptive policy

inserts item 1 followed by items 2 and 3 (if s1 = 0) or item 3 (if s1 = 1), for an
expected value of 2.5ε.

to be adaptive, making decisions in a dynamic fashion in reaction to the instantiated sizes of items already
placed in the knapsack. By contrast, a non-adaptive policy specifies an entire solution in advance, making no
further decisions as items are being inserted. In other words, a non-adaptive policy is just a fixed ordering of
the items to insert into the knapsack. It is at least NP-hard to compute optimal adaptive and non-adaptive
policies for the Stochastic Knapsack problem, since both of these problems reduce to the classical knapsack
problem in the deterministic case.

There are many problems in stochastic combinatorial optimization for which one could consider designing
either adaptive or non-adaptive solution policies. In particular, these are problems in which a solution is
incrementally constructed via a series of decisions, each of which establishes a small part of the total solution
and also results in the instantiation of a small part the problem instance. When trying to solve such a
problem, it is often a more complicated undertaking to design a good adaptive policy, but this might give us
substantially better performance than a non-adaptive policy. To quantify the benefit we gain from adaptivity,
we advocate the use of a measure we call the adaptivity gap, which measures the maximum (i.e., worst case)
ratio over all instances of a problem of the expected value obtained by an optimal adaptive policy to the
expected value obtained by an optimal non-adaptive policy. One of the main results in this paper is a proof
that the adaptivity gap of the Stochastic Knapsack problem is at most 4, so we only lose a small constant
factor by considering non-adaptive policies. Adaptivity gap plays a similar role to the integrality gap of a
fractional relaxation by telling us the best approximation bound we can hope to achieve by considering a
particular simple class of solutions. Also, like the integrality gap, one can study the adaptivity gap of a
problem independently of any considerations of algorithmic efficiency.

1.1 Outline of Results

In this paper we provide both non-adaptive and adaptive approximation algorithms for the Stochastic Knap-
sack problem. After giving definitions and preliminary results in Section 2, we present three main approx-
imation algorithm results in the following sections. Section 3 describes how we can use a simple linear
programming relaxation to bound the expected value obtained by an optimal adaptive policy, and we use
this bound in Section 4 to develop a 32/7-approximate non-adaptive policy. We then develop a more sophis-
ticated linear programming bound based on a polymatroid in Section 5, and use it in Section 6 to construct
a 4-approximate non-adaptive policy. Sections 7 and 8 then describe a (3 + ε)-approximate adaptive policy

2

for any constant ε > 0 (the policy takes polynomial time to make each of its decisions).

In Section 9 we consider what we call the ordered adaptive model. Here, the items must be considered in the
order they are presented in the input, and for each item we can insert it into the knapsack or irrevocably
discard it (and this decision can be adaptive, depending on the instantiated sizes of items already placed
in the knapsack). This model is of interest since we can compute optimal ordered policies in pseudo-
polynomial time using dynamic programming in the event that item size distributions are discrete, just as
the deterministic knapsack problem is commonly approached with dynamic programming if item sizes are
discrete. A natural and potentially difficult question with this model is how one should choose the initial
ordering of the items. If we start with the ordering produced by our 4-approximate non-adaptive policy, the
optimal ordered adaptive policy will have an expected value within a factor of 4 of the optimal adaptive
policy (and it can potentially be much closer). We show in Section 9 that for any initial ordering of items,
the optimal ordered adaptive policy will obtain an expected value that differs by at most a factor of 9.5 from
that of an optimal adaptive policy.

1.2 Literature Review

The Stochastic Knapsack problem is perhaps best characterized as a scheduling problem, where it could
be written as 1 | pj ∼ stoch, dj = 1 | E[

∑
wjU j] using the three-field scheduling notation popularized by

Lawler, Lenstra, and Rinnooy Kan [10]. Stochastic scheduling problems, where job durations are random
variables with known probability distributions, have been studied quite extensively in the literature, dating
back as far as 1966 [20]. However, for the objective of scheduling a maximum-value collection of jobs prior
to a fixed deadline, all previous research seems to be devoted to characterizing which classes of probability
distributions allow an exact optimal solution to be computed in polynomial time. For example, if the sizes
of items are exponentially distributed, then Derman et al. [6] prove that the greedy non-adaptive policy that
chooses items in non-increasing order of vi/E[si] is optimal. For extensions and further related results, see
also [18, 7, 3]. To the best of our knowledge, the only stochastic scheduling results to date that consider
arbitrary probability distributions and the viewpoint of approximation algorithms tend to focus on different
objectives, particularly minimizing the sum of weighted completion times — see [16, 23, 26].

The notion of adaptivity is quite prevalent in the stochastic scheduling literature and also in the stochastic
programming literature (see, e.g., [1]) in general. One of the most popular models for stochastic optimization
is a two-stage model where one commits to a partial solution and then, and then after witnessing the
instantiation of all random quantities present in the instance, computes an appropriate recourse as necessary
to complete the solution. For example, a stochastic version of bin packing in this model would ask us to
pack a collection of randomly-sized items into the minimum possible number of unit sized bins. In the first
stage, we can purchase bins at a discounted price, after which we observe the instantiated sizes of all items
and then, as a recourse, purchase and additional bins that are needed (at a higher price). For a survey of
approximation results in the two-stage model, see [12, 19, 22]. By contrast, our model for the Stochastic
Knapsack problem involves unlimited levels of recourse. The notion of adaptivity gap does not seem to
have received any explicit attention thus far in the literature. Note that the adaptivity gap only applies to
problems for which non-adaptive solutions make sense. Quite a few stochastic optimization problems, such
as the two-stage bin packing example above, are inherently adaptive since one must react to instantiated
information in order to ensure the feasibility of the final solution.

Several stochastic variants of the knapsack problem different from ours have been studied in the literature.
Stochastic Knapsack problems with deterministic sizes and random values have been studied by several
authors [2, 11, 24, 25], all of whom consider the objective of computing a fixed set of items fitting in the
knapsack that has maximum probability of achieving some target value (in this setting, maximizing expected
value is a much simpler, albeit still NP-hard, problem since we can just replace every item’s value with its
expectation). Several heuristics have been proposed for this variant (e.g. branch-and-bound, preference-
order dynamic programming), and adaptivity is not considered by any of the authors. Another somewhat
related variant, known as the stochastic and dynamic knapsack problem [14, 17], involves items that arrive
on-line according to some stochastic process — we do not know the exact characteristics of an item until
it arrives, at which point in time we must irrevocably decide to either accept the item and process it, or

3

discard the item. Two recent papers due to Kleinberg et al. [13] and Goel and Indyk [9] consider a Stochastic
Knapsack problem with “chance” constraints. Like our model, they consider items with deterministic values
and random sizes. However, their objective is to find a maximum-value set of items whose probability of
overflowing the knapsack is at most some specified value p. Kleinberg et al. consider only the case where
item sizes have a Bernoulli-type distribution (with only two possible sizes for each item), and for this case
they provide a polynomial-time O(log 1/p)-approximation algorithm as well as several pseudo-approximation
results. For item sizes that have Poisson or exponential distributions, Goel and Indyk provide a PTAS, and
for Bernoulli-distributed items they give a quasi-polynomial approximation scheme whose running time
depends polynomially on n and log 1/p.

Kleinberg et al. show that the problem of computing the overflow probability of a set of items, even with
Bernoulli distributions, is #P-hard. Consequently, it is #P-hard to solve the variant mentioned above with
deterministic sizes and random values, where the goal is to find a set of items whose probability of exceeding
some target value is maximized. To see this, let Be(s, p) denote the Bernoulli distribution taking the value s
with probability p and 0 with probability 1− p, and consider a set of items i = 1 . . . n with size distributions
Be(si, pi). In order to compute the overflow probability p∗ of this set of items in a knapsack of capacity
1, we construct an instance of the stochastic knapsack problem above with target value 1 and n + 1 items:
items i = 1 . . . n have size 1/n and value Be(si, pi), and the last has size 1 and value Be(1, p′). The optimal
solution will contain the first n items if p∗ > p′ or the single last item otherwise, so we can compute p∗ using
a binary search on p′. Note that it is also #P-hard to solve the restricted problem variant with random sizes
and deterministic values, where the goal is to find a set of maximum value given a bound on the overflow
probability. Here, we can take a set of items i = 1 . . . n with sizes Be(si, pi) and compute their overflow
probability p∗ by constructing a stochastic knapsack instance with overflow probability threshold p′ and with
n items of size Be(si, pi) and unit value. Since the optimal solution to this problem will be the set of all
items (total value n) if and only if p∗ ≤ p′, we can again compute p∗ using a binary search on p′.

In contrast to the results cited above, we do not assume that the distributions of item sizes are exponential,
Poisson or Bernoulli; our algorithms work for arbitrary distributions. The results in this paper substantially
improve upon the results given in its extended abstract [5], where approximation bounds of 7 and 5 + ε are
shown for non-adaptive and adaptive policies. Note that a large part of the analysis in [5] (see also [4]) is no
longer needed in this paper, but the different methods used in that analysis may also be of interest to the
reader.

2 Preliminaries

2.1 Definition of the problem

An instance I consists of a collection of n items characterized by size and value. For each item i ∈ [n], let
vi ≥ 0 denote its value and si ≥ 0 its size. We assume the vi’s are deterministic while the si’s are independent
random variables with known, arbitrary distributions. Since our objective is to maximize the expected value
of items placed in the knapsack, we can allow random vi’s as long as they are mutually independent and
also independent from the si’s. In this case, we can simply replace each random vi with its expectation. In
the following, we consider only deterministic values vi. Also, we assume without loss of generality that our
instance is scaled so the capacity of the knapsack is 1.

