
Approximation Algorithms for Constrained Node Weighted Steiner
Tree Problems

A. MOSS AND Y. RABANI

Abstract

We consider a class of optimization problems, where the input is an undirected graph with twoweight
functions defined for each node, namely the node’s profit and its cost. The goal is to find a connected set
of nodes of low cost and high profit. We present approximation algorithms for three natural optimization
criteria that arise in this context, all of which are NP-hard. The budget problem asks for maximizing the
profit of the set subject to a budget constraint on its cost. The quota problem requires minimizing the
cost of the set subject to a quota constraint on its profit. Finally, the prize collecting problem calls for
minimizing the cost of the set plus the profit (here interpreted as a penalty) of the complement set. For all
three problems, our algorithms give an approximation guarantee of , where is the number of
nodes. To the best of our knowledge, these are the first approximation results for the quota problem and
for the prize collecting problem, both of which are at least as hard to approximate as set cover. For the
budget problem, our results improve on a previous result of Guha, Moss, Naor, and Schieber.
Our methods involve new theorems relating tree packings to (node) cut conditions. We also show similar
theorems (with better bounds) using edge cut conditions. These imply bounds for the analogous budget
and quota problems with edge costs which are comparable to known (constant factor) bounds.

1 Introduction

We consider optimization problems on graphs with node costs and profits. Let be an undirected
graph. Let every node have a non-negative cost and a non-negative profit . Our goal is
to find a connected set of nodes that has low cost and high profit. There are several ways to cast
this goal as an optimization criterion. In this paper we consider three such problems. In the quota problem,
we are given a profit quota , and we have to find a set of minimum total cost among those with total
profit at least . In the budget problem, the total cost is constrained to be at most a budget . Subject to
this constraint, we have to find a set of maximum total profit. Finally, in the prize collecting problem, the
objective is to minimize the total cost of plus the total profit of (the profit loss). All three problems
also have a rooted version, where must contain a specified node . Clearly, an algorithm for the
rooted version can be used to solve the unrooted version, by enumerating over all possible roots.

We give approximation guarantees for the rooted (and thus the unrooted) quota problem, for the
(rooted) budget problem, and for the (rooted) prize collecting problem. Our result for the budget problem is
a bicriteria approximation in the sense that the approximation algorithm is allowed to exceed the budget by
a factor of . The quota problem, as well as the prize collecting problem, are at least as hard to approximate
as set cover, so our guarantees are asymptotically the best possible under reasonable assumptions on the
complexity of NP-hard problems (see, for example, the survey by Arora and Lund(1997)). By the same
token, the budget problem is at least as hard to approximate as maximum coverage, so there is a constant
lower bound on its approximability under the same assumptions (see Khuller, Moss, and Naor (1998)).
In addition to these new results, our methods can be used to derive previously discovered approximation

1

guarantees for some related problems. Our solutions are more uniform, and perhaps more elegant, than
previous results. See the discussion below for more details.
Most previous related research was done on closely related problems with edge costs instead of node costs.
(The cost of a set of nodes is the total cost of its minimum spanning tree.) These problems are NP-hard,
and in recent years constant factor approximation algorithms were found for most of them. Goemans and
Williamson (1995) give a primal-dual approximation algorithm for the prize collecting Steiner tree
problem, which is the edges costs version of our prize collecting problem. Following the ground-breaking
work of Blum, Ravi, and Vempala (1996), Garg (1996) gives a -approximation (as well as a simpler -
approximation) for -MST, which is a special case of the edge costs version of our quota problem, with
unit profits and a quota of . Arora and Karakostas (2000) improve Garg’s approximation guarantee to

