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Abstract—A fundamental problem in wireless networks is to w« transmits, no node in its vicinity can transmA number
estimate its throughput capacity - given a set of wireless ries, of papers have studied MAC protocols with these geometric
and a set of connections, what is thg maximum rate at which models of interference [19], [20]. Intuitively, such graiphsed
data can be sent on these connections. Most of the research . - . .
in this direction has focused on either random distributiors of modgls mak_e the algorithmic analysis tra_ctable since they
points, or has assumed simple graph-based models for wirede l0calize the interference effect of a transceiver on others
interference. In this paper, we study capacity estimation poblem While such graph based models give a useful first approxi-
using the more general Signal to Interference Plus Noise R& mation to understanding wireless networks, they have akver

(SINR) mode| for interference, on arbitrary wireless netwaks. |imitations. A more realistic model that has been used tdystu
The problem becomes much harder in this setting, because of )

the non-locality of the SINR model. Recent work by Moscibroc wireless transmission is called tiségnal to Interference Plus
et al. [16], [18] has shown that the throughput in this model Noise Ratio (SINRnodel [8], [18]: a signal from a transmitter
can differ from graph based models significantly. We develop v is successfully received by a receiver @t if the ratio

polynomial _time_ algori_thms to provably approximate the total gf s signal strength at and the combined interference
throughput in this setting. from other transmitters along with ambient noise exceeds
v's antenna gain. In other words, a set of transmissions
er = (u1,v1),...,ex = (uk,vr) can be simultaneously

A fundamental problem in wireless networks is to estimatsheduled if for alle;,
its throughput capacity - given a sét of wireless nodes,
and a setD of connections, what is the maximum rate at J(ei) >3
which data can be sent on these connections. Starting with [8 f(ei)e [No S %] Z P,
there has been a lot of work on this problem, especially for o
networks formed by a random distribution of nodes in the unitvhere N, denotes the noise density,denotes the path loss
square. A related, and more practical question is to estimaxponent, and/(e;) denotes the power level with which node
the capacity of the given network, and develop protocols tg transmits. Recent work by Moscibroda et al. [16]-[18] has
utilize the network close to its capacity. This questiondmees shown that for several problems, this model is significantly
difficult in wireless networks because of interference, chhi different from graph based models. In [16], [18], they show
constrains the set of links that can transmit simultangousthat for the problem of minimizing thecheduling complexity
The algorithmic aspects of network capacity have beenetludiby choosing appropriate transmission power levels, SINR
in a number of papers, such as [2], [9]-[11], [13], [20]. models allow for much shorter schedules. In [17], they show

A commonly used approach when designimgvable al- that the throughput capacity under an SINR model is differen
gorithmsis to represent the underlying wireless network asfeom that under a graph based model. The non-locality of this
geometric intersection graph. Each nade V is associated model makes its analysis challenging.
with a disk of radiusrange(u), which depends on the In this paper we consider the problem of characterizing
transmission power level(u) of u; a common approximation the achievable rates for arbitrary multi-hop wireless roeks
is to chooserange(u) = O((J(u))'/*), wherea is the path with SINR constraints. Given a set of nod&s a set of
loss exponent, and the signal from nodés assumed to be source-destination pair® = {(s1,t1),..., (sk, tx)}, and a
heard only within this range. This gives us tbennectivity power level.J(e) for transmission on edge the throughput
graph G = (V, E) obtained by adding link§u,v) to E if maximization problem with SINR constraintSNI-SINR)
d(u,v) < range(u). Interference in such a graph is modeledonsists of (i) choosing routes for the connections, (ipa$
through independence constraints (see e.g., [iBB: node ing flow rates on the routes, and (iii) scheduling the packets

I. INTRODUCTION




at each time such that the SINR constraints are satisfied for develop a polynomial time approximation algorithm that
all simultaneous transmissions, and that the total thrpugh provides a feasible rate vector whose total throughput

capacity is maximized. Note that tHéM-SINR problem does is at leastQ(r,,:/log A), wherer,,, is the maximum
not involve power control, i.e., the power levelge) for each possible throughput for this instance aidis defined
edge are fixed and given as part of the input. The SINR as A = max, vev d(u, v)/ ming v ev,u £y du’,v').

constraints make the throughput optimization problem non- This gives us anD(log A) approximation to the total
convex. Further the link scheduling problem with SINR con-  throughput. Our approximation bound is a worst case
straints has shown to be NP-complete in [7]. Since scheglulin  guarantee that holds for every instance.

is also an integral component of our problem, it is reasanabl « Next, we consider the case of non-uniform power levels,

to conjecture that the throughput maximization problenids a in which the power levels on different edges could be dif-
NP-complete. We focus on developing rigorous polynomial ferent. We extend our method to obtain@flog A log I')
time methods with provable performance guarantees. approximation to the total throughput, whefeis the

In reality, the link capacities depend on the SINR [1], ratio between maximum and minimum power levels used.
therby making this problem very complex. We simplify this by « We consider a special case of non-uniform power levels,
using the Additive White Gaussian Noise (AWGN) model for  called linear power level choice, where the power level

specifying the link capacities [4]. In this model the capgci on each edge is J(e) = c¢14(e)* for a constant;. In
cap(e), of a link e having length/(e) and transmitting at this case, we improve th@((log A)?) approximation to
power levelJ(e) is given by just O(log A).

