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Abstract. In a traditional classification problem, we wish to assign one ofk labels(or classes) to each
of n objects, in a way that is consistent with some observed data that we have about the problem. An
active line of research in this area is concerned with classification when one has information about
pairwise relationshipsamong the objects to be classified; this issue is one of the principal motivations
for the framework of Markov random fields, and it arises in areas such as image processing, biometry,
and document analysis. In its most basic form, this style of analysis seeks to find a classification that
optimizes a combinatorial function consisting ofassignment costs—based on the individual choice
of label we make for each object—andseparation costs—based on thepair of choices we make for
two “related” objects.

We formulate a general classification problem of this type, themetric labeling problem; we show
that it contains as special cases a number of standard classification frameworks, including several
arising from the theory of Markov random fields. From the perspective of combinatorial optimization,
our problem can be viewed as a substantial generalization of the multiway cut problem, and equivalent
to a type ofuncapacitated quadratic assignment problem.

We provide the first nontrivial polynomial-time approximation algorithms for a general family of
classification problems of this type. Our main result is anO(logk log logk)-approximation algorithm
for the metric labeling problem, with respect to an arbitrary metric on a set ofk labels, and an arbitrary
weighted graph of relationships on a set of objects. For the special case in which the labels are en-
dowed with theuniform metric—all distances are the same—our methods provide a 2-approximation
algorithm.
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1. Introduction

1.1. CLASSIFICATION PROBLEMS WITH PAIRWISE RELATIONSHIPS. A funda-
mental issue in statistics, pattern recognition, and machine learning is that ofclas-
sification. At a very high level, we can view a classification problem as consisting
of a setP of objectsto be classified, and a setL of labels(the classes); the goal is
to assign a label to each object in a way that is consistent with some observed data
that we have about the problem [Breiman et al. 1984; Dietterich 1997].

The “observed data” in such a problem can take a wide variety of different forms;
our interest here is in classification problems for which these data involve pairwise
relationships among the objects to be classified. Such problems have a rich history in
statistics, where they arise naturally from formalisms such as the theory ofMarkov
random fields[Besag 1974; Chellappa and Jain 1993; Kinderman and Snell 1980;
Li 1995; Woods 1972]; they have formed some of the core analytical frameworks in
areas including image processing [Besag 1986; Cohen 1986; Dubes and Jain 1989;
Geman and Geman 1984] and biometric analysis [Besag 1974] and they have found
applications in many other fields, including language modeling [Della Pietra et al.
1997] and the categorization of hypertext documents [Chakrabarti et al. 1998].

To motivate the formulation, we consider, as an illustrative example, the well-
studied problem of “restoring” an image that has been degraded by noise [Besag
1986; Geman and Geman 1984]. We are given a large grid of pixels; each pixel
has a “true” intensity that we are trying to determine, and an “observed” intensity
that is the result of corruption by noise. We would like to find the best way to
label each pixel with a (true) intensity value, based on the observed intensities. Our
determination of the “best” labeling is based on the trade-off between two com-
peting influences: We would like to give each pixel an intensity close to what we
have observed; and—since real images are mainly smooth, with occasional bound-
ary regions of sharp discontinuity—we would like spatially neighboring pixels to
receive similar intensity values. Below, we give a self-contained formulation of
an objective function that naturally captures the trade-off between these issues;
we will mention several models that our formulation generalizes, and survey (in
Section 2) the connections between our model and the framework of Markov ran-
dom fields.

Formulations of this type have been applied to a wide range of other image
processing tasks as well; for example, in image segmentation and interpretation, the
objects are pixels and the labels are logical “regions” into which we want to partition
the image (see, e.g., Cohen [1986] and Dubes and Jain [1989]). Labeling problems
with pairwise relationships also arise naturally in the other applications discussed
above. For example, in biometry, one interprets observations gathered over many
points in a geographical region under the assumption that the “true” properties of
nearby points will be similar [Besag 1974]; in hypertext categorization, it is possible
to enhance the power of heuristics for classifying individual documents using the
assumption that pairs of documents with a hyperlink between them are more likely
to be about similar topics [Chakrabarti et al. 1998].
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1.2. THE METRIC LABELING PROBLEM. One can make these issues precise in
the following way. Consider a setP of n objects that we wish to classify, and a set
L of k possible labels. Alabeling of P over L is simply a function f : P → L;
we choose a label for each object. The quality of our labeling is based on the
contribution of two sets of terms.

—For each objectp ∈ P, we have an estimate of its likelihood of having each
label a ∈ L. The determination of these likelihoods is assumed to come from
some heuristic preprocessing of the data; for our purposes, it results in a non-
negativecost c(p,a) for assigning labela to objectp. To take a simple example
using pixels and intensities, suppose the observed color of pixel (i.e., object)p
is white; then the costc(p, black) should be high whilec(p, white) should
be low.

—We also have information about pairwise relationships among the objects; ifp
andq are deemed to berelated, then we would like them to have the same (or
“similar”) labels. Thus, we have a graphG over the vertex setP, with edge
set E indicating the objects that are related; each edgee = (p,q) will have a
nonnegative weightwe, indicating the strength of the relation. In our example
with pixels, the nodes of the graphG are the pixels; in the simplest model, pixels
p andq could be connected by an edgee= (p,q) only if they are neighboring,
and all edges could havewe = 1.

Moreover, as in our example with pixels and intensities, certain pairs of labels
are more similar than others; so we impose a distanced(·, ·) on the setL of labels,
with larger distance values indicating less similarity. (Sod(white, black) would
presumably be large in our example.) If we assign labela to objectp and labelb
to objectq—ande= (p,q) is an edge ofG—then we pay a cost ofwed(a, b).

Thus, thetotal costof a discrete labelingf is given by

Q( f ) =
∑
p∈P

c(p, f (p))+
∑

e=(p,q)∈E

wed( f (p), f (q)).

The labeling problemasks for a discrete labeling of minimum total cost. In this
article, we assume that the distanced(·, ·) is a metric on the setL of labels, that is,
it satisfies the triangle inequality, and will refer to the resulting special case as the
metric labeling problem. Boykov et al. [1999; 2001] independently also introduced
and studied this special case.

Despite the fact that such labeling problems are widely used as classification
frameworks, there have been no previous algorithms for such labeling problems that
provided nontrivial approximation guarantees. Traditionally, standard local search
methods have been applied to labeling problems of this general form. Recently,
combinatorial flow-based algorithms have been playing an increasingly large role
in computer vision (see, e.g., Boykov et al. [1998], Ishikawa and Geiger [1998],
and Roy and Cox [1998]). For metric labeling problems arising in vision, Boykov,
et al. [1998, 1999, 2001] have developed flow-based local search heuristics with
good performance in practice.

In this article, we provide a polynomial-time approximation algorithm for the
general metric labeling problem. Our main result is anO(log |L| log log|L|)-
approximation algorithm for this problem, with respect to an arbitrary weighted
graph on the set of objects, and an arbitrary metric on the set of labels. Note that the
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approximation guarantee is independent of|P|, the size of the object set. For the
special case of theuniform metric—when all distances are equal to 1—our methods
provide a 2-approximation algorithm.

1.3. RELATED PROBLEMS. The reader may notice a connection between the
metric labeling problem and the well-studiedmultiway cut problem[Calinescu et al.
1998; Cunningham and Tang 1999; Dahlhaus et al. 1994; Erd¨os and Sz´ekely 1992;
Karger et al. 1999], in which we are given a weighted graph withk terminals, and we
must find a partition of the graph intok sets so that each terminal is in a separate set,
and the total weight of the edges cut is as small as possible. We can view the parts
of the partition as representing thek labels of a classification problem; however, the
objective function in multiway cut is too simple to capture the issues raised in the
applications above. First, we do not wish simply to measure the total edge weight
of neighboring objects that receive different labels; the penalty for labeling two
objects differently should also depend on the identities of the labels they receive.
For example, in image restoration, there should be a smaller penalty for assigning
neighboring pixels similar (but unequal) intensities than for assigning them very
different intensities. Additionally, we wish to use assignment costs for assigning
objects to labels. The multiway cut problem is thus a special case of our problem in
which the terminals are “preclassified”—they must receive a certain label—while
all other nodes are “unclassified” in the sense that they have no preference among
the different labels, or parts of the partition. Using the assignment costs allows
us to implicitly define “soft” initial assignments of labels to objects, that is, to
make certain assignments expensive and others cheap. Metric labeling is thus a
substantial generalization of the multiway cut problem, designed to incorporate
these fundamental issues.