, for all . The constant factor approximations of the latter three works are derived by using the
Goemans-Williamson prize collecting Steiner tree algorithm on the graph with uniform profits. The profit is
determined (using binary search) to yield a tree (more precisely, a convex combination of two trees) of size
. As noted by Chudak, Roughgarden, and Williamson (2001), Garg’s -MST -approximation algorithm
can be recast in terms of a Lagrangian relaxation for the problem, similar to the treatment by Jain and
Vazirani (1999) of the -median problem.
Awerbuch, Azar, Blum, and Vempala (1995) (in a previous -MST paper giving polylogarithmic approx-
imation guarantees) note that a polynomial time -MST approximation algorithm can be used to get a
pseudo-polynomial time approximation algorithm with the same guarantee for the (edge costs) quota prob-
lem. Johnson, Minkoff, and Phillips (2000) note that for the above-mentioned constant approximation -
MST algorithms, the pseudo-polynomial time algorithm can be converted into a truly polynomial time one.
Moreover, they show that such an algorithm can be used to solve the (edge costs) unrooted budget problem,
losing a constant factor in the approximation guarantee.
The budget problem (with node costs) was introduced by Guha, Moss, Naor, and Schieber (1999), who
motivate it by applications to problems in maintenance of electric power networks. They give an
approximation guarantee for the unrooted version. They also show how to obtain a similar approximation
guarantee for the rooted version using a set that has total cost at most twice the allowed budget . Their
algorithm is based on an approximation algorithm for the node weighted Steiner tree problem by
Klein and Ravi (1995). This problem is similar to the well-known Steiner tree problem, except that nodes
and not edges have costs. The problem is at least as hard to approximate as set cover. As pointed out by
Guha et al., the algorithm of Klein and Ravi is implicitly a primal-dual algorithm.
The starting point for all our algorithms is a standard linear programming relaxation for the rooted version,
where nodes are chosen fractionally to be in the output set , and the connectivity requirement is expressed
as constraints on (node) cuts. For the quota and budget problems we show that any feasible solution to the
linear programming relaxation can be approximated by a convex combination of connected sets of nodes
containing the root. Moreover, such a convex combination is computable in polynomial time. It follows
from an averaging argument that a good set can be found. Our algorithm for the prize collecting problem
is used to construct the convex combination. It combines ideas from both the Klein-Ravi node weighted
Steiner tree algorithm (with its primal-dual interpretation by Guha et al.) and the Goemans-Williamson
prize collecting Steiner tree algorithm. Both the region growing process and the final delete step are more
complicated in our algorithm than in either of those algorithms.
We then use the solution to the prize collecting problem to prove the following theorem:
Theorem 1. Let be an undirected graph with non-negative node weights . Let

, and assume that for every , and . Furthermore assume that for every node
, the minimum weight node cut separating and has weight of at least . Then, there exist

polynomial time algorithms that compute

2

1. a packing in of connected sets containing such that for every node , the total weight of sets
containing is between and ; and,

2. a packing in of connected sets containing such that for every node , the total weight of sets
containing is between and .

where, in both cases, is an absolute constant. Notice that the second claim implies the first. We state both
claims for ease of application.

For optimization problems that can be formulated as positive integer programs, Carr and Vempala (2000)
prove that an approximation algorithm for the problem can be used to generate a packing of integer solutions
that approximates a feasible solution to the LP relaxation of the integer program with the same guarantee.
Our results extend their results, and use an approximation algorithm for a different problem to generate
the packing. Our approximation guarantees for the budget and quota problems follow from applying the
packing algorithms to the solutions for the linear programming relaxations we use, and then using averaging
arguments to find good integer solutions.

We can also show an analogous packing theorem for the case of edge capacities.

Theorem 2. Let be an undirected graph with non-negative node weights and
non-negative edge capacities . Let with . Assume that for every node

, the minimum capacity edge cut separating and has capacity of at least . Then, there
exist polynomial time algorithms that compute

1. a packing in of trees rooted at such that for every node , the total weight of trees containing
is between and , and for every edge , the total weight of trees containing is at

most ; and,

2. a packing in of trees rooted at such that for every node , the total weight of trees containing
is between and , and for every edge , the total weight of trees containing is at most
.

The celebrated theorem of Nash-Williams (see Diestel (2000)) implies such packings in the case of
for all . One of the consequences of Theorem 2 is a modification of Garg’s -approximation for -MST
avoiding the Lagrangian relaxation. A similar modification (using another packing theorem) can be applied
to the -approximation for metric -median of Jain and Vazirani. It is not clear if the better algorithms that
use continuity properties of the Lagrangian relaxation (for example, Garg’s -approximation for -MST or
the -approximation for metric -median of Charikar and Guha (1999)) can be derived from our packings.