J(e) For technical reasons, th@(log A) bound is only relative
gi(e)aNOW> ’ @ {0 the optimum rate possible by using slightly smaller power
where W is the bandwidth, andV, and o are as defined Iev_els - this is explained formally in Section VI. Ouralgbm_

. ; builds upon the recent work of [6], [16], [18] on scheduling
earlier. In the absence of interference, the above equation

provides a theoretical upper bound on the link capacity. HoWIth SINR constraints, and the LP based approaches of [10],

ever, the maximum throughput problem with SINR constrain %gL;?Sr estimating the capacity for graph-based interfies
remains non-trivial even under the AWGN model, and we onfyrl] '

study this here.

cap(e) = W log, <1 +

Ill. RELATED WORK

Il. OVERVIEW OF RESULTS There has been significant work on understanding the

We study theTM-SINR problem in wireless networks from capacity of random networks formed by nodes distributed
a theoretical perspective, and take the first steps towakd@domly in the plane, using both graph based and SINR
developing efficient algorithms for this problem. The maimodels (see, e.g., [3], [8], [12]), and for other variants of
contributions of our work are summarized below. such distributions. However, these results do not dircugiyp

« We compare the SINR and graph based models for threunderstanding the capacity of arbitrary networks, wtigch

same instance, with the same fixed power levels, atite focus of our paper. The throughput maximization problem
observe that the throughput capacity can be significanflyr graph based models is formally studied and proven to be
different in these two models. When the power level foXP-hard by Jainet. al. [9], who use a linear programming
all the edges is the same, we show that there are instangpproach to characterize the capacity of the network and to
in which the throughput capacity that can be achieved jrerform routing. They model interference constraints as a
the SINR model is significantly higher than that in theonflict graph and provide upper and lower bounds for optimal
graph based model. For the case of linear power levétgoughput. As mentioned in [5], the methods discussed]in [9
(where J(e) « £(e)*, for each edge:), we show that tend to have an exponential complexity and no performance
there are instances in which the throughput capacity guaranteed polynomial time approximation algorithm is-pro
the SINR model can be much lower than in the corrggosed. Toumpist. al.[21] provide a mathematical framework
sponding graph based model with the same power leveigr determining the capacity region of an ad-hoc network,
In contrast, the results of [16]-[18] show that by choosinghich captures the effects of power control, spatial reuse a
suitable power levels, a much higher throughput capaciyccessive interference cancellation on the capacityomegi

is possible in SINR models than in graph based modetsowever, their results do not give worst case approximation
Since all these models of interference are approximatioggarantees.

of the real phenomenon, this suggests greater care iKodialam et. al. [10] study the problem of determining
needed in inferring any properties of the system basedhievable rates for multi-hop wireless, along with joint
on such an analysis. routing and scheduling constraints in graph based models.

o« We develop a linear programming based approach Tteir approach provides necessary and sufficient condition

approximate the maximum throughput rate vector in thfer link flows and leads to a polynomial time approximation
case of SINR constraints. For the case of uniform powatgorithm for this problem. However, they only consider
levels (when all nodes have the same power IeNelwe primary interference in their model, which is very resiviet



Lin et. al. [14], [15] study the joint problem of rate allomat A. Interference Model

and scheduling using a dual optimization based approach tQu, yse the SINR model of interference as described in
decompose the problem as rate control and scheduling pr%- [18]. In this setting, a given seE’ = {e; = (us,v;) :

lem. Their technique provides an optimal solution that max] "_" ;= k} of links can simultaneously communicate
mizes the throughput and provides a stable and fair SChedEﬁEces:sfuII;/ if for eacl, € E'. we have
K2 1

considering the primary interference model. Although some
of these approximation bounds have been improved in recent SINR(v;) = J(eq) > 3
work by Buragohairet. al. [5], it is not intuitive to extend Y l(e)*[No + (v, EN)] —

these techniques for the_ S”\!R interference model. where (i) Ny denotes the ambient noise density, which is a

Some of the key algorithmic results on the SINR model agg,nstant, (ii)3 is a constant, related to the antenna properties,
studied in [6], [16]-[18]. Moscibroda et al. [16]-{18] suthe iy , denotes the path-loss exponent, which we assume to be
problem of scheduling edges with SINR constraints to ensyifeater ther, and (iv) I (i, B) = J() _ denotes

. . . . " 1 T . 19 - e].;éei d(uj-,vi)o‘ . :

that some property (€.g., connectivity) is S.at'Sf'ed by thges tt]e interference at receiver due to all other transmissions
that are chosen. They show that by suitable power contro we will simply denote this ad, (v;) if the setE’ is clear
the solutions in the SINR model are much more efficient) o context T
than those in graph based models. Chafekar et al. [6] deve '

approximation algorithms for packet scheduling to minieniz *Rlote that in this model, for any edge= (u,v) € £, we
) ) d > BNol(e)® for the t issi this edge to b
end-to-end delays with SINR constraints. need/(e) = GNof(e) for the transmission on this edge to be

feasible, even in the absence of any other interference. We w

Our work is closely related to Kumaat. al. [6], [13]. The ;5sume that for an instan@e— (V,E,D,J) of TM-SINR,
work by [13] provides a constant approximation algorithr,q haveJ(e) > BNot(e) for all e € E.
for the throughput maximization problem along with joint n

scheduling and routing. The interference model consideredB. Link rates and feasible end-to-end schedules

graph-based and their gpproach IS generc enough to aCCoOMpe assume that the time is divided into uniform slots, each
modate the case of uniform and non-uniform power level

Sf durationr and the system operates in a synchronous mode.
They further derive linear necessary and sufficient cooialti Let D — {7-1 kY dyenote alloset of conn}éctions with
that Ie_ad to a constant factor approximation tp the throughp nd ¢; denoti’r;g'gléhe source and destination respe;:tively for
capacity. However, the framework presented in [13] caneot onnectioni. Let f;(e) denote the mean flow rate on link
easily extended to the SINR interference model. In this wor, o #
. ; r the ith connection, and le = Y fi(e) denote the
by combining some of the techniques from [6], [13], we stud% ! Fle) = 2 file)

the throughput maximization problem along with joint rogfi Fal Imk flow. We letz(e) = f(.e)/cap.(e) d_en_ote the link
: . . utilization - this denotes the fraction of time lirrkis used. The
and scheduling for the SINR interference constraints.

