
Discrete Comput Geom (2013) 50:520–535
DOI 10.1007/s00454-013-9528-7

Approximating Tverberg Points in Linear Time for Any
Fixed Dimension

Wolfgang Mulzer · Daniel Werner

Received: 15 November 2012 / Revised: 4 June 2013 / Accepted: 25 June 2013 /
Published online: 25 July 2013
© Springer Science+Business Media New York 2013

Abstract Let P ⊆ R
d be a d-dimensional n-point set. A Tverberg partition is a par-

tition of P into r sets P1, . . . , Pr such that the convex hulls conv(P1), . . . , conv(Pr)

have non-empty intersection. A point in
⋂r

i=1 conv(Pi) is called a Tverberg point of
depth r for P . A classic result by Tverberg shows that there always exists a Tverberg
partition of size �n/(d +1)�, but it is not known how to find such a partition in polyno-
mial time. Therefore, approximate solutions are of interest. We describe a deterministic
algorithm that finds a Tverberg partition of size �n/4(d +1)3� in time d O(log d)n. This
means that for every fixed dimension we can compute an approximate Tverberg point
(and hence also an approximate centerpoint) in linear time. Our algorithm is obtained
by combining a novel lifting approach with a recent result by Miller and Sheehy
(Comput Geom Theory Appl 43(8):647–654, 2010).

Keywords Discrete geometry · Tverberg theorem · Centerpoint · Approximation ·
High dimension

1 Introduction

In many applications (such as statistical analysis or finding sparse geometric separators
in meshes) we would like to have a way to generalize the one-dimensional notion of

A preliminary version appeared as W. Mulzer and D. Werner, Approximating Tverberg Points in Linear
Time for Any Fixed Dimension in Proceedings of 28th SoCG, pp. 303–310, 2012.

W. Mulzer (B) · D. Werner
Institut für Informatik, Freie Universität Berlin, Berlin, Germany
e-mail: mulzer@inf.fu-berlin.de
http://page.mi.fu-berlin.de/mulzer

D. Werner
e-mail: dwerner@mi.fu-berlin.de
http://page.mi.fu-berlin.de/dawerner

123

Discrete Comput Geom (2013) 50:520–535 521

a median to higher dimensions. A natural way to do this uses the notion of halfspace
depth (or Tukey depth).

Definition 1.1 Let P be a finite set of points in R
d , and let c ∈ R

d be a point (not
necessarily in P). The halfspace depth of c with respect to P is

min
halfspace h, c∈h

|h ∩ P|.

The halfspace depth of P is the maximum halfspace depth that any point c ∈ R
d can

achieve.

A classic result in discrete geometry, the centerpoint theorem, claims that for every
d-dimensional point set P with n points, there exists a centerpoint, i.e., a point c ∈ R

d

with halfspace depth at least n/(d + 1) [6,15]. There are point sets where this bound
cannot be improved.

However, if we actually want to compute a centerpoint for a given point set effi-
ciently, the situation becomes more involved. For d = 2, a centerpoint can be found
deterministically in linear time [9]. For general d, we can compute a centerpoint in
O(nd) time using linear programming, since Helly’s theorem implies that the set of
all centerpoints can be described as the intersection of O(nd) halfspaces [7]. Chan [2]
shows how to improve this running time to O(nd−1) with the help of randomization.
He actually solves the apparently harder problem of finding a point with maximum
halfspace depth. If the dimension is not fixed, a result by Teng shows that it is coNP-
hard to check whether a given point is a centerpoint [17].

However, as d grows, a running time of nΩ(d) is not feasible. Hence, it makes sense
to look for faster approximate solutions. A classic approach uses ε-approximations [3]:
in order to obtain a point of halfspace depth n(1/(d + 1) − ε), take a random sample
A ⊆ P of size O((d/ε2) log(d/ε)) and compute a centerpoint for A via linear-
programming. This gives the desired approximation with constant probability, and
the running time after the sampling step is constant for fixed d. What more could we
possibly wish for? For one, the algorithm is Monte-Carlo: with a certain probability,
the reported point fails to be a centerpoint, and we know of no fast algorithm to
check its validity. This problem can be solved by constructing the ε-approximation
deterministically [3], at the expense of a more complicated algorithm. Nonetheless,
in either case the resulting running time grows exponentially with d, an undesirable
feature for large dimensions.

This situation motivated Clarkson et al. [4] to look for more efficient ran-
domized algorithms for approximate centerpoints. They give a simple probabilis-
tic algorithm that computes a point of halfspace depth Ω(n/(d + 1)2) in time
O(d2(d log n + log(1/δ))log(d+2)), where δ is the error probability. They also describe
a more sophisticated algorithm that finds such a point in time polynomial in n, d, and
log(1/δ). Both algorithms are based on a repeated algorithmic application of Radon’s
theorem (see below). Unfortunately, there remains a probability of δ that the result is
not correct, and we do not know how to detect failure efficiently.

