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Abstract—A fundamental problem in wireless networks is to
estimate its throughput capacity - given a set of wireless nodes,
and a set of connections, what is the maximum rate at which
data can be sent on these connections. Most of the research
in this direction has focused on either random distributions of
points, or has assumed simple graph-based models for wireless
interference. In this paper, we study capacity estimation problem
using the more general Signal to Interference Plus Noise Ratio
(SINR) model for interference, on arbitrary wireless networks.
The problem becomes much harder in this setting, because of
the non-locality of the SINR model. Recent work by Moscibroda
et al. [16], [18] has shown that the throughput in this model
can differ from graph based models significantly. We develop
polynomial time algorithms to provably approximate the total
throughput in this setting.

I. I NTRODUCTION

A fundamental problem in wireless networks is to estimate
its throughput capacity - given a setV of wireless nodes,
and a setD of connections, what is the maximum rate at
which data can be sent on these connections. Starting with [8],
there has been a lot of work on this problem, especially for
networks formed by a random distribution of nodes in the unit
square. A related, and more practical question is to estimate
the capacity of the given network, and develop protocols to
utilize the network close to its capacity. This question becomes
difficult in wireless networks because of interference, which
constrains the set of links that can transmit simultaneously.
The algorithmic aspects of network capacity have been studied
in a number of papers, such as [2], [9]–[11], [13], [20].

A commonly used approach when designingprovable al-
gorithmsis to represent the underlying wireless network as a
geometric intersection graph. Each nodeu ∈ V is associated
with a disk of radiusrange(u), which depends on the
transmission power level,J(u) of u; a common approximation
is to chooserange(u) = Θ((J(u))1/α), whereα is the path
loss exponent, and the signal from nodeu is assumed to be
heard only within this range. This gives us theconnectivity
graph G = (V, E) obtained by adding links(u, v) to E if
d(u, v) ≤ range(u). Interference in such a graph is modeled
through independence constraints (see e.g., [19]):if a node

u transmits, no node in its vicinity can transmit. A number
of papers have studied MAC protocols with these geometric
models of interference [19], [20]. Intuitively, such graphbased
models make the algorithmic analysis tractable since they
localize the interference effect of a transceiver on others.

While such graph based models give a useful first approxi-
mation to understanding wireless networks, they have several
limitations. A more realistic model that has been used to study
wireless transmission is called theSignal to Interference Plus
Noise Ratio (SINR)model [8], [18]: a signal from a transmitter
u is successfully received by a receiver atv, if the ratio
of u’s signal strength atv and the combined interference
from other transmitters along with ambient noise exceeds
v’s antenna gain. In other words, a set of transmissions
e1 = (u1, v1), . . . , ek = (uk, vk) can be simultaneously
scheduled if for allei,

J(ei)

ℓ(ei)α

h

N0 +
P

j 6=i

J(ej)

d(uj ,vi)
α

i ≥ β,

whereN0 denotes the noise density,α denotes the path loss
exponent, andJ(ei) denotes the power level with which node
ui transmits. Recent work by Moscibroda et al. [16]–[18] has
shown that for several problems, this model is significantly
different from graph based models. In [16], [18], they show
that for the problem of minimizing thescheduling complexity,
by choosing appropriate transmission power levels, SINR
models allow for much shorter schedules. In [17], they show
that the throughput capacity under an SINR model is different
from that under a graph based model. The non-locality of this
model makes its analysis challenging.

In this paper we consider the problem of characterizing
the achievable rates for arbitrary multi-hop wireless networks
with SINR constraints. Given a set of nodesV , a set of
source-destination pairsD = {(s1, t1), . . . , (sk, tk)}, and a
power levelJ(e) for transmission on edgee, the throughput
maximization problem with SINR constraints (TM-SINR)
consists of (i) choosing routes for the connections, (ii) choos-
ing flow rates on the routes, and (iii) scheduling the packets
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at each time such that the SINR constraints are satisfied for
all simultaneous transmissions, and that the total throughput
capacity is maximized. Note that theTM-SINR problem does
not involve power control, i.e., the power levelsJ(e) for each
edge are fixed and given as part of the input. The SINR
constraints make the throughput optimization problem non-
convex. Further the link scheduling problem with SINR con-
straints has shown to be NP-complete in [7]. Since scheduling
is also an integral component of our problem, it is reasonable
to conjecture that the throughput maximization problem is also
NP-complete. We focus on developing rigorous polynomial
time methods with provable performance guarantees.

In reality, the link capacities depend on the SINR [1],
therby making this problem very complex. We simplify this by
using the Additive White Gaussian Noise (AWGN) model for
specifying the link capacities [4]. In this model the capacity,
cap(e), of a link e having lengthℓ(e) and transmitting at
power levelJ(e) is given by

cap(e) = W log2

„

1 +
J(e)

ℓ(e)αN0W

«

, (1)

where W is the bandwidth, andN0 and α are as defined
earlier. In the absence of interference, the above equation
provides a theoretical upper bound on the link capacity. How-
ever, the maximum throughput problem with SINR constraints
remains non-trivial even under the AWGN model, and we only
study this here.

II. OVERVIEW OF RESULTS

We study theTM-SINR problem in wireless networks from
a theoretical perspective, and take the first steps towards
developing efficient algorithms for this problem. The main
contributions of our work are summarized below.

• We compare the SINR and graph based models for the
same instance, with the same fixed power levels, and
observe that the throughput capacity can be significantly
different in these two models. When the power level for
all the edges is the same, we show that there are instances
in which the throughput capacity that can be achieved in
the SINR model is significantly higher than that in the
graph based model. For the case of linear power levels
(whereJ(e) ∝ ℓ(e)α, for each edgee), we show that
there are instances in which the throughput capacity in
the SINR model can be much lower than in the corre-
sponding graph based model with the same power levels.
In contrast, the results of [16]–[18] show that by choosing
suitable power levels, a much higher throughput capacity
is possible in SINR models than in graph based models.
Since all these models of interference are approximations
of the real phenomenon, this suggests greater care is
needed in inferring any properties of the system based
on such an analysis.