vectorsf andz are called the flow vector and link utilization
vector respectively. An end-to-end sched$ledescribes the
IV. PRELIMINARIES specific times at which packets are transmitted over theslink
of the network. For schedul8, let X (e, t) be an indicator
We consider the input instance of thé-SINR problem to variable that isl if the link e is used at time. We say thatS
be specified ag = (V. E, D, J), where (i)V denotes a set of js valid if the SINR constraints are satisfied at all the reeses
transceivers, henceforth referred to as nodes, which eatdd at every timet. We say thatS feasibly schedules the link
on the plane, (i) C V' x V" denote the set of possible linksytjlization vectorz if we havelimyr ... 3, @ = z(e)
(also referred to as edges), on which transmissions carr,0c¢gr each edge - in this case, we say tha corresponds to
(i) D is a set of connections, with thgh connection from the utilization vectorz. The rate region¥'(Z) is the space of
nodes; to nodet;, and (iv) / = (J(e) : e = (u,v) € E) all utilization vectorsz for the instanceZ of TM-SINR that
specifies the vector of power transmission levels on edgean be scheduled feasibly.
For u,v € V, let d(u,v) denote the Euclidean distance |et ;, denote the end-to-end rate on tht connection
between these nodes; fer= (u,v) € E, let {(e) = d(u,v). in bits per second, resulting from the flow vectpr In this
Following standard graph theory notation, I8t,..(u) and paper we are interested in maximizing the total end-to-end
N, (u) be the sets of outgoing and incoming edges for nade e >, 7i. For an instanc& = (V, E,D,.J) of TM-SINR,
respectively. Let\ = maxccy {{(e)}/ mingcp{l(e’)};log A |etr,,, () denote the maximum possible total throughput rate
is also called the “length diversity” [7]. All the logaritten that is feasible for this instance. We say that a utilization
are to the base two. Without loss of generality, we assuf)gctor z < X(Z) is a y-approximation to the throughput
that minccp{l(e)} = 1. We defineB; = {e € E : maximization problem if the resulting total rate achieved
le) € [21}21+1)}1 fori € {0,...,(logA —1)}. Also, let s at leasty - r,(Z); we say that an algorithm is a-
r= % approximation algorithm, if for any instan@ of TM-SINR,
Note that for edge € E, its power levelJ(e) is given, and it provably produces suchaapproximate solutior € X' (7)
so our assumption of the AWGN model (equation 1) implieis polynomial time, for any instancg of TM-SINR- note that
that its capacityap(e) is also fixed. this is a worst case approximation result.




C. Congestion Measure A. Uniform power levels

Following [6], we define a notion of congestiar that will We construct the following instancé = (V, E, D, J) of
play a key role in our algorithm. Far= (u,v) € E, let TM-SINR, with uniform power levelJ for all transmissions.
A VA / / Let R = (J/c1)Y* be the corresponding transmission range
Cle) ={e = (w,v) € Bra-b{u,v) 2 dlu, ) AH(e) 2 £e)}, in the corresponding graph model, as discussed earlier; we
and letC' = max.cz |C(e)|. Here,a is a constant such thatassume thak is a large integer. LeV = {vo} U}, {v;, w;}
be a set of nodes, which are placed in the following manner.
Imagine a circle of radiug?/2 centered at nodey, and the

a > 4%/ 485(1+€), e is a small positive constant and > 2

e(a—2

[18]. The significance of the congestignis that it provides

a lower bound on the number of feasible simultaneous tra _de_sm,_ oo Un A€ unl_formly placed on the circumference
missions [6], which we use to approximatg,;. ot this C|.rcle ata spacing oB(V'R), so thatn = O(VR).
Eachw; is at a unit distance from,, for i = 1,...,n. Let
V. SINR VS GRAPH BASED MODELS the connections irD in the instanceZ be all the pairs; =

(vi,w;), for all i. Let cap = cap(e;) denote the capacity of
In this section, we compare the SINR and graph models &y link e; in bits/sec; note that this is the same for every
the context of the throughput maximization problem. Givegdgee; in this setting. For simplicity, we ignore the ambient
an instanceZ = (V,E,D,J) of TM-SINR, we follow the noise, i.e., assuma, = 0. It is easy to extend these results
approach of [18] in constructing an “equivalent” connéitfiv to take the noise into account.
graphG = (V, E,n) and a resulting instancg,, in a graph  |Lemma 1:For the instanceZ of TM-SINR and the cor-

based model in the following manner. Recall the notatiaRsponding graph-based instangg,, described above, we

from Section IV. In the rest of this section, we will considepaye Topt(I)/ngz (Zgm) = Qcap - VR), assuming <
instancesZ of TM-SINR in which every nodeu € V  .,. p(e=1)/2 for a constants.
uses a fixed power levef(u) = J(e) for every incident Proof: Observe that for alf # j, VR < d(v;,v;) < R.

link ¢ = (u,v) € E. We_ associate a transmissio_n_ ranggherefore,l,,, (¢;) = {e, : j # i}, which implies that at any
of r(u) = (J(u)/er)"/* with every nodeu € V, giving time, at most one edge can be scheduled in the graph-based
rise to a disk grapiG = (V. Ey;) with (u,v) € Egn if  model in the instancd,,,. This implies thatrf (Z,,,) =
d(u,v) < r(u). This is a directed graph in general, if node@(cap) bits/sec. ' '

have non-uniform transmission ranges. The correspondin@\ext, consider the SINR model for the instarEef TM-

instanceZ,,,, consists of this graplé: along with the same g|NR. Suppose all the edges are scheduled simultaneously
setD of connections, as iff. Note that the set of edges on. the SINR ratio at any receives; in this case is

which transmissions can happen is the same in both models.