In fact, the metric labeling problem can perhaps better be viewed as theuncapa-
citated quadratic assignmentproblem. In the quadratic assignment problem, a
heavily studied topic in discrete optimization, one must find a matching between a
set ofn givenactivitieston locationsin a metric space so as to minimize a sum ofas-
signment costsfor activities, andflow costsfor activities that “interact.” We discuss
this problem in more detail in the subsequent section; for now, we simply note that
our problem can be obtained from the quadratic assignment by dropping the require-
ment that at most one activity can be sited at a given location. The activities then
correspond to objects, and the locations to labels, in the metric labeling problem.

Finally, how does our formulation of the metric labeling problem relate to the
applications discussed above? In the next section, we show how the optimum of a
metric labeling problem, as we have described it here, is equivalent to the optimal
configuration for a certain general class of Markov random fields. Metric labeling
contains, as a special case, theGeneralized Potts modelused by Boykov, Veksler,
and Zabih [Boykov et al. 1998; Potts 1952] to obtain strong results for a range of
image analysis tasks; it also contains, as special cases, several other basic models
proposed in the areas of image processing and biometry [Besag 1974; Cohen 1986;
Dubes and Jain 1989; Greig et al. 1989].

1.4. THE PRESENT WORK: SUMMARY OF RESULTS. Our main result is an
O(logk log logk)-approximation algorithm for the metric labeling problem, with
respect to an arbitrary weighted graph on the set of objects, and an arbitrary metric
on the set of labels. Recall thatk denotes the size of the label setL, and note that
our approximation guarantee is independent ofn, the size of the set of objects.
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As the first main step in obtaining our approximation algorithm for the general
problem, we develop a 2-approximation for a special case of metric labeling that
we refer to as theuniform labelingproblem. This is the case in which the metric
d(·, ·) on the setL of labels isuniform: for labelsa andb, d(a, b) is equal to 0, if
a = b, and equal to 1, otherwise. The costs{c(p,a)} and the edge weights{we}
remain arbitrary. The uniform labeling problem is of interest in its own right, as
it incorporates one of the key issues discussed above: “soft” initial assignments of
labels to objects through costs. This special case has been previously studied by
Boykov et al. [1998], who termed it theGeneralized Potts models.

For the special case of uniform labeling, we have learned that Sanjeev Arora
has independently obtained a constant-factor approximation algorithm (S. Arora
personal communication); and Julia Chuzhoy (personal communication) has been
able to improve on our approximation ratio of 2 for the case ofk = 3 andk = 4
labels to 4/3 and 11/6 respectively. Concurrently with the present work, Boykov
et al. [1999] have shown that for one of their flow-based heuristics for the uniform
labeling problem, the objective function value at any local optimum is within a
factor of 2 of the global optimum.

The metric labeling problem generalizes the multiway cut problem, and hence it
is MAXSNP-hard [Dahlhaus et al. 1994]. In image processing applications [Besag
1986; Cohen 1986; Dubes and Jain 1989; Geman and Geman 1984], the underlying
graphG is typically ann× n grid. We can show the metric labeling problem to be
NP-complete even when the underlying graphG is ann× n grid. (See the proof in
Boykov et al. [2001].)

1.5. THE PRESENTWORK: LABELING, CUTS, AND LP RELAXATIONS. We have
already indicated connections between metric labeling and the multiway cut prob-
lem at an informal level. Indeed, it is easy to see that multiway cut is already a special
case of the uniform labeling problem: given an instance of the multiway cut problem
with a graphG = (V, E), edge weightswe for e∈ E, andterminals t1, . . . , tk ∈ V
that we wish to disconnect by deleting edges, we can define the following instance
of the uniform labeling problem. The objects will be the nodesV , with the graph
of relationships equal toG; the label set is{1, 2, . . . , k}. All label assignment costs
are set to 0, except that we setc(ti , j ) equal to∞ (or a very large positive quan-
tity) if i 6= j . This forcesti to receive labeli , and we thus assign the remaining
labels so as to minimize the total weight of edges with unequal labels at their ends.

The connection between optimization over labeling and optimization over cuts
in a graph has been known for some time in work on Markov random fields. Greig
et al. [1989] and Besag [1986] showed that the case ofk = 2 labels is polynomially
solvable as a two-terminal minimum cut problem. Boykov et al. [1998] developed
the connection between uniform labelings, withk > 2 labels, and multiway cuts
in a graph, showing a direct reduction from labelings to multiway cuts. However,
their reduction required the use of edges of enormously large weight, and so it is
not approximation-preserving.

In fact, it is not difficult to see that, once we allow highly variable costsc(·, ·)
(or infinite costs), direct extension of either theIsolation Heuristicof Dahlhaus
et al. [1994], or the algorithm of Calinescu et al. [1998] no longer provides a
reasonable approximation guarantee. These methods do not deal well with objects
thatcannotreceive certain labels, and they can produce results that are arbitrarily
far from optimal.
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For the case of uniform labeling, we use a linear programming relaxation natu-
rally adapted from the one developed for the multiway cut problem by Calinescu
et al. [1998], and also studied in Cunningham and Tang [1999] and Karger et al.
[1999]. Although the LP formulation in this special case directly generalizes that
of Calinescu et al. [1998], the presence of variable label assignment costs forces us
to use a different rounding technique; and indeed, the integrality gap of the formu-
lation now converges to 2, matching our upper bound. (In Calinescu et al. [1998],
the analogous formulation has an upper bound of at most 1.5.)

The main difficulties for us arise in moving up to the general metric labeling
problem. One problem we face here is that we no longer know of any “natural”
linear programming relaxation for the problem. Consequently, we focus first on
the case in which the metric onL corresponds to ahierarchically well-separated
tree[approximations of metric spaces and its algorithmic applications 1996]; here,
we formulate a linear programming relaxation and develop a rounding algorithm
whose performance guarantee is a constant depending inversely on the “separation
parameter” of the underlying tree. Then, using Bartal’s [1996, 1998] result that any
finite metric space can be probabilistically approximated by hierarchically well-
separated trees [approximations of metric spaces and its algorithmic applications
1996; Bartal 1998], we are able to obtain an algorithm for general metric spaces.

We note another way, not considered here, in which the connection between
labelings and cuts has been exploited—for the identification of polynomially solv-
able special cases of the metric labeling problem. This issue has been investi-
gated in recent work of Karzanov [1998]. Boykov et al. [1998] and Ishikawa and
Geiger [1998] show a direct reduction to two-terminal minimum cuts—and hence
an efficient algorithm—in the special case of metric labeling when the label set is
L = {0, 1, . . . , k}, and the distance between two labelsi and j is d(i, j ) = |i − j |.

2. Connections to Other Models

In this section, we summarize the relationship between the metric labeling problem
and various well-studied problems in statistics and combinatorial optimization:
in particular, we consider Markov random fields, and the quadratic assignment
problem. We begin developing our algorithms in Section 3, and the reader has the
option of proceeding directly to that section without loss of continuity.

2.1. MARKOV RANDOM FIELDS. For a given set of objectsP and labelsL, the
theory ofrandom fieldsprovides a systematic means for converting the set of all
possible labelings ofP overL into a probability space. Thus, for every labelingf ,
the random field assigns it a probability Pr[f ]. In parts of the following discussion,
one needs the assumption that Pr[f ] > 0 for all labelingsf , a standard requirement
in work on random fields [Besag 1974].

