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ABSTRACT
Given a metric space G on n nodes, with a start node
r and deadlines D(v) for each vertex v, we consider the
Deadline-TSP problem of finding a path starting at r that
visits as many nodes as possible by their deadlines. We
also consider the more general Vehicle Routing with Time-
Windows problem, in which each node v also has a release-
time R(v) and the goal is to visit as many nodes as possi-
ble within their “time-windows” [R(v), D(v)]. No good ap-
proximations were known previously for these problems on
general metric spaces. We give an O(log n) approximation
algorithm for Deadline-TSP, and extend this algorithm to
an O(log2 n) approximation for the Time-Window problem.
We also give a bicriteria approximation algorithm for both
problems: Given an ε > 0, our algorithm produces a log(1/ε)
approximation, while exceeding the deadlines by a factor of
1 + ε. We use as a subroutine for these results a constant-
factor approximation that we develop for a generalization
of the orienteering problem in which both the start and the
end nodes of the path are fixed. In the process, we give a
3-approximation to the orienteering problem, improving on
the previously best known 4-approximation of [6].

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-

ity]:

General Terms
Algorithms, Theory
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1. INTRODUCTION
Consider a robot that begins at position r in some metric

space and has a number of different locations to visit. How-
ever, each location v has a deadline D(v) and only counts if it
is visited by that time. What path should the robot take to
(approximately) maximize the number of points visited by
their deadlines — or, more generally, to maximize the value
of such points if each location has an associated value? We
call this the Deadline-TSP problem. Even more generally,
what if each location v has a time-window [R(v), D(v)] in
which it must be visited? This is the classic Vehicle Routing
Problem with Time Windows. In this paper, we give ap-
proximation guarantees for both of these problems in general
metric spaces. Note that if the deadlines of all the nodes are
the same, and their release dates are zero, the problem re-
duces to the well known Orienteering problem [3, 4, 11], for
which the first constant factor approximation was recently
given by [6].

The Vehicle Routing Problem with Time Windows, or
“Time-Window problem” for short, has been studied ex-
tensively in the Operations Research literature (see [1, 10]
for a survey). Various heuristics [9, 17, 19, 18], such as lo-
cal search, Simulated Annealing and Genetic algorithms, as
well as cutting plane and branch and bound methods [20,
16, 14] have been studied for solving this problem optimally.
Optimal algorithms for stochastic inputs have also been pro-
posed. In the approximation algorithms literature, there has
been work on geometric versions of this problem. Several
constant factor approximations [5, 21, 15] have been pro-
posed for the case of points on a line. For general graphs,
Chekuri and Kumar [8] give a constant-factor approximation
when there are a constant number of different deadlines (or
time windows). Our paper is the first to give approximation
guarantees for the general case with arbitrary deadlines or
arbitrary time-windows.



Another motivation for these problems comes from a clas-
sic scheduling problem known as scheduling with sequence
dependent setup times [2, 23, 22, 7]. In this problem we are
given a collection of jobs, each having a production dura-
tion pj and a delivery date Dj . In addition, for each pair
of jobs, there is a setup time sij , which is incurred when
job j is undertaken following job i. The goal is to sched-
ule jobs as efficiently as possible on a single machine. If we
assume the sij are symmetric (e.g., they depend on some
notion of similarity between the jobs) then this can be mod-
eled as an undirected graph problem by assigning a length
of sij to the edge between i and j. Production durations
can also be incorporated by adding pj/2 to every edge in-
cident on the node j, and subtracting the same from the
deadline Dj . The scheduling setting is fairly general and
models many problems. For example, one objective may be
to minimize the makespan, which is equivalent to the TSP
problem. Likewise, the objective of completing as many
jobs as possible before their specified deadline is equivalent
to the Deadline-TSP. Interestingly, meeting target delivery
dates has been declared as the most important scheduling
objective for production planners by Wisner and Siferd [22].
Several heuristics [13, 12] have been proposed for this (and
other related problems), however, no approximations were
known prior to our work.

Our Results. We give an O(log n) approximation for the
Deadline-TSP, based on a 3-approximation that we provide
for an extension of the Orienteering problem, that we call
“point-to-point orienteering”. In point-to-point orienteer-
ing, both the start node and end node of the path are given,
and the goal is to travel from the start to the end, traveling
distance at most D, and visiting (approximately) as many
points as possible. Note that we approximate the number
of points, and not the distance traveled. This means that
if we can break up the problem into several subparts, then
we can hope to attack each piece individually and patch
the solutions together without worrying that mistakes made
earlier will affect performance down the line. Since point-
to-point orienteering generalizes the standard version of this
problem, this improves on the previous 4-approximation of
[6]. Using the O(log n) approximation to Deadline-TSP, we
develop an O(log2 n) approximation for the Time-Window
problem.