For every edge: € E,,, we use the same expression for T e R®
cap(e), the capacity of edge as inZ, since this comes from =z 2p

the AWGN model. What is different is the interference - we ") [Z#i T/d(ug,vi) } [Z#’i e /(e2 - VR) }

can now use any graph based interference model to specify the N .

setI,,(e) of edges that interfere with - for concreteness, ;/vherg(ithe f'rStTe(?li?l—'ty:O"Or\:\.’S _from the factdthr?t: e d
we use the distance-2 matching model [13], which defindk + &NC (uj,vi) = AVR) o(ra'ill)s/;nstance, and the secon
Iym(e) = {e/ = (' ,) : de({u, v}, {u/,v'}) < 1}, where !neq_uallty follows if 3 < ¢3- R foracons.tant:g. This
d“;() defines the distance between two sets in the 9@ph !mplles that all the edgeg- can be scheduled simultaneously
A schedule is valid in the graph-based model, if at any tim&! thhe ISINR mfo?lel, leading te,,,,(Z) = ©(cap - VR), and
no edgee is simultaneously scheduled along with some edggé) the lemma follows. u
¢ € I(e). Let 7)) (Z,,) denote optimum throughput rateg. | inear Power Levels

possible for this instance in the graph based model. We now construct an instanc — (V, E, D, J) of TM-

We shovy the following results in this _sectlon. SINR with uniform power levels, i.e., for eache E, J(e) =
« Ifthe instanceZ of TM-SINR has uniform power levels, ., s(c)e. The setV = U™, {us, v;} has2n nodes, which are

the ratioro,: (Z)/r5,: (Zgm) can be arbitrarily large, i.e., |ocated on a line in the ordery, vy, us, va, . . . , tn, vp. FOI
the corresponding graph based model underestimates ffie; — 1 ., we haved(u;,v;) = R; = 2i, and for
throughput capacity significantly. all i =1,...,n— 1, we haved(v;, u;41) = 22, The set
« In contrast, when the power levels in the instancg _ {e; = (ui,v;) : i = 1,...,n} will be the only edges
7 of TMg'SlNR are linear, we show that the ratioyseq for transmission, with (e;) = ¢, R, for eachi. All the
Topt(L)/Top (Zgm) can be arbitrarily small. connections inD in this instance are the paies = (u;, v;),
The above results show that if the power levels are fixefyr i = 1,...,n. Because of our AWGN model for the link

the total throughput in both the models is very differentis th capacities, as discussed in Equation 1, it follows that fbr a
is in contrast to the results of [16], [18], which show that by; € E, cap(e;) = cap is a fixed value. Each node; has
choosing appropriate power levels, a much higher throughmnly one incident edge in the sét, so for the graph based
is possible in the SINR model for the same instance. model, we set(u;) = R;, as discussed earlier. Therefore, for



the corresponding graph based instafigg the connectivity conservation, and constraints (5) are relaxed congestion c
graphG = (V. E,,,) hasEy,, = {e; :i=1,...,n}. straints - these are the key constraints that allow us tohise t

Lemma 2:For the instanceZ and the correspond-program to derive upper and lower bounds on the optimum
ing graph-based instancé,,, described above, we haverate. The progranP(\,Z) has polynomial size and can be
o0t (Lgm)[Topt () = O(n). solved in polynomial time.

Proof: First, observe that for the graph-based interferenceln the subsequent sections, we show that the optimum
in the instanc&,,,,, we havely,, (e;) = ¢ for eache, € E,,. utilization vector satisfies?(\,Z) for some constant value
Therefore, the edges do not interfere with each other and allof A\. We then show that scaling the constraints down allows
these edges can transmit simultaneously in this modelingadus to schedule the flow feasibly.
oa throughput capacity d(n - cap). L . B. Link-Flow Scheduling: Necessary Conditions

Next, consider the SINR model. For simplicity, we ignore
the noise densityVo, though it can be easily incorporated, The following lemma shows thaP (), Z) gives an upper
Let E' be any subset of these edges that can transfiRUnd onr,,(Z) for a suitable choice of.
simultaneously, and let; be the shortest among them. For Lemma 3:LetZ = (V, E, D, J) be an instance of theM-
alle; € E', ¢; # e;, we haved(uj,v;) < S-1(26+2 4 SINR problem with uniform power level, and letz € X(_I)
k1) < )20 = c3R;, for constants:, cs. In order for these be any feasible link utilization vector. Them,is a feasible

; 2a+1)"
transmissions to be feasible in the SINR model, we must ha’ﬁ/@Ut'Qn to the prograrW(Ao,Z), Whefe)\o = % +1,
7 anda is the constant defined in Section IV-C.
(e:) > 4, Proof: Since X' (Z) denotes the set of all feasible utiliza-
£(e;)™ [ZejeE,7eﬁéei d(i(%))a} tion vectors for the instancé of TM-SINR, it is clear that

) _ ) ~ z, and the associated flow rate vectarmust satisfy all the
where the LHS is the SINR ratio af. Rearranging, and using o straints ofP(\o,Z), except possibly the constraints (5).

the fact thatd(u;,v;) < csR; for eache; € E’, we have e now argue that the constraints (5) hold for this choice of
|E’| is O(1/3), which is a constant. This implies,,;(Z) = Xo.

O(cap/p), and so the lemma follows. u Since the link utilization vectof is feasible, there exists a
VI. THROUGHPUTMAXIMIZATION FOR UNIFORM POWER stable schedul& which achieves the link rates specified by
LEVELS Z. Recall the notatiorX (e, t) from Section IV. LetE; = {e :

X (e, t) = 1} denote the set of links that transmit at tien
this schedule.

In this Section we formulate th&M-SINR problem for We now focus on any edge = (u,v) € E;. Let A; =
uniform power levels. We consider input instancesTéfl- £, N C(e) = {e; = (uj,v;) € C(e) : j = 1,...,c} be a set
SINR specified asZ = (V, E, D, J) with a uniform power of ¢ links in C(e) that are scheduled simultaneously at titme
level of J(e) = J for every edge: € E. Recall the notation We argue below that must be bounded by a constant. Let the
from section IV. It is easy to see that the exact formulatibn dinks in the set4; be numbered in non-decreasing order of
the TM-SINR problem is non-convex. We develop a lineatheir lengths, so thaf(ui,v1) < f(ug,v2) < ... < L(ue, ve).
programming relaxation of this problem by combining th€&or simultaneously successful transmission of these lithles
approaches of [6], [13] - we show that both necessary aSiNR at each node;, and in particular, at node., needs to
sufficient conditions can be derived for the feasible raggoe be at least3.
by considering the total link utilization in the edges in gut