• We develop a linear programming based approach to
approximate the maximum throughput rate vector in the
case of SINR constraints. For the case of uniform power
levels (when all nodes have the same power levelJ), we

develop a polynomial time approximation algorithm that
provides a feasible rate vector whose total throughput
is at leastΩ(ropt/ log ∆), whereropt is the maximum
possible throughput for this instance and∆ is defined
as ∆ = maxu,v∈V d(u, v)/ minu′,v′∈V,u′ 6=v′ d(u′, v′).
This gives us anO(log ∆) approximation to the total
throughput. Our approximation bound is a worst case
guarantee that holds for every instance.

• Next, we consider the case of non-uniform power levels,
in which the power levels on different edges could be dif-
ferent. We extend our method to obtain anO(log ∆ log Γ)
approximation to the total throughput, whereΓ is the
ratio between maximum and minimum power levels used.

• We consider a special case of non-uniform power levels,
called linear power level choice, where the power level
on each edgee is J(e) = c1ℓ(e)

α for a constantc1. In
this case, we improve theO((log ∆)2) approximation to
just O(log ∆).

For technical reasons, theO(log ∆) bound is only relative
to the optimum rate possible by using slightly smaller power
levels - this is explained formally in Section VI. Our algorithm
builds upon the recent work of [6], [16], [18] on scheduling
with SINR constraints, and the LP based approaches of [10],
[13] for estimating the capacity for graph-based interference
models.

III. R ELATED WORK

There has been significant work on understanding the
capacity of random networks formed by nodes distributed
randomly in the plane, using both graph based and SINR
models (see, e.g., [3], [8], [12]), and for other variants of
such distributions. However, these results do not directlyhelp
in understanding the capacity of arbitrary networks, whichis
the focus of our paper. The throughput maximization problem
for graph based models is formally studied and proven to be
NP-hard by Jainet. al. [9], who use a linear programming
approach to characterize the capacity of the network and to
perform routing. They model interference constraints as a
conflict graph and provide upper and lower bounds for optimal
throughput. As mentioned in [5], the methods discussed in [9]
tend to have an exponential complexity and no performance
guaranteed polynomial time approximation algorithm is pro-
posed. Toumpiset. al. [21] provide a mathematical framework
for determining the capacity region of an ad-hoc network,
which captures the effects of power control, spatial reuse and
successive interference cancellation on the capacity region.
However, their results do not give worst case approximation
guarantees.

Kodialam et. al. [10] study the problem of determining
achievable rates for multi-hop wireless, along with joint
routing and scheduling constraints in graph based models.
Their approach provides necessary and sufficient conditions
for link flows and leads to a polynomial time approximation
algorithm for this problem. However, they only consider
primary interference in their model, which is very restrictive.
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Lin et. al. [14], [15] study the joint problem of rate allocation
and scheduling using a dual optimization based approach to
decompose the problem as rate control and scheduling prob-
lem. Their technique provides an optimal solution that maxi-
mizes the throughput and provides a stable and fair schedule
considering the primary interference model. Although some
of these approximation bounds have been improved in recent
work by Buragohainet. al. [5], it is not intuitive to extend
these techniques for the SINR interference model.

Some of the key algorithmic results on the SINR model are
studied in [6], [16]–[18]. Moscibroda et al. [16]–[18] study the
problem of scheduling edges with SINR constraints to ensure
that some property (e.g., connectivity) is satisfied by the edges
that are chosen. They show that by suitable power control,
the solutions in the SINR model are much more efficient
than those in graph based models. Chafekar et al. [6] develop
approximation algorithms for packet scheduling to minimize
end-to-end delays with SINR constraints.

Our work is closely related to Kumaret. al. [6], [13]. The
work by [13] provides a constant approximation algorithm
for the throughput maximization problem along with joint
scheduling and routing. The interference model consideredis
graph-based and their approach is generic enough to accom-
modate the case of uniform and non-uniform power levels.
They further derive linear necessary and sufficient conditions
that lead to a constant factor approximation to the throughput
capacity. However, the framework presented in [13] cannot be
easily extended to the SINR interference model. In this work,
by combining some of the techniques from [6], [13], we study
the throughput maximization problem along with joint routing
and scheduling for the SINR interference constraints.

IV. PRELIMINARIES

We consider the input instance of theTM-SINR problem to
be specified asI = (V, E,D, J̄), where (i)V denotes a set of
transceivers, henceforth referred to as nodes, which are located
on the plane, (ii)E ⊆ V × V denote the set of possible links
(also referred to as edges), on which transmissions can occur,
(iii) D is a set of connections, with theith connection from
nodesi to nodeti, and (iv) J̄ = (J(e) : e = (u, v) ∈ E)
specifies the vector of power transmission levels on edges.
For u, v ∈ V , let d(u, v) denote the Euclidean distance
between these nodes; fore = (u, v) ∈ E, let ℓ(e) = d(u, v).
Following standard graph theory notation, letNout(u) and
Nin(u) be the sets of outgoing and incoming edges for nodeu,
respectively. Let∆ = maxe∈V {ℓ(e)}/ mine′∈E{ℓ(e′)}; log ∆
is also called the “length diversity” [7]. All the logarithms
are to the base two. Without loss of generality, we assume
that mine∈E{ℓ(e)} = 1. We define Bi = {e ∈ E :
ℓ(e) ∈ [2i, 2i+1)}, for i ∈ {0, . . . , (log ∆ − 1)}. Also, let
Γ = maxe J(e)

mine′ J(e′) .

Note that for edgee ∈ E, its power levelJ(e) is given, and
so our assumption of the AWGN model (equation 1) implies
that its capacitycap(e) is also fixed.