Definition 1 (Adaptive policies). An adaptive policy is a function P : 2[n]× [0, 1] → [n]. The interpretation
of P is that given a set of available items J and remaining capacity c, the policy inserts item P(J, c). This
procedure is repeated until the knapsack overflows. We denote by val(P) the value obtained for all successfully
inserted items, which is a random variable resulting from the random process of executing the policy P. We
denote by ADAPT (I) = maxP E[val(P)] the optimum1 expected value obtained by an adaptive policy for
instance I.

Definition 2 (Non-adaptive policies). A non-adaptive policy is an ordering of items O = (i1, i2, i3, . . . , in).
1One can show that the supremum implicit in the definition of ADAPT (I) is attained.

4

We denote by val(O) the value obtained for successfully inserted items, when inserted in this order. We
denote by NONADAPT (I) = maxO E[val(O)] the optimum expected value obtained by a non-adaptive
policy for instance I.

In other words, a non-adaptive policy is a special case of an adaptive policy P(J, c) which does not depend
on the residual capacity c. Thus we always have ADAPT (I) ≥ NONADAPT (I). Our main interest in this
paper is in the relationship of these two quantities. We investigate how much benefit a policy can gain by
being adaptive, i.e. how large ADAPT (I) can be compared to NONADAPT (I).

Definition 3 (Adaptivity gap). We define the adaptivity gap as

sup
I

ADAPT (I)
NONADAPT (I)

where the supremum is taken over all instances of Stochastic Knapsack.

This concept extends naturally beyond the Stochastic Knapsack problem. It seems natural to study the
adaptivity gap for any class of stochastic optimization problems where adaptivity is present [4, 27].

It should be noted that in the definition of the adaptivity gap, there is no reference to computational
efficiency. The quantities ADAPT (I) and NONADAPT (I) are defined in terms of all policies that exist,
but it is another question whether an optimal policy can be found algorithmically. Observe that an optimal
adaptive policy might be quite complicated in structure; for example, it is not even clear that one can always
write down such a policy using polynomial space.

Example 1. Consider a knapsack of large integral capacity and n unit-value items, half of type A and
half of type B. Items of type A take size 1, 2, or 3 each with probability p, and then sizes 5, 7, 9, . . . with
probability 2p. Items of type B take size 1 or 2 with probability p, and sizes 4, 6, 8, . . . with probability 2p.
If p is sufficiently small, then the optimal policy uses a type A item (if available) if the remaining capacity
has odd parity and a type B item if the remaining capacity has even parity. The decision tree corresponding
to an optimal policy would have at least

(
n

n/2

)
leaves.

Since finding the optimal solution for the deterministic knapsack problem is NP-hard, and some questions
concerning adaptive policies for Stochastic Knapsack are even PSPACE-hard [5, 27], constructing or char-
acterizing an optimal adaptive policy seems very difficult. We seek to design approximation algorithms for
this problem. We measure the quality of an algorithm by comparing its expected value against ADAPT .
That is, if A(I) denotes the expected value of our algorithm A on instance I, we say that the performance
guarantee of A is

sup
I

ADAPT (I)
A(I)

.

This measurement of quality differs greatly from the measure we would get from traditional competitive
analysis of on-line algorithms or its relatives (e.g., [15]). Competitive analysis would have us compare the
performance of A against an unrealistically-powerful optimal algorithm that knows in advance the instanti-
ated sizes of all items, so it only allows us to derive very weak guarantees. For example, let Be(p) denote
the Bernoulli probability distribution with parameter p (taking the value zero with probability 1 − p and
one with probability p). In an instance with n items, each of size (1 + ε)Be(1/2) and value 1, we have
ADAPT ≤ 1 while if we know the instantiated item sizes in advance we could achieve an expected value of
at least n/2 (since we expect n/2 item sizes to instantiate to zero).

For similar reasons, we assume that the decision to insert an item into the knapsack is irrevocable — in
the scheduling interpretation of our problem, we might want the ability to cancel a job after scheduling
it but then realizing after some time that, conditioned on the time it has already been processing, its
remaining processing time is likely to be unreasonably large. The same example instance above shows that
if cancellation is allowed, our policies must somehow take advantage of this fact or else we can only hope

5

to obtain an O(1/n) fraction of the expected value of an optimal schedule in the worst case. We do not
consider the variant of Stochastic Knapsack with cancellation in this paper.

2.2 Additional definitions

In the following, we use the following quantity defined for each item:

Definition 4. The mean truncated size of an item i is

µi = E[min{si, 1}].

For a set of items S, we define val(S) =
∑

i∈S vi, size(S) =
∑

i∈S si and µ(S) =
∑

i∈S µi. We refer to µ(S)
as the “mass” of set S.

One motivation for this definition is that µ(S) provides a natural bound on the probability that a set of
items overflows the knapsack capacity.

Lemma 1. Pr[size(S) < 1] ≥ 1− µ(S).

Proof. Pr[size(S) ≥ 1] = Pr[min{size(S), 1} ≥ 1] ≤ E [min{size(S), 1}] ≤ E
[∑

i∈S min{si, 1}
]

= µ(S).

The mean truncated size is a more useful quantity than E[si] since it is not sensitive to the structure of
si’s distribution in the range si > 1. In the event that si > 1, the actual value of si is not particularly
relevant since item i will definitely overflow the knapsack (and therefore contribute no value towards our
objective). All of our non-adaptive approximation algorithms only look at the mean truncated size µi and
the probability of fitting in an empty knapsack Pr[si ≤ 1] for each item i; no other information about the size
distributions is used. However, the (3 + ε)-approximate adaptive policy we develop in Section 8 is assumed
to know the complete size distributions, just like all adaptive policies in general.

3 Bounding Adaptive Policies

In this section we address the question of how much expected value an adaptive policy can possibly achieve.
We show that despite the potential complexity inherent in an optimal adaptive policy, a simple linear
programming (LP) relaxation can be used to obtain a good bound on its expected value.

Let us fix an adaptive policy P and consider the random set of items A that P inserts successfully into the
knapsack. In a deterministic setting, it is clear that µ(A) ≤ 1 for any policy since our capacity is 1. It is
perhaps surprising that in the stochastic case, E[µ(A)] can be larger than 1.

Example 2. Suppose we have an infinitely large (random) set of items where each item i has value vi = 1
and size si ∼ Be(p). In this case, E[|A|] = 2/p − 1 (since we can insert items until the point where two of
them instantiate to unit size) and each item i has mean truncated size µi = p, so E[µ(A)] = 2− p. For small
p > 0, this quantity can be arbitrarily close to 2. If we count the first overflowing item as well, we insert
mass exactly 2. This is a tight example for the following crucial lemma.

Lemma 2. For any Stochastic Knapsack instance with capacity 1 and any adaptive policy, let A denote the
(random) set of items that the policy attempts to insert. Then E[µ(A)] ≤ 2.

Proof. Consider any adaptive policy and denote by At the (random) set of the first t items that it attempts
to insert. (We set A0 = ∅.) Eventually, the policy terminates, either by overflowing the knapsack or by
exhausting all the available items. If either event happens upon inserting t′ items, we set At = At′ for all

6

t > t′; note that At′ still contains the first overflowing item. Since the process always terminates like this,
we have

E[µ(A)] = lim
t→∞

E[µ(At)] = sup
t≥0

E[µ(At)].

Denote by s̃i = min{si, 1} the mean truncated size of item i. Observe
∑

i∈At
s̃i ≤ 2 for all t ≥ 0. This is

because each s̃i is bounded by 1 and we can count at most one item beyond the capacity of 1. We now define
a sequence of random variables {Xt}t∈Z+ :

Xt =
∑
i∈At

(s̃i − µi).

This sequence {Xt} is a martingale: conditioned on a value of Xt and the next inserted item i∗,

E[Xt+1|Xt, i
∗] = Xt + E[s̃i∗]− µi∗ = Xt.

If no more items are inserted, Xt+1 = Xt trivially. We can therefore remove the conditioning on i∗, so
E[Xt+1|Xt] = Xt, and this is the definition of a martingale. We now use the well-known martingale property
that E[Xt] = E[X0] for any t ≥ 0. In our case, E[Xt] = E[X0] = 0 for any t ≥ 0. As we mentioned,

∑
i∈At

s̃i

is always bounded by 2, so Xt ≤ 2 − µ(At). Taking the expectation, 0 = E[Xt] ≤ 2 − E[µ(At)]. Thus
E[µ(A)] = supt≥0 E[µ(At)] ≤ 2.

We now show how to bound the value of an optimal adaptive policy using a linear program. We define by
wi = vi ·Pr[si ≤ 1] the effective value of item i, which is an upper bound on the expected value a policy can
gain if it attempts to insert item i. Consider now the linear programming relaxation for a knapsack problem
with item values wi and item sizes µi, parameterized by the knapsack capacity t:

Φ(t) = max

{∑
i

wixi :
∑

i

µixi ≤ t, xi ∈ [0, 1]

}
.

Note that we use wi instead of vi in the objective for the same reason that we cannot just use vi in the
deterministic case. If we have a deterministic instance with a single item whose size is larger than 1, then
we cannot use this item in an integral solution but we can use part of it in a fractional solution, giving us an
unbounded integrality gap. To fix this issue, we need to appropriately discount the objective value we can
obtain from such large items, which leads us to the use of wi in the place of vi. Using the linear program
above, we now arrive at the following bound.

Theorem 1. For any instance of the Stochastic Knapsack problem, ADAPT ≤ Φ(2).