Thus, more than ten years later, Miller and Sheehy [13] launched a new attack on
the problem. Their goal was to develop a deterministic algorithm for approximating

123

522 Discrete Comput Geom (2013) 50:520–535

Fig. 1 The point c has Tverberg depth r = 5 (Color figure online)

centerpoints whose running time is subexponential in the dimension. For this, they use
a different proof of the centerpoint theorem that is based on a result by Tverberg: any
d-dimensional n-point set can be partitioned into r = �n/(d + 1)� sets P1, . . . , Pr

such that the convex hulls conv(P1), . . . , conv(Pr) have nonempty intersection. Such a
partition is called a Tverberg partition of P . By convexity, any point in

⋂r
i=1 conv(Pi)

must be a centerpoint.
More generally, we say that a point c ∈ R

d has Tverberg depth r ′ with respect to
P if there is a partition of P into r ′ sets such that c lies in the convex hull of each set.
We also call c an approximate Tverberg point (of depth r ′); see Fig. 1.

Miller and Sheehy describe how to find �n/2(d + 1)2� disjoint subsets of P and a
point c ∈ R

d such that each subset contains d + 1 points and has c in its convex hull.
Hence, c constitutes an approximate Tverberg point for P (and thus also an approxi-
mate centerpoint), and the subsets provide a certificate for this fact. The algorithm is
deterministic and runs in time nO(log d). At the same time, it is the first algorithm that
also finds an approximate Tverberg partition of P . The running time is subexponen-
tial in d, but it is still the case that n is raised to a power that depends on d, so the
parameters n and d are not separated in the running time.

In this paper, we show that the running time for finding approximate Tverberg
partitions (and hence approximate centerpoints) can be improved. In particular, we
show how to find a Tverberg partition with �n/4(d + 1)3� sets in deterministic time
d O(log d)n. This is linear in n for any fixed dimension, and the dependence on d is only
quasipolynomial.

1.1 Some Discrete Geometry

We begin by recalling some basic facts and definitions from discrete geometry [11].
A classic fact about convexity is Radon’s theorem.

Theorem 1.2 (Radon’s theorem) For any P ⊆ R
d with d + 2 points there exists a

partition (P1, P2) of P such that conv(P1) ∩ conv(P2) �= ∅.

As mentioned above, Tverberg [18] generalized this theorem for larger point sets.

123

Discrete Comput Geom (2013) 50:520–535 523

Theorem 1.3 (Tverberg’s theorem) Any set P ⊆ R
d with n = (r − 1)(d + 1) + 1

points can be partitioned into r sets P1, . . . , Pr such that
⋂r

i=1 conv(Pi) �= ∅.

Let P be a set of n points in R
d . We say that x ∈ R

d has Tverberg depth r
(with respect to P) if there is a partition of P into sets P1, . . . , Pr such that x ∈⋂r

i=1 conv(Pi). Tverberg’s theorem thus states that, for any set P in R
d , there is a

point of Tverberg depth at least
(n −1)/(d +1)+1� = �n/(d +1)�. Note that every
point with Tverberg depth r also has halfspace depth r . Thus, from now on we will
use the term depth as a shorthand for Tverberg depth. As remarked above, Tverberg’s
theorem immediately implies the famous centerpoint theorem [11]:

Theorem 1.4 (Centerpoint theorem) For any set P of n points in R
d there is a point

c such that all halfspaces containing c contain at least �n/(d + 1)� points from P.

Finally, another classic theorem will be useful for us.

Theorem 1.5 (Carathéodory’s theorem) Suppose that P is a set of n points in R
d and

x ∈ conv(P). Then there is a set of d + 1 points P ′ ⊆ P such that x ∈ conv(P ′).

This means that, in order to describe a Tverberg partition of depth r , we need only
r(d +1) points from P . This observation is also used by Miller and Sheehy [13]. They
further note that it takes O(d3) time to replace d + 2 points by d + 1 points using
Gaussian elimination. We denote the process of replacing larger sets by sets of size
d + 1 as pruning, see Lemma 2.2.

1.2 Our Contribution

We now describe our results in more detail. In Sect. 2, we present a simple lifting
argument which leads to an easy Tverberg approximation algorithm.

Theorem 1.6 Let P be a set of n points in R
d in general position. One can compute a

Tverberg point of depth �n/2d� for P and the corresponding partition in time d O(1)n.

While this does not yet give a good approximation ratio (though constant for any
fixed d), it is a natural approach to the problem: it computes a higher dimensional
Tverberg point via successive median partitions—just as a Tverberg point is a higher
dimensional generalization of the 1-dimensional median.

By collecting several low-depth points and afterwards applying the brute-force
algorithm on small point sets, we get an even higher depth in linear time for any fixed
dimension:

Theorem 1.7 Let P be a set of n points in R
d . Then one can find a Tverberg point of

depth �n/2(d + 1)2� and a corresponding partition in time f (2d+1) + d O(1)n, where
f (m) is the time to compute a Tverberg point of depth �m/(d + 1)� for m points by
brute force.

Finally, by combining our approach with that of Miller and Sheehy, we can improve
the running time to be quasipolynomial in d:

123

524 Discrete Comput Geom (2013) 50:520–535

Theorem 1.8 Let P be a set of n points in R
d . Then one can compute a Tverberg

point of depth �n/4(d +1)3� and a corresponding pruned partition in time d O(log d)n.