A. Interference Model

We use the SINR model of interference as described in
[6], [18]. In this setting, a given setE′ = {ei = (ui, vi) :
i = 1, . . . , k} of links can simultaneously communicate
successfully if for eachei ∈ E′, we have

SINR(vi) =
J(ei)

ℓ(ei)α[N0 + Ir(vi, E′)]
≥ β,

where (i) N0 denotes the ambient noise density, which is a
constant, (ii)β is a constant, related to the antenna properties,
(iii) α denotes the path-loss exponent, which we assume to be
greater then2, and (iv)Ir(vi, E

′) =
∑

ej 6=ei

J(e′)
d(uj ,vi)α denotes

the interference at receivervi due to all other transmissions
- we will simply denote this asIr(vi) if the setE′ is clear
from the context.

Note that in this model, for any edgee = (u, v) ∈ E, we
needJ(e) ≥ βN0ℓ(e)

α for the transmission on this edge to be
feasible, even in the absence of any other interference. We will
assume that for an instanceI = (V, E,D, J̄) of TM-SINR,
we haveJ(e) ≥ βN0ℓ(e)

α for all e ∈ E.

B. Link rates and feasible end-to-end schedules

We assume that the time is divided into uniform slots, each
of durationτ and the system operates in a synchronous mode.
Let D = {1, . . . , k} denote a set of connections, withsi

and ti denoting the source and destination respectively, for
connectioni. Let fi(e) denote the mean flow rate on linke
for the ith connection, and letf(e) =

∑

i fi(e) denote the
total link flow. We let x(e) = f(e)/cap(e) denote the link
utilization - this denotes the fraction of time linke is used. The
vectorsf̄ andx̄ are called the flow vector and link utilization
vector respectively. An end-to-end scheduleS describes the
specific times at which packets are transmitted over the links
of the network. For scheduleS, let X(e, t) be an indicator
variable that is1 if the link e is used at timet. We say thatS
is valid if the SINR constraints are satisfied at all the receivers
at every timet. We say thatS feasibly schedules the link
utilization vectorx̄ if we havelimT→∞

∑

t≤T
X(e,t)

T = x(e)
for each edgee - in this case, we say thatS corresponds to
the utilization vector̄x. The rate regionX (I) is the space of
all utilization vectorsx̄ for the instanceI of TM-SINR that
can be scheduled feasibly.

Let ri denote the end-to-end rate on theith connection
in bits per second, resulting from the flow vectorf̄ . In this
paper we are interested in maximizing the total end-to-end
rate

∑

i ri. For an instanceI = (V, E,D, J̄) of TM-SINR,
let ropt(I) denote the maximum possible total throughput rate
that is feasible for this instance. We say that a utilization
vector x̄ ∈ X (I) is a γ-approximation to the throughput
maximization problem if the resulting total rate achieved
is at leastγ · ropt(I); we say that an algorithm is aγ-
approximation algorithm, if for any instanceI of TM-SINR,
it provably produces such aγ-approximate solution̄x ∈ X (I)
in polynomial time, for any instanceI of TM-SINR- note that
this is a worst case approximation result.
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C. Congestion Measure

Following [6], we define a notion of congestionC, that will
play a key role in our algorithm. Fore = (u, v) ∈ E, let

C(e) = {e′ = (u′, v′) ∈ E : a ·ℓ(u′, v′) ≥ d(u, u′)∧ℓ(e′) ≥ ℓ(e)},

and letC = maxe∈E |C(e)|. Here,a is a constant such that

a ≥ 4 α

√

48β(1+ǫ)
ǫ(α−2) , ǫ is a small positive constant andα > 2

[18]. The significance of the congestionC is that it provides
a lower bound on the number of feasible simultaneous trans-
missions [6], which we use to approximateropt.

V. SINR VS GRAPH BASED MODELS

In this section, we compare the SINR and graph models in
the context of the throughput maximization problem. Given
an instanceI = (V, E,D, J̄) of TM-SINR, we follow the
approach of [18] in constructing an “equivalent” connectivity
graphG = (V, Egm) and a resulting instanceIgm in a graph
based model in the following manner. Recall the notation
from Section IV. In the rest of this section, we will consider
instancesI of TM-SINR in which every nodeu ∈ V
uses a fixed power levelJ(u) = J(e) for every incident
link e = (u, v) ∈ E. We associate a transmission range
of r(u) = (J(u)/c1)

1/α with every nodeu ∈ V , giving
rise to a disk graphG = (V, Egm) with (u, v) ∈ Egm if
d(u, v) ≤ r(u). This is a directed graph in general, if nodes
have non-uniform transmission ranges. The corresponding
instanceIgm consists of this graphG along with the same
setD of connections, as inI. Note that the set of edges on
which transmissions can happen is the same in both models.
For every edgee ∈ Egm, we use the same expression for
cap(e), the capacity of edgee as inI, since this comes from
the AWGN model. What is different is the interference - we
can now use any graph based interference model to specify the
set Igm(e) of edges that interfere withe - for concreteness,
we use the distance-2 matching model [13], which defines
Igm(e) = {e′ = (u′, v′) : dG({u, v}, {u′, v′}) ≤ 1}, where
dG() defines the distance between two sets in the graphG.
A schedule is valid in the graph-based model, if at any time,
no edgee is simultaneously scheduled along with some edge
e′ ∈ I(e). Let rgm

opt(Igm) denote optimum throughput rate
possible for this instance in the graph based model.

We show the following results in this section.

• If the instanceI of TM-SINR has uniform power levels,
the ratioropt(I)/rgm

opt(Igm) can be arbitrarily large, i.e.,
the corresponding graph based model underestimates the
throughput capacity significantly.

• In contrast, when the power levels in the instance
I of TM-SINR are linear, we show that the ratio
ropt(I)/rgm

opt(Igm) can be arbitrarily small.

The above results show that if the power levels are fixed,
the total throughput in both the models is very different - this
is in contrast to the results of [16], [18], which show that by
choosing appropriate power levels, a much higher throughput
is possible in the SINR model for the same instance.