A. Problem Formulation

u

C'(e) for any edge:. Our formulation for instanc& described -
below is denoted byP(\,Z), where\ is a parameter. v /,x’e? w
c .’ ; Vi
v
max Z r; subject to: €j
ieD € ’ v
VieDri= Y fil)= > file) ()
eENout(s;) eEN;n(s;)
Ve € E, z(e) =Y file)/cap(e)  (3) ve
ieb Fig. 1.  For a given linke = (u,v) and setA;, d(uj,ve) < (2a +
Vi € D,Yu # s, ti, Z fie) = Z fi(e) (4) 1)d(uc,vc) , whereee, e; € C(e) andec is the link with longest length in
eE Nyt (u) e€EN;, (u) SsetAy.
Vee B, > a(e) <A (5) _ .
e eC(e) Consider any; € Ay, e; # e, (cf. Figure 1). We have
In the above formulation, constraints (2) define the total d(uj,ve) < d(u,uy) + d(u, uc) + d(ue, ve)

rate r; for each connection, constraints (3) define the link
utilization z(e) for each linke, constraints (4) ensure flow

Qad(u7 U) + d(UC7 Uc)

<
< (2a+ 1)d(uc,ve),



where the first inequality follows from triangle inequalisnd  Algorithm 1: FrameSchedule
the last two inequalities follow from the definition @f(e), nput < () E, () % (i) W, (V) w
which implies that for any’ = (u/,v') € C(e), we musthave gy Sets(e) for all e € E, and scheduleyy

d(u,u") < a-L(e") andl(e) < £(e). 1 for e € E do
The interference experienced at due to all transmitting 5 e|nd s(e) = ¢
links in 4; — {60} IS 4 Partition W into (log A) setsW; of equal size, for

i€{0,...,(logA —1)},

J 5 for i = (log A — 1) downtoO do
Ir(ve) = Z W /| Greedy Col oring
ej=(uj,vj)EAL, jHc. Jr e 6 Order edges imB; in non-increasing order of their lengths
{e1,...,es}
Therefore, in order to satisfy the SINR constraint at node | forj=1to |B;| do ,
v. We need, 8 s'(ej) = Uerec(e)nfer,.e; 13 5(€)
o 9 s(ej) = any subset of¥; \ s'(e;) of sizex(e)w
J/d(uc, ve) >3 10 end ’
) o T 11 end
No + Zej e jze /A1, ve) ] 12 Construct schedul€yy: X (e,t) = 1 if ¢t € s(e) for eache, t.
Rearranging, we have
J J Lemma 4:Algorithm FrameSchedule correctly assigns
(e, 0) > B |No+ Z d(uj, 00 |s(e)| = z(e)w slots for each edge if the link utilization vec-
ej €A j#£c tor z is any feasible solution to the prograﬁ(m,I).
> GNP Proof: Suppose step 9 of AlgorithnframeSchedule
- (2a + 1)*d(ue, ve)® fails for some edge; € B;. Then, we must have

This in turn impliesc < W + 1, and therefore, we S Isé) > w/logA = D [s(e))] > w/log A

have e’EC(ej)ﬁBi e’EC(eJ-)
Vee BV, Y X(e,t) < o, Dividing both sides byw, we get Y, cq(,z(¢) >
o ceclons 1/log A, which contradicts the condition an ]
which implies for anyl’ In the following Lemma we prove that Algorithm 1, pro-
/ duces a valid schedule.
Ve € E, X(e',t) <To. 6 . .
‘ e,ezc;e); (€8) ’ © Lemma 5:Let z be a feasible solution to the program

P(1/(1+1ogA),Z' = (V,E,D,J/(1 + ¢))), for a constant
Dividing both sides of (6) by, the lemma follows from ¢ > 0. Then, AlgorithmFrameSchedule produces a valid
the definition ofz(e) in Section IV-B. B schedule correspondingicfor the instanc€ = (V, E, D, J),
. . - - of TM-SINR in which the SINR constraints are satisfied at
C. Link-Flow Scheduling: sufficient conditions all receivers, for constants and « defined in Section IV-C.
In this section, we show that the prograf(\,Z = Proof: We show that at any time, the setE, of links
(V.E,D,J)) can be used to derive sufficient conditions foscheduled at this time i§ can indeed be transmitted simulta-

link flow stability for the instanceZ of TM-SINR, for a neously, while satisfying the SINR constraints at eachivece

suitable value of the parameter. This requires showing in the instanceZ. Let E;, = {e; = (uj,v;) :j=1,...,5}.

that a solutionz to this program can be scheduled feasibly, By construction, there exists a sBt such thate, C B;.

under suitable conditions ok and.J. We describe algorithm Consider two edges;, e, € E; with £(e;) < {(e,,). Since

FrameSchedule for constructing a feasible schedule belowthese two edges are scheduled simultaneously, it must be
We assume that time is divided into sufficiently large framafie case that,, ¢ C(e;), which implies d(u;, u,,) >

of lengthw, and thatz(e)w is an integral for ale € E. Recall g max{¢(e;), ((e,,)}. For anye; € B;, we havel(e;) €
the definitions of A and the setsB; from Section IV. We [2¢ 2i+1) and soa2! > al(e;)/2. This implies that if we
further subdivide each fram# into log A sub-framesiVi, place a disk of radius/(e;)/4 centered at the end points of
each of lengthw/log A, which is assumed to be integraleach edge inf;, all these disks would be disjoint.
Algorithm FrameSchedule constructs a periodic schedufe Consider anye; = (uj,v;) € FE, We estimate the
by repeating a schedulgy, for every framelV. Within each SINR at v; in the following manner. As in [6], [18], we
sub-framelV;, the algorithm considers only the edges fromartition the plane into ringsk, centered at; (cf. Figure
the setB;, and assigns:(e) - w slots for each edge€ B; by 2) for d = 0,1,..., each of widtha/(e;) aroundu;. Each
a greedy coloring step. ring Ry consists of all linkse,, = (um,v,,), for which
For the above algorithm to be stable, we need to fingh/(e;) < d(u;,u.n) < (d+ 1)al(e;). As derived earlier,
conditions under which, step 9 of the algorithm would bgyr anye,, + ej, we haved(u;, um) > amax{f(e;),(em)},
successful. The following lemma proves that for a suitabighich implies R, does not contain any links iff; other than
value of A, the algorithm is indeed successful. e;. By definition, the area ofR; is 7[((d + 1)al(e;))? —



D. Putting everything together

For an input instanc&€ = (V, E, D, J) of TM-SINR, our
algorithm computes the optimum solutian to the linear
programP(1/(1+1logA), 7' = (V,E’, D, J/(1+¢))), where
E' ={ee€ E:J > (1+¢€)pBNol(e)*}. From Lemma 5,
it follows that z can be scheduled feasibly for the instance
7. The following theorem shows that the rate achievedcby
is within a provable factor of,,.(Z’) - thus, this is a bi-
criteria approximation, in which we compare the quality of
the solution produced by our algorithm with respect to the
optimum for an instance that uses slightly less power.