As before, we have a graphG = (P, E) on the set of objects. The random field is
Markovianif the conditional probability of the label assignment at objectp depends
only on the label assignments at the neighbors ofp in G. That is, a Markov random
field (MRF) satisfies

Pr[ f (p)|{ f (q) : q 6= p}] = Pr[ f (p)|{ f (q) : (p,q) ∈ E}]. (1)

If we consider our initial example of image restoration, we see that the “local”
nature of the dependencies in a Markov random field captures our intuitive notion
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that the label assigned to a given pixel depends only on the labels of its neighbor-
ing pixels.

A theorem of Hammersley and Clifford (see Besag [1974]) allows us to write the
distribution of a Markov random field in essentially a closed form, as follows. LetC
be the set of all cliques inG; for a cliqueC ∈ C, we say that aclique potentialassoci-
ated withC is a function0C that maps labelings of objects inC to real numbers. For
a labelingf of all objects and a cliqueC, we use the notationf |C to indicate the re-
striction of f to the objects inC. Then, the Hammersley–Clifford theorem states that
for a given Markov random field, there exists a set of clique potentials{0C : C ∈ C}
so that, for an arbitrary labelingf , Pr[ f ] = Z−1 exp(−∑C∈C 0C( f |C)). HereZ
is a normalizing constant. We can take the negative logarithm of this probability,
obtaining a value that we call thecost,

∑
C∈C 0C( f |C))+ ln Z.

In the context of classification, suppose that our data consists of likely labels
f ′(p) for each objectp ∈ P. Assume that these data are noisy, and we wish to
decide on the most probable labelingf of P. A standard approach [Li 1995] is
the following. We assume that the labelingf is drawn from an underlying MRF
that is given. Further, we assume that the labelingf ′ is obtained fromf by the
introduction of independent random noise at each objectp ∈ P. We wish to decide
on the most probable labelingf of P, given the labelingf ′ of P and the underlying
MRF model. The standard objective [Li 1995] is to find thef that maximizes the
a posterioriprobability Pr[f | f ′].

By Bayes’ Law, this probability Pr[f | f ′] is

Pr[ f | f ′] = Pr[ f ′| f ] · Pr[ f ]

Pr[ f ′]
.

Using the assumption thatf ′ is obtained fromf by the introduction of independent
random noise at each object, the term Pr[f ′| f ] factors into

∏
p Pr[ f ′(p)| f (p)].

The term Pr[f ] is given by the Hammersley–Clifford expansion in terms of cliques.
The denominator Pr[f ′] is the same for all labelings, as is the constantZ in the
Hammersley–Clifford expansion. Taking the negative logarithm of the remaining
terms, we get that the most probable labeling is the one that minimizes the following
energy function,

E( f ) =
∑

p

(− ln Pr[ f ′(p)| f (p)]) +
∑
C∈C

0C( f |C)). (2)

We can now see how the metric labeling problem arises from this formalism. In
standard applications (see Li [1995]), one very frequently works with a restricted
type of MRF satisfying two properties:

(i) Pairwise interactions. The MRF is defined purely by pairwise interactions
among the objects; so0C is a nonzero function only for cliques of size 2
(i.e., edges ofG). We will denote these functions by0e, for e ∈ G; note that
each is a function mappingL × L to R.

(ii) Homogeneity. The MRF is spatially homogeneous, so each function0e can
be written aswe0, wherewe is a nonnegative edge weight, and the function0
mappingL × L to R+ is the same for all edges.

We define ametric Markov random fieldto be an MRF that satisfies the above two
properties, and for which the function0 is a metric on the set of labels. Now, for
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an arbitrary metric MRF, we can definec(p,a) = − ln Pr[ f ′(p)|a] and rewrite the
problem of minimizing the energy function defined in Eq. (2) as follows:

min
f

E( f ) = min
f

[∑
p

c(p, f (p))+
∑

e=(p,q)

we0( f (p), f (q))

]
, (3)

where0 is a metric. This is precisely the statement of the metric labeling prob-
lem. Note, however, that our transformation is not approximation preserving, as it
involved ignoring the constant terms Pr[f ′] and Z, and taking a logarithm.

Given that pairwise, homogeneous MRF’s are ubiquitous in the application of
MRF’s to classification problems, we feel that our formulation of metric MRF’s is
quite general. It contains the Potts model [Ferrari et al. 1995; Potts 1952] as a special
case, by setting allwe = 1 and0 to be theuniform metric, and the Generalized Potts
model of Boykov et al. [1998] by setting0 to be the uniform metric and allowing
the weightswe to be arbitrary. Metric MRF’s were independently introduced and
studied also by Boykov et al. [2001].

2.2. QUADRATIC ASSIGNMENTPROBLEM. The quadratic assignment problem
is one of the most well-studied facility location problems in operations research; see
Pardalos and Wolkowicz [1994] for a comprehensive recent survey. We are given
n activitiesandn locationsin a metric space; we would like to site each activity at
a distinct location in a way that minimizes an objective function consisting of the
following types of terms:

—If we site activityi at locatioǹ , we incur an operating costc(i, `).
—Moreover, the activities interact, and we wish to keep activities that interact

closely near to one another.

Thus, if wij ≥ 0 measures the interaction between activitiesi and j , andd(`, `′)
measures the distance between locations` and`′, then we pay a cost ofwij d(`, `′)
for siting activity i at` and j at`′.

The traditional quadratic assignment is based on minimizing
∑

i c(i, f (i )) +∑
i, j wij d( f (i ), f ( j )) over all bijections f. The problem is known to be hard in

the sense that no polynomial-time algorithm can approximate the minimum to any
polynomial factor unless P=NP [Queyranne 1986].

The metric labeling problem seeks to minimize precisely the same objective
function over allfunctions f (not only over bijections), for the locations can be
viewed as the labels, and the set of interaction values{wij } can be viewed as a
weighted graph on the set of activities. Thus, metric labeling is equivalent to the
uncapacitated quadratic assignment problem, in which multiple activities may
be sited at the same location. In view of the discussion above, this uncapacitated
version—like the traditional version—is NP-complete, due to the fact that activities
have different costs for operating at different locations. However, our results show
that, in terms of approximability, the metric labeling problem problem is easier than
the quadratic assignment problem (unless P= NP).

3. The Uniform Labeling Problem

Before considering the general metric labeling problem, we develop an approxi-
mation algorithm for the uniform labeling problem. Thus, we consider the case of
uniform distances, in which each pair of different labels is at distance 1.
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The uniform labeling problem can be expressed as the following integer program,
analogous to the integer program used by Calinescu et al. [1998] for the multiway
cut problem. We define nonnegative variablesxpa for each objectp and labela,
requiring that

∑
a∈L xpa = 1; that is, for integer valuedx we usexpa = 1 to denote

that f (p) = a—object p is assigned labela. The label cost of an objectp is then
expressed as

∑
a∈L c(p,a) xpa. Consider two objectsp andq. The distance between

the assigned labels can be expressed asd( f (p), f (q)) = 1
2

∑
a∈L |xpa−xqa|. Hence,

the separation cost for an edgee= (p,q) is expressed as12we
∑

a∈L |xpa− xqa|. We
can write this as an integer linear program by introducing variablesze for an edge
e= (p,q) to express the distance between the labels assigned to objectsp andq,
and we usezea to express the absolute value|xqa− xpa| for a ∈ L.

(UIP) Min
∑

e∈E weze+
∑

p∈P,a∈L c(p,a) xpa

subject to
∑

a∈L xpa = 1 p ∈ P
ze = 1

2

∑
a∈L zea e∈ E

zea≥ xpa− xqa e= (p,q),a ∈ L
zea≥ xqa− xpa e= (p,q),a ∈ L
xpa ∈ {0, 1} p ∈ P,a ∈ L .

We create the linear programming relaxation of (UIP) by replacing the integrality
constraints withxpa ≥ 0; we call this (ULP). We say that a set of nonnegative vari-
ables{xpa : p ∈ P,a ∈ L} is a fractional labelingif

∑
a∈L xpa = 1 for all objects

p ∈ P. Theassignment costof the fractional labelingx is
∑

p∈P,a∈L c(p,a) xpa

and theseparation costis
∑

e=(p,q)∈E[ 1
2we

∑
a∈L |xpa− xqa|].