We also give an algorithm for the Time-Window problem,
that achieves a bicriteria optimization — it achieves a con-
stant factor approximation to the reward, while exceeding
the deadlines by a small factor. In particular, for any given
ε > 0, our algorithm collects an Ω(log−1( 1

ε
)) fraction of the

reward, while visiting each vertex v in the interval [R(v), (1+
ε)D(v)], where [R(v),D(v)] denotes the time-window of the
vertex v. Note that unlike typical bicriteria results, our
approximation is logarithmic in 1/ε rather than linear. In
particular, this implies an O(log Dmax)-approximation for
the Time-Window problem, where Dmax is the maximum
deadline in the graph, by taking ε = 1/Dmax. This gives
an asymptotically better approximation than our O(log2 n)-
approximation if all the deadlines in the graph are polyno-
mially bounded in n.

The rest of this paper is organized as follows. We begin
with some notation and definitions in Section 2. In Sec-
tion 3, we give a 3-approximation algorithm for the point-
to-point orienteering problem. Section 4 contains some con-
stant factor approximations for special cases of the Time-

Window problem, that we then use to achieve our bicriteria
approximation. Section 5 contains an O(log2 n)-approximation
algorithm. We conclude in Section 6.

2. NOTATION AND PRELIMINARIES
Let G = (V, E) be a weighted graph, with a start node

r, a prize (or reward) function Π : V → Z+, deadlines
D : V → Z+, release dates R : V → Z+, and a length
function ` : E → Z+. We assume without loss of generality
that the deadline of every node is larger than the release
date of the node and the shortest path distance from the
root to the node.

For any two nodes u and v, let `(u, v) denote the shortest
distance between u and v. Given a path P from u to v, let
tP (u, v) denote the time taken (distance) to reach v from u
along the path P . The excess along the path P is defined
as εP (u, v) = tP (u, v) − `(u, v). We abbreviate the time
taken by a path P rooted at r to reach a node v, tP (r, v),
by tP (v). We denote the optimal path by O. Let O also
denote the set of nodes visited by the optimal path within
their time-windows. A path starting at root r collects the
prize Π(v) at node v, if it reaches v within the time interval
[R(v), D(v)]. For a path P and set S ⊆ V , let ΠP (S) =P

v∈S:R(v)≤tP (v)≤D(v) Π(v) and ΠP = ΠP (V ). Note that a

path can visit a node multiple times, but the prize at any
node can be collected at most once. For any path P , the
restriction of the path P to a set S of vertices, P|S, denotes
the path that visits nodes of S in the order that P visited
them, and does not visit any other nodes. Note that, for all
S and P , tP|S (v) ≤ tP (v) for all v ∈ S.

The goal in the Time-Window problem is to construct a
path starting at r, that maximizes the total prize. We define
the Deadline-TSP problem to be the special case where all
the release dates R(v) are 0. The Orienteering problem is a
further special case of this problem in which all nodes v ∈ V
have R(v) = 0 and all have the same deadline D(v) = D.
We define the u-v orienteering problem to be the orienteering
problem with root node u that is required to end at node v.
That is, the goal here is to find the path of length at most
D that begins at u and ends at v that collects the maximum
reward possible.

The minimum excess path problem is defined as follows.
Given a graph with nodes u and v, and a prize quota k, the
problem is to find a path P from u to v that collects at least
k prize, and has the minimum possible excess εP (u, v). Note
that in terms of exact solutions, this problem is the same as
the k-TSP problem, in which the goal is to find the shortest
path between u and v that collects at least k prize, but we
are subtracting `(u, v) from the objective, so the min-excess
problem is more difficult in terms of approximation. Blum
et al [6] give a (2 + ε)-approximation for the excess problem
(if the optimum path is O, the algorithm finds a path that
collects a prize at least k and has length at most d(u, v) +
(2 + ε)εO(u, v)), and then use this to get a 4-approximation
to the orienteering problem.

We begin by showing how we can use the (2+ε)-approximation
to the minimum-excess path problem to find a path from u
to v that has length at most tO(u, v), and collects prize at
least k/3. In other words, this gives a 3-approximation to
the u − v Orienteering problem, improving over [6] (in fact,
this is stronger than the version of the problem solved in [6]
because we get to specify the ending point of the path, and
not just the starting point).



Input: Graph G = (V, E); special nodes u and v; length bound D.
Output: Path P with ΠP ≥ 1

3ΠO and length at most D.

1. For every pair of nodes x and y, we will consider a path which proceeds from u to x, then visits some vertices while traveling from x to
y, and then travels directly from y to v. The allowed excess of the path from x to y is εxy = D − `(u, x) − `(x, y) − `(y, v). Using the
2 + ε-approximation to the minimum excess problem from [6], we compute a path from x to y of excess at most εxy that visits at least as
many vertices as the best path from x to y with excess εxy/3.

2. We now pick the pair (x, y) that maximizes the total reward collected on the computed path. We then travel from u to x via a line, then
x to y via the chosen path, then y to v.

Figure 1: Algorithm P2P— 3-approximation for u − v Orienteering

We then show how we can use this as a subroutine to
obtain a bicriteria approximation—for any ε > 0, our algo-
rithm outputs a path P with Πε

P ≥ Ω( 1
log (1/ε)

)ΠO, where

Πε
P =
P

v:R(v)≤tP (v)<(1+ε)D(v) Π(v). That is, for a constant

ε, our algorithm obtains a constant fraction of the reward,
while exceeding deadlines by a 1 + ε factor. The same algo-
rithm also gives us an O(log Dmax) approximation without
approximating deadlines, where Dmax = maxv∈V D(v) is the
maximum deadline in the graph.