Proof. Consider any adaptive policy P, and as above let A denote the (random) set of items that P attempts
to insert into the knapsack. Consider the vector ~x where xi = Pr[i ∈ A]. The expected mass that P attempts
to insert is E[µ(A)] =

∑
i µixi. We know from Lemma 2 that this is bounded by E[µ(A)] ≤ 2, therefore ~x is

a feasible vector and
∑

i wixi ≤ Φ(2).

Let fit(i, c) denote the indicator variable of the event that si ≤ c. Let ci denote the capacity remaining
when P attempts to insert item i. This is a random variable well-defined if i ∈ A. The expected profit for
item i is

E[vi fit(i, ci) | i ∈ A] · Pr[i ∈ A] ≤ E[vi fit(i, 1) | i ∈ A] · Pr[i ∈ A] = vi · Pr[si ≤ 1] · Pr[i ∈ A] = wixi

since si is independent of the event i ∈ A. Therefore, E[val(P)] ≤
∑

i wixi ≤ Φ(2). The expected value
obtained by any adaptive policy is bounded in this way, and therefore ADAPT ≤ Φ(2).

As we show in the following, this linear program provides a good upper bound on the adaptive optimum, in
the sense that it can differ from ADAPT at most by a constant factor. The following example shows that
this gap can be close to a factor of 4 which imposes a limitation on the approximation factor we can possibly
obtain using this LP.

7

Example 3. Using only Theorem 1 to bound the performance of an optimal adaptive policy, we cannot
hope to achieve any worst-case approximation bound better than 4, even with an adaptive policy. Consider
items of deterministic size (1 + ε)/2 for a small ε > 0. Fractionally, we can pack almost 4 items within
capacity 2, so that Φ(2) = 4/(1 + ε), while only 1 item can actually fit.

The best approximation bound we can prove using Theorem 1 is a bound of 32/7 ≈ 4.57, for a non-adaptive
policy presented in the next section. We show that this is tight in a certain sense. Later, in Section 5, we
develop a stronger bound on ADAPT that leads to improved approximation bounds.

4 A 32/7-Approximation for Stochastic Knapsack

In this section we develop a randomized algorithm whose output is a non-adaptive policy obtaining expected
value at least (7/32)ADAPT . Furthermore, this algorithm can be easily derandomized.

Consider the function Φ(t) which can be seen as the fractional solution of a knapsack problem with capacity
t. This function is easy to describe. Its value is achieved by greedily packing items of maximum possible
“value density” and taking a suitable fraction of the overflowing item. Assume that the items are already
indexed by decreasing value density:

w1

µ1
≥ w2

µ2
≥ w3

µ3
≥ . . . ≥ wn

µn
.

We call this the greedy ordering. Note that simply inserting items in this order is not sufficient, even in
the deterministic case. For instance, consider s1 = ε, v1 = w1 = 2ε and s2 = v2 = w2 = 1. The naive
algorithm would insert only the first item of value 2ε, while the optimum is 1. Thus we have to be more
careful. Essentially, we use the greedy ordering, but first we insert a random item in order to prevent the
phenomenon we just mentioned.

Let Mk =
∑k

i=1 µi. Then for t = Mk−1 + ξ ∈ [Mk−1,Mk], we have

Φ(t) =
k−1∑
i=1

wi +
wk

µk
ξ.

Assume without loss of generality that Φ(1) = 1. This can be arranged by scaling all item values by an
appropriate factor. We also assume that there are sufficiently many items so that

∑n
i=1 µi ≥ 1, which can

be arranged by adding dummy items of value 0. Now we are ready to describe our algorithm.

Let r be the minimum index such that
∑r

i=1 µi ≥ 1. Denote µ′r = 1−
∑r−1

i=1 µi, i.e. the part of µr that fits
within capacity 1. Set p′ = µ′r/µr and w′

r = p′wr. For j = 1, 2, . . . , r − 1, set w′
j = wj and µ′r = µr. We

assume Φ(1) =
∑r

i=1 w′
i = 1.

The randomized greedy algorithm.

• Choose index k with probability w′
k.

• If k < r, insert item k. If k = r, flip another independent coin and insert item r with probability p′

(otherwise discard it).

• Then insert items 1, 2, . . . , k − 1, k + 1, . . . , r in the greedy order.

Theorem 2. The randomized greedy algorithm achieves expected value RNDGREEDY ≥ (7/32)ADAPT .

Proof. First, assume for simplicity that
∑r

i=1 µi = 1. Also, Φ(1) =
∑r

i=1 wi = 1. Then ADAPT ≤ Φ(2) ≤ 2
but also, more strongly:

ADAPT ≤ Φ(2) ≤ 1 + ω

8

where ω = wr/µr. This follows from the concavity of Φ(x). Note that

ω =
wr

µr
≤
∑r

i=1 wi∑r
i=1 µi

= 1.

With
∑r

i=1 µi = 1, the algorithm has a simpler form:

• Choose k ∈ {1, 2, . . . , r} with probability wk and insert item k first.

• Then, insert items 1, 2, . . . , k − 1, k + 1, . . . , r in the greedy order.

We estimate the expected value achieved by this algorithm. Note that we analyze the expectation with
respect to the random sizes of items and also our own randomization. Item k is inserted with probability wk

first, with probability
∑k−1

i=1 wi after {1, 2, . . . , k − 1} and with probability wj after {1, 2, . . . , k − 1, j} (for
k < j ≤ r). If it is the first item, the expected profit for it is simply wk = vk · Pr[sk ≤ 1]. If it is inserted
after {1, 2, . . . , k − 1}, we use Lemma 1 to obtain:

Pr[item k fits] = Pr

[
k∑

i=1

si ≤ 1

]
≥ 1−

k∑
i=1

µi

and the conditional expected profit for item k is in this case vk ·Pr[item k fits] ≥ wk(1−
∑k

i=1 µi). The case
when item k is preceded by {1, 2, . . . , k − 1, j} is similar. Let Vk denote our lower bound on the expected
profit obtained for item k:

Vk = wk

wk +
k−1∑
j=1

wj

(
1−

k∑
i=1

µi

)
+

r∑
j=k+1

wj

(
1−

k∑
i=1

µi − µj

)
= wk

 r∑
j=1

wj

(
1−

k∑
i=1

µi

)
+ wk

k∑
i=1

µi −
r∑

j=k+1

wjµj

 .

We have RNDGREEDY ≥
∑r

k=1 Vk and simplify the estimate using
∑r

j=1 wj = 1 and
∑r

j=1 µj = 1:

RNDGREEDY ≥
r∑

k=1

wk

(
1−

k∑
i=1

µi + wk

k∑
i=1

µi −
r∑

i=k+1

wiµi

)
= 1 +

∑
1≤i≤k≤r

(−wkµi + w2
kµi)−

∑
1≤k<i≤r

wkwiµi

= 1 +
∑

1≤i≤k≤r

(−wkµi + w2
kµi + wkwiµi)−

r∑
i,k=1

wkwiµi

= 1 +
∑

1≤i≤k≤r

wkµi(wi + wk − 1)−
r∑

i=1

wiµi.

To symmetrize this polynomial, we apply the condition of greedy ordering. For any i < k, we have wi +
wk − 1 ≤ 0, and the greedy ordering implies wkµi ≤ wiµk, allowing us to replace wkµi by 1

2 (wkµi + wiµk)
for all pairs i < k:

RNDGREEDY ≥ 1 +
1
2

∑
1≤i<k≤r

(wkµi + wiµk)(wi + wk − 1) +
r∑

i=1

wiµi(2wi − 1)−
r∑

i=1

wiµi

= 1 +
1
2

r∑
i,k=1

wkµi(wi + wk − 1) +
1
2

r∑
i=1

wiµi(2wi − 1)−
r∑

i=1

wiµi

= 1 +
1
2

r∑
k=1

wk

r∑
i=1

wiµi +
1
2

r∑
k=1

w2
k

r∑
i=1

µi −
1
2

r∑
k=1

wk

r∑
i=1

µi +
r∑

i=1

w2
i µi −

3
2

r∑
i=1

wiµi

9

and using again
∑r

j=1 wj =
∑r

j=1 µj = 1,

RNDGREEDY ≥ 1 +
1
2

r∑
i=1

wiµi +
1
2

r∑
k=1

w2
k −

1
2

+
r∑

i=1

w2
i µi −

3
2

r∑
i=1

wiµi

=
1
2

+
1
2

r∑
k=1

w2
k +

r∑
i=1

w2
i µi −

r∑
i=1

wiµi.

We want to compare this expression to 1 + ω where ω = min{wi/µi : i ≤ r}. We use the value of ω to
estimate

∑r
k=1 w2

k ≥ ω
∑r

k=1 wkµk and we obtain

RNDGREEDY ≥ 1
2

+
ω

2

r∑
k=1

wkµk +
r∑

i=1

w2
i µi −

r∑
i=1

wiµi

=
1
2

+
r∑

i=1

µiwi

(ω

2
+ wi − 1

)
.

Each term in the summation above is a quadratic function of wi that is minimized at wi = 1/2− ω/4, so

RNDGREEDY ≥ 1
2
−

r∑
i=1

µi

(
1
2
− ω

4

)2

.

Finally,
∑

i µi = 1 and

RNDGREEDY ≥ 1
4

+
ω

4
− ω2

16
.

We compare this to the adaptive optimum which is bounded by 1 + ω, and minimize over ω ∈ [0, 1]:

RNDGREEDY

ADAPT
≥ 1

4
− ω2

16(1 + ω)
≥ 7

32
.