We give a randomized method for rounding the fractional solution to (ULP) to
integers, losing at most a factor of 2 in the objective function. The idea is to use
thexpa values as probabilities that objectp gets assigned to labela. However, the
simplest randomized rounding scheme—assigning each objectp independently to
a label with probabilities equal to itsxpa values—works terribly. For ife= (p,q)
and p andq have the same set of values{xpa}, {xqa}, thenze = 0 in (ULP), and so
we must assignp andq the same label if we are to use a term-by-term analysis
for the approximation guarantee. Calinescu, et al. [1998] addressed the analogous
problem in the setting of the multiway cut problem through a more careful rounding
scheme that deals well with separation costs. However, this rounding scheme cannot
handle assignment costs, and in our more general setting, can produce results that
are arbitrarily far from optimal.

Our randomized rounding scheme can be viewed as a variant of the approach of
Calinescu et al. [1998]. We assign labels to vertices inphases; initially each vertex
has no label assignment. In a single phase, we pick a labela uniformly at random,
and a real numberα uniformly in [0, 1]. For each objectp that currently has no
label assignment, we give it the labela if α ≤ xpa. We iterate these phases until
each vertex has a label assignment.

The following two lemmas state simple properties of this randomized process:

LEMMA 3.1. Consider a particular phase, and an object p that has not yet been
assigned a label at the start of this phase. The probability that p is assigned label
a in this phase is precisely xpa/k, and the probability that object p is assigned any
label in this phase is precisely1/k. Further, over all phases, the probability that
an object p is assigned label a is precisely xpa.



Classification Problems with Pairwise Relationships 625

PROOF. In each phase, while objectp has no label assignment, the probability
that it is assigned to labela is (1/k) xpa, which is proportional toxpa, and hence the
probability that an objectp is assigned labela by the process is preciselyxpa.

The probability that an objectp is assigned any label in a phase is the sum of the
probabilities over all labelsa that it is assigned labela, which is exactly 1/k.

We say that the two ends of an edge are separated, or “split,” by this process
if they receive different labels. We say that an edgee = (p,q) is separated by a
single phaseif before the phase bothp andq are unassigned, and exactly one ofp
andq is assigned in this phase. Note that an edge that is separated is separated by
some phase, but the reverse is not true, as later the other end of the edge may be
assigned the same label.

LEMMA 3.2. For an edge e= (p,q) the probability that edge e is separated
by a given phase, assuming neither end is assigned before the phase, is exactly
2ze/k = ∑

a∈L |xpa − xqa|/k. The probability that the two objects p and q are
separated by the process is at most2ze.

PROOF. Consider a particular phase, and assume that objectsp andq are both
unassigned at the beginning of this phase. If labela is selected in this phase, then
the probability that exactly one ofp,q is assigned to labela is |xpa− xqa|. Hence,
the probability thatp andq are separated by this phase is equal to

1

k

∑
a∈L

|xpa− xqa| =
∑

a∈L zea

k
= 2ze

k
,

as claimed.
On the other hand, ifp andq are both assigned a label in this phase (recall

that they are unassigned at the beginning of the phase), then they clearly are not
separated by the process—since all objects assigned a label in this phase receive
the same label. The conditional probability thatp andq are separated in this phase,
given that at least one ofp andq is assigned by this phase, is

Pr[p,q are separated by this phase]

Pr[at least one ofp,q is assigned a label by this phase]
.

The numerator is equal to 2ze/k. The denominator is at least the probability that
objectp is assigned, which is 1/k by Lemma 3.1, so the conditional probability is
at most 2ze. This is true in any phase that starts with bothp andq unassigned, and
hence the probability that edgee= (p,q) is split by the process is at most 2ze.

Now we are ready to give the approximation theorem.

THEOREM 3.3. Let x be a solution of the linear program(ULP) with assignment
cost cLP and separation cost wLP. The randomized rounding procedure described
above finds a labeling whose expected assignment cost is cLP, and whose expected
separation cost is at most2wLP.

PROOF. By Lemma 3.1, the probability that objectp is assigned labela is xpa,
and hence the expected contribution ofq to the objective function is

∑
a∈L cpaxpa,

precisely its contribution in (ULP). Hence the total expected assignment cost over
all objects iscLP.
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What is the contribution of edgee= (p,q) to the expected separation cost? This
is preciselywe times the probability that its ends are split, since we are using the
uniform metric. For an edgee= (p,q) the probability that the two objectsp and
q are separated by the process is at most 2ze by Lemma 3.2. Hence, the expected
contribution of edgee is at most 2weze, which is twice its contribution in (ULP).
The total expected assignment cost over all objects is at most 2wLP.

Using the optimal fractional labelingx we get a labeling with expected value
within a factor of 2 of optimal. In Section 5, we show how to derandomize the
procedure using the method of conditional probabilities.

COROLLARY 3.4. If x is an optimal solution to(ULP), then the rounding pro-
vides a2-approximation for the uniform labeling problem.

3.1. A TIGHT EXAMPLE. The following example shows that the integrality gap
of our LP formulation is close to 2. LetG be the complete graph onk nodes with
all edge weightswe equal to 1, and let both the object setP and the label setL
correspond to the set of nodes. We set all assignment costs equal to 0, except that we
setc(i, i ) to infinity for all i . The optimum integer solution is to select an arbitrary
i , assign all nodesj 6= i label i , and assign nodei some other label. The cost of
this assignment isk − 1 for cutting thek − 1 edges out of nodei . An optimal LP
solution is obtained by settingxij = 1/(k− 1), for all i 6= j . The separation cost of
each edge in this assignment is 1/(k− 1), and the total over thek(k − 1)/2 edges
is k/2. This is a ratio of 2(k− 1)/k.

4. The Metric Labeling Problem

Next, we consider the metric labeling problem. Interestingly, we will be able to
obtain an approximation algorithm despite the fact that we do not know of any
“natural” linear programming relaxation for the problem.

We make use of Bartal’s [1996, 1998] result that any finite metric space can be
probabilistically approximated by hierarchically well-separated tree metrics [ap-
proximations of metric spaces and its algorithmic applications 1996; Bartal 1998].
Consequently, we focus first on the case in which the metric onL corresponds to an
r -hierarchically well-separated tree [approximations of metric spaces and its algo-
rithmic applications 1996]; here, we formulate a linear programming relaxation and
develop a rounding algorithm whose performance guarantee is a constant slightly
larger than 2, depending on the separation parameterr of the underlying tree.

An r -hierarchically well-separated tree metric(r -HST) is a rooted tree with
lengths on its edges satisfying the following properties:

(i) The lengths of all the edges from a node to its children are the same.
(ii) The lengths of the edges along any path from the root to a leaf decrease by at

least a factor ofr in each step.
(iii) The metric distance between nodes of the tree is the sum of the edge lengths

on the unique path between them.

We do not assume that all leaves are at the same level. However, we make the
following additional assumptions. First, we require thatr > 2; and second, we
require that the labelsL correspond to leaves of the tree. The uniform labeling
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problem discussed in the previous section is the special case of this setting in which
the tree is a star with the length of each tree edge is equal to 1/2.

As our first main step, we give a (2+ 4/(r − 2))-approximation algorithm for
the metric labeling problem on anr -HST that repeatedly uses the 2-approximation
algorithm of the previous section. We begin with the following lemma, a bound on
the diameter that is a consequence of the hierarchical separation property.

By asubtreeof anr -HST, we mean a tree consisting of all descendants of some
nodev that is not the root. For such a subtreeT , let `T denote the length of the
tree-edge leading upward from the root ofT , and letL(T) denote the set of leaves
of T , that is, the set of labels that are nodes in the treeT .

LEMMA 4.1. Let Ti be one of the subtrees rooted at a child of the root. For any
two labels a and b, we have d(a, b)≤ 2r /(r − 1)`Ti .