Theorem 1:As defined above, lIef = (V, E, D, J) be an
Fig. 2. For a given linke; = (uj,v;) € E¢, construct rings of radius inStance of TM-SINR with uniform power level./, and let
al(e;) aroundu;. We calculate the interference experienced by neddue 7' = (V, E’, D, J/(1 + €)) be the corresponding instance,
to other simultaneously transmitting links. defined by using power level$/(1 + ¢), with E' = {e €

E :J > (1+¢pBNyl(e)}, for any e > 0. The optimum

solutionz to the prograntP(1/(1 +log A),Z’) is a feasible
(dat(e;))?] = ma®(2d + 1)(e;)? < 3mda’((e;)?, and so the and stable link utilization vector for the instan€eand results
non-overlapping disks property implies that the number 1 a total throughput of at least(r.,:(Z')/(1 + log A)).

transmitters inR, is at most Proof: Let z,,: be the optimum utilization vector for the
instanceZ’ of TM-SINR, achieving a total throughput rate of
3rda’l(e;)® < 48d ropt(Z'). Note Lemma 3 holds for both the instancEsand
ma?l(e;)?/16 7'. From Lemma 3, it follows that,,, is feasible solution to

the prograniP (), Z’), for the constand, defined in Lemma
Next, that for eack,, € R4, we haved(u,,,v;) > (ad — 3. SinceP(\o,Z’) is a Iinear program, it follows that the
1)l(e;) > %e(e ), sincea > 2. Therefore, the interferenceutilization vectory = v 10 1oz Lopt IS @ feasible solution to the
at v; due to nodes ink,, denoted byZ,(v;), is bounded as programP(l/(lJrlogA) 77), and results in a total throughput
follows, rate of {2 (I ). This implies that the optimum solutianto the
prograrrfP 1/(1+1ogA) 7") also results in a total throughput
Ta(w;) < 48-d.26— L _ga 48T rate of at Ieasti‘”)fﬂ Finally, by Lemma 5, it follows that
(adt(e;))* ard—te(e;)” 7 can be scheduled feasibly for the instadtef TM-SINR.

Therefore, the theorem follows. [ |

Summing up the interference over all ringg, we have,
VIl. THROUGHPUTMAXIMIZATION FOR NON-UNIFORM

oo oo POWERLEVELS
Tiwy) < 2° 48] 1 . . B
Z i) = al(e;)® do—1 In the previous section, we assumed that the power velttor
d=1 d=1 . .
L 487 © was uniform with.J(e) = J for each edge. We now extend
< o l(e,) / por this to the non-uniform setting wheré(e) need not be the
2&4J&] ! same for every edge Let J be the corresponding power level
W- vector.
Therefore the SINR at receiver is at least A. Problem Formulation
The problem formulation for th&@M-SINR problem for
J J non-uniform power levels is similar to the one presented

> . . . - . .

e 20487 = 7 e 7 7 in Section VI-A. Recall the notation defined in Section IV.
0es)*No + Zomeieta=n) &) lmrasmens + mrasre™) we partition the setly of edges into setsii — {e =

o o~ oad88(et1) u,v) € le) € [21 20H1) J(e) € [2F, 28} Vi €
which is at least3 if a® > 2 a2 " Note that we have io (logA - 1)}’11: {0,...,(logT — 1)}. For an in-
used the fact that/ > (1 + €)3Nol(e;)®, since we are stanceZ — (V,E, D, J) of TM-SINR, we define a different
analyzing the feasibility of the schedu&for the instance formulation P, ()\ by replacing the constraints (5) in the
7 of TM-SINR. m PprogramP(\,Z) by the constraints

(

It is crucial to note that Lemma 5 proves that the sched- /
ule corresponding to the vectar produced by Algorithm z(e) + Z (@) s A @
FrameSchedule is valid not for the original instancg’ =
(V,E,D,J/(1+¢€)) of TM-SINR, but for adifferentinstance for all i € {0,...,(logA — 1)}, k € {0,...,(logT" — 1)},
= (V,E,D,J),sothatforale € E, J > (1+¢)3Nol(e)*. and for alle € H}.

e’eC(e)NH}



B. Link-Flow Scheduling: Necessary Conditions Proof: (Sketch) Consider any time slat. Let £, denote

the set of links scheduled i§ at that timet. There exists a
set H} for which E, C H}, for somei € {0,..., (logA —
D}k € {0,...,(logl' — 1)}. Using the same argument
and notation as in Lemma 5, we can see that for any edge

Lemma 6:Let & be any feasible link utilization vector
for the instanceZ = (V,E,D,J) of TM-SINR. Then,
T is a 2fealsicple solution to the prograf,(\,Z), where
A1 = 2% + 1, for c0n§t§\nh defined in Section IV-C. e; = (uj,v;) € E,, disks of radius@ centered at each

Proof: (Sketch) We mimic the proof of Lemma 3. Fol- ;54e em = (um,vm) € E, are disjoint. Also since for
lowing the notation of Lemma 3, we consider sgtto be the any links e, = (Um,vm).e; = (uj,v;) € B C Hi,
set of links that are scheduled at timim the feasible schedule J(em) € [2%,241) implies thatJ(e,,) < 2.J(e;). The rest