The rest of the paper is organized as follows. In Section 2, we present the primal-dual algorithm for the prize
collecting problem. In Section 3, we present the proof of Theorem 1. In Section 4, we give the algorithm
for the quota problem. Finally, in Section 5, we give the algorithm for the budget problem.

2 The Prize Collecting Problem

In the prize collecting problem, one is given an undirected graph with a cost function
, a profit function , and a specified root . The objective is to find a subtree of containing

the root such that is minimized. In this section we present an approximation
algorithm for the prize collecting problem and analyze its approximation ratio. This algorithm is used to
obtain the results in the following sections.

3

2.1 The Algorithm

Let . Observe that the prize collecting problem can be formulated as the following integer
program:

minimize subject to
(1)
(2)

where and s.t. . A linear programming relaxation (denoted
PC-LP) is obtained by replacing the last two sets of constraints with .

Consider the dual program for PC-LP, denoted by PC-D:

maximize subject to

The algorithm we propose for the prize collecting problem is a primal-dual algorithm which greedily con-
structs an implicit solution to the dual problem, PC-D.

Partition the vertices of into cheap vertices for which and expensive vertices, which are the
rest of . Implicitly set for each cheap , and for each expensive . Consider the
connected components induced by cheap vertices and the root . Let denote the set of these components.

For each vertex , define the residual cost and the residual penalty
. The algorithm greedily constructs a packing which together with the values of , ,

determined above, is a feasible solution to PC-D, i.e., it satisfies:

cheap
expensive (3)

cheap (4)

The algorithm maintains a set of active and inactive components. We say that is deactivated iff it
changes its status from active to inactive. Initially, , and all the components are active,
except for the component containing the root. We raise uniformly the dual variables corresponding to
each active component, until either constraint (3) becomes tight for some expensive vertex , or constraint
(4) becomes tight for some active component . In the former case, the vertex joins a component such
that , and in case there are several such components these components are merged. In the latter
case, the component gets deactivated. The component containing the root remains inactive throughout
the algorithm, and the process terminates when no active components remain. The algorithm also builds a
connection tree which contains edges by which expensive vertices join components. At the end of the

4

algorithm, we perform a deletion step on the tree . During this step, a set of vertices is expendable iff
its removal does not disconnect any remaining cheap vertex from . The code in Fig. 1 defines the algorithm
more rigorously. The variables maintain the values , and the variables maintain the
values . The algorithm does not need to maintain explicitly the values . Their computation is
included in the code for the purpose of analysis.

2.2 Analysis

Next we prove Theorem 3 that establishes an approximation guarantee for the primal-dual algo-
rithm.

Theorem 3.

where .

Proof. Let be the set of cheap vertices not spanned by the final solution , and let denote the set of
cheap vertices spanned by . Also, let be the set of expensive vertices spanned by . Recall that for each
cheap vertex , and for each expensive vertex , . Therefore, to establish the claim of
the theorem, it suffices to prove that the following inequality holds:

where . We establish the inequality above by proving that the following two inequalities hold:

(5)

(6)

First, observe that Inequality (6) follows from the greedy constructionof the dual solution by the algorithm.
Indeed, consider the set of maximal components deactivated by the algorithm due to the residual penalty
constraints (4), such that no vertex of the component is included in the final solution . Clearly, these
components are disjoint, and as each with non-zero value of contains some cheap vertex, we get:

To see the last equality, notice that by the elimination step of the algorithm every vertex in is included in
some deactivated component not containing a vertex from .

In the rest of the proof we show that Inequality (5) holds. We refer to vertices that caused two or more
components (active or inactive) to be merged as merge vertices. We proceed by establishing the following
properties of the dual solution constructed by the algorithm. Note that it can be easily shown by induction
that at each step of the algorithm.