Our main result is a 3 log n approximation for the Deadline-
TSP problem, which we extend to a 3 log2 n approximation
for the Time-Window problem. These algorithms use point-
to-point orienteering as a subroutine.

We assume without loss of generality that prizes are in
the range {1, . . . , n}. In doing so, we only lose a factor of 2
in approximation. This is because, we can scale down prizes
such that the maximum prize is exactly n (this guarantees
that O gets at least n reward). Then we round down the
prizes to the nearest integer, losing an additive amount of
at most n. Note that since the new reward obtained by O
is also at least n, we lose a factor of at most 2.

All our algorithms (as presented here) use as a subroutine
a dynamic program that computes the maximum reward
achievable between two specified end points for all possi-
ble path lengths. So, strictly speaking, the running time
of these algorithms has a polynomial dependence on n and
Dmax. This would be undesirable if Dmax is exponential in
n. However, we can use the following idea to reduce the
running time to polynomial in n and log Dmax. For all pos-
sible reward values (that are integers between 1 and n2), we
use binary search to find the smallest length for which that
reward can be obtained. So we only need to compute and
store polynomially many different lengths for each start and
end pair. For ease of exposition, we ignore this detail while
describing the algorithms.

Although all our algorithms run in polynomial time, the
actual running times are fairly large. The bicriteria approxi-
mation (Algorithm C, see Figure 5) requires O(n5 log 1

ε
) ap-

plications of the Orienteering subroutine (Algorithm P2P,
see Figure 1). The O(log n) approximation (Figure 7) re-
quires O(n6) applications of Algorithm P2P. Algorithm P2P
requires O(n2) applications of the algorithm for the min-
excess problem. Note that these are worst case running
times for the algorithms, and the actual running times may
be much smaller.

3. POINT-TO-POINT ORIENTEERING
In this section we show how we can use a (2+ε)-approximation

algorithm for the minimum excess problem, to achieve a 3-

approximation to the point-to-point orienteering problem.
We begin with some properties of excess. Let P be any

u−v path that visits nodes in the order u0 = u, u1, . . . , ul =
v.

Fact 1 εP (u0, ui) is increasing in i.

Fact 2 The excess function is sub-additive. That is, for any
nodes ui, uj , uk with 0 ≤ i < j < k ≤ l, εP (ui, uj) +
εP (uj , uk) ≤ εP (ui, uk).

Proof. The first fact follows from the triangle inequality.
The second follows by rewriting εP (ui, uj) + εP (uj , uk) as
tP (ui, uj) − `(ui, uj) + tP (uj , uk) − `(uj , uk) = tP (ui, uk) −
`(ui, uj)−`(uj , uk) and observing that `(ui, uj)+`(uj , uk) ≥
`(ui, uk) by the triangle inequality.

The algorithm P2P is given in Figure 1. Note that by
design, the algorithm produces a path of length at most D.
We just need to show that it visits enough points.

Theorem 1. The algorithm P2P is a 3-approximation to
the point-to-point orienteering problem.

Proof. Consider the optimum path O from u to v. Break
this path into three pieces, each having at least 1/3 of the
total prize value, and let x and y be the endpoints of the
portion such that εO(x, y) is smallest. Consider now the
path O′ that travels directly from u to x, then follows O
to y, and then travels directly from y to v. Because we
chose x, y such that εO(x, y) is the smallest of the three
segments, and by the triangle inequality, it must be that by
traveling along O′ rather than O, we save a total of at least
2εO(x, y); that is, tO(u, v) − tO′(u, v) ≥ 2εO(x, y). This is
enough to pay for the added length produced by applying
the min-excess approximation from x to y. Formally, by
definition, εxy = tO(u, v)−tO′(x, y)+εO(x, y), and plugging
in the above inequality, this is at least 3εO(x, y). Since the
min-excess algorithm gets at least as much prize value as
the best possible path from x to y with excess εxy/3, it is
guaranteed to get at least as much as this portion of the
optimal path, which is at least 1/3 of the total prize of the
optimal path.

4. A BICRITERIA APPROXIMATION
In this section, we describe a bicriteria algorithm for the

Time-Window problem that for any ε > 0, obtains an O(log 1
ε
)

fraction of the reward obtained by O, if it is allowed to visit
vertices in the window [R(v), (1 + ε)D(v)].



Input: Graph G = (V, E) with deadlines D(v); Constant ε; f = 1√
1+ε

. Let Sj = {v : D(v) ∈ (fjDmax, fj−1Dmax]}, Simod3 = ∪∞
j=0S3j+i.

Output: Path P with ΠP ≥ 1
9ΠO(Vε) and R(v) ≤ tP (v) ≤ (1 + ε)2D(v) for all v ∈ P , where Vε = {v : D(v)/(1 + ε) ≤ tO(v) ≤ D(v)}.

1. For all j, for all u, v ∈ Sj , and for all integers t ≤ fj−1Dmax − fjDmax, use algorithm P2P to find a path of length t from u to v. Let
this reward be π(u, v, t).