Em

cprgespondmg tor. Define Gy = {e € E: 2" < J(¢) < of the proof remains similar to the proof of Lemma 5. m
2071} Let A, N Gy = {ei = (uyvi) 1= 1,....cp, With the  paqrem 211 et 7 be a vector of non-uniform power levels,
edges numbered in non—decreasmg order of their lengthin _AﬁetI — (V.E,D,.J) be an instance 6fM-SINR with non-
the proof of Lemma 3, by computing the SINR at the receiver J
v., We argue that at most, other transmissions i, N G; linear power levels, and lef” = (V,E', D, ﬁ) be
argfsimultane%us!y pOhSSib:je- Trﬁwgthe pl_OWGL|e\?9|S are ®@e corresponding instance obtained by using power levels
uniform, considering the edges ity NG; implies that for any J . o
ec,ej € AyNG;, we haveJ(e.)/2 < J(e;) < 2J(e.), which (11 ¢)’ with E' = {e € E : J(e) = (1 + €)BNol(e)*},
allows us to do the argument, with the constaptinstead of for any e > 0. The optimum solutionz to the program
Ao- B P(1/(1+1logA)(1+1ogl'),7’) is a feasible and stable link

We now consider the sufficient conditions for link-flow staultilization vector for the instanc&, and results in a total
bility. Algorithm NonUniformFrameSchedule is the modi- throughput of at leas®(r,(Z")/(1 + log A)(1 + logT')).
fied scheduling algorithm for this setting. As in the case of Theorem 1 for uniform power levels, this
result is a bi-criteria approximation, in which the thropgh
rate guaranteed by our algorithm is compared to the optimum
rate possible if slightly lower power levels are used.

Algorithm 2: NonUniformFrameSchedule

Input = (i) E, (i) , (i) W, (v) J ,(v) w

Output : Setss(e) for all edgese and schedulesy, VIII. | MPROVED APPROXIMATIONS. LINEAR POWER

1 for e € L do LEVELS

; e|nd (=9

4 Partition W into (1 +log A)(1 +logT) setsW j, of equal size, for We now consider a special case of non-uniform power
i €40,...,(log A -1}, k€ {0,...,(logI' = 1)}. levels, in whichJ(e) = ¢1£(e)* for a constanic; such that

2 for i k(l‘:’g(ﬁg_rlz ‘i()"’é';tv‘agtgg o c1 > BN, - this is also called the linear power level. Theorem

// Greedy Col oring 2 implies an approximation aD((1 +log A)?) for this case,

7 Order edges i} in non-increasing order of their lengths ~ sincel” = A. In this section, we show that this bound can be

. f{;rl’j; letsg'\H,i\ o improved toO(1 + log A). .

9 s'(e) = Uvectnier e, 11 5(€) Let J be the power value. vector with (e) = cil(e)?,

10 s(e;) = any subset ofV; ;. \ s’(e;) of sizewz(e) as defined above. We consider the problem instdhce

1 end (V,E, D, J) of TM-SINR. We show that in this case the pro-

15 end end gramP(\, Z) itself can be used with a slight modification in-

14 Construct schedulé€yy: at each timet € W, schedule all links: € L stead of the pr_og_ram"(/\’z) to getthe bett?r approximation.
with ¢ € s(e). Recall the definition of the setB; from Section IV. We form

a linear progran®; (), Z) by replacing the constraints 5 in the
programP (A, Z) with constraintss(e)+3 ",/ cc(e)np, Z(€') <
We construct a period schedu® using Algorithm 2 by A for all e € B;,Vi € {0,..., (logA —1)}.
repeating the schedulgy, for each framéV. Itis easy to see Lemma 8:Let z be any feasible rate vector for the problem
that by making a minor modification to Lemma 4, it followsZ = (V, E, D, J). Then,z satisfies all the constraints of the
that this algorithm indeed assignge)w slots for each edge programP(\s,Z), where Ay = 2“% + 1, for constant
e. We now derive the conditions under which the schedule dsdefined in Section IV-C.
valid. Proof: (Sketch) We mimic the proof of Lemma 3. Recall
Lemma 7:Let z be a feasible solution to the progranthe notation of sefl; from Lemma 3. We show that number of
P(1/(1+log A)(1+1logT),Z’ = (V,E,D,J/(1+¢))), for a links simultaneously scheduled from s&tn B;, Ve € E,Vi €
constant > 0. Then, AlgorithmNonUniformFrameSched- {0,...,(logA — 1)} is at most\,. Again, we consider the
ule produces a valid schedule correspondingztdor the SINR at the receiver of the longest edgec A; N B;. Note
instanceZ = (V, E, D, J), of TM-SINR in which the SINR thatVe;,e. € A:NB;, we havel(e.)/2% < J(e;) < 2%J(e.).
constraints are satisfied at all receivers, for constar#sda  Following the same sequence of arguments as in Lemma 3,
defined in Section IV-C. we can derive



Kumar, and M.V. Marathe was supported in part by NSF

Jlee) BJ(ee)(c—1) Award CNS-0626964. A. Srinivasan was supported in

d(te, v0)® 2 BNo+ 20 (2a + 1)°d(te, vo)®’ part by NSF ITR Award CNS-0426683 and NSF Award

S CNS-0626964; part of this work was done while he was on
which implies the bound onA4; N B; N C'(e.). [ ]

sabbatical at the Network Dynamics and Simulation Science

Theorem 3:Let 7 = (V, E,D, J) be an instance oTM- | ap5ratory of the Virginia Bioinformatics Institute, Virga
SINR with linear power level, i.e.J(e) = cit(e)* for all  1gch.

J
ec E. LetT = (V,E/',D, ——
(I+e)

. Agarwal, and P. Kumar, Capacity bounds for ad hoc and hybrid
instance obtained by using power lev T+e)’ for anye > wireless networksin ACM SIGCOMM pp. 71-81,July 2004.