5

PrizeCollecting

Initialize:

for all
for all
for all

All are active, except for
the union of spanning trees for

Main loop:
while active do

Let
Let active
Find that minimizes
Let cheap
Find an active that minimizes

for all active
, for all active

, for all active ,
if then

Deactivate
Label all by label

else
Let
Let
Let argmax ,

if then
is inactive

else
is active

endif
Add to the node set of
Add to the edge set of , for every

endif
endwhile

Deletion step:
Remove from nodes that are disconnected from .
while cheap labeled s.t. is expendable do

Remove from
endwhile
while expensive that is expendable do

Remove from
endwhile

Output .

Figure 1: Algorithm PrizeCollecting for the prize collecting problem

6

Lemma 4. Let be a simple path in the connection tree such that for each ,
is not a merge vertex, and gets connected to by an edge . Then at the moment gets

connected to it holds:
dist

where dist is the distance from to in with respect to the cost function , not including the
costs of and .

Proof. We prove the claim of the lemma by induction on . If , let before
the increase of dual variables caused by . Then , and after the increase of dual variables
by ,

proving the basis of the induction. For the induction step, suppose that the claim of the lemma holds for
vertices , and consider the moment when gets connected to via the edge . By
the induction hypothesis, when entered , it holds that . Let

at the current iteration. As participates only in those sets that got non-zero values after
entered , it holds that

The increase in the dual variables, caused by , is , and therefore, when joins , we have

Lemma 5. Let be components merged via an expensive vertex . Let argmax
, , that is, is an edge in by which gets connected to . Then

immediately after the merge,

Proof. Without loss of generality, let be active at the time of the merge, and let
be inactive. Put

before the merge, for each . Then the increase of dual variables, induced by is

Since dual variable of each of the components gets increased by this amount, after themerge
it holds that

7

Divide the algorithm into phases, so that at the end of each phase, the number of active components con-
taining a cheap vertex spanned by the final solution is decreased. Let denote the set of such components
at the end of phase of the algorithm, and let be the number of such components at the end of
phase . Clearly, is at most the number of cheap vertices, which is bounded by . The decrease in
can result either from the merge of two or more components from , where is the component
containing the root, or from deactivation of some component from . In the former case, let be
the components from merged at the end of phase , and let be the correspondingmerge vertex.
In the latter case, let be the component deactivated at the end of phase , and let .

For each phase , we bound the residual cost of a subtree of such that . Before defining
, let us consider a phase ending in deactivating a component . A vertex from can appear in the

final solution if and only if the removal of and from disconnects a pair of cheap vertices
or a cheap vertex and the root in . Consider the path in between the first pair of such vertices
that get connected using a vertex from . If the removal of disconnects the pair, let and
be the first and the last vertex from , respectively, along the path between and . If the removal

of a vertex from disconnects and , let be the neighbor in of the first vertex from
connecting and . We say that the vertices as above become connection vertices at the end of

phase . Now consider the forest constructed by the algorithm by the end of phase . Let be the sub-
forest of consisting of trees spanning active and connection vertices within each connected component
of . Let . If phase ends with a merge, let be the set of neighbors of merge
vertices in , so that for every there is a neighbor which is a merge vertex. Define

. If phase ends in deactivating a component ,
then if the removal of disconnects a pair of active vertices with connection vertices and , define

. Otherwise, if the removal of a vertex from
disconnects a pair of active vertices, and is a connection vertex, then define

. Note that by Lemma 5,
.

Lemma 6.

Proof. Let denote the sum of the values of for each iteration of the algorithm, till the end of phase
. First, consider a phase ending in a merge of active components via a merge vertex .
Then is a set of paths from some cheap vertex in each to , not including the paths within components
inactive at the beginning of the phase . Denote the path from an active vertex to by

where are merge vertices and are paths within components inactive in the beginning of the phase
. The contribution of such path to is, by Lemmas 4 and 5, at most

8

The last inequality follows since only one component containing is active at each time the dual variables
are increased by a value of .

As there are paths contributing to the cost of , we get .

Now consider a phase ending in deactivation of a component . Then is a set of at most two paths
between connection vertices , to cheap vertices in . By the same reasoning as above, each of these
paths contributes at most to the cost of , therefore we get .