2. For k = 0, 1, 2 do the following:

(a) Let π′(v, j, t) for t ≤ fj−1Dmax denote the (approximately) maximum reward that can be collected from Skmod3 up to segment
Sj ⊂ Skmod3 using a path of length t that ends at v ∈ Sj.

(b) Compute π′(v, j, t) using the following recurrence.

π′(v, j, t) = max
fj Dmax≤t′≤t,u∈Sj,u′∈Sj+3

{π′(u′, j + 3, t′ − `(u′, u)) + π(u, v, t − t′)}

3. Output the path corresponding to the maximum prize collected until the last segment, slowed-down by a factor of f3.

Figure 2: Algorithm A—Bicriteria approximation for the small margin case

We begin with a few special purpose algorithms, and then
describe how to combine them for the general case. We first
consider the case when O visits a large fraction of the nodes
very close to their deadlines (the small margin case). Then
we consider the case when O visits many nodes much before
their deadlines (the large margin case). Towards the end of
this section, we show that the bicriteria result also implies a
O(log Dmax)-approximation to the Time-Window Problem.

4.1 The small margin case
At the heart of our bicriteria approximation is a proce-

dure that obtains a constant fraction of the optimal reward
while exceeding deadlines by a small factor, if O visits most
nodes v ∈ O very close to their deadlines (within some mul-
tiplicative factor).

Let ε be a fixed constant. Consider the set of nodes Vε =
{v : D(v)/(1+ ε) ≤ tO(v) ≤ D(v)}. We design an algorithm
A that obtains a constant fraction of ΠO(Vε) as reward,
while exceeding deadlines by a factor of (1 + ε)2. Note that
only deadlines are violated – nodes on the path output by
algorithm A are visited after their release dates.

Let f = 1√
1+ε

. We divide the nodes in the graph into

segments as follows. Segment Sj consists of nodes that have
deadlines in (f jDmax, f j−1Dmax] (Figure 3). The definition
of f and Vε are such that for any j, all vertices in Sj ∩ Vε

are visited by O after all vertices in Sj+3 ∩Vε (see Lemma 2
and Figure 3).

Lemma 2. For any j and any nodes u ∈ Sj ∩ Vε and
v ∈ Sj+3 ∩ Vε, tO(v) < tO(u).

Proof. We have D(v) ≤ f j+2Dmax. So, tO(v) ≤ D(v) ≤
f j+2Dmax. Likewise, Du > f jDmax. So, by the definition of
Vε, tO(u) ≥ f2Du > f j+2Dmax ≥ tO(v).

The above lemma suggests a natural strategy for approx-
imating the reward collected by O in Vε. Let Simod3 =
∪∞

j=0S3j+i for i = 0, 1, 2. Then, ∪iSimod3 = Vε. Then, one
of the three sets contains at least a third of the total reward
in Vε. Let this be Skmod3.

We approximate the reward obtained by O′ = O|Skmod3
as

follows. We construct approximations to the optimal path
in sets S3j+k ∈ Skmod3, and join them by taking a shortcut
across the intermediate sets S3j+k−1 and S3j+k−2. In order

O|Vε
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Figure 3: Division of set Vε into segments Sj . Note

that segments Si, Si+3 and Si+6 are disjoint along the

time axis.

to approximate the optimal path in some Sj , we guess the
first and the last vertex that O′ visits in this set, and the
corresponding times at which it visits them. Then we use
the P2P algorithm to construct a path of the guessed length.
We append these subpaths, with an appropriate amount of
“waiting-time” between consecutive segments, so that the
resulting path visits segments in the same time interval as
O. Lemma 3 shows that the start time of this path is at
least f3 times the release date of any node in Sj , whereas
the end time time is at most 1

f
times the deadline of any

node in Sj .

Lemma 3. For any two nodes v ∈ Sj ∩ Vε, f3R(v) ≤
tA(v) < fD(v).

Proof. Note that by construction, both A and O visit
vertices in Sj∩Vε after the time f j+2Dmax and before f j−1Dmax.
Therefore, for all v ∈ Sj ∩ Vε, R(v) ≤ f j−1Dmax. This gives
tA(v) ≥ f j+2Dmax ≥ f3R(v). Furthermore, by the defini-
tion of Sj , D(v) < f jDmax. Therefore, tA(v) ≤ f j−1Dmax <
fD(v).

Finally, we “slow-down” this path by a factor of f3, that
is, if the path output by the algorithm visits a vertex at time



Input: Graph G = (V, E) with deadlines D(v).

Output: Path Q with ΠQ ≥ 1
24ΠO(V1/4) and R(v) ≤ tQ(v) ≤ D(v) for all v ∈ Q, where V1/4 = {v : tO(v) ≤ D(v)

4 }.

1. For all i, use the algorithm P2P on graph G({r} ∪ Si) to construct a path Pi with length at most αi+1. Let Ti be the corresponding tour

of length 2αi+1.

2. For all j ∈ {0, · · · , β − 1}, let Qj be the concatenation of Pβi+j for all i ≥ 0 and let πj =
P

i ΠPβi+j
(Sβi+j).