A. Uniform power levels

We construct the following instanceI = (V, E,D, J) of
TM-SINR, with uniform power levelJ for all transmissions.
Let R = (J/c1)

1/α be the corresponding transmission range
in the corresponding graph model, as discussed earlier; we
assume thatR is a large integer. LetV = {v0} ∪n

i=1 {vi, wi}
be a set of nodes, which are placed in the following manner.
Imagine a circle of radiusR/2 centered at nodev0, and the
nodesv1, . . . , vn are uniformly placed on the circumference
of this circle at a spacing ofΘ(

√
R), so thatn = Θ(

√
R).

Eachwi is at a unit distance fromvi, for i = 1, . . . , n. Let
the connections inD in the instanceI be all the pairsei =
(vi, wi), for all i. Let cap = cap(ei) denote the capacity of
any link ei in bits/sec; note that this is the same for every
edgeei in this setting. For simplicity, we ignore the ambient
noise, i.e., assumeN0 = 0. It is easy to extend these results
to take the noise into account.

Lemma 1:For the instanceI of TM-SINR and the cor-
responding graph-based instanceIgm described above, we
have ropt(I)/rgm

opt(Igm) = Ω(cap ·
√

R), assumingβ ≤
c3 · R(α−1)/2, for a constantc3.

Proof: Observe that for alli 6= j,
√

R ≤ d(vi, vj) ≤ R.
Therefore,Igm(ei) = {ej : j 6= i}, which implies that at any
time, at most one edgeei can be scheduled in the graph-based
model in the instanceIgm. This implies thatrgm

opt(Igm) =
Θ(cap) bits/sec.

Next, consider the SINR model for the instanceI of TM-
SINR. Suppose all the edgesei are scheduled simultaneously
- the SINR ratio at any receivervi in this case is

J

ℓ(ei)α

h

P

j 6=i J/d(uj , vi)α

i ≥ c1R
α

h

P

j 6=i c1Rα/(c2 ·
√

R)α

i ≥ β,

where the first inequality follows from the fact thatJ = c1 ·
Rα, andd(uj , vi) = Ω(

√
R) for this instance, and the second

inequality follows ifβ ≤ c3 ·R(α−1)/2 for a constantc3. This
implies that all the edgesei can be scheduled simultaneously
in the SINR model, leading toropt(I) = Θ(cap ·

√
R), and

so the lemma follows.

B. Linear Power Levels

We now construct an instanceI = (V, E,D, J̄) of TM-
SINR with uniform power levels, i.e., for eache ∈ E, J(e) =
c1ℓ(e)

α. The setV = ∪n
i=1{ui, vi} has2n nodes, which are

located on a line in the orderu1, v1, u2, v2, . . . , un, vn. For
all i = 1, . . . , n, we haved(ui, vi) = Ri = 2i, and for
all i = 1, . . . , n − 1, we haved(vi, ui+1) = 2i+2. The set
E = {ei = (ui, vi) : i = 1, . . . , n} will be the only edges
used for transmission, withJ(ei) = c1R

α
i , for eachi. All the

connections inD in this instance are the pairsei = (ui, vi),
for i = 1, . . . , n. Because of our AWGN model for the link
capacities, as discussed in Equation 1, it follows that for all
ei ∈ E, cap(ei) = cap is a fixed value. Each nodeui has
only one incident edge in the setE, so for the graph based
model, we setr(ui) = Ri, as discussed earlier. Therefore, for
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the corresponding graph based instanceIgm the connectivity
graphG = (V, Egm) hasEgm = {ei : i = 1, . . . , n}.

Lemma 2:For the instance I and the correspond-
ing graph-based instanceIgm described above, we have
rgm
opt(Igm)/ropt(I) = Θ(n).

Proof: First, observe that for the graph-based interference
in the instanceIgm, we haveIgm(ei) = φ for eachei ∈ Egm.
Therefore, the edgesei do not interfere with each other and all
these edges can transmit simultaneously in this model, leading
to a throughput capacity ofΩ(n · cap).

Next, consider the SINR model. For simplicity, we ignore
the noise densityN0, though it can be easily incorporated.
Let E′ be any subset of these edges that can transmit
simultaneously, and letei be the shortest among them. For
all ej ∈ E′, ej 6= ei, we haved(uj , vi) ≤ ∑j−1

k=i(2
k+2 +

2k+1) ≤ c22
j = c3Rj , for constantsc2, c3. In order for these

transmissions to be feasible in the SINR model, we must have

J(ei)

ℓ(ei)α
[

∑

ej∈E′,ej 6=ei

J(ej)
d(uj ,vi)α

] ≥ β,

where the LHS is the SINR ratio atvi. Rearranging, and using
the fact thatd(uj , vi) ≤ c3Rj for eachej ∈ E′, we have
|E′| is O(1/β), which is a constant. This impliesropt(I) =
O(cap/β), and so the lemma follows.

VI. T HROUGHPUTMAXIMIZATION FOR UNIFORM POWER

LEVELS

A. Problem Formulation

In this Section we formulate theTM-SINR problem for
uniform power levels. We consider input instances ofTM-
SINR specified asI = (V, E,D, J) with a uniform power
level of J(e) = J for every edgee ∈ E. Recall the notation
from section IV. It is easy to see that the exact formulation of
the TM-SINR problem is non-convex. We develop a linear
programming relaxation of this problem by combining the
approaches of [6], [13] - we show that both necessary and
sufficient conditions can be derived for the feasible rate region
by considering the total link utilization in the edges in theset
C(e) for any edgee. Our formulation for instanceI described
below is denoted byP(λ, I), whereλ is a parameter.

max
X

i∈D

ri subject to:

∀i ∈ D, ri =
X

e∈Nout(si)

fi(e) −
X

e∈Nin(si)

fi(e) (2)

∀e ∈ E, x(e) =
X

i∈D

fi(e)/cap(e) (3)

∀i ∈ D,∀u 6= si, ti,
X

e∈Nout(u)

fi(e) =
X

e∈Nin(u)

fi(e) (4)

∀e ∈ E,
X

e′∈C(e)

x(e′) ≤ λ (5)

In the above formulation, constraints (2) define the total
rate ri for each connection, constraints (3) define the link
utilization x(e) for each link e, constraints (4) ensure flow

conservation, and constraints (5) are relaxed congestion con-
straints - these are the key constraints that allow us to use this
program to derive upper and lower bounds on the optimum
rate. The programP(λ, I) has polynomial size and can be
solved in polynomial time.