In Sect. 4, we compare these results to the Miller–Sheehy algorithm and its
extensions.

2 A Simple Fixed-Parameter Algorithm

We now present a simple algorithm that runs in linear time for any fixed dimension and
computes a point of depth �n/2d�. For this, we show how to compute a Tverberg point
by recursion on the dimension. As a byproduct, we obtain a quick proof of a weaker
version of Tverberg’s theorem. First, however, we give a few more details about the
basic operations performed by our algorithm.

2.1 Basic Operations

Our algorithm builds a Tverberg partition for a d-dimensional point set P by recursion
on the dimension. In each step, we store a Tverberg partition for some point set, together
with an approximate Tverberg point c. We have for each set Pi in the partition a
convex combination that witnesses c ∈ conv(Pi). All the points that arise during our
algorithms are obtained by repeatedly taking convex combinations of the input points,
so the following simple observation lets us maintain this invariant.

Observation 2.1 If xi = ∑
p∈Pi

αp p and y = ∑
i βi xi are convex combinations,

then

y =
∑

i

∑

p∈Pi

βiαp p

is a convex combination of the set
⋃

Pi for y. �

By Carathéodory’s theorem (Theorem 1.5), a Tverberg partition of depth r can be

described by r(d + 1) points from P . In order to achieve running time O(n), we need
the following observation, also used by Miller and Sheehy [13].

Lemma 2.2 Let Q ⊆ R
d be a set of m ≥ d +2 points with c ∈ conv(Q), and suppose

we have a convex combination of Q for c. Then we can find a subset Q′ ⊂ Q with d +1
points such that c ∈ conv(Q′), together with a corresponding convex combination, in
time O(d3m).

Proof Miller and Sheehy observe that replacing d + 2 points by d + 1 points
takes O(d3) time by finding an affine dependency through Gaussian elimination,
see Grötschel et al. [8, Chap. 1]. The choice of affine dependencies does not matter.
Thus, in order to eliminate a point from Q, we can take any subset of size d + 2,
resolve one of the affine dependencies, and update the convex combination accord-
ingly. Repeating this process, we can replace m points by d + 1 points in time
(m − (d + 1))O(d3) = O(d3m). �

123

Discrete Comput Geom (2013) 50:520–535 525

The process in Lemma 2.2 is called pruning, and we call a partition of a
d-dimensional point set in which all sets have size at most d + 1 a pruned partition.
This will enable us to bound the cost of many operations in terms of the dimension d,
instead of the number of points n.

2.2 The Lifting Argument and a Simple Algorithm

Let P be a d-dimensional point set. As a Tverberg point is a higher-dimensional version
of the median, a natural way to compute a Tverberg point for P is to first project P to
some lower-dimensional space, then to recursively compute a good Tverberg point for
this projection, and to use this point to find a solution in the higher-dimensional space.
Surprisingly, we are not aware of any such argument having appeared in the literature
so far.

In what follows, we will describe how to lift a lower-dimensional Tverberg point
into some higher dimension. Unfortunately, this process will come at the cost of a
decreased depth for the lifted Tverberg point. For clarity of presentation, we first
explain the lifting lemma in its simplest form. In Sect. 3.1, we then state the lemma
in its full generality.

Lemma 2.3 Let P be a set of n points in R
d , and let h be a hyperplane in R

d . Let
c′ ∈ h be a Tverberg point of depth r for the projection of P onto h, with pruned
partition P1, . . . , Pr . Then we can find a Tverberg point c ∈ R

d of depth �r/2� for
P and a corresponding Tverberg partition in time O(dn).

Proof For every point p ∈ P , let pr(p) denote the projection of p onto h, and for
every Q ⊆ P , let pr(Q) be the projections of all the points in Q. Let P1, . . . , Pr ⊆ P
such that pr(P1), . . . , pr(Pr) is a pruned partition for pr(P) with Tverberg point c′.
Let � be the line through c′ orthogonal to h.

Since our assumption implies c′ ∈ conv(pr(Pi)) for i = 1, . . . , r , it follows that �

intersects each conv(Pi) at some point xi ∈ R
d . More precisely, as we have a convex

combination c′ = ∑
p∈Pi

αppr(p) for each Pi , we simply get xi = ∑
p∈Pi

αp p.

Assuming an appropriate numbering, let Q̂i = {x2i−1, x2i } , i = 1, . . . , �r/2�, be
a Tverberg partition of x1, . . . , xr . (If r is odd, the set Q̂�r/2� contains only one point,
the median.) Since the points xi lie on the line �, such a Tverberg partition exists and
can be computed in time O(r) by finding the median c, i.e., the element of rank �r/2�,
according to the order along � [5, Chap. 9]. We claim that c is a Tverberg point for
P of depth �r/2�. Indeed, we have

c ∈ conv(Q̂i) = conv({x2i−1, x2i }) ⊆ conv(P2i−1 ∪ P2i)

for 1 ≤ i ≤ �r/2�. Thus, if we set Qi := P2i−1 ∪ P2i , then Q1, . . . , Q�r/2� is a
Tverberg partition for the point c. The total time to compute c and the Qi is O(n), as
claimed. See Fig. 2 for a two-dimensional illustration of the lifting argument. �

Theorem 1.6 is now a direct consequence of Lemma 2.3.