3. Return the path Qj , slowed down by a factor of 2, corresponding to the maximum reward πj over all j.

Figure 4: Algorithm B—Approximation for the large margin case

t, we visit the vertex and then wait until time t
f3 to move to

the next vertex. In the worst case, the path constructed as
above visits nodes in Sj at 1

f3 ×f j−1Dmax. By the definition

of Sj , we know that this is at most (1+ε)2 times the deadline
of any node in Sj . Furthermore, this slow-down ensures that
the path visits every vertex after its release date. We lose a
factor of 3 in reward by leaving out vertices in Simod3, i 6= k,
and another factor of 3 by using algorithm P2P. Thus, we
get the following theorem. Figure 2 describes the algorithm
in detail.

Theorem 4. Algorithm A returns a path P with Πε
P ≥

1
9
ΠO(Vε).

4.2 The large margin case
Let V1/4 = {v : tO(v) ≤ D(v)

4
}. In this section we will

describe an algorithm that collects a constant fraction of
the reward ΠO(V1/4).

For all nodes v, define new deadlines D′(v) = D(v)
4

. Note
that for all v ∈ V1/4, O visits v before its new deadline
D′(v). We divide nodes into subsets as follows. Let α =
1.2. For i ≥ 0, the set Si contains nodes v that have
D′(v) ∈ [αi, αi+1). Let β = 8. For j ∈ {0, · · · , β − 1},
define Sjmodβ = ∪i≥0Sβi+j . Then, ∪j≤β−1Sjmodβ = V .

Let Pi be a path returned by the P2P algorithm with
parameter D = αi+1 when applied to the graph induced by
{r} ∪ Si. Note that Pi collects at least 1

3
ΠO(Si) reward.

Let Ti be a tour that starts at the root, follows path Pi and
then returns back to the root. For some j < β, consider the
path constructed by appending all Tβi+j for i ≥ 0. Assume
that the length of Ti is exactly 2αi+1 (we can ensure this
by waiting for an appropriate amount of time at the root
between consecutive tours). Let this path be called Qj .

Lemma 5. For any i and j and v ∈ Sβi+j,
1
2
R(v) ≤

tQj (v) ≤ 1
2
D(v).

Proof. The length of the path Qj up to and including
the set Sβi+j isP

k<i |Tβk+j| + |Pβi+j | =
P

k<i 2|Pβk+j | + |Pβi+j |

= 2
P

k<i αβk+j+1 + αβi+j+1

= 2αj+1 αβi−1
αβ−1

+ αβi+j+1

≤ αβi+j+1( 2
αβ−1

+ 1)

The deadline of v is D(v) = 4D′(v) ≥ 4αβi+j . Thus,
tQj (v) ≤ α

4
( 2

αβ−1
+ 1)D(v). Taking α = 1.2 and β = 8, we

get that tQj (v) ≤ 1
2
D(v). Similarly, tQj (v) ≥

P
k<i |Tβk+j| =

2αβi+j+1

αβ−1
. Using β = 8, and D′(v) ≤ αβi+j+1, we get

tQj (v) ≥ 1
2
D′(v). However we also have R(v) ≤ D′(v),

because O collects vertex v before time D′(v). Therefore we
get tQj (v) ≥ 1

2
R(v).

Slowing down the path Qj by a factor of 2 ensures that
we cover all nodes within their time window [R(v), D(v)].
Note that the sets Sjmodβ for j ∈ {0, · · · , β − 1} together
cover all the nodes in V1/4. Furthermore, we have ΠQj ≥
1
3

P
i ΠO(Sβi+j). Thus, one of the paths Qj gives a 3β = 24

approximation to the reward collected by O in V1/4. Our
algorithm for finding the best Qj is given in Figure 4.

Theorem 6. Algorithm B returns a path P with ΠP ≥
1
24

ΠO(V1/4).

4.3 The general case
Now we will give an algorithm that produces a bicriteria

approximation for the entire graph. In particular, given a
parameter ε, we construct a path that obtains reward at
least Ω(log−1 1

ε
)ΠO if it is allowed to exceed the deadlines

by a factor of 1 + ε. As before, let f = 1√
1+ε

. Let s be

defined as the smallest integer for which f (1.5)s

≤ 1
4
. Then

s = O(log 1
ε
).

Our algorithm proceeds as follows. Divide all the nodes
into s + 2 groups as follows. Group i, 1 ≤ i ≤ s, is given by

Vi = {v : tO(v) ∈ (f (1.5)i

D(v), f (1.5)i−1

D(v)]}. Group 0 is
given by V0 = {v : tO(v) ∈ (fD(v), D(v)]}. Group s + 1 is
defined as Vs+1 = {v : tO(v) ∈ (0, D(v)/4]}. These groups
together cover all the nodes in O. So, one of the groups
contains at least a 1

s+2
fraction of the total reward collected

by O. Let Vi be such a group.
If i = 0, we can apply algorithm A right away and obtain

a path P with ΠP ≥ 1
9
ΠO(V0) that visits its nodes within a

factor of (1 + ε) of their deadlines.
Consider the case when 1 ≤ i ≤ s. Scale all the dead-

lines down by a factor of f (1.5)i−1

, that is, define D′(v) =

f (1.5)i−1

D(v). Then the path O visits all nodes in Vi at time

tO′(v) ∈ (f0.5(1.5)i−1

D′(v), D′(v)]. Now apply algorithm A

with parameter f0.5(1.5)i−1

. Then, the obtained path col-
lects reward πP ≥ 1

9
ΠO(Vi) and visits all nodes v before

time D′(v)f−(1.5)i−1

= D(v).
Finally consider the case when i = s + 1. Note that this

is the large margin case considered in a previous subsection.
So we can use algorithm B to obtain a 24-approximation in
this case.