PROOF. The distance between the roots of any two of the subtreesT j andT`

at a child of the root is 2̀Ti . Edge lengths decrease by a factor ofr > 2 as we go
down the tree, and hence we get that

d(a, b) ≤
(

2+ 2

r
+ 2

r 2
+ · · ·

)
`Ti =

(
2r

r − 1

)
`Ti .

The metric labeling problem for tree metrics can be expressed as an integer
program using the same variablesxpa that we used in the uniform case. We have
nonnegative variablesxpa for each objectp and labela such that

∑
a∈L xpa = 1;

that is, for integer-valuedx, we usexpa = 1 to denote thatf (p) = a. To express the
separation costs, we letxp(T) denote the fraction of objectp assigned by a label in
the subtreeT , that is,xp(T) =∑a∈L(T) xpa. Whenx takes 0-1 values, thenxp(T)
is 1 if the objectp is assigned to a labelf (p) in T and 0 otherwise. For an edge
e = (p,q) of our graphG, we need to express the distance between the assigned
labels f (p) and f (q) using these variables. Recall that this distanced( f (p), f (q))
is the sum of the lengths of the edges of ther -HST on the path fromf (p) to f (q).
It can be written asd( f (p), f (q)) =∑T `T |xp(T)−xq(T)|, where the sum is over
all subtreesT of ther -HST, sincexp(T) andxq(T) differ by 1 precisely for those
subtreesT for which the tree-edge leading upward from the root ofT is on the path
between the labelsf (p) and f (q) in T . The separation cost of an edgee= (p,q)
of G is we times this distance. We can write this as an integer linear program by
introducing variablesze for the distances, andzeT to express each of the absolute
values|xp(T)− xq(T)|.
(TIP) Min

∑
e∈E weze+

∑
p∈P,a∈L c(p,a) xpa

subject to
∑

a∈L xpa = 1 p ∈ P
ze =

∑
T `T zeT e∈ E.

zeT ≥ xp(T)− xq(T) e= (p,q), and subtreeT.
zeT ≥ xq(T)− xp(T) e= (p,q), and subtreeT.
xpa ∈ {0, 1} p ∈ P,a ∈ L .

We create the linear programming relaxation of (TIP) by replacing the integrality
constraints withxpa ≥ 0; we call this (TLP). For tree metrics, we use

∑
e weze =∑

e[we
∑

T `T |xp(T) − xq(T)|] as theseparation costof the fractional labeling
x. As before, we use a randomized rounding scheme using the fractional labeling
x as a probability. Note that ifxpa is the probability that objectp is assigned to
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label a then the probability that objectp is assigned a label in the subtreeT is
exactlyxp(T).

We define the randomized rounding algorithm as follows:

(i) We consider first the top level of the tree. Assume that the root hasm children,
and letT1, . . . , Tm denote the subtrees rooted at the children. We use the
uniform labeling algorithm to assign each object to one of the subtreesTi ,
where objectp has probabilityxp(Ti ) to be assigned to subtreeTi . Thus, at
the end of this step, each object has been assigned to one of the subtrees, but
not yet placedwithin this subtree.

Intuitively, dealing with the top level of the tree separately makes sense as
the distances within each subtreeTi are significantly smaller than the distances
between subtrees. Using the uniform labeling algorithm for the assignment of
objects to subtrees is appropriate, as the edge lengths from the root to each of
its children are the same.

(ii) Once objectp has been assigned to subtreeTi , we modify the fractional
labeling accordingly by settinḡxpa = 0 for all labelsa that are not in the
subtreeTi , andx̄pa = xpa/xp(Ti ) for all labelsa ∈ L(Ti ).

(iii) The objects assigned to each subtree will now be treated as separate subprob-
lems. We use the algorithm recursively on each of the subtreesTi to obtain
the labeling.

To analyze the top level of this algorithm, we use the following property that was
proved as Lemmas 3.1 and 3.2 in the previous section.

LEMMA 4.2. The probability that object p is assigned to the subtree Ti is
xp(Ti ). For each edge e= (p,q) of the graphs G, the probability that p and q are
assigned to different trees is at most

∑m
i=1 |xp(Ti )− xq(Ti )|.

When we consider a set of objects that have all been assigned to the same subtree,
we have the problem that their fractional separation costs have changed. We bound
this in Lemma 4.4. The bound relies on the property that edge lengths decrease
by a factor ofr > 2 as we go down the tree, and hence the distance between two
labels is dominated by the highest edge on the path between them. We will need an
analogous fact for fractional labelings.

For two subtreesT ′ andT , we write “T ′ < T” to denote the statement thatT ′ is
a proper subtree ofT consisting of all descendants of a nodev ∈ T that is not the
root of T .

LEMMA 4.3. Let x be a fractional labeling over an r-hierarchically well-
separated tree, let p be an object, and let T be a subtree. Then∑

T ′<T

`T ′ xp(T ′) ≤ 1

r − 1
· `T xp(T).

PROOF. If t is the root ofT , we say that a subtree is atlevel j if its root is
reachable by a path leadingj edges downward fromt . Note that we have∑

T ′<T
T ′ at level j

xp(T ′) ≤ xp(T)
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for all j . Thus,∑
T ′<T

`T ′ xp(T ′) =
∑
j≥1

∑
T ′<T

T ′ at level j

`T ′ xp(T ′) ≤
∑
j≥1

r− j `T

∑
T ′<T

T ′ at level j

xp(T ′)

≤
∑
j≥1

r− j `T xp(T) ≤ 1

r − 1
· `T xp(T).

LEMMA 4.4. Let e= (p,q) be an edge of the graph G. If both p and q are
assigned to subtree Ti , then the new fractional separation cost is at most

we

min(xp(Ti ), xq(Ti ))

[∑
T<Ti

`T |xp(T)− xq(T)| + 1

r − 1
`Ti

∣∣xp(Ti )− xq(Ti )
∣∣] .

PROOF. Assume thatxp(Ti ) ≤ xq(Ti ). The new fractional separation cost for
edgee is we

∑
T `T |x̄p(T) − x̄q(T)|, and if p andq are both assigned toTi then

the sum can be written as

∑
T<Ti

`T |x̄p(T)− x̄q(T)|

=
∑
T<Ti

`T

∣∣∣∣ xp(T)

xp(Ti )
− xq(T)

xq(Ti )

∣∣∣∣
=
∑
T<Ti

`T

∣∣∣∣( xp(T)

xp(Ti )
− xq(T)

xp(Ti )

)
−
(

xq(T)

xq(Ti )
− xq(T)

xp(Ti )

)∣∣∣∣
≤
∑
T<Ti

`T
1

xp(Ti )
|xp(T)− xq(T)| +

∑
T<Ti

[
1

xp(Ti )
− 1

xq(Ti )

]
`T xq(T)

≤ 1

xp(Ti )

[∑
T<Ti

`T |xp(T)− xq(T)|
]
+ 1

r − 1
`Ti xq(Ti )

[
1

xp(Ti )
− 1

xq(Ti )

]

= 1

xp(Ti )

[∑
T<Ti

`T |xp(T)− xq(T)|
]
+ 1

r − 1
`Ti

xq(Ti )− xp(Ti )

xp(Ti )

= 1

xp(Ti )

[∑
T<Ti

`T |xp(T)− xq(T)| + 1

r − 1
`Ti

(
xq(Ti )− xp(Ti )

)]
,

where the last inequality follows from Lemma 4.3.

We can now prove the main theorem about labeling with hierarchically well-
separated tree metrics. We give a derandomized version of this algorithm in
Section 5.

THEOREM 4.5. Let x be a fractional labeling of objects P for an r-
hierarchically well-separated tree metric (with r> 2) whose leaves are the labels.
Let cLP and wLP be respectively the assignment and separation cost of the fractional
assignment x. The randomized rounding procedure described above finds a labeling
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whose expected assignment cost is cLP, and whose expected separation cost is at
most(2+ 4/(r − 2))wLP.

PROOF. We prove both statements about the expected cost by induction on the
depth of the tree. If the tree has depth 0 there is nothing to prove. Otherwise, as
before, letT1, . . . , Tm denote the subtrees rooted at the children of the root.