123

526 Discrete Comput Geom (2013) 50:520–535

(a) (b)

(c) (d)

Fig. 2 Illustrating the lifting lemma in the plane: we project the point set P to the line h and find a
Tverberg partition and a Tverberg point c′ for the projection. Then we construct the line � through c′ that is
perpendicular to h, and we take the intersection with the lifted convex hulls of the Tverberg partition. We
then find the median c and the corresponding partition for the intersections along �. Finally, we group the
points according to this partition. a Project, b find partition, c intersect hulls of the sets with h⊥, and d find
median of intersections and combine (Color figure online)

Theorem 2.4 (Theorem 1.6, restated) Let P be a set of n points in R
d in general posi-

tion. One can compute a Tverberg point of depth �n/2d� for P and the corresponding
partition in time d O(1)n.

Proof If d = 1, we obtain a Tverberg point and a corresponding partition by finding
the median c of P [5] and pairing each point to the left of c with exactly one point to
the right of c.

If d > 1, we project P onto the hyperplane xd = 0. This gives an n-point set
P ′ ⊆ R

d−1. We recursively find a point of depth �n/2d−1� and a corresponding
pruned partition for P ′. We then apply Lemma 2.3 to get a point c ∈ R

d of depth
r = ⌈�n/2d−1�/2

⌉ ≥ �n/2d� for P , together with a partition. Each set has at most 2d
points, so by applying Lemma 2.2 to each set, it takes O(d4r) time to prune all sets.

This yields a total running time of Td(n) ≤ Td−1(n) + d O(1)n, which implies the
result. �

In particular, Theorem 1.6 gives a weak version of Tverberg’s theorem with a simple
proof.

Corollary 2.5 (Weak Tverberg theorem) Let P be a set of n points in R
d . Then P can

be partitioned into �n/2d� sets P1, . . . , P�n/2d� such that

�n/2d�⋂

i=1

conv(Pi) �= ∅.

123

Discrete Comput Geom (2013) 50:520–535 527

2.3 An Improved Approximation Factor

In order to improve the approximation factor, we will now use an easy bootstrapping
approach. A Tverberg partition of depth r in R

d needs only (d+1)r points. This means
that after finding a point of depth n/2d , we still have n

(
1 − (d + 1)/2d

)
unused points

at our disposal. The next lemma shows how to leverage these points to achieve an even
higher Tverberg depth.

Lemma 2.6 Letρ ≥ 2 and q(m, d)be a function such that for any m-point set Q ⊆ R
d

we can compute a point of depth �m/ρ� and a corresponding pruned partition in time
q(m, d).

Let P ⊆ R
d with |P| = n, and letβ ∈ [2, n/ρ]be a constant. Define the target depth

δ as δ := �n/βρ�. Then we can find α := � n(1−1/β)
δ(d+1)

� disjoint subsets Q1, . . . , Qα of
P such that for each Qi we have a Tverberg point ci of depth δ and a pruned partition
Qi . This takes total time

O
((β − 1)ρ q(n, d)

d + 1

)
.

Proof Let P1 := P . We take an arbitrary subset P ′
1 ⊆ P1 with �n/β� points and find

a Tverberg point c1 of depth δ and a corresponding pruned partition Q1 for P ′
1. This

takes time q(n, d), and the set Q1 := ⋃
Z∈P1

Z contains at most δ(d + 1) points. Set
P2 := P1 \ Q1 and repeat. The resulting sets Qi are pairwise disjoint, and we can
repeat this process until

n − iδ(d + 1) <
n

β
.

This gives

α ≥ i >

⌈
n(1 − 1/β)

δ(d + 1)

⌉

.

Thus, we obtain α points c1, . . . , cα with corresponding Tverberg partitions
Q1, . . . ,Qα , each of depth at least �n/βρ�, as desired. �

For example, by Theorem 1.6 we can find a point of depth �n/2d� and a correspond-
ing pruned partition in time d O(1)n. Thus, by applying Lemma 2.6 with c = 2, ρ = 2d ,
we can also find �n/(2�n/2d+1�(d + 1))� ≈ 2d/(d + 1) points of depth �n/2d+1� in
linear time.

In order to make use of Lemma 2.6, we will also need a lemma that describes how
we can combine these points in order to increase the total depth. This generalizes
a similar lemma by Miller and Sheehy [13, Lemma 4.1].

Lemma 2.7 Let P be a set of n points in R
d , and let P = ⊎α

i=1 Pi be a partition of
P. Furthermore, suppose that for each Pi we have a Tverberg point ci ∈ R

d of depth
r , together with a corresponding pruned partition Pi . Let C := {ci | 1 ≤ i ≤ α} and
c be a point of depth r ′ for C, with corresponding pruned partition C. Then c is a point

123

528 Discrete Comput Geom (2013) 50:520–535

of depth rr ′ for P. Furthermore, we can find a corresponding pruned partition in time
d O(1)n.