It remains to remove the assumption that
∑r

i=1 µi = 1. We claim that if
∑r

i=1 µi > 1, the randomized
greedy algorithm performs just like the simplified algorithm we just analyzed, on a modified instance with
values w′

j and mean sizes µ′j (so that
∑r

i=1 µ′j = 1; see the description of the algorithm). Indeed, Φ(1) = 1
and ω = wr/µr = w′

r/µ′r in both cases, so the bound on ADAPT is the same. For an item k < r, our
estimate of the expected profit in both instances is

Vk = w′
k

w′
k +

k−1∑
j=1

w′
j

(
1−

k∑
i=1

µ′i

)
+

r∑
j=k+1

w′
j

(
1−

k∑
i=1

µ′i − µ′j

) .

For the original instance, this is because the expected contribution of item r to the total size, conditioned
on being selected first, is p′µr = µ′r; if not selected first, its contribution is not counted at all. The expected
profit for item r is Vr = w′

rp
′wr = (w′

r)
2 in both instances. This reduces the analysis to the case we dealt

with already, completing the proof of the theorem.

Our randomized policy can be easily derandomized. Indeed, we can simply enumerate all deterministic
non-adaptive policies that can be obtained by our randomized policy: Insert a selected item first, and then
follow the greedy ordering. We can estimate the expected value for each such ordering in polynomial time
using the lower bound derived in the proof of the theorem, and then choose the best one. This results in a
deterministic non-adaptive policy achieving at least (7/32)ADAPT .

10

Example 4. This analysis is tight in the following sense: consider an instance with 8 identical items with
µi = 1/4 and wi = vi = 1. Our bound on the adaptive optimum would be Φ(2) = 8, while our analysis of any
non-adaptive algorithm would imply the following. We get the first item always (because w1 = v1 = 1), the
second one with probability at least 1− 2/4 = 1/2 and the third one with probability at least 1− 3/4 = 1/4.
Thus our estimate of the expected value obtained is 7/4. We cannot prove a better bound than 32/7 with
the tools we are using: the LP from Theorem 1, and Markov bounds based on mean item sizes. Of course,
the actual adaptivity gap for this instance is 1, and our algorithm performs optimally.

Example 5. It can be the case that RNDGREEDY ≈ ADAPT/4. Consider an instance with multiple
items of two types: those of size (1 + ε)/2 and value 1/2 + ε, and those of size Be(p) and value p. Our
algorithm will choose a sequence of items of the first type, of which only one can fit. The optimum is a
sequence of items of the second type which yields expected value 2 − p. For small p, ε > 0, the gap can be
arbitrarily close to 4. We have no example where the greedy algorithm performs worse than this. We can
only prove that the approximation factor is at most 32/7 ≈ 4.57 but it seems that the gap between 4 and
4.57 is only due to the weakness of Markov bounds.

In the following sections, we actually present a different non-adaptive algorithm which improves the approx-
imation factor to 4. However, the tools we employ to achieve this are more involved. The advantage of the
4.57-approximation algorithm is that it is based on the simple LP from Theorem 1 and the analysis uses
only Markov bounds. This simpler analysis has already been shown to be useful in the analysis of other
stochastic packing and scheduling problems [27, 4].

5 A Stronger Bound on the Adaptive Optimum

In this section, we develop a stronger upper bound on ADAPT and use it to prove an approximation bound
of 4 for a simple greedy non-adaptive policy. As before, let A denote the (random) set of items that an
adaptive policy attempts to insert. In general, we know that E[µ(A)] ≤ 2. Here, we examine more closely
how this mass can be distributed among items. By fixing a subset of items J , we show that although the
quantity E[µ(A ∩ J)] can approach 2 for large µ(J), we obtain a stronger bound for small µ(J).

Lemma 3. For any adaptive policy, let A be the (random) set of items that it attempts to insert. Then for
any set of items J ,

E[µ(A ∩ J)] ≤ 2

1−
∏
j∈J

(1− µj)

 .

Proof. Denote by A(c) the set of items that an adaptive policy attempts to insert, given that the initial
available capacity is c. Let M(J, c) = supP E[µ(A(c) ∩ J)] denote the largest possible expected mass that
such a policy can attempt to insert, counting only items from J . We prove by induction on |J | that

M(J, c) ≤ (1 + c)

1−
∏
j∈J

(1− µj)

 .

Without loss of generality, we can just assume that the set of available items is J ; we do not gain anything
by inserting items outside of J . Suppose that a policy in a given configuration (J, c) inserts item i ∈ J .
The policy collects mass µi and then continues provided that si ≤ c. We denote the indicator variable of
this event by fit(i, c), and we set J ′ = J \ {i}; the remaining capacity will be c − si ≥ 0 and therefore the
continuing policy cannot insert more expected mass than M(J ′, c − si). Denoting by B ⊆ J the set of all
items in J that the policy attempts to insert, we get

E[µ(B)] ≤ µi + E[fit(i, c)M(J ′, c− si)].

11

We apply the induction hypothesis to M(J ′, c− si):

E[µ(B)] ≤ µi + E

fit(i, c)(1 + c− si)

1−
∏
j∈J′

(1− µj)

 .

We denote the truncated size of item i by s̃i = min{si, 1}; therefore we can replace si by s̃i:

E[µ(B)] ≤ µi + E

fit(i, c)(1 + c− s̃i)

1−
∏
j∈J′

(1− µj)

 .

and then we note that 1 + c− s̃i ≥ 0 holds always, not only when item i fits. So we can replace fit(i, c) by
1 and evaluate the expectation:

E[µ(B)] ≤ µi + E

(1 + c− s̃i)

1−
∏
j∈J′

(1− µj)

= µi + (1 + c− µi)

1−
∏
j∈J′

(1− µj)

= (1 + c)− (1 + c− µi)

∏
j∈J′

(1− µj).

Finally, using (1 + c− µi) ≥ (1 + c)(1− µi), we get:

E[µ(B)] ≤ (1 + c)− (1 + c)(1− µi)
∏
j∈J′

(1− µj) = (1 + c)

1−
∏
j∈J

(1− µj)

 .

Since this holds for any adaptive policy, we conclude that M(J, c) ≤ (1 + c)
(
1−

∏
j∈J(1− µj)

)
.

Theorem 3. ADAPT ≤ Ψ(2), where

Ψ(t) = max

∑
i

wixi :
∀J ⊆ [n];

∑
i∈J

µixi ≤ t

(
1−

∏
i∈J

(1− µi)
)

∀i ∈ [n]; xi ∈ [0, 1]

 .

Proof. Just as in the proof of Theorem 1, we consider any adaptive policy P and derive from it a feasible
solution ~x with xi = Pr[i ∈ A] for the LP for Ψ(2) (feasibility now follows from Lemma 3 rather than
Lemma 2). Thus Ψ(2) is an upper bound on ADAPT .

This is a strengthening of Theorem 1 in the sense that Ψ(2) ≤ Φ(2). This holds because any solution feasible
for Ψ(2) is feasible for Φ(2). Observe also that Ψ(t) is a concave function and in particular, Ψ(2) ≤ 2Ψ(1).

Ψ(t) turns out to be the solution of a polymatroid optimization problem which can be found efficiently. We
discuss the properties of this LP in more detail in the appendix. In particular, we show that there is a
simple closed-form expression for Ψ(1). The optimal solution is obtained by indexing the items in the order
of non-increasing wi/µi and choosing x1, x2, . . . successively, setting each xk as large as possible without
violating the constraint for J = {1, 2, . . . , k}. This yields xk =

∏k−1
i=1 (1− µi).

Corollary 1. The adaptive optimum is bounded by ADAPT ≤ 2Ψ(1) where

Ψ(1) =
n∑

k=1

wk

k−1∏
i=1

(1− µi)

and the items are indexed in non-increasing order of wi/µi.

12

6 A 4-Approximation for Stochastic Knapsack

Consider the following simple non-adaptive policy, which we call the simplified greedy algorithm. First, we
compute the value of Ψ(1) according to Corollary 1.

• If there is an item i such that wi ≥ Ψ(1)/2, then insert only item i.

• Otherwise, insert all items in the greedy order w1
µ1

≥ w2
µ2

≥ w3
µ3

≥ . . . ≥ wn

µn
.

We claim that the expected value obtained by this policy, GREEDY , satisfies GREEDY ≥ Ψ(1)/2, from
which we immediately obtain ADAPT ≤ 2Ψ(1) ≤ 4 GREEDY . First, we prove a general lemma on sums
of random variables. The lemma estimates the expected mass that our algorithm attempts to insert.

Lemma 4. Let X1, X2, . . . , Xk be independent, nonnegative random variables and µi = E[min{Xi, 1}]. Let
S0 = 0 and Si+1 = Si + Xi+1. Let pi = Pr[Si < 1]. Then

k∑
j=1

pj−1µj ≥ 1−
k∏

j=1

(1− µj).

Note. We need not assume anything about the total expectation. This works even for
∑k

i=1 µi > 1.

For the special case of k random variables of equal expectation µj = 1/k, Lemma 4 implies,

1
k

k∑
j=1

Pr[Sj−1 < 1] ≥ 1−
(

1− 1
k

)k

≥ 1− 1
e
. (1)

This seems related to a question raised by Feige [8]: what is the probability that Sk−1 < 1 for a sum of
independent random variables Sk−1 = X1 + X2 + . . . + Xk−1 with expectations µj = 1/k? Feige proves that
the probability is at least 1/13 but conjectures that it is in fact at least 1/e. A more general conjecture
would be that for any j < k,

pj = Pr[Sj < 1] ≥
(

1− 1
k

)j

(2)

Note that Markov’s inequality would give only pj ≥ 1 − j/k. Summing up (2) from j = 0 up to k − 1, we
would get (1). However, (2) remains a conjecture and we can only prove (1) as a special case of Lemma 4.