In the subsequent sections, we show that the optimum
utilization vector satisfiesP(λ, I) for some constant value
of λ. We then show that scaling the constraints down allows
us to schedule the flow feasibly.

B. Link-Flow Scheduling: Necessary Conditions

The following lemma shows thatP(λ, I) gives an upper
bound onropt(I) for a suitable choice ofλ.

Lemma 3:Let I = (V, E,D, J) be an instance of theTM-
SINR problem with uniform power levelJ , and letx̄ ∈ X (I)
be any feasible link utilization vector. Then,x̄ is a feasible
solution to the programP(λ0, I), whereλ0 = (2a+1)α

β + 1,
anda is the constant defined in Section IV-C.

Proof: SinceX (I) denotes the set of all feasible utiliza-
tion vectors for the instanceI of TM-SINR, it is clear that
x̄, and the associated flow rate vectorf̄ , must satisfy all the
constraints ofP(λ0, I), except possibly the constraints (5).
We now argue that the constraints (5) hold for this choice of
λ0.

Since the link utilization vector̄x is feasible, there exists a
stable scheduleS which achieves the link rates specified by
x̄. Recall the notationX(e, t) from Section IV. LetEt = {e :
X(e, t) = 1} denote the set of links that transmit at timet in
this schedule.

We now focus on any edgee = (u, v) ∈ Et. Let At =
Et ∩ C(e) = {ej = (uj, vj) ∈ C(e) : j = 1, . . . , c} be a set
of c links in C(e) that are scheduled simultaneously at timet.
We argue below thatc must be bounded by a constant. Let the
links in the setAt be numbered in non-decreasing order of
their lengths, so thatℓ(u1, v1) ≤ ℓ(u2, v2) ≤ . . . ≤ ℓ(uc, vc).
For simultaneously successful transmission of these links, the
SINR at each nodevj , and in particular, at nodevc, needs to
be at leastβ.

u

v

euc

vc

ec

uj

vj

ej

Fig. 1. For a given linke = (u, v) and setAt, d(uj , vc) ≤ (2a +
1)d(uc, vc) , whereec, ej ∈ C(e) andec is the link with longest length in
setAt.

Consider anyej ∈ At, ej 6= ec (cf. Figure 1). We have

d(uj , vc) ≤ d(u, uj) + d(u, uc) + d(uc, vc)

≤ 2ad(u, v) + d(uc, vc)

≤ (2a + 1)d(uc, vc),
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where the first inequality follows from triangle inequality, and
the last two inequalities follow from the definition ofC(e),
which implies that for anye′ = (u′, v′) ∈ C(e), we must have
d(u, u′) ≤ a · ℓ(e′) andℓ(e) ≤ ℓ(e′).

The interference experienced atvc due to all transmitting
links in At − {ec} is

Ir(vc) =
X

ej=(uj ,vj)∈At, j 6=c.

J

d(uj , vc)α
.

Therefore, in order to satisfy the SINR constraint at node
vc we need,

J/d(uc, vc)
α

h

N0 +
P

ej∈At,j 6=c J/d(uj , vc)α

i ≥ β.

Rearranging, we have

J

d(uc, vc)α
≥ β

2

4N0 +
X

ej∈At,j 6=c

J

d(uj , vc)α

3

5

≥ βN0 +
βJ(c − 1)

(2a + 1)αd(uc, vc)α
.

This in turn impliesc ≤ (2a+1)α

β + 1, and therefore, we
have

∀e ∈ E,∀t,
X

e′∈C(e)∩Et

X(e′, t) ≤ λ0,

which implies for anyT

∀e ∈ E,
X

e′∈C(e)

X

t≤T

X(e′, t) ≤ Tλ0. (6)

Dividing both sides of (6) byT , the lemma follows from
the definition ofx(e) in Section IV-B.

C. Link-Flow Scheduling: sufficient conditions

In this section, we show that the programP(λ, I =
(V, E,D, J)) can be used to derive sufficient conditions for
link flow stability for the instanceI of TM-SINR, for a
suitable value of the parameterλ. This requires showing
that a solutionx̄ to this program can be scheduled feasibly,
under suitable conditions onλ andJ . We describe algorithm
FrameSchedule for constructing a feasible schedule below.

We assume that time is divided into sufficiently large frames
of lengthw, and thatx(e)w is an integral for alle ∈ E. Recall
the definitions of∆ and the setsBi from Section IV. We
further subdivide each frameW into log ∆ sub-framesWi,
each of lengthw/ log ∆, which is assumed to be integral.
Algorithm FrameSchedule constructs a periodic scheduleS
by repeating a scheduleSW for every frameW . Within each
sub-frameWi, the algorithm considers only the edges from
the setBi, and assignsx(e) ·w slots for each edgee ∈ Bi by
a greedy coloring step.

For the above algorithm to be stable, we need to find
conditions under which, step 9 of the algorithm would be
successful. The following lemma proves that for a suitable
value ofλ, the algorithm is indeed successful.