Observe that each component active at the beginning of phase must contain a vertex that has always been
in some active component since the beginning of the algorithm. Clearly, for such vertex , .
Therefore,

Therefore, we get

Let denote the total number of phases. We can now apply a theorem of Klein and Ravi (1995) to establish
that the residual cost of the subgraph is at most

. By Lemma 6, the cost of the subgraph added at the last phase of the algorithm is
at most

Therefore, Inequality 5 follows. This completes the proof of Theorem 3.

3 Tree Packings

In this section we prove Theorem 1. We prove part 1 of the theorem first, as the proof is somewhat simpler
to follow. Notice that part 2 of the theorem implies part 1.

Let . We wish to show that for such that , for every , , and

(7)

9

there exists a packing of connected node sets containing , such that has weight in the packing,
, and such that for every node , the following property holds:

(8)

where . The best packing satisfying the above property is given by the solution to the
following linear program which we denote CLP.

maximize subject to

(9)

where and .

The dual program, which we denote by CD, is

minimize subject to

(10)

where .

Let be the approximation guarantee for the prize collecting problem. We have . Consider
now a modified program, which we denote byMCD, where the constraints 10 are replaced by the constraints

(11)

Lemma 7. Let CD and MCD be the optimal values of CD and MCD, respectively (with the same coef-
ficients). Then, CD MCD .

Proof. If is a feasible solution to CD, then is a feasible solution to MCD.

Let be a feasible solution to CLP. Note that . This follows from the fact that the
root is contained in every tree, and therefore, the inequality above is implied by constraint (9) for .

Observe that if we could find in polynomial time a solution to CLP of value , it would induce a packing
of sets satisfying the property (8). Indeed, such packing could be obtained by picking sets with .
Unfortunately, the linear program CLP has an exponential number of variables, and therefore cannot be
solved in polynomial time by a linear programming algorithm. We overcome this problem by solving the
modified dual program MCD. This program has an exponential number of constraints, but it can be solved
in polynomial time using the ellipsoid algorithm, given a separation oracle. (Each constraint of MCD has
a short description, see Grötschel, Lovász, and Schrijver (1993) for the conditions required for applying
ellipsoid.) Next we describe a separation oracle for MCD, which can be applied under the assumption that

. We show that such an oracle suffices for computing a solution that suits our purpose.

Formally, under the assumption , we wish to find a set violating the constraint (11), i.e., a
set such that

(12)

The following lemma provides a method for finding such a set.

10

Lemma 8. Let so that and , where is a vector satisfying
the conditions of Theorem 1. Then the set produced by PrizeCollecting for the instance of the prize
collecting problem with and , , satisfies Inequality (12).

Proof. By Theorem 3, PrizeCollecting produces a set which satisfies:

PC-OPT (13)

where PC-OPT is an optimal value of PC-LP for the problem instance described above.

Define a feasible solution to PC-LP as follows. Number the vertices of so that ,
. Define , for . Set

First, observe that this is, indeed, a feasible solution to PC-LP. To see that the constraints (1) are satisfied,
consider any set . Let be a vertex with maximal in . Then sets with non-
zero containing are exactly the sets . Therefore, we get . Then
constraint (1) is satisfied for as satisfies constraint (7) for and . It can be easily verified that
constraints 2 are also satisfied. Now consider the value of the solution to PC-LP described above. Observe
that , . Therefore, each vertex , contributes its penalty multiplied
by to the objective function value. Thus, we get that the value of this solution is

. As this value is not smaller than the optimal value for PC-LP, by (13) we get

The latter inequality follows by the assumption that
. Therefore, it follows that

which implies the lemma.

We use the separation oracle described in the lemma above on the set of constraints of MCD together with
the constraint , until no feasible solution satisfying the latter constraint and the constraints
already used by the algorithm can be found. At this point, the optimal value of MCD with the subset of
constraints used by the ellipsoid algorithm is at least 1, and therefore the optimal value of CLP with just the

11

variables corresponding to the used constraints is at least . Therefore, we can solve CLP with just those
variables to obtain the packing of sets satisfying (8).

We now proceed with the proof of part 2 of Theorem 1. The proof structure is essentially the same as the
proof of part 1. However, some of the details are more complicated.