Proof. Define σi = E[Si|Ai] where Ai is the event that Si < 1. By conditional expectations (remember that
Xi+1 is independent of Ai):

σi + µi+1 = E[Si|Ai] + E[min{Xi+1, 1}] = E[Si + min{Xi+1, 1}|Ai]
= E[Si+1|Ai+1] Pr[Ai+1|Ai] + E[Si + min{Xi+1, 1}|Āi+1 ∩Ai] Pr[Āi+1|Ai]

≥ σi+1
Pr[Ai+1]
Pr[Ai]

+ 1 ·
(

1− Pr[Ai+1]
Pr[Ai]

)
= σi+1

pi+1

pi
+
(

1− pi+1

pi

)
= 1− (1− σi+1)

pi+1

pi
.

This implies that
pi+1

pi
≥ 1− σi − µi+1

1− σi+1
. (3)

13

For i = 0 we obtain p1 ≥ (1− µ1)/(1− σ1), since p0 = 1 and σ0 = 0. Let us now consider two cases. First,
suppose that σi + µi+1 < 1 for all i, 0 ≤ i < k. In this case, the ratio on the right hand side of (3) is always
nonnegative and we can multiply (3) from i = 0 up to j − 1, for any j ≤ k:

pj ≥ 1− µ1

1− σ1
· 1− σ1 − µ2

1− σ2
· · · 1− σj−1 − µj

1− σj

= (1− µ1)
(

1− µ2

1− σ1

)
· · ·
(

1− µj

1− σj−1

)
1

1− σj
.

We define
νi =

µi

1− σi−1
.

Therefore,

pj ≥
1

1− σj

j∏
i=1

(1− νi), (4)

and
k∑

j=1

pj−1µj ≥
k∑

j=1

νj

j−1∏
i=1

(1− νi) = 1−
k∏

i=1

(1− νi). (5)

By our earlier assumption, µi ≤ νi ≤ 1 for all 1 ≤ i ≤ k. It follows that

k∑
j=1

pj−1µj ≥ 1−
k∏

i=1

(1− µi). (6)

In the second case, we have σj + µj+1 ≥ 1 for some j < k, consider the first such j. Then σi + µi+1 < 1 for
all i < j and we can apply the previous arguments to variables X1, . . . , Xj . From (5),

j∑
i=1

pi−1µi ≥ 1−
j∏

i=1

(1− νi). (7)

In addition, we estimate the contribution of the (j + 1)-th item, which has mass µj+1 ≥ 1 − σj , and from
(4) we get

pjµj+1 ≥ pj(1− σj) ≥
j∏

i=1

(1− νi). (8)

Therefore in this case we obtain from (7) + (8):

k∑
i=1

pi−1µi ≥
j∑

i=1

pi−1µi + pjµj+1 ≥ 1.

Theorem 4. The simplified greedy algorithm obtains expected value GREEDY ≥ Ψ(1)/2 ≥ ADAPT/4.

Proof. If the algorithm finds an item i to insert with wi ≥ Ψ(1)/2, then clearly by inserting just this single
item it will obtain an expected value of at least Ψ(1)/2. Let us therefore focus on the case where wi < Ψ(1)/2
for all items i.

Let Xi = si be the random size of item i. Lemma 4 says that the expected mass that our greedy algorithm
attempts to insert, restricted to the first k items, is at least 1−

∏k
i=1(1− µi). As in Lemma 4, we denote by

pk the probability that the first k items fit. We estimate the following quantity:

n∑
i=1

pi−1wi =
n∑

i=1

wi

µi
pi−1µi =

n∑
k=1

(
wk

µk
− wk+1

µk+1

) k∑
i=1

pi−1µi

14

where we define wn+1/µn+1 = 0 for simplicity. Using Lemma 4, we have

n∑
i=1

pi−1wi ≥
n∑

k=1

(
wk

µk
− wk+1

µk+1

)(
1−

k∏
i=1

(1− µi)

)

=
n∑

k=1

wk

µk

(
k−1∏
i=1

(1− µi)−
k∏

i=1

(1− µi)

)

=
n∑

k=1

wk

µk

(
k−1∏
i=1

(1− µi)

)
(1− (1− µk))

=
n∑

k=1

wk

k−1∏
i=1

(1− µi) = Ψ(1).

The simplified greedy algorithm then obtains expected value

n∑
i=1

piwi =
n∑

i=1

pi−1wi −
n∑

i=1

(pi−1 − pi)wi ≥ Ψ(1)− Ψ(1)
2

n∑
i=1

(pi−1 − pi) ≥ Ψ(1)/2.

This analysis is tight in that we can have GREEDY ≈ ADAPT/4. The example showing this is the same
as our earlier example that gives RNDGREEDY ≈ ADAPT/4. Also, the following instance shows that it
is impossible to achieve a better factor than 4 using Theorem 3 to bound the adaptive optimum.

Example 6. For an instance with an unlimited supply of items of value vi = 1 and deterministic size
si = (1 + ε)/2, we have Ψ(1) = 2/(1 + ε) and an upper bound ADAPT ≤ 2Ψ(1) = 4/(1 + ε), while only
1 item can fit. The same holds even for the stronger bound of Ψ(2): since xi = min{1, 23−i}/(1 + ε) is a
feasible solution whose value converges to

∑∞
i=1 xi = 4/(1 + ε), we get Ψ(2) ≥ 4/(1 + ε), which is almost 4

times as much as the true optimum.

Example 7. Both greedy algorithms we have developed thus far only examine mean truncated item sizes
and probabilities of exceeding the capacity; no other information about the item size distributions is used.
It turns out that under these restrictions, it’s impossible to achieve an approximation factor better than 3.
Suppose we have two types of unit-value items, each in unlimited supply. The first type has size Be(1/2+ ε)
and the second has size s2 = 1/2 + ε. The optimal solution is to insert only items of the first kind, which
yields an expected number of 2/(1/2 + ε)− 1 = 3−O(ε) successfully inserted items. However, an algorithm
that can only see the mean truncated sizes might be fooled into selecting a sequence of the second kind
instead - and it will insert only 1 item.

7 A (2 + ε)-Approximation for Small Items

Consider a special scenario where the truncated mean size of each item is very small. We would like to
achieve a better approximation ratio in this case. Recall the analysis in Section 6 which relies on an estimate
of the mass that our algorithm attempts to insert. Intuitively, the mass of the item that we over-count is
very small in this case, so there is negligible difference between the mass we attempt to insert and what we
insert successfully. Still, this argument requires a little care, as we need a small relative rather than additive
error.

15

Lemma 5. Let X1, X2, . . . , Xk be independent, nonnegative random variables and suppose that for each i,
µi = E[min{Xi, 1}] ≤ ε. Let pk = Pr[

∑k
i=1 Xi ≤ 1]. Then

k∑
j=1

pjµj ≥ (1− ε)

1−
k∏

j=1

(1− µj)

 .

Proof. We extend the proof of Lemma 4. Consider two cases. First, suppose that µj < 1 − σj−1 for all
j ∈ [k]. Then by applying (5) and using the fact that µj ≤ ε,

k∑
j=1

pjµj =
k∑

j=1

pj−1µj −
k∑

j=1

(pj−1 − pj)µj ≥ 1−
k∏

j=1

(1− νj)−
k∑

j=1

(pj−1 − pj)ε

= 1−
k∏

j=1

(1− νj)− (p0 − pk)ε = (1− ε)−
k∏

j=1

(1− νj) + εpk.

Using (4) and our assumption that µj ≤ νj for all j ∈ [k], we now have

k∑
j=1

pjµj ≥ (1− ε)−
k∏

j=1

(1− νj) +
ε

1− σk

k∏
j=1

(1− νj) ≥ (1− ε)

1−
k∏

j=1

(1− µj)

 .

On the other hand, if µj+1 > 1− σj for some j < k, then consider the smallest such j. By (4),

j∏
i=1

(1− νj) ≤ (1− σj)pj ≤ µj+1pj ≤ εpj .

Hence,
k∑

i=1

piµi ≥
j∑

i=1

piµi ≥ (1− ε)−
j∏

i=1

(1− νi) + εpj ≥ (1− ε)− εpj + εpj = 1− ε,

and this concludes the proof.

Theorem 5. Suppose that µi ≤ ε for all items i. Then the non-adaptive policy inserting items in the greedy
order achieves expected value at least

(
1−ε
2

)
ADAPT .

Proof. We modify the proof of Theorem 4 in a straightforward fashion using Lemma 5 in the place of
Lemma 4. The expected value we obtain by inserting items in the greedy ordering is

n∑
i=1

piwi ≥ (1− ε)
n∑

k=1

(
wk

µk
− wk+1

µk+1

)(
1−

k∏
i=1

(1− µi)

)

= (1− ε)
n∑

k=1

wk

k−1∏
i=1

(1− µi) = (1− ε)Ψ(1),

and we complete the proof by noting that ADAPT ≤ 2Ψ(1) (Corollary 1).

8 An Adaptive (3 + ε)-Approximation

Let S denote the set of small items (with µi ≤ ε) and L denote the set of large items (µi > ε) in our instance,
and let ADAPT (S) and ADAPT (L) respectively denote the expected values obtained by an optimal adaptive
policy running on just the sets S or L. In the previous section, we constructed a greedy non-adaptive policy
whose expected value is GREEDY ≥ 1−ε

2 ADAPT (S).

16

In this section, we develop an adaptive policy for large items whose expected value LARGE is at least
1

1+εADAPT (L). Suppose we run whichever policy gives us a larger estimated expected value (both policies
will allow us to estimate their expected values), so we end up inserting only small items, or only large items.
We show that this gives us a (3 + 5ε)-approximate adaptive policy for arbitrary items.