Algorithm 1 : FrameSchedule

Input : (i) E, (ii) x̄, (iii) W , (iv) w
Output : Sets(e) for all e ∈ E, and scheduleSW

for e ∈ E do1
s(e) = φ2

end3
Partition W into (log ∆) setsWi of equal size, for4
i ∈ {0, . . . , (log ∆ − 1)},
for i = (log ∆ − 1) downto0 do5

//Greedy Coloring
Order edges inBi in non-increasing order of their lengths6
{e1, . . . , es}.
for j = 1 to |Bi| do7

s′(ej) =
S

e′∈C(e)∩{e1,...,ej−1}
s(e′)8

s(ej) = any subset ofWi \ s′(ej) of sizex(e)w9
end10

end11
Construct scheduleSW : X(e, t) = 1 if t ∈ s(e) for eache, t.12

Lemma 4:Algorithm FrameSchedule correctly assigns
|s(e)| = x(e)w slots for each edgee, if the link utilization vec-
tor x̄ is any feasible solution to the programP( 1

(1+log ∆) , I).
Proof: Suppose step 9 of AlgorithmFrameSchedule

fails for some edgeej ∈ Bi. Then, we must have
X

e′∈C(ej )∩Bi

|s(e′)| > w/ log ∆ =⇒
X

e′∈C(ej )

|s(e′)| > w/ log ∆

Dividing both sides byw, we get
∑

e′∈C(ej)
x(e′) >

1/ log∆, which contradicts the condition on̄x.
In the following Lemma we prove that Algorithm 1, pro-

duces a valid schedule.
Lemma 5:Let x̄ be a feasible solution to the program

P(1/(1 + log ∆), I ′ = (V, E,D, J/(1 + ǫ))), for a constant
ǫ > 0. Then, AlgorithmFrameSchedule produces a valid
schedule corresponding tōx for the instanceI = (V, E,D, J),
of TM-SINR in which the SINR constraints are satisfied at
all receivers, for constantsa andα defined in Section IV-C.

Proof: We show that at any timet, the setEt of links
scheduled at this time inS can indeed be transmitted simulta-
neously, while satisfying the SINR constraints at each receiver,
in the instanceI. Let Et = {ej = (uj , vj) : j = 1, . . . , s}.

By construction, there exists a setBi such thatEt ⊆ Bi.
Consider two edgesej , em ∈ Et with ℓ(ej) ≤ ℓ(em). Since
these two edges are scheduled simultaneously, it must be
the case thatem 6∈ C(ej), which implies d(uj , um) >
a max{ℓ(ej), ℓ(em)}. For any ej ∈ Bi, we haveℓ(ej) ∈
[2i, 2i+1), and soa2i ≥ aℓ(ej)/2. This implies that if we
place a disk of radiusaℓ(ej)/4 centered at the end points of
each edge inEt, all these disks would be disjoint.

Consider anyej = (uj , vj) ∈ Et. We estimate the
SINR at vj in the following manner. As in [6], [18], we
partition the plane into ringsRd centered atuj (cf. Figure
2) for d = 0, 1, . . ., each of widthaℓ(ej) arounduj . Each
ring Rd consists of all linksem = (um, vm), for which
daℓ(ej) ≤ d(uj , um) < (d + 1)aℓ(ej). As derived earlier,
for anyem 6= ej, we haved(uj , um) > a max{ℓ(ej), ℓ(em)},
which impliesR0 does not contain any links inEt other than
ej. By definition, the area ofRd is π[((d + 1)aℓ(ej))

2 −
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R0

R1

vj

uj

ej

aℓ(ej)

2aℓ(ej)

Fig. 2. For a given linkej = (uj , vj) ∈ Et, construct rings of radius
aℓ(ej) arounduj . We calculate the interference experienced by nodevj due
to other simultaneously transmitting links.

(daℓ(ej))
2] = πa2(2d + 1)ℓ(ej)

2 ≤ 3πda2ℓ(ej)
2, and so the

non-overlapping disks property implies that the number of
transmitters inRd is at most

3πda2ℓ(ej)
2

πa2ℓ(ej)2/16
≤ 48d.

Next, that for eachem ∈ Rd, we haved(um, vj) ≥ (ad −
1)ℓ(ej) ≥ ad

2 ℓ(ej), sincea ≥ 2. Therefore, the interference
at vj due to nodes inRd, denoted byId(vj), is bounded as
follows,

Id(vj) ≤ 48 · d · 2α J

(adℓ(ej))α
= 2α 48J

aαdα−1ℓ(ej)α
.

Summing up the interference over all ringsRd, we have,

∞
X

d=1

Id(vj) ≤ 2α 48J

aαℓ(ej)α

∞
X

d=1

1

dα−1

≤ 2α 48J

aαℓ(ej)α

Z ∞

1

dx

xα−1

≤ 2α48J

aαℓ(ej)α(α − 2)
.

Therefore the SINR at receivervj is at least

J

ℓ(ej)α[N0 + 2α48J
aαℓ(ej)α(α−2)

]
≥ J

ℓ(ej)α[ J
(1+ǫ)βℓ(ej)α + ǫJ

(1+ǫ)βℓ(ej)α ]

which is at leastβ if aα ≥ 2α 48β(ǫ+1)
ǫ(α−2) . Note that we have

used the fact thatJ ≥ (1 + ǫ)βN0ℓ(ej)
α, since we are

analyzing the feasibility of the scheduleS for the instance
I of TM-SINR.

It is crucial to note that Lemma 5 proves that the sched-
ule corresponding to the vector̄x produced by Algorithm
FrameSchedule is valid not for the original instanceI ′ =
(V, E,D, J/(1+ ǫ)) of TM-SINR, but for adifferent instance
I = (V, E,D, J), so that for alle ∈ E, J ≥ (1+ǫ)βN0ℓ(e)

α.

D. Putting everything together

For an input instanceI = (V, E,D, J) of TM-SINR, our
algorithm computes the optimum solution̄x to the linear
programP(1/(1+ log∆), I ′ = (V, E′,D, J/(1+ ǫ))), where
E′ = {e ∈ E : J ≥ (1 + ǫ)βN0ℓ(e)

α}. From Lemma 5,
it follows that x̄ can be scheduled feasibly for the instance
I. The following theorem shows that the rate achieved byx̄
is within a provable factor ofropt(I ′) - thus, this is a bi-
criteria approximation, in which we compare the quality of
the solution produced by our algorithm with respect to the
optimum for an instance that uses slightly less power.