; ’ . > (1 ) i [2] M. Alicherry, and R. Bhatia,Joint channel assignment and routing for
0, Wlt.h E, {e €E J(e) . ( * e)clﬂ(e) }, T.he optlm.um throughput optimization in multi-radio wireless mesh ratkg in ACM
solutionz to the progranmP(1/(1 +1log A),Z’) is a feasible MOBICOM, pp. 58-72, August 2005,

and stable link utilization vector for the instanfeand results [3] N. Bansal and Z. Liu. Capacity, delay and mobility in wiss ad-hoc

in a total throughput of at leasd(r,,:(Z)/(1 + log A)). networks, IEEE INFOCOM April 2003.
. gnp (Tom.( )/( + .g )) [4] R. Bhatia, and M. Kodialam,0On Power Efficient Communication over
Proof: (SketCh) The prOOf of this lemma is similar to Multi-hop Wireless Networks: Joint Routing, Schedulingd alPower

that of Lemmas 5, 4 and Theorem 1. We use Algorithm Control, in IEEE INFOCOM vol. 2, pp. 1457- 1466, March 2004
FrameSchedule to schedule the vectar. Using similar tech- [5 C. Buragohain, S. Suri, C. Toth, and Y. Zhoumproved Throughput

. f h h h It hedule i Bounds for Interference-aware Routing in Wireless Netgoikhe 13th
niques from Lemma 5, we show that the resulting schedule is apnyal international Computing and Combinatorics Confiee, July

valid. From the notation used in the proof of Lemma 5, recall 2007.

the definition of E;,. We fix an edgee» _ (u U,) € FE,. [6] D. Chafekar, V.S. Anil Kumar, M. Marathe, S. ParthasayatA. Srini-
J LA vasan, and A. SrinivasarGross-Layer Latency Minimization in Wireless

Using similar arguments we obtain the non-overlapping disk Negorks with SINR ConstraintACM MOBIHOG pp. 110-119, Septem-
property. Further, for any two edge,e,, € E:, we have ber 2007.

< 9a . Following the same sequence of ar uL7] O. Goussevskaia, Y. Oswald, and R. Wattenhof€gmplexity in Geo-
J(em) < 277 (u;) g q U etric SINR ACM MOBIHOC, pp. 100-109, September 2007.

ments, we partition the plane into ring_si-_The interferen(_:e [8] P. Gupta, and P. KumarThe Capacity of Wireless NetworkdEEE
at nodev; due to simultaneous transmissions the nodes in the Transactions on Information Theqryol. 46, Issue 2, pp. 388-404, March

) be the corresponding REFERENCES

i i 2000.
ing 14 can be obtained as, [9] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiopact of interference
) 48(6 ) on multi-hop wireless network performancACM MOBICOM pp. 66-
Za(vj) < 22— 80, 2003.
a“de—1{(e;)> [10] M. Kodialam and T. NandagopalCharacterizing Achievable Rates in

. . . . Multi-hop Wireless Networks: The Joint Routing and SchaduProblem
It is easy to verify that the remaining steps follow, with the 5 acmM MOBICOM pp. 42 - 54, September 2003.
above modification to the expression fhy(v;) and therefore [11] M. Kodialam and T. NandagopaCharacterizing the Capacity Region

in Multi-Radio Multi-Channel Wireless Mesh Networlks ACM MOBI-

the theorem follows. [ | COM, pp. 73 - 87, August 2005,
[12] U. Kozat and L. Tassiulas. Throughput Capacity in Randéd-
hoc Networks with Infrastructure Support,Proc. 9th Annual ACM
International Conference on Mobile computing and netwagkiSept.

IX. CONCLUSION

We study the problem of throughput maximization in
arbitrary wireless networks with SINR constraints problems] v.s. Anil Kumar, M. Marathe, S. Parthasarathy, and AnBasan,Algo-
from a theoretical perspective, and take the first stepsridsva  rithmic Aspects of Capacity in Wireless NetwqriksACM SIGMETRICS

; T ; ; pp. 133-144, 2005.
developing efficient algorithms for this problem. Our résul [14] X. Lin and N. Shroff, Joint Rate Control and Scheduling in Multihop

show that the comparison between SINR and graph-base Wireless Networksin 43rd IEEE Conference on Decision and Control,
models is complicated, and for different instances, déffer Paradise Islandyol. 2, pp. 1484- 1489, December 2004.

. : . : {15] X. Lin and N. Shroff, The Impact of Imperfect Scheduling on Cross-
models might give higher estimates of the throughput capaci layer Rate Control in Multihop Wireless Networks IEEE INFOCOM

suggesting the need for greater care in using these modelS.ol. 3, pp. 1804- 1814, March 2005.
We develop the first provable algorithms for approximatini@6] T. Moscibroda, and R. WattenhofeFhe Complexity of Connectivity in

PR Wireless NetworksIEEE INFOCOM, pp. 1-13, April 2006.
the throuthm capacity In the SINR models by means Of[P7] T. Moscibroda, R. Wattenhofer, and A. Zollinger. Prb Design

linear programming formulation, extending the recent wairk Beyond Graph-Based Models, 5th Workshop on Hot Topics imiigts
[6], [13]. (HotNets), Irvine, California, USA, November 2006.

: b : 8] T. Moscibroda, R. Wattenhofer, and A. ZollingeiTopology Control
Extending these results to distributed algorithms would Meets SINR: The Scheduling Complexity of Arbitrary TopietgACM

make them more useful from a practical point of view. This MoBIHOC, pp. 310-321, 2006.
paper does not consider power control, and studying tH&] R. Ramanathanh Unified Framework and Algorithm for (T/F/C) DMA

problem of joint power control and throughput maximization gg?”ﬂg'riffggymem in Wireless NetworkCM INFOCOM, pp. 900-

would be an interesting extension. Extending these results[20] G. Sharma, R. Mazumdar, N. Shrofgn the complexity of scheduling
the generalized SINR models would also be an interestinq in wireless networksACM MOBICOM, pp. 227-238, 2006.
roblem [21] S. Toumpis, and A. Goldsmith,Capacity Regions for Wireless Ad
’ Hoc Networks International Symposium on Communication Theory an
P k ional i ication Th d
Applications, April 2001.
Acknowledgments. The research of D. Chafekar, V.S.Anil