Theorem 6. Let 0 < ε ≤ 1/2 and define large items by µi > ε and small items by µi ≤ ε. Applying
either the greedy algorithm for small items (if GREEDY ≥ LARGE) or the adaptive policy described in
this section for large items (if LARGE > GREEDY), we obtain a (3 + 5ε)-approximate adaptive policy for
the Stochastic Knapsack problem.

Proof. Let V = max(GREEDY,LARGE) denote the expected value obtained by the policy described in the
theorem. Using the fact that 1

1−ε ≤ 1+2ε for ε ≤ 1/2, we then have ADAPT ≤ ADAPT (S)+ADAPT (L) ≤
2

1−εGREEDY + (1 + ε)LARGE ≤ (3 + 5ε)V .

We proceed now to describe our (1+ε)-approximate adaptive policy for large items. Given a set of remaining
large items J and a remaining capacity c, it spends polynomial time (assuming ε is constant) and computes
the next item to insert in a (1 + ε)-approximate policy. Let b be an upper bound on the number of bits
required to represent any item value wi, instantiated item size for si, or probability value obtained by
evaluating the cumulative distribution for si. Note that this implies that our probability distributions are
effectively discrete. Assuming ε is a constant, our running time will be polynomial in n and b. Our policy
also estimates the value it will eventually obtain, thereby computing a (1+ε)-approximation to ADAPT (L)
(i.e., the value of LARGE). It is worth noting that in contrast to our previous non-adaptive approaches, the
adaptive policy here needs to know for each item i the complete cumulative distribution of si, rather than
just µi and Pr[si ≤ 1].

Our adaptive algorithm selects the first item to insert using a recursive computation that is reminiscent of
the decision tree model of an adaptive policy in Figure 1. Given an empty knapsack, we first consider which
item i we should insert first. For a particular item i, we estimate the expected value of an optimal adaptive
policy starting with item i by randomly sampling (or rather, by using a special “assisted” form of random
sampling) a polynomial number of instantiations of si and recursively computing the optimal expected value
we can obtain using the remaining items on a knapsack of capacity 1 − si. Whichever item i yields the
largest expected value is the item we choose to insert first. We can regard the entire computation as a large
tree: the root performs a computation to decide which of the |L| large items to insert first, and in doing so
it issues recursive calls to level 1 nodes that decide which of |L| − 1 remaining items to insert next, and so
on. Each node at level l issues a polynomial number of calls to nodes at level l + 1. We will show that by
restricting our computation tree to at most a constant depth (depending on ε), we only forfeit an ε-fraction
of the total expected value. Therefore, the entire computation runs in time polynomial in n and b, albeit
with very high degree (so this is a result of mainly theoretical interest).

Let us define the function FJ,k(c) to give the maximum additional expected value one can achieve if c units of
capacity remain in the knapsack and we may only insert at most k more items drawn from a set of remaining
items J ⊆ L. For example, ADAPT (L) = FL,|L|(1). The analysis of our adaptive policy relies primarily on
the following technical lemma.

Lemma 6. Suppose all items are large, µi > ε with ε ≤ 1. For any constant δ ∈ (0, 1), any c ∈ [0, 1], any set
of remaining large items J ⊆ L and any k = O(1), there exists a polynomial-time algorithm (which we call
AJ,k,δ(c)) that computes an item in J to insert first, which constitutes the beginning of an adaptive policy
obtaining expected value in the range [FJ,k(c)/(1 + δ), FJ,k(c)]. The algorithm also computes a lower-bound
estimate of the expected value it obtains, which we denote by GJ,k,δ(c). This function is non-decreasing in c
and satisfies GJ,k,δ(c) ∈ [FJ,k(c)/(1 + δ), FJ,k(c)].

Note. In this lemma and throughout its proof, polynomial-time means a running time bounded by a
polynomial in n and b, whose degree depends only on k and δ. We denote this polynomial by polyk,δ(n, b).

We prove the lemma shortly, but consider for a moment its implications. Suppose we construct an adaptive
policy that starts by invoking AL,k,δ(1), where δ = ε/3 and k = 6/ε2. The expected value of this policy is

17

LARGE ≥ GL,k,δ(1). Then

FL,k(1) ≤
(
1 +

ε

3

)
LARGE.

Letting JL denote the (random) set of large items successfully inserted by an optimal adaptive policy, Lemma
2 tells us that E[µ(JL)] ≤ 2, so Markov’s inequality (and the fact that µi ≥ ε for all i ∈ L) implies that
Pr[|JL| ≥ k] ≤ ε/3. For any k, we can now decompose the expected value obtained by ADAPT (L) into
the value from the first k items, and the value from any items after the first k. The first quantity is upper-
bounded by FL,k(1) and the second quantity is upper-bounded by ADAPT (L) even when we condition on
the event |JL| > k. Therefore,

ADAPT (L) ≤ FL,k(1) + ADAPT (L) Pr[|JL| > k] ≤ FL,k(1) +
ε

3
ADAPT (L),

and since ε ≤ 1 we have

ADAPT (L) ≤ FL,k(1)
1− ε/3

≤ 1 + ε/3
1− ε/3

LARGE ≤ (1 + ε)LARGE.

Proof of Lemma 6. We use induction on k, taking k = 0 as a trivial base case. Assume the lemma now
holds up to some value of k, so for every set J ⊆ L of large items, for every δ (in particular δ/3), for every
c ≤ 1, we have a polynomial-time algorithm AJ,k,δ/3(c). We use δ/3 as the constant for our inductive step
since (1 + δ/3)2 ≤ 1 + δ for δ ∈ [0, 1] (and we lose the factor of 1 + δ/3 twice in our argument below). Note
that this decreases our constant δ by a factor of 3 for every level of induction, but since we only carry the
induction out to a constant number of levels, we can still treat δ as a constant at every step.

We now describe how to construct the algorithm A•,k+1,δ(·) using a polynomial number of recursive calls
to the polynomial-time algorithm A•,k,δ/3(·). The algorithm AJ,k+1,δ(·) must decide which item in J to
insert first, given that we have c units of capacity remaining, in order to launch a (1+ δ)-approximate policy
for scheduling at most k + 1 items. To do this, we approximate the expected value we get with each item
i ∈ J and take the best item. To estimate the expected value if we start with item i, we might try to use
random sampling: sample a large number of instances of si and for each one we call AJ\{i},k,δ/3(c − si) to
approximate the expected value FJ\{i},k(c−si) obtained by the remainder of an optimal policy starting with
i. However, this approach does not work due to the “rare event” problem often encountered with random
sampling. If si has exponentially small probability of taking very small values for which FJ\{i},k(c − si) is
large, we will likely miss this contribution to the aggregate expected value.

To remedy the problem above, we employ a sort of “assisted sampling” that first determines the interesting
ranges of values of si we should consider. For simplicity of notation, let us assume implied subscripts for
the moment and let G(c) denote GJ\{i},k,δ/3(c). We lower-bound G(·) by a piecewise constant function
f(·) with a polynomial number of breakpoints denoted 0 = c0, . . . , cp = 1. Our goal is to have f(·) be a
(1 + δ)-approximation of F (·), so that we can use it to estimate the expected value of our near-optimal
algorithm. Initially we compute f(cp) = G(1)/(1 + δ/3) by a single invocation of AJ\{i},k,δ/3(1). We then
use binary search to compute each successive breakpoint cp−1, . . . , c1 in reverse order. More precisely, once
we have computed ci, we determine ci−1 to be the maximum value of c such that G(c) < f(ci) and we set
f(ci−1) = G(ci−1)/(1 + δ/3). We illustrate the construction of f(·) in Figure 2. The maximum number of
steps required by the binary search will be polynomial in n and b, since we will ensure (by induction to at
most a constant number of levels) that G(c) always evaluates to a quantity represented by polyk,δ(n, b) bits.

Each breakpoint of f(·) marks a change in G(·) by at least a (1 + δ/3) factor. This ensures that f will have
polyk,δ(n, b) breakpoints, since G always evaluates to a quantity represented by a polynomial number of bits.
Since f is a (1 + δ/3)-approximation to G, which is in turn a (1 + δ/3)-approximation to FJ\{i},k, and since
(1 + δ/3)2 ≤ 1 + δ, we know that f(c) ∈ [FJ\{i},k(c)/(1 + δ), FJ\{i},k(c)].

Assume for a moment now that i is the best first item to insert (the one that would be inserted first by an
adaptive policy optimizing FJ,k+1(c), we can write FJ,k+1(c) as

FJ,k+1(c) = vi Pr[si ≤ c] +
∫ c

t=0

FJ\{i},k(c− t)hi(t)dt.

18

G(c)

c1 c2 c3 c4

δ

δ
δ

pc = 1

2

3

...

f(c)

G(1)
G(1) / (1+ /3)

G(1) / (1+ /3)

G(1) / (1+ /3)

0c = 0

Figure 2: Approximation of the function G(c) = GJ\{i},k,δ/3(c) (shown by a
dotted line) by a piecewise constant function f(c) so that f(c) ∈ [G(c)/(1 +
δ/3), G(c)].

where hi(·) is the probability density function for si. Since we are willing to settle for a (1+δ)-approximation,
we can use f inside the integral, and define the following function:

G
(i)
J,k+1,δ(c) = vi Pr[si ≤ c] +

∫ c

t=0

f(c− t)hi(t)dt

= vi Pr[si ≤ c] +
p∑

j=1

f(cj) Pr[cj−1 < c− si ≤ cj] + f(0) Pr[si = c].

This is our estimate of the expected value obtained when the first item inserted is i. Maximizing over all
i ∈ J gives

GJ,k+1,δ(c) = max
i∈J

G
(i)
J,k+1,δ(c),

which is a (1 + δ)-approximation to FJ,k+1(c). Observe that, as f is non-decreasing, each G
(i)
J,k+1,δ(c) is a

non-decreasing function of c which implies the same for GJ,k+1,δ(c).