First, consider the statement about the expected assignment costs. We claim that
the probability that an objectp is assigned a labela is exactlyxpa. This will imply
the statement about the expected assignment cost. Consider a top-level subtree. For
an objectp, the probability thatp gets assigned to a subtreeTi is xp(Ti ), and if
p is assigned to the subtreeTi , then the fractional assignments are rescaled to be
x̄pa = (1/xp(Ti )) xpa for each labela in the subtreeTi . By induction, once an object
p was assigned to subtreeTi , it gets a labela ∈ L(T) with probability x̄pa, and
hence the probability that objectp is assigned a labela in L(Ti ) is xp(Ti )x̄pa = xpa

as claimed.
Next consider the expected separation cost for an edgee= (p,q) in the graphG.

Let h(p,q) be the random variable that is the distance between the labels assigned
to objectsp andq. The separation cost of edgee is nowweh(p,q), and the expected
separation cost isweE[h(p,q)]. The fractional separation cost iswe

∑
T `T |xp(T)−

xq(T)|. We refer to
∑

T `T |xp(T)− xq(T)| as thefractional distance, and want to
prove that the expected distance at most 2r /(r − 2) times the fractional distance,
which will imply the claim of the lemma.

We compute the expected distance E[h(p,q)] by considering separately the event
E ′ that p andq are separated at the top level, and the eventsEi that p andq are both
assigned to the same subtreeTi . We can write E[h(p,q)] as follows:

E[h(p,q)] = E[h(p,q)|E ′] · Pr[E ′] +
m∑

i=1

E[h(p,q)|Ei ] · Pr[Ei ].

The probability Pr[E ′] that the edge gets separated at the top level is at most∑m
i=1 |xp(Ti )− xq(Ti )| by Lemma 4.2. The distance in this case is bounded by the

diameter of the tree, which is at most [2r/(r − 1)] `Ti for any i by Lemma 4.1. So
the first term of the above sum is

E[h(p,q)|E ′] · Pr[E ′] ≤ 2r

r − 1

m∑
i=1

`Ti

∣∣xp(Ti )− xq(Ti )
∣∣.

If both objects are assigned to the same subtreeTi , then by induction the expected
distance is at most 2r/(r − 2) times the fractional distance of the scaled solution.
The probabilities that objectsp andq are assigned to a subtreeTi arexp(Ti ) and
xq(Ti ), respectively, and hence the probability that both objects are assigned to
the subtreeTi is at most min(xp(Ti ), xq(Ti )). Using Lemma 4.4, we can bound
E[h(p,q)|Ei ] · Pr[Ei ] as follows:

E[h(p,q)|Ei ] · Pr[Ei ]

≤ 2r

r − 2

[∑
T<Ti

`T |xp(T)− xq(T)| + 1

r − 1
`Ti

∣∣xp(Ti )− xq(Ti )
∣∣] .
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The final bound on E[h(p,q)] then follows

E[h(p,q)] ≤ 2r

r − 1

m∑
i=1

`Ti

∣∣xp(Ti )− xq(Ti )
∣∣

+ 2r

r − 2

m∑
i=1

[∑
T<Ti

`T |xp(T)− xq(T)| + 1

r − 1
`Ti

∣∣xp(Ti )− xq(Ti )
∣∣]

= 2r

r − 2

∑
T

`T |xp(T)− xq(T)|,

where the last sum is over all subtreesT of the tree that defines the metric on
the labels.

Using the optimal fractional labelingx of (TLP), we get a labeling with expected
value within a small factor of optimal.

COROLLARY 4.6. If x is an optimal solution to(TLP), then the rounding
provides a(2 + 4/(r − 2))-approximation for the labeling problem for an r-
hierarchically well-separated tree metric.

We now apply Bartal’s result on probabilistic approximation of metric spaces
to address the labeling problem with general metrics. Bartal’s result applied to the
metricd on the label setL states that there is a set ofr -hierarchically well-separated
tree metrics{dT } on a supersetL ′ of L, and probability distribution{pT }, so that
dT (a, b) ≥ d(a, b) for all a, b ∈ L and all treesT in the set; and yet for all pairs
of labelsa, b the expecteda-b distance in a randomly selected tree is not much
bigger thand(a, b). More precisely,

∑
T pTdT (a, b) ≤ O(r logk log logk)d(a, b).

We use this result to obtain anO(logk log logk)-approximation algorithm for the
labeling problem in general metric spaces.

We first show that at an additional loss of a factor of 2+ 1/r we may assume
that the well-separated trees in Bartal’s theorem have all labels at the leaves—that
is, the internal nodes of the trees are not labels.

LEMMA 4.7. Let dT denote an r-HST distance function generated by the tree
T . We can modify the tree T to obtain an r-HST distance function generated by
a tree T′ where all labels are at leaves, and for any two labels a and b we have
dT (a, b) ≤ dT ′(a, b) ≤ (2+ 1/r )dT (a, b).

PROOF. For each internal nodea of T that is a label, we replace this node in
the tree by a new nodea′, and insert the labela as a new child ofa′ at the same
distance as all other children. This change in the tree will only increase the distances
between the labels. Next we bound the maximum possible increase. First consider
the case when a nodea and a childb of nodea are both labels. Let̀ = dT (a, b).
Thena is pushed down to be at a distance` from the new nodea′, andb is pushed
down from a new nodeb′. If the tree is anr -HST, then the new distancedT ′(b, b′)
is at most̀ /r , and so we have thatdT ′(a, b) ≤ 2` + `/r = (2+ 1/r )dT (a, b).
It is not hard to see that the above case represents the largest possible change in
distance, and sodT ′(a, b) ≤ (2+ 1/r )dT (a, b) for all labelsa andb.

It is now easy to show that the following randomized algorithm provides an
expected performance guarantee ofO(logk log logk): We probabilistically
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approximate the metric using 3-HST’s, choose a random treeT according to the
distribution{pT }, and run our algorithm above on the metric induced by this tree.
We describe a derandomized version in Section 5.

THEOREM 4.8. There is a randomized polynomial time O(log k log log k)-
approximation algorithm for the metric labeling problem where k is the number
of labels.

PROOF. Let d be a metric on the set of labelsL. By Bartal’s tree-metric ap-
proximation, and the above Lemma 4.7, we can find a set of 3-hierarchically well-
separated tree-metrics that approximate the metricd. Let T denote the set of tree
metrics, andpT for T ∈ T be a probability distribution on the trees so that for
each pair of labelsa, b ∈ L and each treeT ∈ T we haved(a, b) ≤ dT (a, b) and∑

T∈T pTdT (a, b) ≤ O(logk log logk)d(a, b).
The algorithm is as follows: We choose a tree metricT ∈ T choosing the treeT

with probability pT , and run the algorithm for the tree metric defined byT .
LetO denote the cost of an optimal labeling for the metricd. LetOT for T ∈ T

denote the cost of the same labeling under the tree metricT . By the definition of
the tree-metric approximation, we have that

∑
T∈T pTOT ≤ O(logk log logk)O,

as this inequality is true term-by-term for the separation cost of each edge.
Let the random variableA denote the cost using metricd of the labeling produced

by the algorithm, and letAT denote the cost of the solution found in the tree metric
T . By the definition of the approximation, we have thatA ≤ AT for all T ∈ T .

We claim that the expected cost of the resulting labelingE[A] is
O(logk log logk)O. Let ET denote the event that treeT is selected. We have that
Pr(ET ) = pT and that E[AT |ET ] ≤ 6OT by Corollary 4.6 (since we have chosen
r = 3 for ourr -HST). Using this, we get the following:

E[A] =
∑
T∈T

E[A|ET ] · Pr(ET ) ≤
∑
T∈T

pTE[AT |ET ]

≤ 6
∑
T∈T

pT OT = O(logk log logk)O.

5. Deterministic Algorithms

Next we show how to derandomize the randomized algorithms described in the
previous two sections to provide deterministic approximation algorithms with the
same approximation bound.