Proof For i = 1, . . . , α, write Pi = {Qi1, . . . , Qir }, and write C = {D1, . . . , Dr ′ }.
For a = 1, . . . , r ′, b = 1, . . . , r , we define sets Zab as

Zab :=
⋃

ci ∈Da

Qib.

We claim that the set Z := {Zab | a = 1, . . . , r ′; b = 1, . . . , r} is a Tverberg
partition of depth rr ′ for P with Tverberg point c. By definition, Z is a partition with
the appropriate number of elements. It only remains to check that c ∈ conv(Zab) for
each Zab. Indeed, we have

c ∈ conv(Da) = conv
(⋃

ci ∈Da

{ci }
)

⊆ conv
(⋃

ci ∈Da

conv (Qib)
)

= conv
(⋃

ci ∈Da

Qib

)
= conv(Zab)

for a = 1 . . . r ′, b = 1 . . . r .
As the partitions Pi and C were pruned, each Zab consists of at most (d + 1)2

points. Thus, by Lemma 2.2, each Zab can be pruned in time O(d5). Since |Z| ≤ n,
the lemma follows. �

Combining Lemmas 2.6 and 2.7, we can now prove Theorem 1.7.

Theorem 2.8 (Theorem 1.7, restated) Let P be a set of n points in R
d . Then one

can find a Tverberg point of depth �n/2(d + 1)2� and a corresponding partition
in time f (2d+1) + d O(1)n, where f (m) is the time to compute a Tverberg point of
depth �m/(d + 1)� for m points by brute force, together with an associated Tverberg
partition.

Proof If n ≤ 2d+1, we solve the problem by brute-force in f (2d+1) time. Otherwise,
we apply Lemma 2.6 with c = 2 and ρ = 2d to obtain a set C of

|C | =
⌈

n

2�n/2d+1�(d + 1)

⌉

points of depth �n/2d+1� for P with corresponding pruned partitions in time d O(1)n.
We then use the brute-force algorithm to get a Tverberg point for C with depth
�|C |/(d + 1)� and a corresponding partition, in time f (|C |). Finally, we apply
Lemma 2.7 to obtain a Tverberg point and corresponding partition in time d O(1)n.
Using that �a�b�� ≥ �ab� and �a��b� ≥ �a�b�� for a, b ≥ 0, we get that the result-
ing depth is

⌈ n

2d+1

⌉
·
⌈ |C |

d + 1

⌉

≥
⌈⌈ n

2d+1

⌉ n

2�n/2d+1�(d + 1)2

⌉

=
⌈

n

2(d + 1)2

⌉

,

and the total running time is f (2d+1) + d O(1)n, as desired. �

123

Discrete Comput Geom (2013) 50:520–535 529

Instead of brute force, we can also use the algorithm by Miller and Sheehy to find
a point among the deep points. This gives a worse depth, but it is slightly faster.

Theorem 2.9 Let P be a set of n points in R
d . Then one can compute a Tverberg point

of depth �n/4(d + 1)3� and a corresponding partition in time 2O(d log d) + d O(1)n.

Proof For n ≤ 2d+1 we use the Miller–Sheehy algorithm to get a point of depth
�n/2(d+1)2� in time 2O(d log d). Otherwise, we proceed as in the proof of Theorem 1.7
to obtain a set C of

|C | =
⌈

n

2�n/2d+1�(d + 1)

⌉

Tverberg points of depth �n/2d+1� and corresponding pruned partitions in time
d O(1)n. The Miller–Sheehy algorithm then gives a Tverberg point for C of depth
�|C |/2(d + 1)2� in time |C |O(log d) = 2O(d log d). Finally, we apply Lemma 2.7. This
takes time d O(1)n and yields a Tverberg point and pruned partition of depth

⌈ n

2d+1

⌉
·
⌈ |C |

2(d + 1)2

⌉

≥
⌈⌈ n

2d+1

⌉ n

4�n/2d+1�(d + 1)3

⌉

=
⌈

n

4(d + 1)3

⌉

,

as claimed. �

3 An Improved Running Time

The algorithm from the previous section runs in linear time for any fixed dimension, but
the constants are huge. In this section, we show how to speed up our approach through
an improved recursion, and we obtain an algorithm with running time d O(log d)n while
losing a depth factor of 1/2(d + 1).

3.1 A More General Version of the Lifting Argument

We first present a more general version of the lifting argument in Lemma 2.3. For this,
we need some more notation. Let P ⊆ R

d be finite. A k-dimensional flat F ⊆ R
d

(often abbreviated as k-flat) is defined as a k-dimensional affine subspace of R
d (or,

equivalently, as the affine hull of k + 1 affinely independent points in R
d). We call a

k-dimensional flat F ⊆ R
d a Tverberg k-flat of depth r for P if there is a partition of P

into sets P1, . . . , Pr such that conv(Pi)∩ F �= ∅ for all i = 1, . . . , r . This generalizes
the notion of a Tverberg point.