Finally, we address the issue of polynomial running time. Any value of GJ,k+1,δ(c) is representable by a
polynomial number of bits, since we recurse on k only to a constant depth. On each level, we make a
polynomial number of calls to evaluate G•,k,δ/3. This yields a recursion tree with polynomially large degrees
and constant depth, therefore the number of nodes is polynomial. In total, the algorithm AJ,k+1,δ(·) above
makes only a polynomial number of calls to A•,k,δ/3(·).

9 The Ordered Adaptive and Fixed Set Models

We next discuss approximation results for two slightly different models. The simplest of these is the fixed
set model, where we must specify apriori a set of items S to insert into the knapsack, and we only receive
the value of S if all these items successfully fit. The second model is the ordered adaptive model, where we
must process the items in some given ordering and for each item in sequence, we must (adaptively) decide
whether to insert it into the knapsack or discard it forever. The ordered case can be further subdivided based
on whether our algorithm is allowed to choose the ordering, or whether the ordering is provided as input.
An interesting problem in the first case is computing the “best” ordering. If we start with the ordering
suggested by our previous 4-approximate non-adaptive policy, then an optimal ordered adaptive policy can
be no worse in terms of approximation guarantee, since the original non-adaptive policy is a feasible solution
in the ordered adaptive model. One way to view the ordered adaptive model is therefore as a heuristic means
of squeezing extra performance out of our existing non-adaptive policies. If we are not allowed to choose the

19

ordering of items, an optimal ordered adaptive policy must at least be as good as an optimal solution in the
fixed set model, since it is a feasible ordered adaptive policy to simply insert items in a fixed set, discarding
all others (it is likely that the ordered adaptive policy will obtain more value than we would get in the fixed
set model, since it gets “partial credit” even if only some of the items manage to fit). The main result we
prove below is an approximation algorithm for the fixed set model that delivers a solution of expected value
FIXED ≥ (1/9.5)ADAPT . Therefore, the expected value obtained by an optimal ordered adaptive policy
using any initial ordering of items must fall within a factor of 9.5 of ADAPT .

Ordered adaptive models are worthwhile to consider because for a given ordering of items, we can compute
an optimal ordered adaptive policy in pseudo-polynomial time using dynamic programming (DP), as long
as all item size distributions are discrete. By “discrete”, we mean that for some δ > 0, the support of si’s
distribution lies in {0, δ, 2δ, 3δ, . . .} for all items i. If the si’s are deterministic, then it is well known that an
optimal solution to the knapsack problem can be computed in O(n/δ) time via a simple dynamic program.
The natural generalization of this dynamic program to the stochastic case gives us an O(n

δ log n) algorithm
for computing an optimal ordered policy. Let V (j, k) denote the optimal expected value one can obtain via
an ordered adaptive policy using only items j . . . n with kδ units of capacity left. Then

V (j, k) = max

{
V (j + 1, k), vj Pr[sj ≤ kδ] +

k∑
t=0

V (j + 1, k − t) Pr[sj = tδ]

}
.

A straightforward DP implementation based on this recurrence runs in O(n2/δ) time, but we can speed this
up to O(n

δ log n) by using the Fast Fourier Transform to handle the convolution work for each row V (j, ·) in
our table of subproblem solutions. An optimal adaptive solution in implicitly represented in the “traceback”
paths through the table of subproblem solutions.

Although DP only applies to problems with discrete size distributions and only gives us pseudo-polynomial
running times, we can discretize any set of size distributions in a manner that gives us a polynomial running
time, at the expense of only a slight loss in terms of feasibility — our policy may overrun the capacity of
the knapsack by a (1 + ε) factor, for a small constant ε > 0 of our choosing. Suppose we discretize the
distribution of si into a new distribution s′i with δ = ε/n (so s′i is represented by a vector of length n/ε),
such that Pr[s′i = kδ] := Pr[kδ ≤ si < (k + 1)δ]. That is, we “round down” the probability mass in si to
the next-lowest multiple of δ. Since the “actual” size of each item (according to si) may be up to ε/n larger
than its “perceived” size (according to s′i), our policy may insert up to (1 + ε) units of mass before it thinks
it has reached a capacity of 1.

9.1 An Approximation Algorithm for the Fixed Set Model

We now consider the computation of a set of items whose value times probability of fitting is at least
ADAPT/9.5. Letting S denote the small items (µi ≤ ε) in our instance, we define

• m1 = maxi wi = maxi{vi Pr[si ≤ 1]}, and

• m2 = max{val(J)(1− µ(J)) : J ⊆ S}.

Note that m1 can be determined easily and m2 can be approximated to within any relative error by running
the standard knapsack approximation scheme with mean sizes. Both values correspond to the expected
benefit of inserting either a single item i or a set J of small items, counting only the event that the entire
set fits in the knapsack. Our fixed set of items is the better of the two: FIXED = max{m1,m2}. We now
compare ADAPT to FIXED.

Lemma 7. For any set J ⊆ S of small items,

val(J) ≤
(

1 +
4µ(J)
1− ε2

)
m2.

20

Proof. We proceed by induction on |J |. For J = ∅, the statement is trivial. If µ(J) ≥ (1 − ε)/2, choose a
minimal K ⊆ J , such that µ(K) ≥ (1− ε)/2. Since the items have mean size at most ε, µ(K) cannot exceed
(1 + ε)/2. By induction,

val(J \K) ≤
(

1 +
4(µ(J)− µ(K))

1− ε2

)
m2

and since m2 ≥ val(K)(1 − µ(K)), for µ(K) ∈ [1−ε
2 , 1+ε

2] we have µ(K)m2 ≥ val(K)µ(K)(1 − µ(K)) ≥
1
4 (1− ε2)val(K), and val(J) = val(J \K) + val(K) ≤

(
1 + 4µ(J)

1−ε2

)
m2. Finally, if µ(J) < (1− ε)/2, then it

easily follows that val(J) ≤ m2
1−µ(J) ≤ (1 + 4µ(J)

1−ε2) m2.

Theorem 7. We have ADAPT ≤ 9.5 FIXED.

Proof. Fix an optimal adaptive policy P and let J = JS ∪ JL denote the (random) set of items that P
attempts to insert into the knapsack, partitioned into small and large items. For any large item i, let
xi = Pr[i ∈ JL]. Then the expected value P obtains from large items is bounded by

∑
i∈L xiwi. It follows

that

ADAPT ≤ E[val(JS)] +
∑
i∈L

xiwi

≤
(

1 +
4E[µ(JS)]

1− ε2

)
m2 +

(∑
i∈L

xi

)
m1

=
(

1 +
4E[µ(JS)]

1− ε2

)
m2 + E[|JL|]m1

≤
(

1 +
4E[µ(JS)]

1− ε2

)
m2 +

E[µ(JL)]
ε

m1

≤
(

1 +
4E[µ(JS)]

1− ε2
+

E[µ(JL)]
ε

)
FIXED

≤
(

1 + max
(

4
1− ε2

,
1
ε

)
E[µ(JS ∪ JL)]

)
FIXED

≤
(

1 + 2 max
(

4
1− ε2

,
1
ε

))
FIXED

and for ε =
√

5 − 2 ≈ 0.236 this gives us ADAPT ≤ 9.48 FIXED. Recall that we do not know how to
compute m2 exactly in polynomial time, although we can approximate this quantity to within an arbitrary
constant factor. Taking this factor to be small enough, we obtain a 9.5-approximation algorithm that runs
in polynomial time.

10 Conclusion

In this paper, we have developed tools for analyzing adaptive and non-adaptive strategies and their relative
merit for a basic stochastic knapsack problem. Extensions to more complex problems, such as packing,
covering and scheduling problems, as well as slightly different stochastic models can be found in the Ph.D.
theses of two of the authors [4, 27].

Acknowledgements. We would like to thank the anonymous referees for many useful suggestions. This
research was supported in part by NSF grants CCR-0098018, ITR-0121495 and CCF-0515221, and ONR
grant N00014-05-1-0148. A preliminary version of this paper with somewhat weaker results appeared in [5].

21

A Appendix: Notes on the Polymatroid LP

Theorem 3 gives an upper bound of Ψ(2) on the adaptive optimum, where Ψ(t) is defined by a linear program
in the following form:

Ψ(t) = max

{∑
i

wixi :
∀J ⊆ [n];

∑
i∈J

µixi ≤ t(1−
∏
i∈J

(1− µi))

∀i ∈ [n]; xi ∈ [0, 1]

}
.

Here we show that although this LP has an exponential number of constraints, it can be solved efficiently.
In fact, the optimal solution can be written in a closed form. The important observation here is that
f(J) = 1 −

∏
j∈J(1 − µj) is a submodular function. This can be seen for example by interpreting f(J) as

Pr[
⋃

j∈J Ej] where Ej are independent events occurring with probabilities µj . Such a function is submodular
for any collection of events, since for any K ⊂ J , we have

f(J ∪ {x})− f(J) = Pr[Ex \
⋃
j∈J

Ej] ≤ Pr[Ex \
⋃

j∈K

Ej] = f(K ∪ {x})− f(K).