Let . We show that for such that , for every , , and such that
constraints (7) are satisfied, there exists a packing of connected node sets containing , such that
has weight in the packing, , and such that for every node , the following property
holds:

(14)

where . The best packing satisfying the above property is given by the solution to the following
linear program which we denote CLP’.

minimize subject to

(15)

where and .

Consider the dual program for CLP’, denoted CD’:

maximize subject to

(16)

where .

We modify CD’ by replacing constraints 16 by:

(17)

We denote the modified dual program by MCD’. By the argument, similar to that of the proof of Lemma 7,

Next we show a separation oracle for MCD’, which can be applied under assumption .
Formally, we wish to find a set that violates constraint (17). Similarly to the proof of Lemma 8, we apply
PrizeCollecting to an instance with costs , and penalties . Let be the set produced by the algorithm.
By the same reasoning as in the proof of Lemma 8, we get:

Since, by our assumption

12

we get:

or, equivalently,

Since , it follows that

implying that the set violates constraint (17).

We use the separation oracle described above on the set of constraints of MCD’ together with the constraint
, until no feasible solution satisfying the latter constraint, and the constraints already

used by the algorithm, can be found. At this point, the optimal value of MCD’ with the subset of constraints
used by the ellipsoid algorithm, is at most 1, and therefore the optimal value of CLP’ with just the variables
corresponding to the used constraints is at most . Therefore, we can solve CLP’ with just those variables

to obtain the packing of sets satisfying (14).

4 The Quota Problem

In the quota problem, given an undirected graph with a cost function , a profit
function , a specified root and a quota , the objective is to find a connected subset of
containing such that the total profit of is at least , and the total cost of is minimized.

For every node , we denote by the minimum cost of a path connecting and . Notice that in dealing
with the quota problem we may eliminate nodes with . If the optimal solution contains such
a node , then the optimal solution is a least-cost path connecting and . We can compute such a path
for every node with and compare its cost to the solution produced by the algorithm described
below. Furthermore, let Q-OPT denote the cost of the optimal solution for the quota problem. Clearly, if

Q-OPT, then is not contained in any optimal solution. We can eliminate nodes with Q-OPT
by enumerating over possible values for Q-OPT. The only interesting values for this purpose are the values

, for all nodes (i.e., for we eliminate all nodes with). In the following discussion
we assume that does not contain nodes with or with Q-OPT.

Consider the following linear programming relaxation for the quota problem (denotes), which
we denote by Q-LP.

minimize subject to

(18)

Note that constraints (18) imply , . Further note that Q-LP can be solved using the ellipsoid
algorithm (a separation oracle requires computing minimum node cuts).

13

Let be a solution to Q-LP. Let Q-LP denote the value of . Consider the packing of connected sets
containing from part 2 of Theorem 1. Let denote the support of the packing, and for every ,
let denote the (positive) weight of in the packing. The following lemma is a trivial consequence of
Theorem 1. We omit the proof.

Lemma 9. The packing from part 2 of Theorem 1 satisfies the following conditions:

(19)

Q-LP (20)

(21)

Let Q-LP , Q-LP , .
and .

Lemma 10. If , then there exist and such that and

Q-LP

Proof. For , let denote . By Lemma 9, the packing is good, so by Property 20, is
non-empty. Let be the most profitable set in . Assume that . By Property 21, is non-
empty. We may assume that , otherwise remove from the sets in and scale the weights
of the remaining sets by . As we eliminated sets with above-average cost and below-average
profit, the modified packing is still good. Notice that . Therefore,

, or, as ,

(22)

Notice that for all , (as), so . Also, because the
packing is good,

Q-LP (23)

It follows from Equations 22 and 23 that there exists which, together with , satisfies the claims
stipulated by the lemma.

Our algorithm for the quota problem proceeds as follows. Given an optimal solution to Q-LP, we use part 2
of Theorem 1 to compute a packing of connected sets containing . If this packing has a set , we
output . Otherwise, we take and as exist by Lemma 10 and proceed as follows. Consider
the graph induced by . This graph is a collection of components, each of which is connected to some
vertex in . We take a spanning tree in each component, rooted at a vertex adjacent to a vertex of .
Denote the set of these spanning trees by .