Lemma 3.1 Let P be a set of n points in R
d , and let h ⊆ R

d be a k-flat. Suppose we
have a Tverberg point c ∈ h of depth r for pr(P) := prh(P), as well as a corresponding
Tverberg partition. Let h⊥

c be the (d − k)-flat orthogonal to h that passes through c.
Then h⊥

c is a Tverberg (d − k)-flat for P of depth r , with the same Tverberg partition.

123

530 Discrete Comput Geom (2013) 50:520–535

Proof Let pr(P1), . . . , pr(Pr) be the Tverberg partition for the projection pr(P).
It suffices to show that conv(Pi) intersects h⊥

c for i = 1, . . . , r . Indeed, for Pi =
{pi1, . . . , pili } let c = ∑li

j=1 λ j pr(pi j) be a convex combination that witnesses

c ∈ conv(pr(Pi)). We now write each pi j = pr(pi j)+pr⊥(pi j), where pr⊥(·) denotes
the projection onto the orthogonal complement h⊥ of h. Then

li∑

j=1

λ j pi j =
li∑

j=1

λ j pr(pi j) +
li∑

j=1

λ j pr⊥(pi j) ∈ c + h⊥ = h⊥
c ,

as claimed. �

Lemma 3.1 lets us use a good algorithm for any fixed dimension to improve the

general case.

Lemma 3.2 Let δ ≥ 1 be a fixed integer. Suppose we have an algorithm A with
the following property: for every point set Q ⊆ R

δ , the algorithm A constructs a
Tverberg point of depth �|Q|/ρ� for Q as well as a corresponding pruned partition
in time f (|Q|).

Then, for any n-point set P ⊆ R
d and for any d ≥ δ, we can find a Tverberg point of

depth �n/ρ�d/δ�� and a corresponding pruned partition in time �d/δ� f (n) + d O(1)n.

Proof Set k := �d/δ�. We use induction on k to show that such an algorithm exists
with running time k(f (n)+ d O(1)n). If k = 1, we can just use algorithm A, and there
is nothing to show.

Now suppose k > 1. Let h ⊆ R
d be a δ-flat in R

d , and let pr(P) be the projection
of P onto h. We use algorithm A to find a Tverberg point c of depth �n/ρ� for pr(P)

as well as a corresponding pruned partition pr(P1), . . . , pr(P�n/ρ�). This takes time
f (n). By Lemma 3.1, the (d − δ)-flat h⊥

c is a Tverberg flat of depth �n/ρ� for P , with
corresponding pruned partition P1, . . . , P�n/ρ�. For each i , we can thus find a point qi

in conv(Pi) ∩ h⊥
c in time d O(1).

Now consider the point set Q = {q1, . . . , q�n/ρ�} ⊆ h⊥
c . The set Q is (d − δ)-

dimensional. Since �(d − δ)/δ� = k − 1, we can inductively find a Tverberg point c′
for Q of depth �|Q|/ρ�d/δ�−1� ≥ �n/ρ�d/δ�� and a corresponding pruned partition Q
in total time (k − 1)(f (n) + d O(1)n). Now, c′ is a Tverberg point of depth n/ρ�d/δ�
for P: a corresponding Tverberg partition is obtained by replacing each point qi in the
partition Q by the corresponding subset Pi . The resulting partition can be pruned in
time d O(1)n. Thus, the total running time is

(k − 1)(f (n) + d O(1)n) + f (n) + d O(1)n = k(f (n) + d O(1)n),

and since k = O(d), the claim follows. �

For example, the result of Agarwal et al. [1] gives a point of depth �n/4� in 3

dimensions in time O(n log n). Thus, we can find a point of depth n/4�d/3� in time
O(n log n + d O(1)n).

123

Discrete Comput Geom (2013) 50:520–535 531

3.2 An Improved Algorithm

Finally, we show how to combine the above techniques to obtain an algorithm with
a better running time. The idea is as follows: using Lemma 3.2, we can reduce one
d-dimensional instance to two instances of dimension d/2. We would like to proceed
recursively, but unfortunately, this reduces the depth of the partition. To fix this, we
apply Lemmas 2.6, 2.7 and the Miller–Sheehy algorithm.

Theorem 3.3 (Theorem 1.8, restated) Let P be a set of n points in R
d . Then one

can compute a Tverberg point of depth �n/4(d + 1)3� and a corresponding pruned
partition in time d O(log d)n.

Proof We prove the theorem by induction on d. As usual, for d = 1 the problem
reduces to median computation, and the result is immediate.

Now let d ≥ 2. By induction, for any at most �d/2�-dimensional point set Q ⊆
R

�d/2� there exists an algorithm that returns a Tverberg point of depth �|Q|/4(�d/2�+
1)3� and a corresponding pruned partition in time dα log�d/2�n, for some sufficiently
large constant α > 0.