5.1. THE UNIFORM LABELING ALGORITHM. To design a deterministic version
of our uniform labeling algorithm, we consider a single phase of the experiment.
We use the method of conditional probabilities to choose the appropriate step to
take in this phase.

Consider the first phase. Leta denote the random label chosen by the phase, let
Pa denote the set of objects assigned by this phase, and letP̄ denote the set of
objects not assigned. We consider the following measures:

— c0 =
∑

p∈Pa
c(p,a), the assignment cost of all objects assigned in this phase,

— w0 =
∑

e=(p,q)∈E:|{p,q}∩Pa|=1 we, the separation cost of all pairs of objects sepa-
rated by this phase,



Classification Problems with Pairwise Relationships 633

— c̄LP =
∑

p∈P̄,a∈L c(p,a) xpa, the assignment cost of (ULP) restricted to the
unassigned objects in̄P,

— w̄LP =
∑

e=(p,q)∈E:p,q∈P̄ weze, the separation cost of (ULP) restricted to edges
between the unassigned objects inP̄.

A phase of the derandomized algorithm selects a labela and a valueα that leads to
a nonempty setPa and minimizes the quantityc0+w0+ c̄LP+ 2w̄LP. We repeat the
method recursively on the remaining objects to obtain a labeling deterministically.
Note that the method uses one solution to the linear program throughout all recursive
calls; that is, the definition of̄cLP and w̄LP does not involve solving a new LP.
Resolving the linear program at every step might provide a better quality solution,
but the given solution is good enough to provide the claimed approximation bound.

LetcLP andwLP denote the assignment and separation cost of (ULP), respectively.
We first show that the expected value of quantity (c0 + w0) + (c̄LP + 2w̄LP) in a
phase of the randomized algorithm is at mostcLP+ 2wLP.

LEMMA 5.1. In one phase of the randomized algorithm,E[c0 + w0 + c̄LP +
2w̄LP] ≤ cLP+ 2wLP.

PROOF. The probability that objectp is assigned labela in a single phase is
xpa/k by Lemma 3.1, and hence the expected value of the assignment costc0 is

E[c0] =
∑

p∈P,a∈L

c(p,a) xpa

k
= 1

k
cLP.

The probability that an edgee is separated by the phase is 2ze/k by Lemma 3.2.
Hence, the expected value of the separation costw0 is

E[w0] =
∑
e∈E

2weze

k
= 2

k
wLP.

The probability that an objectp is notassigned is (k− 1)/k by Lemma 3.1, and
hence the expected value of the remaining LP assignment costc̄LP is

E[c̄LP] = k− 1

k

∑
p∈P,a∈L

c(p,a) xpa = k− 1

k
cLP.

The probability that for an edgee = (p,q) both objectsp andq remain unas-
signed can be bounded by the probability that objectp is unassigned, and hence
it is at most (k − 1)/k. Using this bound, we can bound the expected value of the
remaining LP separation cost ¯wLP as follows:

E[w̄LP] ≤ k− 1

k

∑
e∈E

weze = k− 1

k
wLP.

Summing up the expectations, we get the claimed bound.

THEOREM 5.2. Let x be a solution of the linear program(ULP) with assignment
cost cLP and separation cost wLP. The derandomized rounding procedure described
above finds a labeling whose cost is at most cLP + 2wLP. If x is an optimal solu-
tion to (ULP), then the rounding provides a2-approximation for the uniform
labeling problem.
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PROOF. To prove the first statement, consider a single phase. We use Lemma 5.1
to show that the algorithm chooses a labela and a valueα such that the quantity
c0 + w0 + c̄LP + 2w̄LP is at mostcLP + 2wLP. Choices of labela and valueα that
do not assign any object contribute to the expectation exactlycLP+ 2wLP times the
probability that such a label and value is selected. By Lemma 5.1, the expected
value is at mostcLP + 2wLP, and hence the value of the expectation is at most
cLP + 2wLP even if restricted to choices of labelsa and valuesα that assign some
objects. Therefore, there have to be possible labelsa and valuesα that assign objects
and have (c0+ w0)+ (c̄LP+ 2w̄LP) ≤ cLP+ 2wLP.

We prove by induction on the number of phases that the algorithm results in a
solution of cost at mostcLP+2wLP. We apply the induction hypothesis to the problem
on the setP̄ of objects remaining after the first phase. By the induction hypothesis,
the cost of the solution obtained for the objectsP̄ has cost at most̄cLP + 2w̄LP.
Hence, the overall cost of the solution is at most (c0+ w0)+ (c̄LP+ 2w̄LP), which
is at mostcLP+ 2wLP.

The 2-approximation follows from the first statement.
5.2. HIERARCHICALLY WELL-SEPARATED TREES. The derandomized algo-

rithm for hierarchically well-separated tree metrics is analogous to the derandom-
ized algorithm for the uniform labeling problem. For clarity of exposition, the
overall structure of the deterministic algorithm will be somewhat different from
that of the randomized algorithm introduced earlier. First, consider the following
randomized algorithm:

(i) As before, we consider first the top level of the tree. Assume that the root has
m children, and letT1, . . . , Tm denote the subtrees rooted at the children. We
consider one phase of the uniform labeling algorithm to assign a set of objects
to one of the subtreesTi . More precisely, we select a treeTi uniformly at
random, and a real numberα uniformly in [0, 1]. We assign objectp to the
selected subtreeTi if xp(Ti ) ≥ α.

(ii) As before, the objects assigned to subtreeTi are not yet placedwithin this
subtree. At the end of this phase, we will have two smaller subproblems:
one subproblem on the subtreeTi consisting of the objects that were assigned
to subtreeTi , and another subproblem for the remaining objects on the original
treeT . For the subproblem on the original treeT , we use the same fractional
labeling, while the subproblem on the subtreeTi uses the modified fractional
labelingx̄pa = xpa/xp(Ti ) for all labelsa ∈ L(Ti ) and all objectsp assigned
to subtreeTi . We also use the corresponding separation distance variablesz̄e
for edgese = (p,q) between objectsp,q that are both assigned to subtree
Ti : z̄e =

∑
T<Ti `T |x̄p(T)− x̄q(T)|.

(iii) The algorithm solves both subproblems recursively to obtain the labeling.

Note the difference in the overall structure of this algorithm and the algorithm
introduced earlier: in the earlier algorithm, we first assigned all objects to some
subtree, and then continued recursively, for eachi , on the set ofall objects as-
signed to subtreeTi . In the new algorithm, we immediately create two recursive
subproblems after assigning some objects to a subtreeTi ; other objects may be
assigned toTi in subsequent, separate subproblems. We adopt this version for the
deterministic algorithm simply for clarity of exposition; a deterministic algorithm
that more directly follows the control flow of the randomized algorithm can also
be obtained by similar means.
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Now, consider the first phase of our new algorithm at the top level of the tree: the
phase selects a subtreeTi and assigns some objects to this subtree. Leti denote the
index of the subtree chosen by the phase, letPi denote the set of objects assigned to
the subproblem, and let̄P denote the set of objects not assigned by this phase. We
consider measures analogous to the ones considered in the uniform case. For each of
the two subproblems, we consider LP solutions for the subproblems: the restriction
of the original LP solutionx for the subproblem of the objects̄P, and the fractional
labeling x̄ given above, for the subproblem of the objectsPi . For edges between
objects in separate subproblems, we bound the separation cost by the diameter
of the tree, which is at most is at most [2r/(r − 1)] `Ti for any i by Lemma 4.1.

— c̄s =
∑

p∈Pi ,a∈L(Ti ) x̄pac(p,a), the assignment cost of (TLP) of the fractional
labeling x̄ for the objects assigned to the subproblem on the treeTi in this
phase,

— w̄s =
∑

e=(p,q)∈E:p,q∈Pi
wez̄e, the fractional separation cost of (TLP) of the

fractional labelingx̄ for all pairs of objects assigned to the subproblem on the
subtreeTi in this phase,

— c̄ =∑p∈P̄,a∈L c(p,a)xpa, the assignment cost of (TLP) of the original fractional
labelingx restricted to the unassigned objectsP̄,

— w̄ = ∑
e=(p,q)∈E:p,q∈P̄ weze, the separation cost of (TLP) of the original frac-

tional labelingx restricted to the edges between the unassigned objects inP̄.
— ws = [2r/(r−1)]`Ti

∑
e=(p,q)∈E:|{p,q}∩Pi |=1 we, an upper bound of the separation

cost of all pairs of objects separated by this phase.