In what follows we describe a trimming procedure that we apply to the set . The procedure outputs a
trimmed set of trees whose roots are taken from the set of roots of the trees in the
original set. The trimmed set has the property that its total profit is at least and its total cost is at

14

most Q-OPT. We then connect to . (Notice that the roots of the trimmed trees are
adjacent to vertices of .) Let be the resulting tree. By the previous discussion,

Q-OPT

Our algorithm outputs .

We proceed to describe the trimming procedure. Let . Notice that the total profit of the trees
in is at least (because). We repeatedly remove a maximal rooted subtree of any tree in
(including an entire tree), whose removal leaves the cost-to-profit ratio at most Q-OPT and the profit
at least , until no such subtree can be found. Let denote the set of remaining trees. If the profit of is at
most , then its cost must be at most Q-OPT. In this case we output .

Otherwise, the profit of is more than . We consider two cases.

Case 1: All rooted subtrees of trees in have cost-to-profit ratio of at most . We find a subtree rooted at
some vertex such that the profit of is at least , but the profit of each subtree rooted at a child of is less
than . As the total profit of trees in is greater than , exists and can be found by a simple scanning
procedure. Consider The subtrees rooted at the children of . We repeatedly remove such a subtree, until
the total profit of the remaining tree (including) is between and . Notice that by the assumption in
this case, each remaining subtree has cost-to-profit ratio at most . The total profit of all remaining subtrees
is at most , so their total cost (excluding) is at most Q-OPT Q-OPT. We connect to the
root of the tree in containing using a least-cost path in between the two vertices. As the cost of the
path is at most Q-OPT (this includes), the total cost of the resulting tree is at most Q-OPT. We
output the singleton set containing this tree.

Case 2: There exists a rooted subtree of a tree in with cost-to-profit ratio larger than . Consider a
minimal , inclusion-wise. Notice that the profit of the rest of is less than (otherwise we would delete
), and the cost-to-profit ratio is less than . Therefore, the cost of the rest of is less than Q-OPT.

Moreover, as the total profit of is more than , the profit of is more than . If is a single vertex
(a leaf), then, as Q-OPT, has a profit of more than and a cost of less than Q-OPT, so we
output . Otherwise, let be the root of . By the minimality assumption, every rooted subtree of
has a cost-to-profit ratio of at most . If there exists a subtree rooted at a child of with profit of at least

, we can apply the argument of Case 1 to this tree. Otherwise, the profit of each such subtree is less than
. We remove subtrees until the total profit (including) is between and . The remaining subtrees have
total cost is at most Q-OPT. We add the least-cost path in from the root of the tree in containing to
. The added cost is at most Q-OPT. We output the singleton set containing the resulting tree.

5 The Budget Problem

In the budget problem, given an undirected graph with a cost function , a profit
function , a specified root and a budget , the objective is to find a subtree of containing
such that the total cost of does not exceed and the total profit of is maximized. We may assume

that for every vertex , , otherwise no feasible solution can include , so we can discard it.
Let B-OPT denote the value of the optimal solution to the budget problem.

Consider the following linear programming relaxation to the budget problem (denotes).

maximize subject to

15

(24)

where . We denote this linear program by B-LP. Note that B-LP can be solved in polynomial time
using the ellipsoid algorithm.

Let be a feasible solution to (B-LP). Let B-LP denote the value of . Consider the packing of connected
sets containing from part 1 of Theorem 1. Let denote the support of the packing, and for every ,
let denote the weight of in the packing. It is easy to verify that this packing satisfies the following
properties:

(25)

(26)

B-OPT (27)

Next we show how the packing can be used to derive an -approximation for the budget problem.
Let , and .

Lemma 11. At least one of the following conditions holds:

1. such that B-OPT;

2. such that B-OPT .

Proof. Denote

First, consider the case when the profit from is to at least half of the total profit achieved by the packing.
Formally, assume

In this case there exists a set such that

Indeed, assume this is not the case. Then,

16

contradicting our assumption. As B-OPT, the first condition of the lemma holds.
Now consider the other case when

Then,

Moreover, by property (26),

and, in particular,

Therefore, we get

We conclude that there exists a set such that

Indeed, otherwise we would have

By property (27), we get that the second condition of the lemma holds.