Thus, by Lemma 3.2 (with δ = �d/2�), there exists an algorithm that can com-
pute a Tverberg point for P of depth �n/16(�d/2� + 1)6� and a corresponding
Tverberg partition in total time 2dα log�d/2� + d O(1)n. Now we apply Lemma 2.6 with
c = 2 and ρ = 16(�d/2� + 1)6. The lemma shows that we can compute a set C
of �16(�d/2� + 1)6/(d + 1)� points of depth δ = �n/32(�d/2� + 1)6� and corre-
sponding (disjoint) pruned partitions in time dα log�d/2�+O(1)n. Applying the Miller–
Sheehy algorithm, we can find a Tverberg point for C of depth �|C |/2(d + 1)2� and
a corresponding pruned partition in time |C |O(log d). Now, Lemma 2.7 shows that in
additional d O(1)n time, we obtain a Tverberg point and a corresponding Tverberg
partition for P of size

⌈
n

2 · 16(�d/2� + 1)6

⌉ ⌈
16(�d/2� + 1)6

2(d + 1)2(d + 1)

⌉

≥
⌈

n

4(d + 1)3

⌉

,

since �a��b� ≥ �ab� for all a, b ≥ 0.
It remains to analyze the running time. Adding the various terms, we obtain a time

bound of

T (n, d) = dα log�d/2�+O(1)n + |C |O(log d) + d O(1)n.

Since |C | = d O(1), using log�d/2� ≤ log(d/2) + log(2�d/2�/d) ≤ log(d/2) +
log(4/3), we get

T (n, d) ≤ dα log�d/2�+O(1)n + d O(log d)n

≤ dα log d−α/2n + dβ log dn,

123

532 Discrete Comput Geom (2013) 50:520–535

Table 1 Comparing our results
to Miller–Sheehy and extensions Algorithm Running time Depth

Theorem 1.6 O(n) n/2d

Miller–Sheehy nO(log d) n/2(d + 1)2

Theorem 1.7 O
(

f (2d) + d O(1)n
)

n/2(d + 1)2

Miller–Sheehy
generalized
(r = d + 1)

O
(

f (d)n2) ≈n/(d + 1)3

Theorem 2.9 O
(
2O(d log d) + n

)
n/4(d + 1)3

Miller–Sheehy
bootstrapped

d O(log d)n3 ≈n/2(d + 1)4

Theorem 1.8 d O(log d)n n/4(d + 1)3

for α large enough and some β > 0, independent of d. Hence, for large enough α we
have

T (n, d) ≤ dα log dn = d O(log d)n,

as claimed. This completes the proof. �

Thus, we can compute a polynomial approximation to a Tverberg point in time
pseudopolynomial in d and linear in n.

4 Comparison to Miller–Sheehy

In Table 1, we give a more detailed comparison of our results to the Miller–Sheehy
algorithm and its extensions. In Sect. 5.2 of their paper, Miller and Sheehy describe
a generalization of their approach that improves the running time for small d by
computing higher order Tverberg points of depth r by brute force. The approx-
imation quality deteriorates by a factor of r/2. No exact bounds are given, but
as far as we can tell, one can achieve a running time of O(f (d)n2) for fixed d
by setting the parameter r = d + 1, while losing a factor of (d + 1)/2 in the
approximation.

Furthermore, even though it is not explicitly mentioned in their paper, we think that
it is possible to also bootstrap the Miller–Sheehy algorithm (for a better running time
in terms of d, while losing another factor of (d + 1) in the output). This is done by
performing the generalized procedure [13, Sect. 5.2] with r = d + 1, but using the
original Miller–Sheehy algorithm instead of the brute-force algorithm. Table 1 shows
a rough comparison (ceilings omitted) of the different approaches. Again, f denotes
the running time of the brute force algorithm.

123

Discrete Comput Geom (2013) 50:520–535 533

We should emphasize that for all dimensions d with 2d ≤ 2(d +1)2, i.e., d ≤ 7, our
simplest algorithm outperforms every other approximation algorithm in both running
time and approximation ratio. For example, it gives a 1/2-approximate Tverberg point
in 3 dimensions in linear time.

5 Conclusion and Outlook

We have presented a simple algorithm for finding an approximate Tverberg point.
It runs in linear time for any fixed dimension. Using more sophisticated tools and
combining our methods with known results, we managed to improve the running time
to d O(log d)n, while getting within a factor of 1/4(d +1)2 of the bound from Tverberg’s
theorem. Unfortunately, the resulting running time remains quasipolynomial in d, and
we still do not know whether there exists a polynomial algorithm (in n and d) for
finding an approximate Tverberg point of linear depth.

However, we are hopeful that our techniques constitute a further step towards a truly
polynomial time algorithm and that such an algorithm will eventually be discovered—
maybe even by a more clever combination of our algorithm with that of Miller and
Sheehy. An alternative promising approach, suggested to us by Don Sheehy, derives
from a beautiful proof of Tverberg’s theorem. It is due to Sarkaria and can be found
in Matousek’s book [11, Chap. 8]. It uses the colorful Carathéodory theorem:

Theorem 5.1 (Colorful Carathéodory) Let C1 � · · · � Cd+1 ⊆ R
d such that for

i = 1, . . . , d + 1, we have 0 ∈ conv(Ci). Then there is a set C of d + 1 points
with 0 ∈ conv(C) and |Ci ∩ C | = 1.

Sarkaria’s proof transforms a d-dimensional instance of n points of the Tverberg point
problem to a Colorful Carathéodory problem in approximately dn dimensions.