Putting everything together, we get the following theo-
rem. The algorithm is described in Figure 5.



Input: Graph G = (V, E) with deadlines D(v); parameter ε.
Output: Path P with ΠP ≥ Ω( 1

log 1
ε

)ΠO and R(v) ≤ tP (v) ≤ (1 + ε)D(v) for all v ∈ P .

1. Let f = 1√
1+ε

and s be the smallest integer for which f(1.5)s ≤ 1
4 .

2. Apply algorithm A with parameter f to the graph, and let P0 be the path obtained.

3. Apply algorithm B to the graph, and let Ps+1 be the path obtained.

4. For all i ∈ {1, · · · , s}, do the following:

(a) For all v ∈ V , define D′(v) = D(v)f(1.5)i−1
.

(b) Apply algorithm A with parameter f(1.5)i−1
to the graph with the new deadlines D′, and let Pi be the path obtained.

5. Among the paths constructed above, return the one with the maximum reward.

Figure 5: Algorithm C—Bicriteria approximation for the general case

Theorem 7. Algorithm C returns a path P with Πε
P ≥

1
24(s+2)

ΠO = Ω( 1

log 1
ε

)ΠO.

As a simple corollary of Theorem 7, we get an O(log Dmax)-
approximation to the Time-Window problem without ex-
ceeding deadlines.

Corollary 8. Algorithm C with ε = 1/Dmax gives an
O(log Dmax)-approximation to the Time-Window problem.

Proof. From Theorem 7, we know that for ε = 1/Dmax

the path P collects an Ω(1/ log Dmax) fraction of the reward
from nodes v visited before (1 + ε)D(v). For ε = 1/Dmax,
(1+ε)D(v) < D(v)+1. Since, all edge lengths and deadlines
are integral by assumption, node v is visited by D(v).

5. AN O(log2 n) APPROXIMATION
In this section we give an O(log2 n) approximation algo-

rithm for the Time-Window problem. We begin by giv-
ing an O(log n) approximation for Deadline-TSP. Then we
describe a general method of obtaining an α2 approxima-
tion for Time-Windows based on an α-approximation for
Deadline-TSP, that uses Orienteering as a subroutine. This
gives us the desired approximation.

5.1 An O(log n) approximation for Deadline-
TSP

The basic idea behind our algorithm is to prove that there
is a segmentation of the graphs into sets {Vi} with the fol-
lowing properties. The sets are characterized by deadlines
{di}, such that Vi = {v ∈ V : D(v) ∈ (di, di+1]}. There
is a path that for all pairs i < j visits vertices in Vi before
vertices in Vj , and obtains at least an Ω(1/ log n) fraction of
the optimal reward. Furthermore, this path has the prop-
erty, that among all vertices that it visits in the set Vi, the
vertex with the smallest deadline is visited last. This allows
us to use the Orienteering subroutine along with dynamic
programming to find the best such path.

We begin with some notation. Let r = u0, u1, . . . , ul de-
note the vertices visited by the optimal path O. It is conve-
nient to view the vertices in O as lying on a two dimensional
plane, with the horizontal and vertical axes corresponding
to deadlines and time respectively. That is, vertex ui lies at
the point pi = (D(ui), tO(ui)) (See Figure 6(a)).

We call a vertex ui minimal if for any other vertex uj ,
either tO(uj) ≤ tO(ui) or D(uj) ≥ D(ui). Pictorially,
these are vertices that form the upper left envelope of the
points pi. Let M = {u(0), . . . , u(m)} denote the set of min-
imal vertices ordered in increasing order of deadlines, with
|M| = m + 1. Without loss of generality, we assume that
D(r) = 0, so r ∈ M. Similarly, for the purposes of analysis
we assume that there is a dummy vertex uend which is at
distance 2

P
e∈E `(e) from the root and has a deadline of

4
P

e∈E `(e). Without loss of generality we can assume that
uend is always visited in the end by any path, and therefore,
uend ∈ M.

For any three minimal vertices u(h), u(j), u(k) ∈ M with
h ≤ j ≤ k, let R(h, j, k) denote the set of vertices u in O such
that D(u(j)) ≤ D(u) ≤ D(u(k)) and tO(u(h)) ≤ tO(u) ≤
tO(u(j)). Thus, R(h, j, k) is the set of points lying in a
rectangular region defined by u(h), u(j) and u(k) as shown
in Figure 6(a). Note that among all points visited by O in
R(h, j, k), u(j) is visited last. So all vertices in this rectangle
are visited by time D(u(j)). This fact will allow us to apply
orienteering to points in the rectangle.