To obtain an -approximation for budget problem, we proceed as follows. If satisfies condition 1
of Lemma 11, our algorithm outputs the set for which the condition holds. Otherwise, the algorithm
proceeds with the set for which condition 2 of Lemma 11 holds. Clearly, the total profit of is at least

B-OPT, but it is not a feasible solution for the budget problem, as its total cost exceeds . Our
algorithm trims to obtain another set containing such that

B-OPT

and

A trimming procedure to obtain such a set appears in Guha, Moss, Naor, and Schieber (1999).
By the discussion above, we conclude
Theorem 12. The above algorithm is an -approximation for the budget problem.

17

6 Concluding Remarks

The packing theorems in this paper point to an interesting interplay between the primal-dual schema and
rounding of linear programming relaxations. Indeed, non-constructive versions of these packing theorems
and similar theorems can be deduced directly from the bounds on the dual solution cut packings underly-
ing the related primal-dual algorithms. A better understanding of this issue is desired, and might lead to
improved algorithms or new applications.

Our results for the budget problem are unsatisfactory. The problem is not known to be harder to approximate
than the maximum coverage problem, for which a tight bound on the approximability is known.
Moreover, there is no reason to believe that the problem cannot be approximated without violating the strict
budget constraints. We conjecture that there is a polynomial time constant-approximation algorithm for this
problem.

7 Acknowledgement

The second author would like to thank Mike Saks and David Johnson for stimulating discussions.

References

1. Arora, S., G. Karakostas. 2000. A approximation algorithm for the k-MST problem. In
Proc. of the 11th SODA.

2. Arora, S.,C. Lund. 1997. Hardness of approximations. Chapter 10 inApproximationAlgorithms
for NP-Hard Problems. PWS Publishing Company.

3. Awerbuch B., Y. Azar, A. Blum, S. Vempala. 1995. Improved approximations for minimum-
weight -trees and prize-collecting salesmen. In Proc. of the 27th STOC.

4. Blum A., R. Ravi, and S. Vempala. 1996. A constant factor approximation for the -MST
problem. In Proc. of the 28th STOC.

5. Carr R., S. Vempala. 2000. Randomized metarounding. In Proc. of the 32nd STOC.
6. Charikar M., S. Guha. 1999. Improved combinatorial algorithms for the facility location and

-median problems. In Proc. of the 40th FOCS.
7. Chudak F., T. Roughgarden, D.P. Williamson. 2001. Some notes on Garg’s approximation al-
gorithms for the k-MST problem. In Proc. of the 12th SODA.

8. Diestel R. 2000. Graph Theory, 2nd Edition. Graduate Texts in Mathematics, Volume 173,
Springer-Verlag.

9. Garg N. 1996. A -approximation for the minimum tree spanning vertices. In Proc. of the
37th FOCS.

10. Goemans M.X., D.P. Williamson. 1995. A general approximation technique for constrained
forest problems. SIAM J. Comput. 24(2) 296–317.

11. Grötschel M., L. Lovász, A. Schrijver. 1993. Geometric Algorithms and Combinatorial Opti-
mization, second corrected edition. Springer-Verlag.

12. Guha S., A. Moss, J. Naor, B. Schieber. 1999. Efficient recovery from power outage. In Proc.
of the 13th STOC.

18

13. Hochbaum D.S., ed. 1997 Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company.

14. Jain K., V.V. Vazirani. 1999. Primal-dual approximation algorithms for metric facility location
and -median problems. In Proc. of the 40th FOCS.

15. Johnson D.S., M. Minkoff, S. Phillips. 2000. The prize collecting Steiner tree problem: theory
and practice. In Proc. of the 11th SODA.

16. Khuller S., A. Moss, S. Naor. 1998. The budgeted maximum coverage problem. Information
Processing Letters 70(1) 39–45.

17. Klein P., R. Ravi. 1995. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. J. of Algorithms 19 104–115.

19