From now on, we assume that µi > 0 for each item, since items with µi = 0 can be inserted for free - in
an optimal solution, they will be always present with xi = 1 and this only increases the value of Ψ(t) by a
constant. So assume µi > 0 and substitute zi = µixi. Then Ψ(t) can be written as

Ψ(t) = max

{∑
i

wi

µi
zi :

∀J ⊆ [n]; z(J) ≤ tf(J)
∀i ∈ [n]; zi ∈ [0, µi]

}

where f(J) is a submodular function. Naturally, tf(J) is submodular as well, for any t ≥ 0. For now, ignore
the constraints zi ≤ µi and define

Ψ̃(t) = max

{∑
i

wi

µi
zi :

∀J ⊆ [n]; z(J) ≤ tf(J)
∀i ∈ [n]; zi ≥ 0

}
.

Observe that for t ≤ 1, we have Ψ̃(t) = Ψ(t), since zi ≤ µi is implied by the condition for J = {i}. However,
now we can describe the optimal solution defining Ψ̃(t) explicitly.

As before, we assume that w1
µ1

≥ w2
µ2

≥ The linear program defining Ψ̃(t) is a polymatroid with rank
function tf(J). The optimal solution can be found by a greedy algorithm which essentially sets the values of
z1, z2, z3, . . . successively as large as possible, without violating the constraints

∑k
i=1 zi ≤ tf({1, 2, . . . , k}).

The solution is z1 = tµ1, z2 = tµ2(1− µ1), etc.:

zk = tf({1, 2, . . . , k})− tf({1, 2, . . . , k − 1}) = tµk

k−1∏
i=1

(1− µi)

and submodularity guarantees that this in fact satisfies the constraints for all subsets J [21]. Thus we have
a closed form for Ψ̃(t):

Ψ̃(t) = t

n∑
k=1

wk

k−1∏
i=1

(1− µi)

which yields in particular the formula for Ψ(1) = Ψ̃(1) that we mentioned at the end of Section 5.

Our original LP is an intersection of a polymatroid LP with a box; this is a polymatroid as well, see [21]. It
can be described using a different submodular function g(J, t):

Ψ(t) = max

{∑
i

wi

µi
zi :

∀J ⊆ [n]; z(J) ≤ g(J, t)
∀i ∈ [n]; zi ≥ 0

}
.

22

Note that the constraints zi ≤ µi are removed now. In general, the function g(J, t) can be obtained as

g(J, t) = min
A⊆J

(tf(A) + µ(J \A))

(see [21]). Here, we get an even simpler form; we claim that it’s enough to take the minimum over A ∈ {∅, J}.
Indeed, suppose the minimum is attained for a proper subset ∅ 6= M ⊂ J . Recall that we assume µi > 0 for
all items. Choose x ∈ M , y ∈ J \M and let M1 = M \ {x}, M2 = M ∪ {y}. We have

f(M) = 1−
∏
i∈M

(1− µi) = 1− (1− µx)
∏

i∈M1

(1− µi) = f(M1) + µx

∏
i∈M1

(1− µi)

and similarly
f(M2) = 1−

∏
i∈M2

(1− µi) = f(M) + µy

∏
i∈M

(1− µi).

Now we distinguish two cases: If t
∏

i∈M (1− µi) < 1 then

tf(M2) + µ(J \M2) = tf(M) + µyt
∏
i∈M

(1− µi) + µ(J \M)− µy < tf(M) + µ(J \M).

In case t
∏

i∈M (1− µi) ≥ 1, we have t
∏

i∈M1
(1− µi) > 1:

tf(M) + µ(J \M) = tf(M1) + µxt
∏

i∈M1

(1− µi) + µ(J \M1)− µx > tf(M1) + µ(J \M1).

Both cases contradict our assumption of minimality on M . Thus we have

g(J, t) = min{tf(J), µ(J)} = min

{
t(1−

∏
i∈J

(1− µi)),
∑
i∈J

µi

}
.

Again, we can find the optimal solution for this polymatroid using the greedy algorithm:

zk = g({1, 2, . . . , k}, t)− g({1, 2, . . . , k − 1}, t)

= min

{
t(1−

k∏
i=1

(1− µi)),
k∑

i=1

µi

}
−min

{
t(1−

k−1∏
i=1

(1− µi)),
k−1∑
i=1

µi

}
.

To further simplify, we can use the fact that f({1, 2, . . . , k}) = 1−
∏k

i=1(1−µi) is “concave” as a function of∑k
i=1 µi (when extended to a piecewise linear function f̃ satisfying f̃(

∑k
i=1 µi) = f({1, 2, . . . , k})). Therefore

there is at most one breaking point.

Define b to be the maximum k ≤ n such that

t(1−
k∏

i=1

(1− µi)) ≥
k∑

i=1

µi.

This certainly holds for k = 0 and due to concavity, it holds exactly up to k = b. Therefore

• For 0 ≤ k ≤ b: g({1, . . . , k}, t) =
∑k

i=1 µi.

• For b < k ≤ n: g({1, . . . , k}, t) = t(1−
∏b

i=1(1− µi)).

For the optimal LP solution, we get

• For 1 ≤ k ≤ b: zk = µk.

• For k = b + 1: zb+1 = t(1−
∏b+1

i=1 (1− µi))−
∑b

i=1 µi.

23

• For b + 2 ≤ k ≤ n: zk = tµk

∏k−1
i=1 (1− µi).

The value of the optimal solution is

Ψ(t) =
n∑

i=1

wi

µi
zi =

b∑
k=1

wk +
wb+1

µb+1

(
t(1−

b+1∏
i=1

(1− µi))−
b∑

i=1

µi

)
+ t

n∑
k=b+2

wk

k−1∏
i=1

(1− µi).

(where some of the terms might be void if b = 0, n− 1 or n). Thus we have the solution of Ψ(t) in a closed
form. In some cases, it can be stronger than the formula presented in Corollary 1. Nonetheless, we know
that both of them can differ from the actual optimum by a factor of 4.

References

[1] J.R. Birge and F.V. Louveaux, Introduction to stochastic programming, Springer Verlag, 1997.

[2] R.L. Carraway, R.L.Schmidt, and L.R. Weatherford, An algorithm for maximizing target achievement
in the stochastic knapsack problem with normal returns, Naval Research Logistics 40 (1993), 161–173.

[3] C.-S. Chang, X. Chao, M. Pinedo, and R.R. Weber, On the optimality of LEPT and cµ rules for
machines in parallel, Journal of Applied Probability 29 (1992), 667–681.

[4] B.C. Dean, Approximation algorithms for stochastic scheduling problems, Ph.D. thesis, Massachusetts
Institute of Technology, 2005.

[5] B.C. Dean, M.X. Goemans, and J. Vondrák, Approximating the stochastic knapsack problem: the benefit
of adaptivity, Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2004,
pp. 208–217.

[6] C. Derman, C.J. Lieberman, and S.M. Ross, A renewal decision problem, Management Science 24
(1978), no. 5, 554–561.

[7] H. Emmons and M. Pinedo, Scheduling stochastic jobs with due dates on parallel machines, European
Journal of Operations Research 47 (1990), 49–55.

[8] U. Feige, On the sum of independent random variables with unbounded variance, and estimating the
average degree in a graph, STOC, 2004, pp. 594–603.

[9] A. Goel and P. Indyk, Stochastic load balancing and related problems, FOCS, 1999, pp. 579–586.

[10] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization and approximation in
deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics 5 (1979), 287–326.

[11] M. Henig, Risk criteria in a stochastic knapsack problem, Operations Research 38 (1990), no. 5, 820–825.

[12] N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni, On the costs and benefits of procrastination:
Approximation algorithms for stochastic combinatorial optimization problems, SODA, 2004, pp. 184–693.

[13] J. Kleinberg, Y. Rabani, and E. Tardos, Allocating bandwidth for bursty connections, STOC, 1997,
pp. 664–673.

[14] A. Kleywegt and J.D. Papastavrou, The dynamic and stochastic knapsack problem with random sized
items, Operations Research 49 (2001), no. 1, 26–41.

[15] E. Koutsoupias and C.H. Papadimitriou, Beyond competitive analysis, SIAM Journal on Computing 30
(2000), no. 1, 300–317.

[16] R.H. Möhring, A.S. Schulz, and M. Uetz, Approximation in stochastic scheduling: the power of LP-based
priority policies, J. of the ACM 46 (1999), no. 6, 924–942.

24

[17] J.D. Papastavrou, S. Rajagopalan, and A. Kleywegt, The dynamic and stochastic knapsack problem
with deadlines, Management Science 42 (1996), no. 12, 1706–1718.

[18] M. Pinedo, Stochastic scheduling with release dates and due dates, Operations Reesearch 31 (1983),
559–572.

[19] R. Ravi and A. Sinha, Hedging uncertainty: Approximation algorithms for stochastic optimization prob-
lems, IPCO, 2004, pp. 101–115.

[20] M. Rothkopf, Scheduling with random service times, Management Science 12 (1966), no. 9, 707–713.

[21] A. Schrijver, Combinatorial optimization - polyhedra and efficiency, Springer Verlag, 2003.

[22] D.B. Shmoys and C. Swamy, Stochastic optimization is (almost) as easy as deterministic optimization,
FOCS, 2004, pp. 228–237.

[23] M. Skutella and M. Uetz, Stochastic machine scheduling with precedence constraints, To appear in the
SIAM Journal on Computing.

[24] M. Sniedovich, Preference order stochastic knapsack problems: methodological issues, The Journal of
the Operational Research Society 31 (1980), no. 11, 1025–1032.

[25] E. Steinberg and M.S. Parks, A preference order dynamic program for a knapsack problem with stochastic
rewards, The Journal of the Operational Research Society 30 (1979), no. 2, 141–147.

[26] M. Uetz, Algorithms for deterministic and stochastic scheduling, Ph.D. thesis, Institut für Mathematik,
Technische Universität Berlin, 2001.

[27] J. Vondrák, Probabilistic methods in combinatorial and stochastic optimization, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2005.

25