Two rectangles R1 = R(h1, j1, k1) and R2 = R(h2, j2, k2)
are called disjoint if h2 ≥ j1 and j2 ≥ k1, (or equivalently
if h1 ≥ j2 and j1 ≥ k2). Pictorially, R1 and R2 are dis-
joint if they are disjoint along both the time and deadline
axes. Observe that no vertex can lie in two disjoint rectan-
gles. Finally, a collection of rectangles C = {R1, . . . ,Rr} is
called disjoint if for all pairs Ri,Rj ∈ C, Ri and Rj are dis-
joint. This notion of disjointness allows us to approximate O
in several rectangles simultaneously and patch the paths—
disjointness along deadlines allows us to segment the nodes
without double-counting them, while disjointness along the
time axis ensures that we do not exceed the length bound.

The main idea behind our O(log n) approximation is the
following. First, we show that there exist log n collections
of disjoint rectangles {C1, . . . , Clog n} such that each vertex
ui ∈ O lies in a rectangle contained in at least one Ci. This
implies that the total reward contained in this family of col-
lections is at least ΠO. Therefore, there is some collection
Ci that has at least a 1/ log n fraction of this reward. Sec-
ond, we will give a polynomial time procedure to compute
a path that collects at least an O(1) fraction of the reward
contained in the best disjoint collection of rectangles. To-
gether, these will imply an O(log n) approximation.
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Figure 6: An example illustrating the construction of the rectangles R(h, j, k).

We first describe the family C1, . . . , Clog n. Let

Si = {ni,j = j2i + 2i−1 : 0 ≤ j ≤ 2log m−i − 1} ∪ {0, m},

where ni,−1 = 0 and ni,2log m−i = m, by definition. Let

Ci = {R(ni,j , ni,j+1, ni,j+2)}−1≤j≤2log m−i

So, C1 = {R(2j−1, 2j+1, 2j+3) : j = 0, . . . , m/2−1}, C2 =
{R(4j−2, 4j+2, 4j+6) : j = 0, . . . , m/4−1} and so on (see
Figure 6 (b)). Thus we have a family F = {C1, . . . , Clog m}
consisting of log m ≤ log n collections. Note that for all
j ≤ m, at least one set Si contains j.

Lemma 9. For each vertex u visited in the optimum path
O, there is at least one collection Ci ∈ F, such that u lies in
some rectangle in Ci.

Proof. Consider a vertex u ∈ O and let u(i) be the min-
imal vertex for which D(u(i)) ≤ D(u) < D(u(i+1)). Like-
wise, let u(j) be the minimal vertex such that tO(u(j−1)) <
tO(u) ≤ tO(u(j)). Observe that i ≥ j. If i = j, then u is
the minimal vertex u(i) and in this case, u belongs to the
collection Cb corresponding to an Sb that contains i.

If i 6= j, observe that if for some b, Sb contains exactly one
number between i and j, say k, then the point u would lie
in some rectangle in Cb, in particular, the one corresponding
to the number k. Let b be such that 2b ≤ i − j < 2b+1. For
this choice of b, either |Sb ∩ [i, j]| = 1 or |Sb ∩ [i, j]| = 2. In
the first case, we are already done. In the second case, let
x and y be the two points in Sb ∩ [i, j], then observe that
(x + y)/2 ∈ Sb+1 and since i − j < 2b+1, exactly one point
from Sb+1 lies in the range [i, j].

Approximating the reward in the best collection.

We now show how we can find a path such that the total
reward collected in that path is a constant factor of the
reward in the best collection.

The idea is the following: Consider the collection C ∈ F
that has the maximum reward. Let us consider the opti-
mum path restricted to the vertices in C. Then if we reduce
deadlines of nodes in C as follows — for each vertex v in
R(i, j, k) ∈ C we assign a deadline D′(v) = D(u(j)) ≤ D(v)
— then O|C still meets all the new deadlines. So, if we could
run the point-to-point orienteering subroutine with parame-
ter D(u(j)) on the instance restricted to vertices in R(i, j, k),
we would be guaranteed a constant fraction of the reward
that O collects in the rectangle R(i, j, k). However, we do
not know which vertices are minimal, and therefore do not
know which vertices lie in R(i, j, k) (the definition of a min-
imal vertex depends on when O visits that vertex). To get
around this problem, we can do the following: Observe that
the vertices u(j) in M have increasing deadlines. This al-
lows to write dynamic program in a natural way. We arrange
all the vertices of G in the increasing order of deadlines as
v1, . . . , vn. For every 1 ≤ j ≤ k ≤ n, we consider the graph
Gj,k restricted to vertices vl such that j ≤ l < k, and solve
a point to point orienteering instance (assuming some start
time to account for distance traveled before considering this
interval) such that each vertex is visited before the deadline
of vj . We now give the details.

Lemma 10. We can compute in polynomial time a feasi-
ble path that collects at least a third of the the reward col-
lected by the best collection Ci.

Proof. Let v1, . . . , vn denote the vertices in G in the
increasing order of their deadlines. We compute the fol-
lowing quantity: For every pair of vertices vj , vk such that
j ≤ k, for every vertex vg and vh such that D(vg), D(vh) ∈
[D(vj), D(vk)), and start and finish times t1 and t2, such
that t1 ≤ t2 ≤ D(vj), let π(j, k, g, h, t1, t2) be the reward
collected by the optimum path that begins at vg at time
t1, finishes at vh at time t2 and only visits vertices such
that their deadlines are in the interval [D(vj), D(vk)). To



Input: Graph G = (V, E) with deadlines D(v).
Output: Path P with ΠP ≥ 1

3 log n ΠO .