A phase of the derandomized algorithm selects a top level subtreeTi and a
valueα that leads to a nonempty setPi such that the quantitȳcs+ c̄+ws+ 2r /
(r − 2)(w̄s+ w̄) is as small as possible. We repeat the method on both of the sub-
problems created to obtain a labeling deterministically.

Let cLP andwLP denote the assignment and separation cost of (TLP). We will
first prove the analog of Lemma 5.1, that the expected value of the above quantity
in a phase of the randomized algorithm is at mostcLP+ 2r /(r − 2)wLP.

LEMMA 5.3. In one phase of the above randomized algorithmE[c̄s+ c̄+ws+
2r /(r − 2)(w̄s+ w̄)] ≤ cLP+ 2r /(r − 2)wLP.

PROOF. The probability that objectp is assigned to subtreeTi is xp(Ti )/m, as
the probability that the treeTi is selected is 1/m, and if the treeTi is selected, the
probability that objectp is assigned to this tree isxp(Ti ).

If p is assigned to subtreeTi , its fractional assignment cost is∑
a∈L(Ti )

x̄pac(p,a) =
∑

a∈L(Ti )

xpac(p,a)

xp(Ti )
.

The contribution of objectp to the expected value of̄cs is the probability thatp is
assigned to subtreeTi times the above fractional assignment cost, which is∑

i

(
xp(Ti )

/
m
) ( ∑

a∈L(Ti )

xpac(p,a)

xp(Ti )

)
= 1

m

∑
a∈L

xpac(p,a).

This is exactly a 1/m fraction of its contribution to the LP assignment costcLP. So
the expected value of̄cs is cLP/m.
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By Lemma 3.1, the probability that objectp remains unassigned in this phase is
(m− 1)/m, and hence expected value ofc̄ is E[c̄] = [(m− 1)/m] cLP.

Similarly, the expected value of ¯w is at most E[w̄] ≤ (m− 1)wLP/m, as the
probability that both ends of an edgee= (p,q) remain unassigned is at most the
probability thatp remains unassigned, which is (m− 1)/m.

Now consider the contribution of an edgee= (p,q) of G to the expected value
of the fractional separation cost ¯ws. Both of the objectsp andq are assigned to
subtreeTi if the subtreeTi is selected and a valueα ≤ min(xp(Ti ), xq(Ti )) is
selected; hence the probability that both of the objectsp,q are assigned to subtree
Ti is exactly min(xp(Ti ), xq(Ti ))/m. Lemma 4.4 bounds the fractional separation
cost of the edgee= (p,q) assuming that bothp andq are assigned to the subtree
Ti . To get the expected value of ¯ws, we multiply this value with the probability that
both p andq are assigned to the subtreeTi , and sum over all edges; we get

E[w̄s]

= 1

m

∑
e=(p,q)∈E

we

∑
i

[∑
T<Ti

`T |xp(T)− xq(T)| + 1

r − 1
`Ti

∣∣xp(Ti )− xq(Ti )
∣∣] .

Note that the summation in the first term is over proper subtreesT < Ti (as
implied by Lemma 4.4), and hence it doesnot include the contribution of the top
level subtreesTi for i = 1, . . . ,m to the LP separation costwLP.

Finally, by Lemma 3.2, the probability that edgee= (p,q) is separated by this
phase is

∑
i |xp(Ti )− xq(Ti )|/m, that is, depends only on the contribution of the

top level subtreesTi for i = 1, . . . ,m to the LP separation costwLP. We bound
the separation cost by the diameter of the tree, using Lemma 4.1. So the expected
value ofws is

E[ws] ≤ 2r

m(r − 1)

∑
e=(p,q)∈E

we

∑
i

`Ti

∣∣xp(Ti )− xq(Ti )
∣∣,

because the length̀Ti is the same for all top level subtrees. Summing up the
expectations, we get

E

[
c̄s+ c̄+ ws+ 2r

r − 2
(w̄s+ w̄)

]
≤ 1

m
cLP+ m− 1

m
cLP+ 2r

m(r − 1)

∑
e=(p,q)∈E

we

∑
i

`Ti

∣∣xp(Ti )− xq(Ti )
∣∣

+ 2r

r − 2

[
1

m

∑
e=(p,q)∈E

we

∑
i

(∑
T<Ti

`T |xp(T)− xq(T)|

+ 1

r − 1
`Ti

∣∣xp(Ti )− xq(Ti )
∣∣)+ m− 1

m
wLP

]
.

To see that this is equal to the claimed bound ofcLP+ 2r /(r − 2)wLP, we consider
the assignment cost and the separation cost separately. The assignment cost is
included in the sum 1/m+ (m− 1)/m = 1 time, as claimed. We will consider
the contributions of the separation cost of the top-level trees separately from the
other levels; accordingly, we will break up the 2r /(r − 2)wLP term into portions
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corresponding to the separation cost for the top-level trees, and for the other levels.
The contribution of the separation cost for the top-level trees,

∑
e=(p,q)∈E we

∑
i `Ti

|xp(Ti )− xq(Ti )|, is included in the sum

2r

m(r − 1)
+ 2r

r − 2

(
1

m(r − 1)
+ m− 1

m

)
times, which is equal to 2r/(r −2) in total. The contributions of the separation cost
for other levels of the tree are included

2r

r − 2

(
1

m
+ m− 1

m

)
times, which is also 2r/(r − 2) in total.

As in the proof of Theorem 5.2, we get the following:

THEOREM 5.4. Let x be a fractional labeling of objects P for an r-
hierarchically well-separated tree metric(with r > 2) whose leaves are the la-
bels. Let cLP and wLP be, respectively, the assignment and separation cost of the
fractional assignment x. The derandomized rounding procedure described above
finds a labeling whose cost is at most cLP+ (2+ 4/(r − 2))wLP. If x is an optimal
solution to(TLP), then the rounding described above provides a(2+ 4/(r − 2))-
approximation for the labeling problem.

PROOF. As in the proof of Theorem 5.2, we can argue using Lemma 5.3 that
there is a choice of subtreei and valueα that assigns a nonempty set of objects to
the subtreeTi and has̄cs+ c̄+ws+ 2r /(r − 2)(w̄s+ w̄) ≤ cLP+ 2r /(r − 2)wLP.

For any such choice, both subproblems are smaller: the subproblem onT has
fewer objects, and the subproblem on the subtreeTi is defined over a smaller tree.
So we can assume by induction that the theorem holds for the subproblem. Now
the overall bound ofcLP + 2r /(r − 2)wLP for the value of the solution follows by
induction: the two subproblems have solutions of value at mostc̄s+2r /(r − 2) w̄s,
and c̄+ 2r /(r − 2)w̄, respectively. The separation cost of the edges separated in
this phase is at mostws, and hence the overall cost of the solution found is at most(

c̄s+ 2r

r − 2
w̄s

)
+
(

c̄+ 2r

r − 2
w̄

)
+ ws ≤ cLP+ 2r

r − 2
wLP.

5.3. METRICLABELING ALGORITHM. To make the overall algorithm for general
metric spaces deterministic, we need only derandomize the choice of tree in Bartal’s
tree metric approximation theorem. For this, we use the result of Charikar et al.
[1998] that any metric space onk points can be probabilistically approximated
by hierarchically well-separated tree metrics using onlyO(k logk) trees, and that
such a set of trees can be computed deterministically in polynomial time. Thus, we
compute theseO(k logk) trees, run the approximation algorithm for each of them,
and take the solution on which the objective function with respect to the original
metric is best.

THEOREM 5.5. The above algorithm is a deterministic polynomial time O(log
k log log k)-approximation algorithm for the metric labeling problem, where k is
the number of labels.
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