Theorem 1:As defined above, letI = (V, E,D, J) be an
instance ofTM-SINR with uniform power levelJ , and let
I ′ = (V, E′,D, J/(1 + ǫ)) be the corresponding instance,
defined by using power levelsJ/(1 + ǫ), with E′ = {e ∈
E : J ≥ (1 + ǫ)βN0ℓ(e)

α}, for any ǫ > 0. The optimum
solution x̄ to the programP(1/(1 + log ∆), I ′) is a feasible
and stable link utilization vector for the instanceI, and results
in a total throughput of at leastΩ(ropt(I ′)/(1 + log ∆)).

Proof: Let x̄opt be the optimum utilization vector for the
instanceI ′ of TM-SINR, achieving a total throughput rate of
ropt(I ′). Note Lemma 3 holds for both the instancesI and
I ′. From Lemma 3, it follows that̄xopt is feasible solution to
the programP(λ0, I ′), for the constantλ0 defined in Lemma
3. SinceP(λ0, I ′) is a linear program, it follows that the
utilization vectorȳ = 1

λ0 log ∆ x̄opt is a feasible solution to the
programP(1/(1+log∆), I ′), and results in a total throughput
rate of ropt(I

′)
λ0 log ∆ . This implies that the optimum solution̄x to the

programP(1/(1+log∆), I ′) also results in a total throughput
rate of at leastropt(I

′)
λ0 log ∆ . Finally, by Lemma 5, it follows that

x̄ can be scheduled feasibly for the instanceI of TM-SINR.
Therefore, the theorem follows.

VII. T HROUGHPUTMAXIMIZATION FOR NON-UNIFORM

POWER LEVELS

In the previous section, we assumed that the power vectorJ̄
was uniform withJ(e) = J for each edgee. We now extend
this to the non-uniform setting whereJ(e) need not be the
same for every edgee. Let J̄ be the corresponding power level
vector.

A. Problem Formulation

The problem formulation for theTM-SINR problem for
non-uniform power levels is similar to the one presented
in Section VI-A. Recall the notation defined in Section IV.
We partition the setE of edges into setsHi

k = {e =
(u, v) ∈ E : ℓ(e) ∈ [2i, 2i+1), J(e) ∈ [2k, 2k+1)}, ∀i ∈
{0, . . . , (log ∆ − 1)}, k ∈ {0, . . . , (log Γ − 1)}. For an in-
stanceI = (V, E,D, J̄) of TM-SINR, we define a different
formulationPn(λ, I) by replacing the constraints (5) in the
programP(λ, I) by the constraints

x(e) +
X

e′∈C(e)∩Hi
k

x(e′) ≤ λ, (7)

for all i ∈ {0, . . . , (log ∆ − 1)}, k ∈ {0, . . . , (log Γ − 1)},
and for alle ∈ Hi

k.
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B. Link-Flow Scheduling: Necessary Conditions

Lemma 6:Let x̄ be any feasible link utilization vector
for the instanceI = (V, E,D, J̄) of TM-SINR. Then,
x̄ is a feasible solution to the programPn(λ1, I), where
λ1 = 2 (2a+1)α

β + 1, for constanta defined in Section IV-C.
Proof: (Sketch) We mimic the proof of Lemma 3. Fol-

lowing the notation of Lemma 3, we consider setAt to be the
set of links that are scheduled at timet in the feasible schedule
corresponding tōx. Define Gi = {e ∈ E : 2i ≤ J(e) <
2i+1}. Let At ∩ Gi = {ei = (ui, vi) : i = 1, . . . , c}, with the
edges numbered in non-decreasing order of their lengths. Asin
the proof of Lemma 3, by computing the SINR at the receiver
vc, we argue that at mostλ1 other transmissions inAt ∩ Gi

are simultaneously possible. Though the power levels are not
uniform, considering the edges inAt∩Gi implies that for any
ec, ej ∈ At ∩Gi, we haveJ(ec)/2 ≤ J(ej) ≤ 2J(ec), which
allows us to do the argument, with the constantλ1 instead of
λ0.

We now consider the sufficient conditions for link-flow sta-
bility. Algorithm NonUniformFrameSchedule is the modi-
fied scheduling algorithm for this setting.

Algorithm 2 : NonUniformFrameSchedule

Input : (i) E, (ii) x̄, (iii) W , (iv) J̄ ,(v) w
Output : Setss(e) for all edgese and scheduleSW

for e ∈ L do1
s(e) = φ2

end3
Partition W into (1 + log ∆)(1 + log Γ) setsWi,k of equal size, for4
i ∈ {0, . . . , (log ∆ − 1)}, k ∈ {0, . . . , (log Γ − 1)}.
for i = (log ∆ − 1) downto0 do5

for k = (log Γ − 1) downto0 do6
//Greedy Coloring
Order edges inHi

k
in non-increasing order of their lengths7

{e1, . . . , es}.
for j = 1 to |Hi

k
| do8

s′(ej) =
S

e′∈C(e)∩{e1,...,ej−1}
s(e′)9

s(ej) = any subset ofWi,k \ s′(ej) of sizewx(e)10
end11

end12
end13

Construct scheduleSW : at each timet ∈ W , schedule all linkse ∈ L14

with t ∈ s(e).

We construct a period scheduleS using Algorithm 2 by
repeating the scheduleSW for each frameW . It is easy to see
that by making a minor modification to Lemma 4, it follows
that this algorithm indeed assignsx(e)w slots for each edge
e. We now derive the conditions under which the schedule is
valid.

Lemma 7:Let x̄ be a feasible solution to the program
P(1/(1+ log∆)(1+ log Γ), I ′ = (V, E,D, J̄/(1+ ǫ))), for a
constantǫ > 0. Then, AlgorithmNonUniformFrameSched-
ule produces a valid schedule corresponding tox̄ for the
instanceI = (V, E,D, J̄), of TM-SINR in which the SINR
constraints are satisfied at all receivers, for constantsa andα
defined in Section IV-C.