1. Let Vjk denote the set of vertices with deadlines between D(vj) and D(vk). For all j 6= k ≤ n, for all t ≤ D(vj), and for all vg, vh ∈ Vj,k,
apply algorithm P2P to the graph restricted to Vjk with distance bound t, and let π(j, k, g, h, t) denote the reward obtained.

2. Let π′(k, t) with t ≤ D(vk) denote the (approximately) maximum reward that can be obtained by a path of length t visiting nodes with
deadline at most D(vk).

3. For all k ≤ n and t ≤ D(vk), compute π′(k, t) and the corresponding path by the following recurrence

π′(k, t) = max
j≤g,h≤k, with D(vj )≥t,t′≤t

{π′(j, t′) + π(j, k, g, h, t − t′)}

4. Return the path corresponding to maximum reward computed in the last step.

Figure 7: Algorithm D—A 3 log n-approximation for Deadline-TSP

compute this approximately (up to a factor of 3), we run
the point to point orienteering subroutine on the graph re-
stricted to nodes v such that for D(vj) ≤ D(v) < D(vk).

Having obtained these O(n4D2
max) quantities, we use a dy-

namic program to find the maximum reward path obtained
by patching the paths corresponding to disjoint intervals
[vj , vk], computed above. Note that since the vertices are
ordered by deadlines, no vertex is double counted in the
reward. Moreover the path obtained is feasible, since ev-
ery vertex v in an interval [vj , vk] is visited before D(vj)
and hence before D(v). Finally, observe that any path cor-
responding to a collection Ci would be considered by this
dynamic program, as this corresponds to patching intervals
corresponding to the disjoint rectangles in Ci. Hence modulo
the factor 3 that we lose in the point to point orienteering
subroutine, we can obtain at least the reward contained in
the optimum collection Ci.

The algorithm is given in Figure 7. By Lemma 9 and 10
we have that,

Theorem 11. Algorithm D described in Figure 7 is an
O(log n) approximation algorithm for the Deadline-TSP prob-
lem.

5.2 From Deadlines to Time-Windows
Note that Algorithm D can be easily modified to return

a path of length exactly T for some parameter T — Reduce
the deadlines of all nodes with D(v) > T to T and run the
algorithm; If the resulting path is shorter than T , wait at
the last node for an appropriate amount of time. Likewise,
we can modify the algorithm so that the returned path must
end at a pre-specified vertex t.

We now show how to use Algorithm D to solve the Time-
Window problem in the special case when all the nodes have
a deadline of ∞, but there is a fixed limit T on the length
of the path and the path must start from node s and end
at node t. We call this problem Orienteering with Release
Dates.

Given an instance G of Orienteering with Release Dates,
we convert the graph G into its “complimentary” graph G′ =
(V, E), with each v ∈ V having a time window [0, T −R(v)],
where R(v) is the release date of v in G. For any “legal”
path P of length T in G that starts at s, ends at t and
visits vertices v within their time-windows [R(v),∞], we can
define a legal path P R in G′ that starts at t, ends at s, follows
path P in reverse, and visits nodes v within [0, T − R(v)].

Therefore, any solution to Orienteering with Release Dates
on G can be converted into a solution with the same reward
to the Deadline-TSP on G′, and vice versa. Therefore, using
an α-approximation to the Deadline-TSP, we can obtain an
α-approximation to Orienteering with Release Dates. We
get the following theorem:

Theorem 12. Algorithm D gives a 3 log n approximation
to Orienteering with Release Dates, when applied to the com-
plimentary graph.

Based on the above theorem, our algorithm for the Time-
Window problem is simple—run the algorithm D (Figure 7),
replacing the P2P subroutine in step 1 by the algorithm
for Orienteering with Release Dates. This gives a 3 log2 n-
approximation to the Time-Window problem. In fact, an α-
approximation to the Deadline-TSP, that uses Orienteering
as a subroutine, can be converted to an α2 approximation
to the Time-Window problem using the same technique.

Theorem 13. The algorithm described above gives a 3 log2 n
approximation to the Time-Window Problem.

6. CONCLUSION
We present an O(log n)-approximation algorithm for the

Deadline-TSP problem and an O(log2 n)-approximation for
the Vehicle Routing Problems with Time Windows, based
on an approximation to the point-to-point orienteering prob-
lem. We also give a bicriteria approximation for the Deadline-
TSP and Time-Windows problems, as well as an improved
3-approximation to the orienteering problem. The main
open question is whether it is possible to achieve a constant-
factor approximation for either the Deadline-TSP or Time-
Window problems. The fact that our bicriteria result has a
logarithmic rather than linear dependence on 1/ε is promis-
ing, but we know of no way to convert it to a constant-factor
approximation, and in fact we have a counterexample for our
specific algorithm. Interestingly, obtaining a constant fac-
tor approximation to the unrooted version of the problem
(where the path can begin at any node) is as hard as for the
rooted version. Another interesting problem would be to re-
duce the running time of our algorithms without increasing
the approximation factor.
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