The question now is whether such a colorful simplex can be found in time polyno-
mial in both d and n. This would lead to a polynomial time algorithm for computing
a Tverberg point. Observe that this would not contradict any complexity theoretic
assumptions: an algorithm that finds such a point does not necessarily have to decide
whether a given point indeed is a Tverberg point.

The simplest proof of Colorful Carathéodory leads directly to an algorithm for
finding such a colorful simplex and works as follows: take an arbitrary colorful simplex.
If the origin is not contained in it, delete the farthest color and take a point of that color
that together with the other points induces a simplex that is closer to the origin. It is
unknown whether this procedure runs in polynomial time for both d and n. Settling
this question would constitute major progress on the problem (see [12,16] for work
in this direction).

Yet another approach would be to relax Sarkaria’s proof and to try to formulate
it as an approximation problem, which might be easier to solve. However, it is not
clear how to state such an approximation to the Colorful Carathéodory problem in
a way that leads to an approximate Tverberg point. Perhaps via such a method, our
algorithms can be improved further.

It is known that the problem of deciding whether a given point has at least a certain
depth is NP-complete [17]. It is possible to strengthen this result to show that in

123

534 Discrete Comput Geom (2013) 50:520–535

R
d+1, the problem is d-Sum hard, using the approach by Knauer et al. [10]. However,

this does not tell us anything about the actual problem of computing a point of depth
n/(d+1). Such a point is guaranteed to exist, so it is not clear how to prove the problem
hard using “standard” NP-completeness theory. Rather, we think that a hardness proof
along the lines of complexity classes such as PPAD or PLS [14] should be pursued.

Finally, a common issue with Tverberg point (and centerpoint) algorithms in high
dimensions, also pointed out by Clarkson et al. [4], is that the coefficients arising
during the algorithm might become exponentially large. While this is not a problem
in our uniform cost model, for implementations of the algorithm it seems necessary
to bound these. In particular, it would be interesting to investigate the bit complexity
of the intermediate solutions arising during the pruning process. As an alternative
approach, one might try to perturb the points in the process, thereby lowering the
precision of the coefficients. Additionally, one might have to introduce a notion of
almost approximate Tverberg points, where the point that is returned does not have to
lie inside all sets, but only close to them.

Acknowledgments We would like to thank Nabil Mustafa for suggesting the problem to us. We also
thank him and Don Sheehy for helpful discussions and insightful suggestions. We would further like to
thank the anonymous referees for their helpful and detailed comments. Werner was funded by Deutsche
Forschungsgemeinschaft within the Research Training Group (Graduiertenkolleg) “Methods for Discrete
Structures.”

References

1. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points. ACM Trans. Algo-
rithms 5(1), Art. 5 (2009)

2. Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 430–436 (2004)

3. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press,
Cambridge, MA (2000)

4. Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng, S.-H.: Approximating center points
with iterated Radon points. Int. J. Comput. Geom. Appl. 6(3), 357–377 (1996)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press,
Cambridge (2009)

6. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proceedings of the Symposium
on Pure Mathematics, vol. VII, pp. 101–180. American Mathematical Society, Providence (1963)

7. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)
8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization,

Volume 2 of Algorithms and Combinatorics, 2nd edn. Springer, Berlin (1993)
9. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time.

Discrete Comput. Geom. 12(3), 291–312 (1994)
10. Knauer, C, Tiwary, H.R., Werner, D.: On the computational complexity of Ham-Sandwich cuts, Helly

sets, and related problems. In: 28th International Symposium on Theoretical Aspects of Computer
Science (STACS 2011), vol. 9, pp. 649–660. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Wadern (2011)

11. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)
12. Meunier, F., Deza, A.: A further generalization of the colourful Carathéodory theorem. http://arxiv/

abs/1107.3380 (2011)
13. Miller, G.L., Sheehy, D.R.: Approximate centerpoints with proofs. Comput. Geom. Theory Appl.

43(8), 647–654 (2010)
14. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence.

J. Comput. Syst. Sci. 48(3), 498–532 (1994)

123

http://arxiv/abs/1107.3380
http://arxiv/abs/1107.3380

Discrete Comput Geom (2013) 50:520–535 535

15. Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291–300 (1946)
16. Rong, G.: On algorithms for the colourful linear programming feasibility problem. McMaster Univer-

sity, Master’s thesis (2012)
17. Teng, S.-H.: Points, spheres, and separators: a unified geometric approach to graph partitioning. PhD

thesis, School of Computer Science, Carnegie Mellon University (1992)
18. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41, 123–128 (1966)

123

	Approximating Tverberg Points in Linear Time for Any Fixed Dimension
	Abstract
	1 Introduction
	1.1 Some Discrete Geometry
	1.2 Our Contribution

	2 A Simple Fixed-Parameter Algorithm
	2.1 Basic Operations
	2.2 The Lifting Argument and a Simple Algorithm
	2.3 An Improved Approximation Factor

	3 An Improved Running Time
	3.1 A More General Version of the Lifting Argument
	3.2 An Improved Algorithm

	4 Comparison to Miller--Sheehy
	5 Conclusion and Outlook
	Acknowledgments
	References