Proof: (Sketch) Consider any time slott. Let Et denote
the set of links scheduled inS at that timet. There exists a
set Hi

k for which Et ⊆ Hi
k, for somei ∈ {0, . . . , (log ∆ −

1)}, k ∈ {0, . . . , (log Γ − 1)}. Using the same argument
and notation as in Lemma 5, we can see that for any edge
ej = (uj , vj) ∈ Et, disks of radiusaℓ(ej)

4 centered at each
node em = (um, vm) ∈ Et are disjoint. Also since for
any links em = (um, vm), ej = (uj , vj) ∈ Et ⊆ Hi

k,
J(em) ∈ [2k, 2k+1) implies thatJ(em) ≤ 2J(ej). The rest
of the proof remains similar to the proof of Lemma 5.

Theorem 2:Let J̄ be a vector of non-uniform power levels,
let I = (V, E,D, J̄) be an instance ofTM-SINR with non-

linear power levels, and letI ′ = (V, E′,D,
J̄

(1 + ǫ)
) be

the corresponding instance obtained by using power levels
J̄

(1 + ǫ)
, with E′ = {e ∈ E : J(e) ≥ (1 + ǫ)βN0ℓ(e)

α},

for any ǫ > 0. The optimum solutionx̄ to the program
P(1/(1 + log ∆)(1 + log Γ), I ′) is a feasible and stable link
utilization vector for the instanceI, and results in a total
throughput of at leastΩ(ropt(I ′)/(1 + log ∆)(1 + log Γ)).

As in the case of Theorem 1 for uniform power levels, this
result is a bi-criteria approximation, in which the throughput
rate guaranteed by our algorithm is compared to the optimum
rate possible if slightly lower power levels are used.

VIII. I MPROVED APPROXIMATIONS: L INEAR POWER

LEVELS

We now consider a special case of non-uniform power
levels, in whichJ(e) = c1ℓ(e)

α for a constantc1 such that
c1 ≥ βN0 - this is also called the linear power level. Theorem
2 implies an approximation ofO((1 + log ∆)2) for this case,
sinceΓ = ∆. In this section, we show that this bound can be
improved toO(1 + log ∆).

Let J̄ be the power value vector withJ(e) = c1ℓ(e)
α,

as defined above. We consider the problem instanceI =
(V, E,D, J̄) of TM-SINR. We show that in this case the pro-
gramP(λ, I) itself can be used with a slight modification in-
stead of the programPn(λ, I) to get the better approximation.
Recall the definition of the setsBi from Section IV. We form
a linear programPl(λ, I) by replacing the constraints 5 in the
programP(λ, I) with constraintsx(e)+

∑

e′∈C(e)∩Bi
x(e′) ≤

λ for all e ∈ Bi, ∀i ∈ {0, . . . , (log ∆ − 1)}.
Lemma 8:Let x̄ be any feasible rate vector for the problem

I = (V, E,D, J̄). Then,x̄ satisfies all the constraints of the
programP(λ2, I), whereλ2 = 2α (2a+1)α

β + 1, for constant
a defined in Section IV-C.

Proof: (Sketch) We mimic the proof of Lemma 3. Recall
the notation of setAt from Lemma 3. We show that number of
links simultaneously scheduled from setAt∩Bi, ∀e ∈ E, ∀i ∈
{0, . . . , (log ∆ − 1)} is at mostλ2. Again, we consider the
SINR at the receiver of the longest edgeec ∈ At ∩ Bi. Note
that∀ej , ec ∈ At∩Bi, we haveJ(ec)/2α ≤ J(ej) ≤ 2αJ(ec).
Following the same sequence of arguments as in Lemma 3,
we can derive
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J(ec)

d(uc, vc)α
≥ βN0 +

βJ(ec)(c − 1)

2α(2a + 1)αd(uc, vc)α
,

which implies the bound on|At ∩ Bi ∩ C(ec).
Theorem 3:Let I = (V, E,D, J̄) be an instance ofTM-

SINR with linear power level, i.e.,J(e) = c1ℓ(e)
α for all

e ∈ E. Let I ′ = (V, E′,D,
J̄

(1 + ǫ)
) be the corresponding

instance obtained by using power levels
J̄

(1 + ǫ)
, for any ǫ >

0, with E′ = {e ∈ E : J(e) ≥ (1+ ǫ)c1ℓ(e)
α}. The optimum

solution x̄ to the programP(1/(1 + log ∆), I ′) is a feasible
and stable link utilization vector for the instanceI, and results
in a total throughput of at leastΩ(ropt(I ′)/(1 + log ∆)).

Proof: (Sketch) The proof of this lemma is similar to
that of Lemmas 5, 4 and Theorem 1. We use Algorithm
FrameSchedule to schedule the vector̄x. Using similar tech-
niques from Lemma 5, we show that the resulting schedule is
valid. From the notation used in the proof of Lemma 5, recall
the definition ofEt. We fix an edgeej = (uj , vj) ∈ Et.
Using similar arguments we obtain the non-overlapping disk
property. Further, for any two edgeej , em ∈ Et, we have
J(em) ≤ 2αJ(uj). Following the same sequence of argu-
ments, we partition the plane into ringsRd. The interference
at nodevj due to simultaneous transmissions the nodes in the
ring Rd can be obtained as,

Id(vj) ≤ 22α 48(ej)

aαdα−1ℓ(ej)α
,

It is easy to verify that the remaining steps follow, with the
above modification to the expression forId(vj) and therefore
the theorem follows.

IX. CONCLUSION

We study the problem of throughput maximization in
arbitrary wireless networks with SINR constraints problem
from a theoretical perspective, and take the first steps towards
developing efficient algorithms for this problem. Our results
show that the comparison between SINR and graph-based
models is complicated, and for different instances, different
models might give higher estimates of the throughput capacity,
suggesting the need for greater care in using these models.
We develop the first provable algorithms for approximating
the throughput capacity in the SINR models by means of a
linear programming formulation, extending the recent workof
[6], [13].

Extending these results to distributed algorithms would
make them more useful from a practical point of view. This
paper does not consider power control, and studying the
problem of joint power control and throughput maximization
would be an interesting extension. Extending these resultsto
the generalized SINR models would also be an interesting
problem.
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